xref: /openbmc/linux/arch/sparc/mm/tlb.c (revision c51d39010a1bccc9c1294e2d7c00005aefeb2b5c)
1 /* arch/sparc64/mm/tlb.c
2  *
3  * Copyright (C) 2004 David S. Miller <davem@redhat.com>
4  */
5 
6 #include <linux/kernel.h>
7 #include <linux/percpu.h>
8 #include <linux/mm.h>
9 #include <linux/swap.h>
10 #include <linux/preempt.h>
11 
12 #include <asm/pgtable.h>
13 #include <asm/pgalloc.h>
14 #include <asm/tlbflush.h>
15 #include <asm/cacheflush.h>
16 #include <asm/mmu_context.h>
17 #include <asm/tlb.h>
18 
19 /* Heavily inspired by the ppc64 code.  */
20 
21 static DEFINE_PER_CPU(struct tlb_batch, tlb_batch);
22 
23 void flush_tlb_pending(void)
24 {
25 	struct tlb_batch *tb = &get_cpu_var(tlb_batch);
26 	struct mm_struct *mm = tb->mm;
27 
28 	if (!tb->tlb_nr)
29 		goto out;
30 
31 	flush_tsb_user(tb);
32 
33 	if (CTX_VALID(mm->context)) {
34 		if (tb->tlb_nr == 1) {
35 			global_flush_tlb_page(mm, tb->vaddrs[0]);
36 		} else {
37 #ifdef CONFIG_SMP
38 			smp_flush_tlb_pending(tb->mm, tb->tlb_nr,
39 					      &tb->vaddrs[0]);
40 #else
41 			__flush_tlb_pending(CTX_HWBITS(tb->mm->context),
42 					    tb->tlb_nr, &tb->vaddrs[0]);
43 #endif
44 		}
45 	}
46 
47 	tb->tlb_nr = 0;
48 
49 out:
50 	put_cpu_var(tlb_batch);
51 }
52 
53 void arch_enter_lazy_mmu_mode(void)
54 {
55 	struct tlb_batch *tb = this_cpu_ptr(&tlb_batch);
56 
57 	tb->active = 1;
58 }
59 
60 void arch_leave_lazy_mmu_mode(void)
61 {
62 	struct tlb_batch *tb = this_cpu_ptr(&tlb_batch);
63 
64 	if (tb->tlb_nr)
65 		flush_tlb_pending();
66 	tb->active = 0;
67 }
68 
69 static void tlb_batch_add_one(struct mm_struct *mm, unsigned long vaddr,
70 			      bool exec, bool huge)
71 {
72 	struct tlb_batch *tb = &get_cpu_var(tlb_batch);
73 	unsigned long nr;
74 
75 	vaddr &= PAGE_MASK;
76 	if (exec)
77 		vaddr |= 0x1UL;
78 
79 	nr = tb->tlb_nr;
80 
81 	if (unlikely(nr != 0 && mm != tb->mm)) {
82 		flush_tlb_pending();
83 		nr = 0;
84 	}
85 
86 	if (!tb->active) {
87 		flush_tsb_user_page(mm, vaddr, huge);
88 		global_flush_tlb_page(mm, vaddr);
89 		goto out;
90 	}
91 
92 	if (nr == 0) {
93 		tb->mm = mm;
94 		tb->huge = huge;
95 	}
96 
97 	if (tb->huge != huge) {
98 		flush_tlb_pending();
99 		tb->huge = huge;
100 		nr = 0;
101 	}
102 
103 	tb->vaddrs[nr] = vaddr;
104 	tb->tlb_nr = ++nr;
105 	if (nr >= TLB_BATCH_NR)
106 		flush_tlb_pending();
107 
108 out:
109 	put_cpu_var(tlb_batch);
110 }
111 
112 void tlb_batch_add(struct mm_struct *mm, unsigned long vaddr,
113 		   pte_t *ptep, pte_t orig, int fullmm)
114 {
115 	bool huge = is_hugetlb_pte(orig);
116 
117 	if (tlb_type != hypervisor &&
118 	    pte_dirty(orig)) {
119 		unsigned long paddr, pfn = pte_pfn(orig);
120 		struct address_space *mapping;
121 		struct page *page;
122 
123 		if (!pfn_valid(pfn))
124 			goto no_cache_flush;
125 
126 		page = pfn_to_page(pfn);
127 		if (PageReserved(page))
128 			goto no_cache_flush;
129 
130 		/* A real file page? */
131 		mapping = page_mapping(page);
132 		if (!mapping)
133 			goto no_cache_flush;
134 
135 		paddr = (unsigned long) page_address(page);
136 		if ((paddr ^ vaddr) & (1 << 13))
137 			flush_dcache_page_all(mm, page);
138 	}
139 
140 no_cache_flush:
141 	if (!fullmm)
142 		tlb_batch_add_one(mm, vaddr, pte_exec(orig), huge);
143 }
144 
145 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
146 static void tlb_batch_pmd_scan(struct mm_struct *mm, unsigned long vaddr,
147 			       pmd_t pmd)
148 {
149 	unsigned long end;
150 	pte_t *pte;
151 
152 	pte = pte_offset_map(&pmd, vaddr);
153 	end = vaddr + HPAGE_SIZE;
154 	while (vaddr < end) {
155 		if (pte_val(*pte) & _PAGE_VALID) {
156 			bool exec = pte_exec(*pte);
157 
158 			tlb_batch_add_one(mm, vaddr, exec, false);
159 		}
160 		pte++;
161 		vaddr += PAGE_SIZE;
162 	}
163 	pte_unmap(pte);
164 }
165 
166 void set_pmd_at(struct mm_struct *mm, unsigned long addr,
167 		pmd_t *pmdp, pmd_t pmd)
168 {
169 	pmd_t orig = *pmdp;
170 
171 	*pmdp = pmd;
172 
173 	if (mm == &init_mm)
174 		return;
175 
176 	if ((pmd_val(pmd) ^ pmd_val(orig)) & _PAGE_PMD_HUGE) {
177 		/*
178 		 * Note that this routine only sets pmds for THP pages.
179 		 * Hugetlb pages are handled elsewhere.  We need to check
180 		 * for huge zero page.  Huge zero pages are like hugetlb
181 		 * pages in that there is no RSS, but there is the need
182 		 * for TSB entries.  So, huge zero page counts go into
183 		 * hugetlb_pte_count.
184 		 */
185 		if (pmd_val(pmd) & _PAGE_PMD_HUGE) {
186 			if (is_huge_zero_page(pmd_page(pmd)))
187 				mm->context.hugetlb_pte_count++;
188 			else
189 				mm->context.thp_pte_count++;
190 		} else {
191 			if (is_huge_zero_page(pmd_page(orig)))
192 				mm->context.hugetlb_pte_count--;
193 			else
194 				mm->context.thp_pte_count--;
195 		}
196 
197 		/* Do not try to allocate the TSB hash table if we
198 		 * don't have one already.  We have various locks held
199 		 * and thus we'll end up doing a GFP_KERNEL allocation
200 		 * in an atomic context.
201 		 *
202 		 * Instead, we let the first TLB miss on a hugepage
203 		 * take care of this.
204 		 */
205 	}
206 
207 	if (!pmd_none(orig)) {
208 		addr &= HPAGE_MASK;
209 		if (pmd_trans_huge(orig)) {
210 			pte_t orig_pte = __pte(pmd_val(orig));
211 			bool exec = pte_exec(orig_pte);
212 
213 			tlb_batch_add_one(mm, addr, exec, true);
214 			tlb_batch_add_one(mm, addr + REAL_HPAGE_SIZE, exec,
215 					true);
216 		} else {
217 			tlb_batch_pmd_scan(mm, addr, orig);
218 		}
219 	}
220 }
221 
222 /*
223  * This routine is only called when splitting a THP
224  */
225 void pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
226 		     pmd_t *pmdp)
227 {
228 	pmd_t entry = *pmdp;
229 
230 	pmd_val(entry) &= ~_PAGE_VALID;
231 
232 	set_pmd_at(vma->vm_mm, address, pmdp, entry);
233 	flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
234 
235 	/*
236 	 * set_pmd_at() will not be called in a way to decrement
237 	 * thp_pte_count when splitting a THP, so do it now.
238 	 * Sanity check pmd before doing the actual decrement.
239 	 */
240 	if ((pmd_val(entry) & _PAGE_PMD_HUGE) &&
241 	    !is_huge_zero_page(pmd_page(entry)))
242 		(vma->vm_mm)->context.thp_pte_count--;
243 }
244 
245 void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
246 				pgtable_t pgtable)
247 {
248 	struct list_head *lh = (struct list_head *) pgtable;
249 
250 	assert_spin_locked(&mm->page_table_lock);
251 
252 	/* FIFO */
253 	if (!pmd_huge_pte(mm, pmdp))
254 		INIT_LIST_HEAD(lh);
255 	else
256 		list_add(lh, (struct list_head *) pmd_huge_pte(mm, pmdp));
257 	pmd_huge_pte(mm, pmdp) = pgtable;
258 }
259 
260 pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp)
261 {
262 	struct list_head *lh;
263 	pgtable_t pgtable;
264 
265 	assert_spin_locked(&mm->page_table_lock);
266 
267 	/* FIFO */
268 	pgtable = pmd_huge_pte(mm, pmdp);
269 	lh = (struct list_head *) pgtable;
270 	if (list_empty(lh))
271 		pmd_huge_pte(mm, pmdp) = NULL;
272 	else {
273 		pmd_huge_pte(mm, pmdp) = (pgtable_t) lh->next;
274 		list_del(lh);
275 	}
276 	pte_val(pgtable[0]) = 0;
277 	pte_val(pgtable[1]) = 0;
278 
279 	return pgtable;
280 }
281 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
282