xref: /openbmc/linux/arch/sparc/mm/tsb.c (revision 95c96174)
1 /* arch/sparc64/mm/tsb.c
2  *
3  * Copyright (C) 2006, 2008 David S. Miller <davem@davemloft.net>
4  */
5 
6 #include <linux/kernel.h>
7 #include <linux/preempt.h>
8 #include <linux/slab.h>
9 #include <asm/page.h>
10 #include <asm/tlbflush.h>
11 #include <asm/tlb.h>
12 #include <asm/mmu_context.h>
13 #include <asm/pgtable.h>
14 #include <asm/tsb.h>
15 #include <asm/oplib.h>
16 
17 extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
18 
19 static inline unsigned long tsb_hash(unsigned long vaddr, unsigned long hash_shift, unsigned long nentries)
20 {
21 	vaddr >>= hash_shift;
22 	return vaddr & (nentries - 1);
23 }
24 
25 static inline int tag_compare(unsigned long tag, unsigned long vaddr)
26 {
27 	return (tag == (vaddr >> 22));
28 }
29 
30 /* TSB flushes need only occur on the processor initiating the address
31  * space modification, not on each cpu the address space has run on.
32  * Only the TLB flush needs that treatment.
33  */
34 
35 void flush_tsb_kernel_range(unsigned long start, unsigned long end)
36 {
37 	unsigned long v;
38 
39 	for (v = start; v < end; v += PAGE_SIZE) {
40 		unsigned long hash = tsb_hash(v, PAGE_SHIFT,
41 					      KERNEL_TSB_NENTRIES);
42 		struct tsb *ent = &swapper_tsb[hash];
43 
44 		if (tag_compare(ent->tag, v))
45 			ent->tag = (1UL << TSB_TAG_INVALID_BIT);
46 	}
47 }
48 
49 static void __flush_tsb_one(struct tlb_batch *tb, unsigned long hash_shift,
50 			    unsigned long tsb, unsigned long nentries)
51 {
52 	unsigned long i;
53 
54 	for (i = 0; i < tb->tlb_nr; i++) {
55 		unsigned long v = tb->vaddrs[i];
56 		unsigned long tag, ent, hash;
57 
58 		v &= ~0x1UL;
59 
60 		hash = tsb_hash(v, hash_shift, nentries);
61 		ent = tsb + (hash * sizeof(struct tsb));
62 		tag = (v >> 22UL);
63 
64 		tsb_flush(ent, tag);
65 	}
66 }
67 
68 void flush_tsb_user(struct tlb_batch *tb)
69 {
70 	struct mm_struct *mm = tb->mm;
71 	unsigned long nentries, base, flags;
72 
73 	spin_lock_irqsave(&mm->context.lock, flags);
74 
75 	base = (unsigned long) mm->context.tsb_block[MM_TSB_BASE].tsb;
76 	nentries = mm->context.tsb_block[MM_TSB_BASE].tsb_nentries;
77 	if (tlb_type == cheetah_plus || tlb_type == hypervisor)
78 		base = __pa(base);
79 	__flush_tsb_one(tb, PAGE_SHIFT, base, nentries);
80 
81 #ifdef CONFIG_HUGETLB_PAGE
82 	if (mm->context.tsb_block[MM_TSB_HUGE].tsb) {
83 		base = (unsigned long) mm->context.tsb_block[MM_TSB_HUGE].tsb;
84 		nentries = mm->context.tsb_block[MM_TSB_HUGE].tsb_nentries;
85 		if (tlb_type == cheetah_plus || tlb_type == hypervisor)
86 			base = __pa(base);
87 		__flush_tsb_one(tb, HPAGE_SHIFT, base, nentries);
88 	}
89 #endif
90 	spin_unlock_irqrestore(&mm->context.lock, flags);
91 }
92 
93 #if defined(CONFIG_SPARC64_PAGE_SIZE_8KB)
94 #define HV_PGSZ_IDX_BASE	HV_PGSZ_IDX_8K
95 #define HV_PGSZ_MASK_BASE	HV_PGSZ_MASK_8K
96 #elif defined(CONFIG_SPARC64_PAGE_SIZE_64KB)
97 #define HV_PGSZ_IDX_BASE	HV_PGSZ_IDX_64K
98 #define HV_PGSZ_MASK_BASE	HV_PGSZ_MASK_64K
99 #else
100 #error Broken base page size setting...
101 #endif
102 
103 #ifdef CONFIG_HUGETLB_PAGE
104 #if defined(CONFIG_HUGETLB_PAGE_SIZE_64K)
105 #define HV_PGSZ_IDX_HUGE	HV_PGSZ_IDX_64K
106 #define HV_PGSZ_MASK_HUGE	HV_PGSZ_MASK_64K
107 #elif defined(CONFIG_HUGETLB_PAGE_SIZE_512K)
108 #define HV_PGSZ_IDX_HUGE	HV_PGSZ_IDX_512K
109 #define HV_PGSZ_MASK_HUGE	HV_PGSZ_MASK_512K
110 #elif defined(CONFIG_HUGETLB_PAGE_SIZE_4MB)
111 #define HV_PGSZ_IDX_HUGE	HV_PGSZ_IDX_4MB
112 #define HV_PGSZ_MASK_HUGE	HV_PGSZ_MASK_4MB
113 #else
114 #error Broken huge page size setting...
115 #endif
116 #endif
117 
118 static void setup_tsb_params(struct mm_struct *mm, unsigned long tsb_idx, unsigned long tsb_bytes)
119 {
120 	unsigned long tsb_reg, base, tsb_paddr;
121 	unsigned long page_sz, tte;
122 
123 	mm->context.tsb_block[tsb_idx].tsb_nentries =
124 		tsb_bytes / sizeof(struct tsb);
125 
126 	base = TSBMAP_BASE;
127 	tte = pgprot_val(PAGE_KERNEL_LOCKED);
128 	tsb_paddr = __pa(mm->context.tsb_block[tsb_idx].tsb);
129 	BUG_ON(tsb_paddr & (tsb_bytes - 1UL));
130 
131 	/* Use the smallest page size that can map the whole TSB
132 	 * in one TLB entry.
133 	 */
134 	switch (tsb_bytes) {
135 	case 8192 << 0:
136 		tsb_reg = 0x0UL;
137 #ifdef DCACHE_ALIASING_POSSIBLE
138 		base += (tsb_paddr & 8192);
139 #endif
140 		page_sz = 8192;
141 		break;
142 
143 	case 8192 << 1:
144 		tsb_reg = 0x1UL;
145 		page_sz = 64 * 1024;
146 		break;
147 
148 	case 8192 << 2:
149 		tsb_reg = 0x2UL;
150 		page_sz = 64 * 1024;
151 		break;
152 
153 	case 8192 << 3:
154 		tsb_reg = 0x3UL;
155 		page_sz = 64 * 1024;
156 		break;
157 
158 	case 8192 << 4:
159 		tsb_reg = 0x4UL;
160 		page_sz = 512 * 1024;
161 		break;
162 
163 	case 8192 << 5:
164 		tsb_reg = 0x5UL;
165 		page_sz = 512 * 1024;
166 		break;
167 
168 	case 8192 << 6:
169 		tsb_reg = 0x6UL;
170 		page_sz = 512 * 1024;
171 		break;
172 
173 	case 8192 << 7:
174 		tsb_reg = 0x7UL;
175 		page_sz = 4 * 1024 * 1024;
176 		break;
177 
178 	default:
179 		printk(KERN_ERR "TSB[%s:%d]: Impossible TSB size %lu, killing process.\n",
180 		       current->comm, current->pid, tsb_bytes);
181 		do_exit(SIGSEGV);
182 	}
183 	tte |= pte_sz_bits(page_sz);
184 
185 	if (tlb_type == cheetah_plus || tlb_type == hypervisor) {
186 		/* Physical mapping, no locked TLB entry for TSB.  */
187 		tsb_reg |= tsb_paddr;
188 
189 		mm->context.tsb_block[tsb_idx].tsb_reg_val = tsb_reg;
190 		mm->context.tsb_block[tsb_idx].tsb_map_vaddr = 0;
191 		mm->context.tsb_block[tsb_idx].tsb_map_pte = 0;
192 	} else {
193 		tsb_reg |= base;
194 		tsb_reg |= (tsb_paddr & (page_sz - 1UL));
195 		tte |= (tsb_paddr & ~(page_sz - 1UL));
196 
197 		mm->context.tsb_block[tsb_idx].tsb_reg_val = tsb_reg;
198 		mm->context.tsb_block[tsb_idx].tsb_map_vaddr = base;
199 		mm->context.tsb_block[tsb_idx].tsb_map_pte = tte;
200 	}
201 
202 	/* Setup the Hypervisor TSB descriptor.  */
203 	if (tlb_type == hypervisor) {
204 		struct hv_tsb_descr *hp = &mm->context.tsb_descr[tsb_idx];
205 
206 		switch (tsb_idx) {
207 		case MM_TSB_BASE:
208 			hp->pgsz_idx = HV_PGSZ_IDX_BASE;
209 			break;
210 #ifdef CONFIG_HUGETLB_PAGE
211 		case MM_TSB_HUGE:
212 			hp->pgsz_idx = HV_PGSZ_IDX_HUGE;
213 			break;
214 #endif
215 		default:
216 			BUG();
217 		}
218 		hp->assoc = 1;
219 		hp->num_ttes = tsb_bytes / 16;
220 		hp->ctx_idx = 0;
221 		switch (tsb_idx) {
222 		case MM_TSB_BASE:
223 			hp->pgsz_mask = HV_PGSZ_MASK_BASE;
224 			break;
225 #ifdef CONFIG_HUGETLB_PAGE
226 		case MM_TSB_HUGE:
227 			hp->pgsz_mask = HV_PGSZ_MASK_HUGE;
228 			break;
229 #endif
230 		default:
231 			BUG();
232 		}
233 		hp->tsb_base = tsb_paddr;
234 		hp->resv = 0;
235 	}
236 }
237 
238 struct kmem_cache *pgtable_cache __read_mostly;
239 
240 static struct kmem_cache *tsb_caches[8] __read_mostly;
241 
242 static const char *tsb_cache_names[8] = {
243 	"tsb_8KB",
244 	"tsb_16KB",
245 	"tsb_32KB",
246 	"tsb_64KB",
247 	"tsb_128KB",
248 	"tsb_256KB",
249 	"tsb_512KB",
250 	"tsb_1MB",
251 };
252 
253 void __init pgtable_cache_init(void)
254 {
255 	unsigned long i;
256 
257 	pgtable_cache = kmem_cache_create("pgtable_cache",
258 					  PAGE_SIZE, PAGE_SIZE,
259 					  0,
260 					  _clear_page);
261 	if (!pgtable_cache) {
262 		prom_printf("pgtable_cache_init(): Could not create!\n");
263 		prom_halt();
264 	}
265 
266 	for (i = 0; i < 8; i++) {
267 		unsigned long size = 8192 << i;
268 		const char *name = tsb_cache_names[i];
269 
270 		tsb_caches[i] = kmem_cache_create(name,
271 						  size, size,
272 						  0, NULL);
273 		if (!tsb_caches[i]) {
274 			prom_printf("Could not create %s cache\n", name);
275 			prom_halt();
276 		}
277 	}
278 }
279 
280 int sysctl_tsb_ratio = -2;
281 
282 static unsigned long tsb_size_to_rss_limit(unsigned long new_size)
283 {
284 	unsigned long num_ents = (new_size / sizeof(struct tsb));
285 
286 	if (sysctl_tsb_ratio < 0)
287 		return num_ents - (num_ents >> -sysctl_tsb_ratio);
288 	else
289 		return num_ents + (num_ents >> sysctl_tsb_ratio);
290 }
291 
292 /* When the RSS of an address space exceeds tsb_rss_limit for a TSB,
293  * do_sparc64_fault() invokes this routine to try and grow it.
294  *
295  * When we reach the maximum TSB size supported, we stick ~0UL into
296  * tsb_rss_limit for that TSB so the grow checks in do_sparc64_fault()
297  * will not trigger any longer.
298  *
299  * The TSB can be anywhere from 8K to 1MB in size, in increasing powers
300  * of two.  The TSB must be aligned to it's size, so f.e. a 512K TSB
301  * must be 512K aligned.  It also must be physically contiguous, so we
302  * cannot use vmalloc().
303  *
304  * The idea here is to grow the TSB when the RSS of the process approaches
305  * the number of entries that the current TSB can hold at once.  Currently,
306  * we trigger when the RSS hits 3/4 of the TSB capacity.
307  */
308 void tsb_grow(struct mm_struct *mm, unsigned long tsb_index, unsigned long rss)
309 {
310 	unsigned long max_tsb_size = 1 * 1024 * 1024;
311 	unsigned long new_size, old_size, flags;
312 	struct tsb *old_tsb, *new_tsb;
313 	unsigned long new_cache_index, old_cache_index;
314 	unsigned long new_rss_limit;
315 	gfp_t gfp_flags;
316 
317 	if (max_tsb_size > (PAGE_SIZE << MAX_ORDER))
318 		max_tsb_size = (PAGE_SIZE << MAX_ORDER);
319 
320 	new_cache_index = 0;
321 	for (new_size = 8192; new_size < max_tsb_size; new_size <<= 1UL) {
322 		new_rss_limit = tsb_size_to_rss_limit(new_size);
323 		if (new_rss_limit > rss)
324 			break;
325 		new_cache_index++;
326 	}
327 
328 	if (new_size == max_tsb_size)
329 		new_rss_limit = ~0UL;
330 
331 retry_tsb_alloc:
332 	gfp_flags = GFP_KERNEL;
333 	if (new_size > (PAGE_SIZE * 2))
334 		gfp_flags = __GFP_NOWARN | __GFP_NORETRY;
335 
336 	new_tsb = kmem_cache_alloc_node(tsb_caches[new_cache_index],
337 					gfp_flags, numa_node_id());
338 	if (unlikely(!new_tsb)) {
339 		/* Not being able to fork due to a high-order TSB
340 		 * allocation failure is very bad behavior.  Just back
341 		 * down to a 0-order allocation and force no TSB
342 		 * growing for this address space.
343 		 */
344 		if (mm->context.tsb_block[tsb_index].tsb == NULL &&
345 		    new_cache_index > 0) {
346 			new_cache_index = 0;
347 			new_size = 8192;
348 			new_rss_limit = ~0UL;
349 			goto retry_tsb_alloc;
350 		}
351 
352 		/* If we failed on a TSB grow, we are under serious
353 		 * memory pressure so don't try to grow any more.
354 		 */
355 		if (mm->context.tsb_block[tsb_index].tsb != NULL)
356 			mm->context.tsb_block[tsb_index].tsb_rss_limit = ~0UL;
357 		return;
358 	}
359 
360 	/* Mark all tags as invalid.  */
361 	tsb_init(new_tsb, new_size);
362 
363 	/* Ok, we are about to commit the changes.  If we are
364 	 * growing an existing TSB the locking is very tricky,
365 	 * so WATCH OUT!
366 	 *
367 	 * We have to hold mm->context.lock while committing to the
368 	 * new TSB, this synchronizes us with processors in
369 	 * flush_tsb_user() and switch_mm() for this address space.
370 	 *
371 	 * But even with that lock held, processors run asynchronously
372 	 * accessing the old TSB via TLB miss handling.  This is OK
373 	 * because those actions are just propagating state from the
374 	 * Linux page tables into the TSB, page table mappings are not
375 	 * being changed.  If a real fault occurs, the processor will
376 	 * synchronize with us when it hits flush_tsb_user(), this is
377 	 * also true for the case where vmscan is modifying the page
378 	 * tables.  The only thing we need to be careful with is to
379 	 * skip any locked TSB entries during copy_tsb().
380 	 *
381 	 * When we finish committing to the new TSB, we have to drop
382 	 * the lock and ask all other cpus running this address space
383 	 * to run tsb_context_switch() to see the new TSB table.
384 	 */
385 	spin_lock_irqsave(&mm->context.lock, flags);
386 
387 	old_tsb = mm->context.tsb_block[tsb_index].tsb;
388 	old_cache_index =
389 		(mm->context.tsb_block[tsb_index].tsb_reg_val & 0x7UL);
390 	old_size = (mm->context.tsb_block[tsb_index].tsb_nentries *
391 		    sizeof(struct tsb));
392 
393 
394 	/* Handle multiple threads trying to grow the TSB at the same time.
395 	 * One will get in here first, and bump the size and the RSS limit.
396 	 * The others will get in here next and hit this check.
397 	 */
398 	if (unlikely(old_tsb &&
399 		     (rss < mm->context.tsb_block[tsb_index].tsb_rss_limit))) {
400 		spin_unlock_irqrestore(&mm->context.lock, flags);
401 
402 		kmem_cache_free(tsb_caches[new_cache_index], new_tsb);
403 		return;
404 	}
405 
406 	mm->context.tsb_block[tsb_index].tsb_rss_limit = new_rss_limit;
407 
408 	if (old_tsb) {
409 		extern void copy_tsb(unsigned long old_tsb_base,
410 				     unsigned long old_tsb_size,
411 				     unsigned long new_tsb_base,
412 				     unsigned long new_tsb_size);
413 		unsigned long old_tsb_base = (unsigned long) old_tsb;
414 		unsigned long new_tsb_base = (unsigned long) new_tsb;
415 
416 		if (tlb_type == cheetah_plus || tlb_type == hypervisor) {
417 			old_tsb_base = __pa(old_tsb_base);
418 			new_tsb_base = __pa(new_tsb_base);
419 		}
420 		copy_tsb(old_tsb_base, old_size, new_tsb_base, new_size);
421 	}
422 
423 	mm->context.tsb_block[tsb_index].tsb = new_tsb;
424 	setup_tsb_params(mm, tsb_index, new_size);
425 
426 	spin_unlock_irqrestore(&mm->context.lock, flags);
427 
428 	/* If old_tsb is NULL, we're being invoked for the first time
429 	 * from init_new_context().
430 	 */
431 	if (old_tsb) {
432 		/* Reload it on the local cpu.  */
433 		tsb_context_switch(mm);
434 
435 		/* Now force other processors to do the same.  */
436 		preempt_disable();
437 		smp_tsb_sync(mm);
438 		preempt_enable();
439 
440 		/* Now it is safe to free the old tsb.  */
441 		kmem_cache_free(tsb_caches[old_cache_index], old_tsb);
442 	}
443 }
444 
445 int init_new_context(struct task_struct *tsk, struct mm_struct *mm)
446 {
447 #ifdef CONFIG_HUGETLB_PAGE
448 	unsigned long huge_pte_count;
449 #endif
450 	unsigned int i;
451 
452 	spin_lock_init(&mm->context.lock);
453 
454 	mm->context.sparc64_ctx_val = 0UL;
455 
456 #ifdef CONFIG_HUGETLB_PAGE
457 	/* We reset it to zero because the fork() page copying
458 	 * will re-increment the counters as the parent PTEs are
459 	 * copied into the child address space.
460 	 */
461 	huge_pte_count = mm->context.huge_pte_count;
462 	mm->context.huge_pte_count = 0;
463 #endif
464 
465 	/* copy_mm() copies over the parent's mm_struct before calling
466 	 * us, so we need to zero out the TSB pointer or else tsb_grow()
467 	 * will be confused and think there is an older TSB to free up.
468 	 */
469 	for (i = 0; i < MM_NUM_TSBS; i++)
470 		mm->context.tsb_block[i].tsb = NULL;
471 
472 	/* If this is fork, inherit the parent's TSB size.  We would
473 	 * grow it to that size on the first page fault anyways.
474 	 */
475 	tsb_grow(mm, MM_TSB_BASE, get_mm_rss(mm));
476 
477 #ifdef CONFIG_HUGETLB_PAGE
478 	if (unlikely(huge_pte_count))
479 		tsb_grow(mm, MM_TSB_HUGE, huge_pte_count);
480 #endif
481 
482 	if (unlikely(!mm->context.tsb_block[MM_TSB_BASE].tsb))
483 		return -ENOMEM;
484 
485 	return 0;
486 }
487 
488 static void tsb_destroy_one(struct tsb_config *tp)
489 {
490 	unsigned long cache_index;
491 
492 	if (!tp->tsb)
493 		return;
494 	cache_index = tp->tsb_reg_val & 0x7UL;
495 	kmem_cache_free(tsb_caches[cache_index], tp->tsb);
496 	tp->tsb = NULL;
497 	tp->tsb_reg_val = 0UL;
498 }
499 
500 void destroy_context(struct mm_struct *mm)
501 {
502 	unsigned long flags, i;
503 
504 	for (i = 0; i < MM_NUM_TSBS; i++)
505 		tsb_destroy_one(&mm->context.tsb_block[i]);
506 
507 	spin_lock_irqsave(&ctx_alloc_lock, flags);
508 
509 	if (CTX_VALID(mm->context)) {
510 		unsigned long nr = CTX_NRBITS(mm->context);
511 		mmu_context_bmap[nr>>6] &= ~(1UL << (nr & 63));
512 	}
513 
514 	spin_unlock_irqrestore(&ctx_alloc_lock, flags);
515 }
516