xref: /openbmc/linux/arch/sparc/mm/tsb.c (revision 12eb4683)
1 /* arch/sparc64/mm/tsb.c
2  *
3  * Copyright (C) 2006, 2008 David S. Miller <davem@davemloft.net>
4  */
5 
6 #include <linux/kernel.h>
7 #include <linux/preempt.h>
8 #include <linux/slab.h>
9 #include <asm/page.h>
10 #include <asm/pgtable.h>
11 #include <asm/mmu_context.h>
12 #include <asm/tsb.h>
13 #include <asm/tlb.h>
14 #include <asm/oplib.h>
15 
16 extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
17 
18 static inline unsigned long tsb_hash(unsigned long vaddr, unsigned long hash_shift, unsigned long nentries)
19 {
20 	vaddr >>= hash_shift;
21 	return vaddr & (nentries - 1);
22 }
23 
24 static inline int tag_compare(unsigned long tag, unsigned long vaddr)
25 {
26 	return (tag == (vaddr >> 22));
27 }
28 
29 /* TSB flushes need only occur on the processor initiating the address
30  * space modification, not on each cpu the address space has run on.
31  * Only the TLB flush needs that treatment.
32  */
33 
34 void flush_tsb_kernel_range(unsigned long start, unsigned long end)
35 {
36 	unsigned long v;
37 
38 	for (v = start; v < end; v += PAGE_SIZE) {
39 		unsigned long hash = tsb_hash(v, PAGE_SHIFT,
40 					      KERNEL_TSB_NENTRIES);
41 		struct tsb *ent = &swapper_tsb[hash];
42 
43 		if (tag_compare(ent->tag, v))
44 			ent->tag = (1UL << TSB_TAG_INVALID_BIT);
45 	}
46 }
47 
48 static void __flush_tsb_one_entry(unsigned long tsb, unsigned long v,
49 				  unsigned long hash_shift,
50 				  unsigned long nentries)
51 {
52 	unsigned long tag, ent, hash;
53 
54 	v &= ~0x1UL;
55 	hash = tsb_hash(v, hash_shift, nentries);
56 	ent = tsb + (hash * sizeof(struct tsb));
57 	tag = (v >> 22UL);
58 
59 	tsb_flush(ent, tag);
60 }
61 
62 static void __flush_tsb_one(struct tlb_batch *tb, unsigned long hash_shift,
63 			    unsigned long tsb, unsigned long nentries)
64 {
65 	unsigned long i;
66 
67 	for (i = 0; i < tb->tlb_nr; i++)
68 		__flush_tsb_one_entry(tsb, tb->vaddrs[i], hash_shift, nentries);
69 }
70 
71 void flush_tsb_user(struct tlb_batch *tb)
72 {
73 	struct mm_struct *mm = tb->mm;
74 	unsigned long nentries, base, flags;
75 
76 	spin_lock_irqsave(&mm->context.lock, flags);
77 
78 	base = (unsigned long) mm->context.tsb_block[MM_TSB_BASE].tsb;
79 	nentries = mm->context.tsb_block[MM_TSB_BASE].tsb_nentries;
80 	if (tlb_type == cheetah_plus || tlb_type == hypervisor)
81 		base = __pa(base);
82 	__flush_tsb_one(tb, PAGE_SHIFT, base, nentries);
83 
84 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
85 	if (mm->context.tsb_block[MM_TSB_HUGE].tsb) {
86 		base = (unsigned long) mm->context.tsb_block[MM_TSB_HUGE].tsb;
87 		nentries = mm->context.tsb_block[MM_TSB_HUGE].tsb_nentries;
88 		if (tlb_type == cheetah_plus || tlb_type == hypervisor)
89 			base = __pa(base);
90 		__flush_tsb_one(tb, REAL_HPAGE_SHIFT, base, nentries);
91 	}
92 #endif
93 	spin_unlock_irqrestore(&mm->context.lock, flags);
94 }
95 
96 void flush_tsb_user_page(struct mm_struct *mm, unsigned long vaddr)
97 {
98 	unsigned long nentries, base, flags;
99 
100 	spin_lock_irqsave(&mm->context.lock, flags);
101 
102 	base = (unsigned long) mm->context.tsb_block[MM_TSB_BASE].tsb;
103 	nentries = mm->context.tsb_block[MM_TSB_BASE].tsb_nentries;
104 	if (tlb_type == cheetah_plus || tlb_type == hypervisor)
105 		base = __pa(base);
106 	__flush_tsb_one_entry(base, vaddr, PAGE_SHIFT, nentries);
107 
108 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
109 	if (mm->context.tsb_block[MM_TSB_HUGE].tsb) {
110 		base = (unsigned long) mm->context.tsb_block[MM_TSB_HUGE].tsb;
111 		nentries = mm->context.tsb_block[MM_TSB_HUGE].tsb_nentries;
112 		if (tlb_type == cheetah_plus || tlb_type == hypervisor)
113 			base = __pa(base);
114 		__flush_tsb_one_entry(base, vaddr, REAL_HPAGE_SHIFT, nentries);
115 	}
116 #endif
117 	spin_unlock_irqrestore(&mm->context.lock, flags);
118 }
119 
120 #define HV_PGSZ_IDX_BASE	HV_PGSZ_IDX_8K
121 #define HV_PGSZ_MASK_BASE	HV_PGSZ_MASK_8K
122 
123 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
124 #define HV_PGSZ_IDX_HUGE	HV_PGSZ_IDX_4MB
125 #define HV_PGSZ_MASK_HUGE	HV_PGSZ_MASK_4MB
126 #endif
127 
128 static void setup_tsb_params(struct mm_struct *mm, unsigned long tsb_idx, unsigned long tsb_bytes)
129 {
130 	unsigned long tsb_reg, base, tsb_paddr;
131 	unsigned long page_sz, tte;
132 
133 	mm->context.tsb_block[tsb_idx].tsb_nentries =
134 		tsb_bytes / sizeof(struct tsb);
135 
136 	base = TSBMAP_BASE;
137 	tte = pgprot_val(PAGE_KERNEL_LOCKED);
138 	tsb_paddr = __pa(mm->context.tsb_block[tsb_idx].tsb);
139 	BUG_ON(tsb_paddr & (tsb_bytes - 1UL));
140 
141 	/* Use the smallest page size that can map the whole TSB
142 	 * in one TLB entry.
143 	 */
144 	switch (tsb_bytes) {
145 	case 8192 << 0:
146 		tsb_reg = 0x0UL;
147 #ifdef DCACHE_ALIASING_POSSIBLE
148 		base += (tsb_paddr & 8192);
149 #endif
150 		page_sz = 8192;
151 		break;
152 
153 	case 8192 << 1:
154 		tsb_reg = 0x1UL;
155 		page_sz = 64 * 1024;
156 		break;
157 
158 	case 8192 << 2:
159 		tsb_reg = 0x2UL;
160 		page_sz = 64 * 1024;
161 		break;
162 
163 	case 8192 << 3:
164 		tsb_reg = 0x3UL;
165 		page_sz = 64 * 1024;
166 		break;
167 
168 	case 8192 << 4:
169 		tsb_reg = 0x4UL;
170 		page_sz = 512 * 1024;
171 		break;
172 
173 	case 8192 << 5:
174 		tsb_reg = 0x5UL;
175 		page_sz = 512 * 1024;
176 		break;
177 
178 	case 8192 << 6:
179 		tsb_reg = 0x6UL;
180 		page_sz = 512 * 1024;
181 		break;
182 
183 	case 8192 << 7:
184 		tsb_reg = 0x7UL;
185 		page_sz = 4 * 1024 * 1024;
186 		break;
187 
188 	default:
189 		printk(KERN_ERR "TSB[%s:%d]: Impossible TSB size %lu, killing process.\n",
190 		       current->comm, current->pid, tsb_bytes);
191 		do_exit(SIGSEGV);
192 	}
193 	tte |= pte_sz_bits(page_sz);
194 
195 	if (tlb_type == cheetah_plus || tlb_type == hypervisor) {
196 		/* Physical mapping, no locked TLB entry for TSB.  */
197 		tsb_reg |= tsb_paddr;
198 
199 		mm->context.tsb_block[tsb_idx].tsb_reg_val = tsb_reg;
200 		mm->context.tsb_block[tsb_idx].tsb_map_vaddr = 0;
201 		mm->context.tsb_block[tsb_idx].tsb_map_pte = 0;
202 	} else {
203 		tsb_reg |= base;
204 		tsb_reg |= (tsb_paddr & (page_sz - 1UL));
205 		tte |= (tsb_paddr & ~(page_sz - 1UL));
206 
207 		mm->context.tsb_block[tsb_idx].tsb_reg_val = tsb_reg;
208 		mm->context.tsb_block[tsb_idx].tsb_map_vaddr = base;
209 		mm->context.tsb_block[tsb_idx].tsb_map_pte = tte;
210 	}
211 
212 	/* Setup the Hypervisor TSB descriptor.  */
213 	if (tlb_type == hypervisor) {
214 		struct hv_tsb_descr *hp = &mm->context.tsb_descr[tsb_idx];
215 
216 		switch (tsb_idx) {
217 		case MM_TSB_BASE:
218 			hp->pgsz_idx = HV_PGSZ_IDX_BASE;
219 			break;
220 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
221 		case MM_TSB_HUGE:
222 			hp->pgsz_idx = HV_PGSZ_IDX_HUGE;
223 			break;
224 #endif
225 		default:
226 			BUG();
227 		}
228 		hp->assoc = 1;
229 		hp->num_ttes = tsb_bytes / 16;
230 		hp->ctx_idx = 0;
231 		switch (tsb_idx) {
232 		case MM_TSB_BASE:
233 			hp->pgsz_mask = HV_PGSZ_MASK_BASE;
234 			break;
235 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
236 		case MM_TSB_HUGE:
237 			hp->pgsz_mask = HV_PGSZ_MASK_HUGE;
238 			break;
239 #endif
240 		default:
241 			BUG();
242 		}
243 		hp->tsb_base = tsb_paddr;
244 		hp->resv = 0;
245 	}
246 }
247 
248 struct kmem_cache *pgtable_cache __read_mostly;
249 
250 static struct kmem_cache *tsb_caches[8] __read_mostly;
251 
252 static const char *tsb_cache_names[8] = {
253 	"tsb_8KB",
254 	"tsb_16KB",
255 	"tsb_32KB",
256 	"tsb_64KB",
257 	"tsb_128KB",
258 	"tsb_256KB",
259 	"tsb_512KB",
260 	"tsb_1MB",
261 };
262 
263 void __init pgtable_cache_init(void)
264 {
265 	unsigned long i;
266 
267 	pgtable_cache = kmem_cache_create("pgtable_cache",
268 					  PAGE_SIZE, PAGE_SIZE,
269 					  0,
270 					  _clear_page);
271 	if (!pgtable_cache) {
272 		prom_printf("pgtable_cache_init(): Could not create!\n");
273 		prom_halt();
274 	}
275 
276 	for (i = 0; i < 8; i++) {
277 		unsigned long size = 8192 << i;
278 		const char *name = tsb_cache_names[i];
279 
280 		tsb_caches[i] = kmem_cache_create(name,
281 						  size, size,
282 						  0, NULL);
283 		if (!tsb_caches[i]) {
284 			prom_printf("Could not create %s cache\n", name);
285 			prom_halt();
286 		}
287 	}
288 }
289 
290 int sysctl_tsb_ratio = -2;
291 
292 static unsigned long tsb_size_to_rss_limit(unsigned long new_size)
293 {
294 	unsigned long num_ents = (new_size / sizeof(struct tsb));
295 
296 	if (sysctl_tsb_ratio < 0)
297 		return num_ents - (num_ents >> -sysctl_tsb_ratio);
298 	else
299 		return num_ents + (num_ents >> sysctl_tsb_ratio);
300 }
301 
302 /* When the RSS of an address space exceeds tsb_rss_limit for a TSB,
303  * do_sparc64_fault() invokes this routine to try and grow it.
304  *
305  * When we reach the maximum TSB size supported, we stick ~0UL into
306  * tsb_rss_limit for that TSB so the grow checks in do_sparc64_fault()
307  * will not trigger any longer.
308  *
309  * The TSB can be anywhere from 8K to 1MB in size, in increasing powers
310  * of two.  The TSB must be aligned to it's size, so f.e. a 512K TSB
311  * must be 512K aligned.  It also must be physically contiguous, so we
312  * cannot use vmalloc().
313  *
314  * The idea here is to grow the TSB when the RSS of the process approaches
315  * the number of entries that the current TSB can hold at once.  Currently,
316  * we trigger when the RSS hits 3/4 of the TSB capacity.
317  */
318 void tsb_grow(struct mm_struct *mm, unsigned long tsb_index, unsigned long rss)
319 {
320 	unsigned long max_tsb_size = 1 * 1024 * 1024;
321 	unsigned long new_size, old_size, flags;
322 	struct tsb *old_tsb, *new_tsb;
323 	unsigned long new_cache_index, old_cache_index;
324 	unsigned long new_rss_limit;
325 	gfp_t gfp_flags;
326 
327 	if (max_tsb_size > (PAGE_SIZE << MAX_ORDER))
328 		max_tsb_size = (PAGE_SIZE << MAX_ORDER);
329 
330 	new_cache_index = 0;
331 	for (new_size = 8192; new_size < max_tsb_size; new_size <<= 1UL) {
332 		new_rss_limit = tsb_size_to_rss_limit(new_size);
333 		if (new_rss_limit > rss)
334 			break;
335 		new_cache_index++;
336 	}
337 
338 	if (new_size == max_tsb_size)
339 		new_rss_limit = ~0UL;
340 
341 retry_tsb_alloc:
342 	gfp_flags = GFP_KERNEL;
343 	if (new_size > (PAGE_SIZE * 2))
344 		gfp_flags |= __GFP_NOWARN | __GFP_NORETRY;
345 
346 	new_tsb = kmem_cache_alloc_node(tsb_caches[new_cache_index],
347 					gfp_flags, numa_node_id());
348 	if (unlikely(!new_tsb)) {
349 		/* Not being able to fork due to a high-order TSB
350 		 * allocation failure is very bad behavior.  Just back
351 		 * down to a 0-order allocation and force no TSB
352 		 * growing for this address space.
353 		 */
354 		if (mm->context.tsb_block[tsb_index].tsb == NULL &&
355 		    new_cache_index > 0) {
356 			new_cache_index = 0;
357 			new_size = 8192;
358 			new_rss_limit = ~0UL;
359 			goto retry_tsb_alloc;
360 		}
361 
362 		/* If we failed on a TSB grow, we are under serious
363 		 * memory pressure so don't try to grow any more.
364 		 */
365 		if (mm->context.tsb_block[tsb_index].tsb != NULL)
366 			mm->context.tsb_block[tsb_index].tsb_rss_limit = ~0UL;
367 		return;
368 	}
369 
370 	/* Mark all tags as invalid.  */
371 	tsb_init(new_tsb, new_size);
372 
373 	/* Ok, we are about to commit the changes.  If we are
374 	 * growing an existing TSB the locking is very tricky,
375 	 * so WATCH OUT!
376 	 *
377 	 * We have to hold mm->context.lock while committing to the
378 	 * new TSB, this synchronizes us with processors in
379 	 * flush_tsb_user() and switch_mm() for this address space.
380 	 *
381 	 * But even with that lock held, processors run asynchronously
382 	 * accessing the old TSB via TLB miss handling.  This is OK
383 	 * because those actions are just propagating state from the
384 	 * Linux page tables into the TSB, page table mappings are not
385 	 * being changed.  If a real fault occurs, the processor will
386 	 * synchronize with us when it hits flush_tsb_user(), this is
387 	 * also true for the case where vmscan is modifying the page
388 	 * tables.  The only thing we need to be careful with is to
389 	 * skip any locked TSB entries during copy_tsb().
390 	 *
391 	 * When we finish committing to the new TSB, we have to drop
392 	 * the lock and ask all other cpus running this address space
393 	 * to run tsb_context_switch() to see the new TSB table.
394 	 */
395 	spin_lock_irqsave(&mm->context.lock, flags);
396 
397 	old_tsb = mm->context.tsb_block[tsb_index].tsb;
398 	old_cache_index =
399 		(mm->context.tsb_block[tsb_index].tsb_reg_val & 0x7UL);
400 	old_size = (mm->context.tsb_block[tsb_index].tsb_nentries *
401 		    sizeof(struct tsb));
402 
403 
404 	/* Handle multiple threads trying to grow the TSB at the same time.
405 	 * One will get in here first, and bump the size and the RSS limit.
406 	 * The others will get in here next and hit this check.
407 	 */
408 	if (unlikely(old_tsb &&
409 		     (rss < mm->context.tsb_block[tsb_index].tsb_rss_limit))) {
410 		spin_unlock_irqrestore(&mm->context.lock, flags);
411 
412 		kmem_cache_free(tsb_caches[new_cache_index], new_tsb);
413 		return;
414 	}
415 
416 	mm->context.tsb_block[tsb_index].tsb_rss_limit = new_rss_limit;
417 
418 	if (old_tsb) {
419 		extern void copy_tsb(unsigned long old_tsb_base,
420 				     unsigned long old_tsb_size,
421 				     unsigned long new_tsb_base,
422 				     unsigned long new_tsb_size);
423 		unsigned long old_tsb_base = (unsigned long) old_tsb;
424 		unsigned long new_tsb_base = (unsigned long) new_tsb;
425 
426 		if (tlb_type == cheetah_plus || tlb_type == hypervisor) {
427 			old_tsb_base = __pa(old_tsb_base);
428 			new_tsb_base = __pa(new_tsb_base);
429 		}
430 		copy_tsb(old_tsb_base, old_size, new_tsb_base, new_size);
431 	}
432 
433 	mm->context.tsb_block[tsb_index].tsb = new_tsb;
434 	setup_tsb_params(mm, tsb_index, new_size);
435 
436 	spin_unlock_irqrestore(&mm->context.lock, flags);
437 
438 	/* If old_tsb is NULL, we're being invoked for the first time
439 	 * from init_new_context().
440 	 */
441 	if (old_tsb) {
442 		/* Reload it on the local cpu.  */
443 		tsb_context_switch(mm);
444 
445 		/* Now force other processors to do the same.  */
446 		preempt_disable();
447 		smp_tsb_sync(mm);
448 		preempt_enable();
449 
450 		/* Now it is safe to free the old tsb.  */
451 		kmem_cache_free(tsb_caches[old_cache_index], old_tsb);
452 	}
453 }
454 
455 int init_new_context(struct task_struct *tsk, struct mm_struct *mm)
456 {
457 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
458 	unsigned long huge_pte_count;
459 #endif
460 	unsigned int i;
461 
462 	spin_lock_init(&mm->context.lock);
463 
464 	mm->context.sparc64_ctx_val = 0UL;
465 
466 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
467 	/* We reset it to zero because the fork() page copying
468 	 * will re-increment the counters as the parent PTEs are
469 	 * copied into the child address space.
470 	 */
471 	huge_pte_count = mm->context.huge_pte_count;
472 	mm->context.huge_pte_count = 0;
473 #endif
474 
475 	/* copy_mm() copies over the parent's mm_struct before calling
476 	 * us, so we need to zero out the TSB pointer or else tsb_grow()
477 	 * will be confused and think there is an older TSB to free up.
478 	 */
479 	for (i = 0; i < MM_NUM_TSBS; i++)
480 		mm->context.tsb_block[i].tsb = NULL;
481 
482 	/* If this is fork, inherit the parent's TSB size.  We would
483 	 * grow it to that size on the first page fault anyways.
484 	 */
485 	tsb_grow(mm, MM_TSB_BASE, get_mm_rss(mm));
486 
487 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
488 	if (unlikely(huge_pte_count))
489 		tsb_grow(mm, MM_TSB_HUGE, huge_pte_count);
490 #endif
491 
492 	if (unlikely(!mm->context.tsb_block[MM_TSB_BASE].tsb))
493 		return -ENOMEM;
494 
495 	return 0;
496 }
497 
498 static void tsb_destroy_one(struct tsb_config *tp)
499 {
500 	unsigned long cache_index;
501 
502 	if (!tp->tsb)
503 		return;
504 	cache_index = tp->tsb_reg_val & 0x7UL;
505 	kmem_cache_free(tsb_caches[cache_index], tp->tsb);
506 	tp->tsb = NULL;
507 	tp->tsb_reg_val = 0UL;
508 }
509 
510 void destroy_context(struct mm_struct *mm)
511 {
512 	unsigned long flags, i;
513 
514 	for (i = 0; i < MM_NUM_TSBS; i++)
515 		tsb_destroy_one(&mm->context.tsb_block[i]);
516 
517 	spin_lock_irqsave(&ctx_alloc_lock, flags);
518 
519 	if (CTX_VALID(mm->context)) {
520 		unsigned long nr = CTX_NRBITS(mm->context);
521 		mmu_context_bmap[nr>>6] &= ~(1UL << (nr & 63));
522 	}
523 
524 	spin_unlock_irqrestore(&ctx_alloc_lock, flags);
525 }
526