1 /* 2 * srmmu.c: SRMMU specific routines for memory management. 3 * 4 * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu) 5 * Copyright (C) 1995,2002 Pete Zaitcev (zaitcev@yahoo.com) 6 * Copyright (C) 1996 Eddie C. Dost (ecd@skynet.be) 7 * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz) 8 * Copyright (C) 1999,2000 Anton Blanchard (anton@samba.org) 9 */ 10 11 #include <linux/seq_file.h> 12 #include <linux/spinlock.h> 13 #include <linux/bootmem.h> 14 #include <linux/pagemap.h> 15 #include <linux/vmalloc.h> 16 #include <linux/kdebug.h> 17 #include <linux/kernel.h> 18 #include <linux/init.h> 19 #include <linux/log2.h> 20 #include <linux/gfp.h> 21 #include <linux/fs.h> 22 #include <linux/mm.h> 23 24 #include <asm/mmu_context.h> 25 #include <asm/cacheflush.h> 26 #include <asm/tlbflush.h> 27 #include <asm/io-unit.h> 28 #include <asm/pgalloc.h> 29 #include <asm/pgtable.h> 30 #include <asm/bitext.h> 31 #include <asm/vaddrs.h> 32 #include <asm/cache.h> 33 #include <asm/traps.h> 34 #include <asm/oplib.h> 35 #include <asm/mbus.h> 36 #include <asm/page.h> 37 #include <asm/asi.h> 38 #include <asm/msi.h> 39 #include <asm/smp.h> 40 #include <asm/io.h> 41 42 /* Now the cpu specific definitions. */ 43 #include <asm/turbosparc.h> 44 #include <asm/tsunami.h> 45 #include <asm/viking.h> 46 #include <asm/swift.h> 47 #include <asm/leon.h> 48 #include <asm/mxcc.h> 49 #include <asm/ross.h> 50 51 #include "srmmu.h" 52 53 enum mbus_module srmmu_modtype; 54 static unsigned int hwbug_bitmask; 55 int vac_cache_size; 56 int vac_line_size; 57 58 extern struct resource sparc_iomap; 59 60 extern unsigned long last_valid_pfn; 61 62 static pgd_t *srmmu_swapper_pg_dir; 63 64 const struct sparc32_cachetlb_ops *sparc32_cachetlb_ops; 65 66 #ifdef CONFIG_SMP 67 const struct sparc32_cachetlb_ops *local_ops; 68 69 #define FLUSH_BEGIN(mm) 70 #define FLUSH_END 71 #else 72 #define FLUSH_BEGIN(mm) if ((mm)->context != NO_CONTEXT) { 73 #define FLUSH_END } 74 #endif 75 76 int flush_page_for_dma_global = 1; 77 78 char *srmmu_name; 79 80 ctxd_t *srmmu_ctx_table_phys; 81 static ctxd_t *srmmu_context_table; 82 83 int viking_mxcc_present; 84 static DEFINE_SPINLOCK(srmmu_context_spinlock); 85 86 static int is_hypersparc; 87 88 static int srmmu_cache_pagetables; 89 90 /* these will be initialized in srmmu_nocache_calcsize() */ 91 static unsigned long srmmu_nocache_size; 92 static unsigned long srmmu_nocache_end; 93 94 /* 1 bit <=> 256 bytes of nocache <=> 64 PTEs */ 95 #define SRMMU_NOCACHE_BITMAP_SHIFT (PAGE_SHIFT - 4) 96 97 /* The context table is a nocache user with the biggest alignment needs. */ 98 #define SRMMU_NOCACHE_ALIGN_MAX (sizeof(ctxd_t)*SRMMU_MAX_CONTEXTS) 99 100 void *srmmu_nocache_pool; 101 void *srmmu_nocache_bitmap; 102 static struct bit_map srmmu_nocache_map; 103 104 static inline int srmmu_pmd_none(pmd_t pmd) 105 { return !(pmd_val(pmd) & 0xFFFFFFF); } 106 107 /* XXX should we hyper_flush_whole_icache here - Anton */ 108 static inline void srmmu_ctxd_set(ctxd_t *ctxp, pgd_t *pgdp) 109 { set_pte((pte_t *)ctxp, (SRMMU_ET_PTD | (__nocache_pa((unsigned long) pgdp) >> 4))); } 110 111 void pmd_set(pmd_t *pmdp, pte_t *ptep) 112 { 113 unsigned long ptp; /* Physical address, shifted right by 4 */ 114 int i; 115 116 ptp = __nocache_pa((unsigned long) ptep) >> 4; 117 for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) { 118 set_pte((pte_t *)&pmdp->pmdv[i], SRMMU_ET_PTD | ptp); 119 ptp += (SRMMU_REAL_PTRS_PER_PTE*sizeof(pte_t) >> 4); 120 } 121 } 122 123 void pmd_populate(struct mm_struct *mm, pmd_t *pmdp, struct page *ptep) 124 { 125 unsigned long ptp; /* Physical address, shifted right by 4 */ 126 int i; 127 128 ptp = page_to_pfn(ptep) << (PAGE_SHIFT-4); /* watch for overflow */ 129 for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) { 130 set_pte((pte_t *)&pmdp->pmdv[i], SRMMU_ET_PTD | ptp); 131 ptp += (SRMMU_REAL_PTRS_PER_PTE*sizeof(pte_t) >> 4); 132 } 133 } 134 135 /* Find an entry in the third-level page table.. */ 136 pte_t *pte_offset_kernel(pmd_t *dir, unsigned long address) 137 { 138 void *pte; 139 140 pte = __nocache_va((dir->pmdv[0] & SRMMU_PTD_PMASK) << 4); 141 return (pte_t *) pte + 142 ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)); 143 } 144 145 /* 146 * size: bytes to allocate in the nocache area. 147 * align: bytes, number to align at. 148 * Returns the virtual address of the allocated area. 149 */ 150 static void *__srmmu_get_nocache(int size, int align) 151 { 152 int offset; 153 unsigned long addr; 154 155 if (size < SRMMU_NOCACHE_BITMAP_SHIFT) { 156 printk(KERN_ERR "Size 0x%x too small for nocache request\n", 157 size); 158 size = SRMMU_NOCACHE_BITMAP_SHIFT; 159 } 160 if (size & (SRMMU_NOCACHE_BITMAP_SHIFT - 1)) { 161 printk(KERN_ERR "Size 0x%x unaligned int nocache request\n", 162 size); 163 size += SRMMU_NOCACHE_BITMAP_SHIFT - 1; 164 } 165 BUG_ON(align > SRMMU_NOCACHE_ALIGN_MAX); 166 167 offset = bit_map_string_get(&srmmu_nocache_map, 168 size >> SRMMU_NOCACHE_BITMAP_SHIFT, 169 align >> SRMMU_NOCACHE_BITMAP_SHIFT); 170 if (offset == -1) { 171 printk(KERN_ERR "srmmu: out of nocache %d: %d/%d\n", 172 size, (int) srmmu_nocache_size, 173 srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT); 174 return 0; 175 } 176 177 addr = SRMMU_NOCACHE_VADDR + (offset << SRMMU_NOCACHE_BITMAP_SHIFT); 178 return (void *)addr; 179 } 180 181 void *srmmu_get_nocache(int size, int align) 182 { 183 void *tmp; 184 185 tmp = __srmmu_get_nocache(size, align); 186 187 if (tmp) 188 memset(tmp, 0, size); 189 190 return tmp; 191 } 192 193 void srmmu_free_nocache(void *addr, int size) 194 { 195 unsigned long vaddr; 196 int offset; 197 198 vaddr = (unsigned long)addr; 199 if (vaddr < SRMMU_NOCACHE_VADDR) { 200 printk("Vaddr %lx is smaller than nocache base 0x%lx\n", 201 vaddr, (unsigned long)SRMMU_NOCACHE_VADDR); 202 BUG(); 203 } 204 if (vaddr + size > srmmu_nocache_end) { 205 printk("Vaddr %lx is bigger than nocache end 0x%lx\n", 206 vaddr, srmmu_nocache_end); 207 BUG(); 208 } 209 if (!is_power_of_2(size)) { 210 printk("Size 0x%x is not a power of 2\n", size); 211 BUG(); 212 } 213 if (size < SRMMU_NOCACHE_BITMAP_SHIFT) { 214 printk("Size 0x%x is too small\n", size); 215 BUG(); 216 } 217 if (vaddr & (size - 1)) { 218 printk("Vaddr %lx is not aligned to size 0x%x\n", vaddr, size); 219 BUG(); 220 } 221 222 offset = (vaddr - SRMMU_NOCACHE_VADDR) >> SRMMU_NOCACHE_BITMAP_SHIFT; 223 size = size >> SRMMU_NOCACHE_BITMAP_SHIFT; 224 225 bit_map_clear(&srmmu_nocache_map, offset, size); 226 } 227 228 static void srmmu_early_allocate_ptable_skeleton(unsigned long start, 229 unsigned long end); 230 231 /* Return how much physical memory we have. */ 232 static unsigned long __init probe_memory(void) 233 { 234 unsigned long total = 0; 235 int i; 236 237 for (i = 0; sp_banks[i].num_bytes; i++) 238 total += sp_banks[i].num_bytes; 239 240 return total; 241 } 242 243 /* 244 * Reserve nocache dynamically proportionally to the amount of 245 * system RAM. -- Tomas Szepe <szepe@pinerecords.com>, June 2002 246 */ 247 static void __init srmmu_nocache_calcsize(void) 248 { 249 unsigned long sysmemavail = probe_memory() / 1024; 250 int srmmu_nocache_npages; 251 252 srmmu_nocache_npages = 253 sysmemavail / SRMMU_NOCACHE_ALCRATIO / 1024 * 256; 254 255 /* P3 XXX The 4x overuse: corroborated by /proc/meminfo. */ 256 // if (srmmu_nocache_npages < 256) srmmu_nocache_npages = 256; 257 if (srmmu_nocache_npages < SRMMU_MIN_NOCACHE_PAGES) 258 srmmu_nocache_npages = SRMMU_MIN_NOCACHE_PAGES; 259 260 /* anything above 1280 blows up */ 261 if (srmmu_nocache_npages > SRMMU_MAX_NOCACHE_PAGES) 262 srmmu_nocache_npages = SRMMU_MAX_NOCACHE_PAGES; 263 264 srmmu_nocache_size = srmmu_nocache_npages * PAGE_SIZE; 265 srmmu_nocache_end = SRMMU_NOCACHE_VADDR + srmmu_nocache_size; 266 } 267 268 static void __init srmmu_nocache_init(void) 269 { 270 unsigned int bitmap_bits; 271 pgd_t *pgd; 272 pmd_t *pmd; 273 pte_t *pte; 274 unsigned long paddr, vaddr; 275 unsigned long pteval; 276 277 bitmap_bits = srmmu_nocache_size >> SRMMU_NOCACHE_BITMAP_SHIFT; 278 279 srmmu_nocache_pool = __alloc_bootmem(srmmu_nocache_size, 280 SRMMU_NOCACHE_ALIGN_MAX, 0UL); 281 memset(srmmu_nocache_pool, 0, srmmu_nocache_size); 282 283 srmmu_nocache_bitmap = 284 __alloc_bootmem(BITS_TO_LONGS(bitmap_bits) * sizeof(long), 285 SMP_CACHE_BYTES, 0UL); 286 bit_map_init(&srmmu_nocache_map, srmmu_nocache_bitmap, bitmap_bits); 287 288 srmmu_swapper_pg_dir = __srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE); 289 memset(__nocache_fix(srmmu_swapper_pg_dir), 0, SRMMU_PGD_TABLE_SIZE); 290 init_mm.pgd = srmmu_swapper_pg_dir; 291 292 srmmu_early_allocate_ptable_skeleton(SRMMU_NOCACHE_VADDR, srmmu_nocache_end); 293 294 paddr = __pa((unsigned long)srmmu_nocache_pool); 295 vaddr = SRMMU_NOCACHE_VADDR; 296 297 while (vaddr < srmmu_nocache_end) { 298 pgd = pgd_offset_k(vaddr); 299 pmd = pmd_offset(__nocache_fix(pgd), vaddr); 300 pte = pte_offset_kernel(__nocache_fix(pmd), vaddr); 301 302 pteval = ((paddr >> 4) | SRMMU_ET_PTE | SRMMU_PRIV); 303 304 if (srmmu_cache_pagetables) 305 pteval |= SRMMU_CACHE; 306 307 set_pte(__nocache_fix(pte), __pte(pteval)); 308 309 vaddr += PAGE_SIZE; 310 paddr += PAGE_SIZE; 311 } 312 313 flush_cache_all(); 314 flush_tlb_all(); 315 } 316 317 pgd_t *get_pgd_fast(void) 318 { 319 pgd_t *pgd = NULL; 320 321 pgd = __srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE); 322 if (pgd) { 323 pgd_t *init = pgd_offset_k(0); 324 memset(pgd, 0, USER_PTRS_PER_PGD * sizeof(pgd_t)); 325 memcpy(pgd + USER_PTRS_PER_PGD, init + USER_PTRS_PER_PGD, 326 (PTRS_PER_PGD - USER_PTRS_PER_PGD) * sizeof(pgd_t)); 327 } 328 329 return pgd; 330 } 331 332 /* 333 * Hardware needs alignment to 256 only, but we align to whole page size 334 * to reduce fragmentation problems due to the buddy principle. 335 * XXX Provide actual fragmentation statistics in /proc. 336 * 337 * Alignments up to the page size are the same for physical and virtual 338 * addresses of the nocache area. 339 */ 340 pgtable_t pte_alloc_one(struct mm_struct *mm, unsigned long address) 341 { 342 unsigned long pte; 343 struct page *page; 344 345 if ((pte = (unsigned long)pte_alloc_one_kernel(mm, address)) == 0) 346 return NULL; 347 page = pfn_to_page(__nocache_pa(pte) >> PAGE_SHIFT); 348 pgtable_page_ctor(page); 349 return page; 350 } 351 352 void pte_free(struct mm_struct *mm, pgtable_t pte) 353 { 354 unsigned long p; 355 356 pgtable_page_dtor(pte); 357 p = (unsigned long)page_address(pte); /* Cached address (for test) */ 358 if (p == 0) 359 BUG(); 360 p = page_to_pfn(pte) << PAGE_SHIFT; /* Physical address */ 361 362 /* free non cached virtual address*/ 363 srmmu_free_nocache(__nocache_va(p), PTE_SIZE); 364 } 365 366 /* context handling - a dynamically sized pool is used */ 367 #define NO_CONTEXT -1 368 369 struct ctx_list { 370 struct ctx_list *next; 371 struct ctx_list *prev; 372 unsigned int ctx_number; 373 struct mm_struct *ctx_mm; 374 }; 375 376 static struct ctx_list *ctx_list_pool; 377 static struct ctx_list ctx_free; 378 static struct ctx_list ctx_used; 379 380 /* At boot time we determine the number of contexts */ 381 static int num_contexts; 382 383 static inline void remove_from_ctx_list(struct ctx_list *entry) 384 { 385 entry->next->prev = entry->prev; 386 entry->prev->next = entry->next; 387 } 388 389 static inline void add_to_ctx_list(struct ctx_list *head, struct ctx_list *entry) 390 { 391 entry->next = head; 392 (entry->prev = head->prev)->next = entry; 393 head->prev = entry; 394 } 395 #define add_to_free_ctxlist(entry) add_to_ctx_list(&ctx_free, entry) 396 #define add_to_used_ctxlist(entry) add_to_ctx_list(&ctx_used, entry) 397 398 399 static inline void alloc_context(struct mm_struct *old_mm, struct mm_struct *mm) 400 { 401 struct ctx_list *ctxp; 402 403 ctxp = ctx_free.next; 404 if (ctxp != &ctx_free) { 405 remove_from_ctx_list(ctxp); 406 add_to_used_ctxlist(ctxp); 407 mm->context = ctxp->ctx_number; 408 ctxp->ctx_mm = mm; 409 return; 410 } 411 ctxp = ctx_used.next; 412 if (ctxp->ctx_mm == old_mm) 413 ctxp = ctxp->next; 414 if (ctxp == &ctx_used) 415 panic("out of mmu contexts"); 416 flush_cache_mm(ctxp->ctx_mm); 417 flush_tlb_mm(ctxp->ctx_mm); 418 remove_from_ctx_list(ctxp); 419 add_to_used_ctxlist(ctxp); 420 ctxp->ctx_mm->context = NO_CONTEXT; 421 ctxp->ctx_mm = mm; 422 mm->context = ctxp->ctx_number; 423 } 424 425 static inline void free_context(int context) 426 { 427 struct ctx_list *ctx_old; 428 429 ctx_old = ctx_list_pool + context; 430 remove_from_ctx_list(ctx_old); 431 add_to_free_ctxlist(ctx_old); 432 } 433 434 static void __init sparc_context_init(int numctx) 435 { 436 int ctx; 437 unsigned long size; 438 439 size = numctx * sizeof(struct ctx_list); 440 ctx_list_pool = __alloc_bootmem(size, SMP_CACHE_BYTES, 0UL); 441 442 for (ctx = 0; ctx < numctx; ctx++) { 443 struct ctx_list *clist; 444 445 clist = (ctx_list_pool + ctx); 446 clist->ctx_number = ctx; 447 clist->ctx_mm = NULL; 448 } 449 ctx_free.next = ctx_free.prev = &ctx_free; 450 ctx_used.next = ctx_used.prev = &ctx_used; 451 for (ctx = 0; ctx < numctx; ctx++) 452 add_to_free_ctxlist(ctx_list_pool + ctx); 453 } 454 455 void switch_mm(struct mm_struct *old_mm, struct mm_struct *mm, 456 struct task_struct *tsk) 457 { 458 if (mm->context == NO_CONTEXT) { 459 spin_lock(&srmmu_context_spinlock); 460 alloc_context(old_mm, mm); 461 spin_unlock(&srmmu_context_spinlock); 462 srmmu_ctxd_set(&srmmu_context_table[mm->context], mm->pgd); 463 } 464 465 if (sparc_cpu_model == sparc_leon) 466 leon_switch_mm(); 467 468 if (is_hypersparc) 469 hyper_flush_whole_icache(); 470 471 srmmu_set_context(mm->context); 472 } 473 474 /* Low level IO area allocation on the SRMMU. */ 475 static inline void srmmu_mapioaddr(unsigned long physaddr, 476 unsigned long virt_addr, int bus_type) 477 { 478 pgd_t *pgdp; 479 pmd_t *pmdp; 480 pte_t *ptep; 481 unsigned long tmp; 482 483 physaddr &= PAGE_MASK; 484 pgdp = pgd_offset_k(virt_addr); 485 pmdp = pmd_offset(pgdp, virt_addr); 486 ptep = pte_offset_kernel(pmdp, virt_addr); 487 tmp = (physaddr >> 4) | SRMMU_ET_PTE; 488 489 /* I need to test whether this is consistent over all 490 * sun4m's. The bus_type represents the upper 4 bits of 491 * 36-bit physical address on the I/O space lines... 492 */ 493 tmp |= (bus_type << 28); 494 tmp |= SRMMU_PRIV; 495 __flush_page_to_ram(virt_addr); 496 set_pte(ptep, __pte(tmp)); 497 } 498 499 void srmmu_mapiorange(unsigned int bus, unsigned long xpa, 500 unsigned long xva, unsigned int len) 501 { 502 while (len != 0) { 503 len -= PAGE_SIZE; 504 srmmu_mapioaddr(xpa, xva, bus); 505 xva += PAGE_SIZE; 506 xpa += PAGE_SIZE; 507 } 508 flush_tlb_all(); 509 } 510 511 static inline void srmmu_unmapioaddr(unsigned long virt_addr) 512 { 513 pgd_t *pgdp; 514 pmd_t *pmdp; 515 pte_t *ptep; 516 517 pgdp = pgd_offset_k(virt_addr); 518 pmdp = pmd_offset(pgdp, virt_addr); 519 ptep = pte_offset_kernel(pmdp, virt_addr); 520 521 /* No need to flush uncacheable page. */ 522 __pte_clear(ptep); 523 } 524 525 void srmmu_unmapiorange(unsigned long virt_addr, unsigned int len) 526 { 527 while (len != 0) { 528 len -= PAGE_SIZE; 529 srmmu_unmapioaddr(virt_addr); 530 virt_addr += PAGE_SIZE; 531 } 532 flush_tlb_all(); 533 } 534 535 /* tsunami.S */ 536 extern void tsunami_flush_cache_all(void); 537 extern void tsunami_flush_cache_mm(struct mm_struct *mm); 538 extern void tsunami_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end); 539 extern void tsunami_flush_cache_page(struct vm_area_struct *vma, unsigned long page); 540 extern void tsunami_flush_page_to_ram(unsigned long page); 541 extern void tsunami_flush_page_for_dma(unsigned long page); 542 extern void tsunami_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr); 543 extern void tsunami_flush_tlb_all(void); 544 extern void tsunami_flush_tlb_mm(struct mm_struct *mm); 545 extern void tsunami_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end); 546 extern void tsunami_flush_tlb_page(struct vm_area_struct *vma, unsigned long page); 547 extern void tsunami_setup_blockops(void); 548 549 /* swift.S */ 550 extern void swift_flush_cache_all(void); 551 extern void swift_flush_cache_mm(struct mm_struct *mm); 552 extern void swift_flush_cache_range(struct vm_area_struct *vma, 553 unsigned long start, unsigned long end); 554 extern void swift_flush_cache_page(struct vm_area_struct *vma, unsigned long page); 555 extern void swift_flush_page_to_ram(unsigned long page); 556 extern void swift_flush_page_for_dma(unsigned long page); 557 extern void swift_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr); 558 extern void swift_flush_tlb_all(void); 559 extern void swift_flush_tlb_mm(struct mm_struct *mm); 560 extern void swift_flush_tlb_range(struct vm_area_struct *vma, 561 unsigned long start, unsigned long end); 562 extern void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page); 563 564 #if 0 /* P3: deadwood to debug precise flushes on Swift. */ 565 void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page) 566 { 567 int cctx, ctx1; 568 569 page &= PAGE_MASK; 570 if ((ctx1 = vma->vm_mm->context) != -1) { 571 cctx = srmmu_get_context(); 572 /* Is context # ever different from current context? P3 */ 573 if (cctx != ctx1) { 574 printk("flush ctx %02x curr %02x\n", ctx1, cctx); 575 srmmu_set_context(ctx1); 576 swift_flush_page(page); 577 __asm__ __volatile__("sta %%g0, [%0] %1\n\t" : : 578 "r" (page), "i" (ASI_M_FLUSH_PROBE)); 579 srmmu_set_context(cctx); 580 } else { 581 /* Rm. prot. bits from virt. c. */ 582 /* swift_flush_cache_all(); */ 583 /* swift_flush_cache_page(vma, page); */ 584 swift_flush_page(page); 585 586 __asm__ __volatile__("sta %%g0, [%0] %1\n\t" : : 587 "r" (page), "i" (ASI_M_FLUSH_PROBE)); 588 /* same as above: srmmu_flush_tlb_page() */ 589 } 590 } 591 } 592 #endif 593 594 /* 595 * The following are all MBUS based SRMMU modules, and therefore could 596 * be found in a multiprocessor configuration. On the whole, these 597 * chips seems to be much more touchy about DVMA and page tables 598 * with respect to cache coherency. 599 */ 600 601 /* viking.S */ 602 extern void viking_flush_cache_all(void); 603 extern void viking_flush_cache_mm(struct mm_struct *mm); 604 extern void viking_flush_cache_range(struct vm_area_struct *vma, unsigned long start, 605 unsigned long end); 606 extern void viking_flush_cache_page(struct vm_area_struct *vma, unsigned long page); 607 extern void viking_flush_page_to_ram(unsigned long page); 608 extern void viking_flush_page_for_dma(unsigned long page); 609 extern void viking_flush_sig_insns(struct mm_struct *mm, unsigned long addr); 610 extern void viking_flush_page(unsigned long page); 611 extern void viking_mxcc_flush_page(unsigned long page); 612 extern void viking_flush_tlb_all(void); 613 extern void viking_flush_tlb_mm(struct mm_struct *mm); 614 extern void viking_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, 615 unsigned long end); 616 extern void viking_flush_tlb_page(struct vm_area_struct *vma, 617 unsigned long page); 618 extern void sun4dsmp_flush_tlb_all(void); 619 extern void sun4dsmp_flush_tlb_mm(struct mm_struct *mm); 620 extern void sun4dsmp_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, 621 unsigned long end); 622 extern void sun4dsmp_flush_tlb_page(struct vm_area_struct *vma, 623 unsigned long page); 624 625 /* hypersparc.S */ 626 extern void hypersparc_flush_cache_all(void); 627 extern void hypersparc_flush_cache_mm(struct mm_struct *mm); 628 extern void hypersparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end); 629 extern void hypersparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page); 630 extern void hypersparc_flush_page_to_ram(unsigned long page); 631 extern void hypersparc_flush_page_for_dma(unsigned long page); 632 extern void hypersparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr); 633 extern void hypersparc_flush_tlb_all(void); 634 extern void hypersparc_flush_tlb_mm(struct mm_struct *mm); 635 extern void hypersparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end); 636 extern void hypersparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page); 637 extern void hypersparc_setup_blockops(void); 638 639 /* 640 * NOTE: All of this startup code assumes the low 16mb (approx.) of 641 * kernel mappings are done with one single contiguous chunk of 642 * ram. On small ram machines (classics mainly) we only get 643 * around 8mb mapped for us. 644 */ 645 646 static void __init early_pgtable_allocfail(char *type) 647 { 648 prom_printf("inherit_prom_mappings: Cannot alloc kernel %s.\n", type); 649 prom_halt(); 650 } 651 652 static void __init srmmu_early_allocate_ptable_skeleton(unsigned long start, 653 unsigned long end) 654 { 655 pgd_t *pgdp; 656 pmd_t *pmdp; 657 pte_t *ptep; 658 659 while (start < end) { 660 pgdp = pgd_offset_k(start); 661 if (pgd_none(*(pgd_t *)__nocache_fix(pgdp))) { 662 pmdp = __srmmu_get_nocache( 663 SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE); 664 if (pmdp == NULL) 665 early_pgtable_allocfail("pmd"); 666 memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE); 667 pgd_set(__nocache_fix(pgdp), pmdp); 668 } 669 pmdp = pmd_offset(__nocache_fix(pgdp), start); 670 if (srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) { 671 ptep = __srmmu_get_nocache(PTE_SIZE, PTE_SIZE); 672 if (ptep == NULL) 673 early_pgtable_allocfail("pte"); 674 memset(__nocache_fix(ptep), 0, PTE_SIZE); 675 pmd_set(__nocache_fix(pmdp), ptep); 676 } 677 if (start > (0xffffffffUL - PMD_SIZE)) 678 break; 679 start = (start + PMD_SIZE) & PMD_MASK; 680 } 681 } 682 683 static void __init srmmu_allocate_ptable_skeleton(unsigned long start, 684 unsigned long end) 685 { 686 pgd_t *pgdp; 687 pmd_t *pmdp; 688 pte_t *ptep; 689 690 while (start < end) { 691 pgdp = pgd_offset_k(start); 692 if (pgd_none(*pgdp)) { 693 pmdp = __srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE); 694 if (pmdp == NULL) 695 early_pgtable_allocfail("pmd"); 696 memset(pmdp, 0, SRMMU_PMD_TABLE_SIZE); 697 pgd_set(pgdp, pmdp); 698 } 699 pmdp = pmd_offset(pgdp, start); 700 if (srmmu_pmd_none(*pmdp)) { 701 ptep = __srmmu_get_nocache(PTE_SIZE, 702 PTE_SIZE); 703 if (ptep == NULL) 704 early_pgtable_allocfail("pte"); 705 memset(ptep, 0, PTE_SIZE); 706 pmd_set(pmdp, ptep); 707 } 708 if (start > (0xffffffffUL - PMD_SIZE)) 709 break; 710 start = (start + PMD_SIZE) & PMD_MASK; 711 } 712 } 713 714 /* These flush types are not available on all chips... */ 715 static inline unsigned long srmmu_probe(unsigned long vaddr) 716 { 717 unsigned long retval; 718 719 if (sparc_cpu_model != sparc_leon) { 720 721 vaddr &= PAGE_MASK; 722 __asm__ __volatile__("lda [%1] %2, %0\n\t" : 723 "=r" (retval) : 724 "r" (vaddr | 0x400), "i" (ASI_M_FLUSH_PROBE)); 725 } else { 726 retval = leon_swprobe(vaddr, 0); 727 } 728 return retval; 729 } 730 731 /* 732 * This is much cleaner than poking around physical address space 733 * looking at the prom's page table directly which is what most 734 * other OS's do. Yuck... this is much better. 735 */ 736 static void __init srmmu_inherit_prom_mappings(unsigned long start, 737 unsigned long end) 738 { 739 unsigned long probed; 740 unsigned long addr; 741 pgd_t *pgdp; 742 pmd_t *pmdp; 743 pte_t *ptep; 744 int what; /* 0 = normal-pte, 1 = pmd-level pte, 2 = pgd-level pte */ 745 746 while (start <= end) { 747 if (start == 0) 748 break; /* probably wrap around */ 749 if (start == 0xfef00000) 750 start = KADB_DEBUGGER_BEGVM; 751 probed = srmmu_probe(start); 752 if (!probed) { 753 /* continue probing until we find an entry */ 754 start += PAGE_SIZE; 755 continue; 756 } 757 758 /* A red snapper, see what it really is. */ 759 what = 0; 760 addr = start - PAGE_SIZE; 761 762 if (!(start & ~(SRMMU_REAL_PMD_MASK))) { 763 if (srmmu_probe(addr + SRMMU_REAL_PMD_SIZE) == probed) 764 what = 1; 765 } 766 767 if (!(start & ~(SRMMU_PGDIR_MASK))) { 768 if (srmmu_probe(addr + SRMMU_PGDIR_SIZE) == probed) 769 what = 2; 770 } 771 772 pgdp = pgd_offset_k(start); 773 if (what == 2) { 774 *(pgd_t *)__nocache_fix(pgdp) = __pgd(probed); 775 start += SRMMU_PGDIR_SIZE; 776 continue; 777 } 778 if (pgd_none(*(pgd_t *)__nocache_fix(pgdp))) { 779 pmdp = __srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, 780 SRMMU_PMD_TABLE_SIZE); 781 if (pmdp == NULL) 782 early_pgtable_allocfail("pmd"); 783 memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE); 784 pgd_set(__nocache_fix(pgdp), pmdp); 785 } 786 pmdp = pmd_offset(__nocache_fix(pgdp), start); 787 if (srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) { 788 ptep = __srmmu_get_nocache(PTE_SIZE, PTE_SIZE); 789 if (ptep == NULL) 790 early_pgtable_allocfail("pte"); 791 memset(__nocache_fix(ptep), 0, PTE_SIZE); 792 pmd_set(__nocache_fix(pmdp), ptep); 793 } 794 if (what == 1) { 795 /* We bend the rule where all 16 PTPs in a pmd_t point 796 * inside the same PTE page, and we leak a perfectly 797 * good hardware PTE piece. Alternatives seem worse. 798 */ 799 unsigned int x; /* Index of HW PMD in soft cluster */ 800 unsigned long *val; 801 x = (start >> PMD_SHIFT) & 15; 802 val = &pmdp->pmdv[x]; 803 *(unsigned long *)__nocache_fix(val) = probed; 804 start += SRMMU_REAL_PMD_SIZE; 805 continue; 806 } 807 ptep = pte_offset_kernel(__nocache_fix(pmdp), start); 808 *(pte_t *)__nocache_fix(ptep) = __pte(probed); 809 start += PAGE_SIZE; 810 } 811 } 812 813 #define KERNEL_PTE(page_shifted) ((page_shifted)|SRMMU_CACHE|SRMMU_PRIV|SRMMU_VALID) 814 815 /* Create a third-level SRMMU 16MB page mapping. */ 816 static void __init do_large_mapping(unsigned long vaddr, unsigned long phys_base) 817 { 818 pgd_t *pgdp = pgd_offset_k(vaddr); 819 unsigned long big_pte; 820 821 big_pte = KERNEL_PTE(phys_base >> 4); 822 *(pgd_t *)__nocache_fix(pgdp) = __pgd(big_pte); 823 } 824 825 /* Map sp_bank entry SP_ENTRY, starting at virtual address VBASE. */ 826 static unsigned long __init map_spbank(unsigned long vbase, int sp_entry) 827 { 828 unsigned long pstart = (sp_banks[sp_entry].base_addr & SRMMU_PGDIR_MASK); 829 unsigned long vstart = (vbase & SRMMU_PGDIR_MASK); 830 unsigned long vend = SRMMU_PGDIR_ALIGN(vbase + sp_banks[sp_entry].num_bytes); 831 /* Map "low" memory only */ 832 const unsigned long min_vaddr = PAGE_OFFSET; 833 const unsigned long max_vaddr = PAGE_OFFSET + SRMMU_MAXMEM; 834 835 if (vstart < min_vaddr || vstart >= max_vaddr) 836 return vstart; 837 838 if (vend > max_vaddr || vend < min_vaddr) 839 vend = max_vaddr; 840 841 while (vstart < vend) { 842 do_large_mapping(vstart, pstart); 843 vstart += SRMMU_PGDIR_SIZE; pstart += SRMMU_PGDIR_SIZE; 844 } 845 return vstart; 846 } 847 848 static void __init map_kernel(void) 849 { 850 int i; 851 852 if (phys_base > 0) { 853 do_large_mapping(PAGE_OFFSET, phys_base); 854 } 855 856 for (i = 0; sp_banks[i].num_bytes != 0; i++) { 857 map_spbank((unsigned long)__va(sp_banks[i].base_addr), i); 858 } 859 } 860 861 void (*poke_srmmu)(void) = NULL; 862 863 extern unsigned long bootmem_init(unsigned long *pages_avail); 864 865 void __init srmmu_paging_init(void) 866 { 867 int i; 868 phandle cpunode; 869 char node_str[128]; 870 pgd_t *pgd; 871 pmd_t *pmd; 872 pte_t *pte; 873 unsigned long pages_avail; 874 875 init_mm.context = (unsigned long) NO_CONTEXT; 876 sparc_iomap.start = SUN4M_IOBASE_VADDR; /* 16MB of IOSPACE on all sun4m's. */ 877 878 if (sparc_cpu_model == sun4d) 879 num_contexts = 65536; /* We know it is Viking */ 880 else { 881 /* Find the number of contexts on the srmmu. */ 882 cpunode = prom_getchild(prom_root_node); 883 num_contexts = 0; 884 while (cpunode != 0) { 885 prom_getstring(cpunode, "device_type", node_str, sizeof(node_str)); 886 if (!strcmp(node_str, "cpu")) { 887 num_contexts = prom_getintdefault(cpunode, "mmu-nctx", 0x8); 888 break; 889 } 890 cpunode = prom_getsibling(cpunode); 891 } 892 } 893 894 if (!num_contexts) { 895 prom_printf("Something wrong, can't find cpu node in paging_init.\n"); 896 prom_halt(); 897 } 898 899 pages_avail = 0; 900 last_valid_pfn = bootmem_init(&pages_avail); 901 902 srmmu_nocache_calcsize(); 903 srmmu_nocache_init(); 904 srmmu_inherit_prom_mappings(0xfe400000, (LINUX_OPPROM_ENDVM - PAGE_SIZE)); 905 map_kernel(); 906 907 /* ctx table has to be physically aligned to its size */ 908 srmmu_context_table = __srmmu_get_nocache(num_contexts * sizeof(ctxd_t), num_contexts * sizeof(ctxd_t)); 909 srmmu_ctx_table_phys = (ctxd_t *)__nocache_pa((unsigned long)srmmu_context_table); 910 911 for (i = 0; i < num_contexts; i++) 912 srmmu_ctxd_set((ctxd_t *)__nocache_fix(&srmmu_context_table[i]), srmmu_swapper_pg_dir); 913 914 flush_cache_all(); 915 srmmu_set_ctable_ptr((unsigned long)srmmu_ctx_table_phys); 916 #ifdef CONFIG_SMP 917 /* Stop from hanging here... */ 918 local_ops->tlb_all(); 919 #else 920 flush_tlb_all(); 921 #endif 922 poke_srmmu(); 923 924 srmmu_allocate_ptable_skeleton(sparc_iomap.start, IOBASE_END); 925 srmmu_allocate_ptable_skeleton(DVMA_VADDR, DVMA_END); 926 927 srmmu_allocate_ptable_skeleton( 928 __fix_to_virt(__end_of_fixed_addresses - 1), FIXADDR_TOP); 929 srmmu_allocate_ptable_skeleton(PKMAP_BASE, PKMAP_END); 930 931 pgd = pgd_offset_k(PKMAP_BASE); 932 pmd = pmd_offset(pgd, PKMAP_BASE); 933 pte = pte_offset_kernel(pmd, PKMAP_BASE); 934 pkmap_page_table = pte; 935 936 flush_cache_all(); 937 flush_tlb_all(); 938 939 sparc_context_init(num_contexts); 940 941 kmap_init(); 942 943 { 944 unsigned long zones_size[MAX_NR_ZONES]; 945 unsigned long zholes_size[MAX_NR_ZONES]; 946 unsigned long npages; 947 int znum; 948 949 for (znum = 0; znum < MAX_NR_ZONES; znum++) 950 zones_size[znum] = zholes_size[znum] = 0; 951 952 npages = max_low_pfn - pfn_base; 953 954 zones_size[ZONE_DMA] = npages; 955 zholes_size[ZONE_DMA] = npages - pages_avail; 956 957 npages = highend_pfn - max_low_pfn; 958 zones_size[ZONE_HIGHMEM] = npages; 959 zholes_size[ZONE_HIGHMEM] = npages - calc_highpages(); 960 961 free_area_init_node(0, zones_size, pfn_base, zholes_size); 962 } 963 } 964 965 void mmu_info(struct seq_file *m) 966 { 967 seq_printf(m, 968 "MMU type\t: %s\n" 969 "contexts\t: %d\n" 970 "nocache total\t: %ld\n" 971 "nocache used\t: %d\n", 972 srmmu_name, 973 num_contexts, 974 srmmu_nocache_size, 975 srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT); 976 } 977 978 int init_new_context(struct task_struct *tsk, struct mm_struct *mm) 979 { 980 mm->context = NO_CONTEXT; 981 return 0; 982 } 983 984 void destroy_context(struct mm_struct *mm) 985 { 986 987 if (mm->context != NO_CONTEXT) { 988 flush_cache_mm(mm); 989 srmmu_ctxd_set(&srmmu_context_table[mm->context], srmmu_swapper_pg_dir); 990 flush_tlb_mm(mm); 991 spin_lock(&srmmu_context_spinlock); 992 free_context(mm->context); 993 spin_unlock(&srmmu_context_spinlock); 994 mm->context = NO_CONTEXT; 995 } 996 } 997 998 /* Init various srmmu chip types. */ 999 static void __init srmmu_is_bad(void) 1000 { 1001 prom_printf("Could not determine SRMMU chip type.\n"); 1002 prom_halt(); 1003 } 1004 1005 static void __init init_vac_layout(void) 1006 { 1007 phandle nd; 1008 int cache_lines; 1009 char node_str[128]; 1010 #ifdef CONFIG_SMP 1011 int cpu = 0; 1012 unsigned long max_size = 0; 1013 unsigned long min_line_size = 0x10000000; 1014 #endif 1015 1016 nd = prom_getchild(prom_root_node); 1017 while ((nd = prom_getsibling(nd)) != 0) { 1018 prom_getstring(nd, "device_type", node_str, sizeof(node_str)); 1019 if (!strcmp(node_str, "cpu")) { 1020 vac_line_size = prom_getint(nd, "cache-line-size"); 1021 if (vac_line_size == -1) { 1022 prom_printf("can't determine cache-line-size, halting.\n"); 1023 prom_halt(); 1024 } 1025 cache_lines = prom_getint(nd, "cache-nlines"); 1026 if (cache_lines == -1) { 1027 prom_printf("can't determine cache-nlines, halting.\n"); 1028 prom_halt(); 1029 } 1030 1031 vac_cache_size = cache_lines * vac_line_size; 1032 #ifdef CONFIG_SMP 1033 if (vac_cache_size > max_size) 1034 max_size = vac_cache_size; 1035 if (vac_line_size < min_line_size) 1036 min_line_size = vac_line_size; 1037 //FIXME: cpus not contiguous!! 1038 cpu++; 1039 if (cpu >= nr_cpu_ids || !cpu_online(cpu)) 1040 break; 1041 #else 1042 break; 1043 #endif 1044 } 1045 } 1046 if (nd == 0) { 1047 prom_printf("No CPU nodes found, halting.\n"); 1048 prom_halt(); 1049 } 1050 #ifdef CONFIG_SMP 1051 vac_cache_size = max_size; 1052 vac_line_size = min_line_size; 1053 #endif 1054 printk("SRMMU: Using VAC size of %d bytes, line size %d bytes.\n", 1055 (int)vac_cache_size, (int)vac_line_size); 1056 } 1057 1058 static void poke_hypersparc(void) 1059 { 1060 volatile unsigned long clear; 1061 unsigned long mreg = srmmu_get_mmureg(); 1062 1063 hyper_flush_unconditional_combined(); 1064 1065 mreg &= ~(HYPERSPARC_CWENABLE); 1066 mreg |= (HYPERSPARC_CENABLE | HYPERSPARC_WBENABLE); 1067 mreg |= (HYPERSPARC_CMODE); 1068 1069 srmmu_set_mmureg(mreg); 1070 1071 #if 0 /* XXX I think this is bad news... -DaveM */ 1072 hyper_clear_all_tags(); 1073 #endif 1074 1075 put_ross_icr(HYPERSPARC_ICCR_FTD | HYPERSPARC_ICCR_ICE); 1076 hyper_flush_whole_icache(); 1077 clear = srmmu_get_faddr(); 1078 clear = srmmu_get_fstatus(); 1079 } 1080 1081 static const struct sparc32_cachetlb_ops hypersparc_ops = { 1082 .cache_all = hypersparc_flush_cache_all, 1083 .cache_mm = hypersparc_flush_cache_mm, 1084 .cache_page = hypersparc_flush_cache_page, 1085 .cache_range = hypersparc_flush_cache_range, 1086 .tlb_all = hypersparc_flush_tlb_all, 1087 .tlb_mm = hypersparc_flush_tlb_mm, 1088 .tlb_page = hypersparc_flush_tlb_page, 1089 .tlb_range = hypersparc_flush_tlb_range, 1090 .page_to_ram = hypersparc_flush_page_to_ram, 1091 .sig_insns = hypersparc_flush_sig_insns, 1092 .page_for_dma = hypersparc_flush_page_for_dma, 1093 }; 1094 1095 static void __init init_hypersparc(void) 1096 { 1097 srmmu_name = "ROSS HyperSparc"; 1098 srmmu_modtype = HyperSparc; 1099 1100 init_vac_layout(); 1101 1102 is_hypersparc = 1; 1103 sparc32_cachetlb_ops = &hypersparc_ops; 1104 1105 poke_srmmu = poke_hypersparc; 1106 1107 hypersparc_setup_blockops(); 1108 } 1109 1110 static void poke_swift(void) 1111 { 1112 unsigned long mreg; 1113 1114 /* Clear any crap from the cache or else... */ 1115 swift_flush_cache_all(); 1116 1117 /* Enable I & D caches */ 1118 mreg = srmmu_get_mmureg(); 1119 mreg |= (SWIFT_IE | SWIFT_DE); 1120 /* 1121 * The Swift branch folding logic is completely broken. At 1122 * trap time, if things are just right, if can mistakenly 1123 * think that a trap is coming from kernel mode when in fact 1124 * it is coming from user mode (it mis-executes the branch in 1125 * the trap code). So you see things like crashme completely 1126 * hosing your machine which is completely unacceptable. Turn 1127 * this shit off... nice job Fujitsu. 1128 */ 1129 mreg &= ~(SWIFT_BF); 1130 srmmu_set_mmureg(mreg); 1131 } 1132 1133 static const struct sparc32_cachetlb_ops swift_ops = { 1134 .cache_all = swift_flush_cache_all, 1135 .cache_mm = swift_flush_cache_mm, 1136 .cache_page = swift_flush_cache_page, 1137 .cache_range = swift_flush_cache_range, 1138 .tlb_all = swift_flush_tlb_all, 1139 .tlb_mm = swift_flush_tlb_mm, 1140 .tlb_page = swift_flush_tlb_page, 1141 .tlb_range = swift_flush_tlb_range, 1142 .page_to_ram = swift_flush_page_to_ram, 1143 .sig_insns = swift_flush_sig_insns, 1144 .page_for_dma = swift_flush_page_for_dma, 1145 }; 1146 1147 #define SWIFT_MASKID_ADDR 0x10003018 1148 static void __init init_swift(void) 1149 { 1150 unsigned long swift_rev; 1151 1152 __asm__ __volatile__("lda [%1] %2, %0\n\t" 1153 "srl %0, 0x18, %0\n\t" : 1154 "=r" (swift_rev) : 1155 "r" (SWIFT_MASKID_ADDR), "i" (ASI_M_BYPASS)); 1156 srmmu_name = "Fujitsu Swift"; 1157 switch (swift_rev) { 1158 case 0x11: 1159 case 0x20: 1160 case 0x23: 1161 case 0x30: 1162 srmmu_modtype = Swift_lots_o_bugs; 1163 hwbug_bitmask |= (HWBUG_KERN_ACCBROKEN | HWBUG_KERN_CBITBROKEN); 1164 /* 1165 * Gee george, I wonder why Sun is so hush hush about 1166 * this hardware bug... really braindamage stuff going 1167 * on here. However I think we can find a way to avoid 1168 * all of the workaround overhead under Linux. Basically, 1169 * any page fault can cause kernel pages to become user 1170 * accessible (the mmu gets confused and clears some of 1171 * the ACC bits in kernel ptes). Aha, sounds pretty 1172 * horrible eh? But wait, after extensive testing it appears 1173 * that if you use pgd_t level large kernel pte's (like the 1174 * 4MB pages on the Pentium) the bug does not get tripped 1175 * at all. This avoids almost all of the major overhead. 1176 * Welcome to a world where your vendor tells you to, 1177 * "apply this kernel patch" instead of "sorry for the 1178 * broken hardware, send it back and we'll give you 1179 * properly functioning parts" 1180 */ 1181 break; 1182 case 0x25: 1183 case 0x31: 1184 srmmu_modtype = Swift_bad_c; 1185 hwbug_bitmask |= HWBUG_KERN_CBITBROKEN; 1186 /* 1187 * You see Sun allude to this hardware bug but never 1188 * admit things directly, they'll say things like, 1189 * "the Swift chip cache problems" or similar. 1190 */ 1191 break; 1192 default: 1193 srmmu_modtype = Swift_ok; 1194 break; 1195 } 1196 1197 sparc32_cachetlb_ops = &swift_ops; 1198 flush_page_for_dma_global = 0; 1199 1200 /* 1201 * Are you now convinced that the Swift is one of the 1202 * biggest VLSI abortions of all time? Bravo Fujitsu! 1203 * Fujitsu, the !#?!%$'d up processor people. I bet if 1204 * you examined the microcode of the Swift you'd find 1205 * XXX's all over the place. 1206 */ 1207 poke_srmmu = poke_swift; 1208 } 1209 1210 static void turbosparc_flush_cache_all(void) 1211 { 1212 flush_user_windows(); 1213 turbosparc_idflash_clear(); 1214 } 1215 1216 static void turbosparc_flush_cache_mm(struct mm_struct *mm) 1217 { 1218 FLUSH_BEGIN(mm) 1219 flush_user_windows(); 1220 turbosparc_idflash_clear(); 1221 FLUSH_END 1222 } 1223 1224 static void turbosparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end) 1225 { 1226 FLUSH_BEGIN(vma->vm_mm) 1227 flush_user_windows(); 1228 turbosparc_idflash_clear(); 1229 FLUSH_END 1230 } 1231 1232 static void turbosparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page) 1233 { 1234 FLUSH_BEGIN(vma->vm_mm) 1235 flush_user_windows(); 1236 if (vma->vm_flags & VM_EXEC) 1237 turbosparc_flush_icache(); 1238 turbosparc_flush_dcache(); 1239 FLUSH_END 1240 } 1241 1242 /* TurboSparc is copy-back, if we turn it on, but this does not work. */ 1243 static void turbosparc_flush_page_to_ram(unsigned long page) 1244 { 1245 #ifdef TURBOSPARC_WRITEBACK 1246 volatile unsigned long clear; 1247 1248 if (srmmu_probe(page)) 1249 turbosparc_flush_page_cache(page); 1250 clear = srmmu_get_fstatus(); 1251 #endif 1252 } 1253 1254 static void turbosparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr) 1255 { 1256 } 1257 1258 static void turbosparc_flush_page_for_dma(unsigned long page) 1259 { 1260 turbosparc_flush_dcache(); 1261 } 1262 1263 static void turbosparc_flush_tlb_all(void) 1264 { 1265 srmmu_flush_whole_tlb(); 1266 } 1267 1268 static void turbosparc_flush_tlb_mm(struct mm_struct *mm) 1269 { 1270 FLUSH_BEGIN(mm) 1271 srmmu_flush_whole_tlb(); 1272 FLUSH_END 1273 } 1274 1275 static void turbosparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end) 1276 { 1277 FLUSH_BEGIN(vma->vm_mm) 1278 srmmu_flush_whole_tlb(); 1279 FLUSH_END 1280 } 1281 1282 static void turbosparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page) 1283 { 1284 FLUSH_BEGIN(vma->vm_mm) 1285 srmmu_flush_whole_tlb(); 1286 FLUSH_END 1287 } 1288 1289 1290 static void poke_turbosparc(void) 1291 { 1292 unsigned long mreg = srmmu_get_mmureg(); 1293 unsigned long ccreg; 1294 1295 /* Clear any crap from the cache or else... */ 1296 turbosparc_flush_cache_all(); 1297 /* Temporarily disable I & D caches */ 1298 mreg &= ~(TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE); 1299 mreg &= ~(TURBOSPARC_PCENABLE); /* Don't check parity */ 1300 srmmu_set_mmureg(mreg); 1301 1302 ccreg = turbosparc_get_ccreg(); 1303 1304 #ifdef TURBOSPARC_WRITEBACK 1305 ccreg |= (TURBOSPARC_SNENABLE); /* Do DVMA snooping in Dcache */ 1306 ccreg &= ~(TURBOSPARC_uS2 | TURBOSPARC_WTENABLE); 1307 /* Write-back D-cache, emulate VLSI 1308 * abortion number three, not number one */ 1309 #else 1310 /* For now let's play safe, optimize later */ 1311 ccreg |= (TURBOSPARC_SNENABLE | TURBOSPARC_WTENABLE); 1312 /* Do DVMA snooping in Dcache, Write-thru D-cache */ 1313 ccreg &= ~(TURBOSPARC_uS2); 1314 /* Emulate VLSI abortion number three, not number one */ 1315 #endif 1316 1317 switch (ccreg & 7) { 1318 case 0: /* No SE cache */ 1319 case 7: /* Test mode */ 1320 break; 1321 default: 1322 ccreg |= (TURBOSPARC_SCENABLE); 1323 } 1324 turbosparc_set_ccreg(ccreg); 1325 1326 mreg |= (TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE); /* I & D caches on */ 1327 mreg |= (TURBOSPARC_ICSNOOP); /* Icache snooping on */ 1328 srmmu_set_mmureg(mreg); 1329 } 1330 1331 static const struct sparc32_cachetlb_ops turbosparc_ops = { 1332 .cache_all = turbosparc_flush_cache_all, 1333 .cache_mm = turbosparc_flush_cache_mm, 1334 .cache_page = turbosparc_flush_cache_page, 1335 .cache_range = turbosparc_flush_cache_range, 1336 .tlb_all = turbosparc_flush_tlb_all, 1337 .tlb_mm = turbosparc_flush_tlb_mm, 1338 .tlb_page = turbosparc_flush_tlb_page, 1339 .tlb_range = turbosparc_flush_tlb_range, 1340 .page_to_ram = turbosparc_flush_page_to_ram, 1341 .sig_insns = turbosparc_flush_sig_insns, 1342 .page_for_dma = turbosparc_flush_page_for_dma, 1343 }; 1344 1345 static void __init init_turbosparc(void) 1346 { 1347 srmmu_name = "Fujitsu TurboSparc"; 1348 srmmu_modtype = TurboSparc; 1349 sparc32_cachetlb_ops = &turbosparc_ops; 1350 poke_srmmu = poke_turbosparc; 1351 } 1352 1353 static void poke_tsunami(void) 1354 { 1355 unsigned long mreg = srmmu_get_mmureg(); 1356 1357 tsunami_flush_icache(); 1358 tsunami_flush_dcache(); 1359 mreg &= ~TSUNAMI_ITD; 1360 mreg |= (TSUNAMI_IENAB | TSUNAMI_DENAB); 1361 srmmu_set_mmureg(mreg); 1362 } 1363 1364 static const struct sparc32_cachetlb_ops tsunami_ops = { 1365 .cache_all = tsunami_flush_cache_all, 1366 .cache_mm = tsunami_flush_cache_mm, 1367 .cache_page = tsunami_flush_cache_page, 1368 .cache_range = tsunami_flush_cache_range, 1369 .tlb_all = tsunami_flush_tlb_all, 1370 .tlb_mm = tsunami_flush_tlb_mm, 1371 .tlb_page = tsunami_flush_tlb_page, 1372 .tlb_range = tsunami_flush_tlb_range, 1373 .page_to_ram = tsunami_flush_page_to_ram, 1374 .sig_insns = tsunami_flush_sig_insns, 1375 .page_for_dma = tsunami_flush_page_for_dma, 1376 }; 1377 1378 static void __init init_tsunami(void) 1379 { 1380 /* 1381 * Tsunami's pretty sane, Sun and TI actually got it 1382 * somewhat right this time. Fujitsu should have 1383 * taken some lessons from them. 1384 */ 1385 1386 srmmu_name = "TI Tsunami"; 1387 srmmu_modtype = Tsunami; 1388 sparc32_cachetlb_ops = &tsunami_ops; 1389 poke_srmmu = poke_tsunami; 1390 1391 tsunami_setup_blockops(); 1392 } 1393 1394 static void poke_viking(void) 1395 { 1396 unsigned long mreg = srmmu_get_mmureg(); 1397 static int smp_catch; 1398 1399 if (viking_mxcc_present) { 1400 unsigned long mxcc_control = mxcc_get_creg(); 1401 1402 mxcc_control |= (MXCC_CTL_ECE | MXCC_CTL_PRE | MXCC_CTL_MCE); 1403 mxcc_control &= ~(MXCC_CTL_RRC); 1404 mxcc_set_creg(mxcc_control); 1405 1406 /* 1407 * We don't need memory parity checks. 1408 * XXX This is a mess, have to dig out later. ecd. 1409 viking_mxcc_turn_off_parity(&mreg, &mxcc_control); 1410 */ 1411 1412 /* We do cache ptables on MXCC. */ 1413 mreg |= VIKING_TCENABLE; 1414 } else { 1415 unsigned long bpreg; 1416 1417 mreg &= ~(VIKING_TCENABLE); 1418 if (smp_catch++) { 1419 /* Must disable mixed-cmd mode here for other cpu's. */ 1420 bpreg = viking_get_bpreg(); 1421 bpreg &= ~(VIKING_ACTION_MIX); 1422 viking_set_bpreg(bpreg); 1423 1424 /* Just in case PROM does something funny. */ 1425 msi_set_sync(); 1426 } 1427 } 1428 1429 mreg |= VIKING_SPENABLE; 1430 mreg |= (VIKING_ICENABLE | VIKING_DCENABLE); 1431 mreg |= VIKING_SBENABLE; 1432 mreg &= ~(VIKING_ACENABLE); 1433 srmmu_set_mmureg(mreg); 1434 } 1435 1436 static struct sparc32_cachetlb_ops viking_ops = { 1437 .cache_all = viking_flush_cache_all, 1438 .cache_mm = viking_flush_cache_mm, 1439 .cache_page = viking_flush_cache_page, 1440 .cache_range = viking_flush_cache_range, 1441 .tlb_all = viking_flush_tlb_all, 1442 .tlb_mm = viking_flush_tlb_mm, 1443 .tlb_page = viking_flush_tlb_page, 1444 .tlb_range = viking_flush_tlb_range, 1445 .page_to_ram = viking_flush_page_to_ram, 1446 .sig_insns = viking_flush_sig_insns, 1447 .page_for_dma = viking_flush_page_for_dma, 1448 }; 1449 1450 #ifdef CONFIG_SMP 1451 /* On sun4d the cpu broadcasts local TLB flushes, so we can just 1452 * perform the local TLB flush and all the other cpus will see it. 1453 * But, unfortunately, there is a bug in the sun4d XBUS backplane 1454 * that requires that we add some synchronization to these flushes. 1455 * 1456 * The bug is that the fifo which keeps track of all the pending TLB 1457 * broadcasts in the system is an entry or two too small, so if we 1458 * have too many going at once we'll overflow that fifo and lose a TLB 1459 * flush resulting in corruption. 1460 * 1461 * Our workaround is to take a global spinlock around the TLB flushes, 1462 * which guarentees we won't ever have too many pending. It's a big 1463 * hammer, but a semaphore like system to make sure we only have N TLB 1464 * flushes going at once will require SMP locking anyways so there's 1465 * no real value in trying any harder than this. 1466 */ 1467 static struct sparc32_cachetlb_ops viking_sun4d_smp_ops = { 1468 .cache_all = viking_flush_cache_all, 1469 .cache_mm = viking_flush_cache_mm, 1470 .cache_page = viking_flush_cache_page, 1471 .cache_range = viking_flush_cache_range, 1472 .tlb_all = sun4dsmp_flush_tlb_all, 1473 .tlb_mm = sun4dsmp_flush_tlb_mm, 1474 .tlb_page = sun4dsmp_flush_tlb_page, 1475 .tlb_range = sun4dsmp_flush_tlb_range, 1476 .page_to_ram = viking_flush_page_to_ram, 1477 .sig_insns = viking_flush_sig_insns, 1478 .page_for_dma = viking_flush_page_for_dma, 1479 }; 1480 #endif 1481 1482 static void __init init_viking(void) 1483 { 1484 unsigned long mreg = srmmu_get_mmureg(); 1485 1486 /* Ahhh, the viking. SRMMU VLSI abortion number two... */ 1487 if (mreg & VIKING_MMODE) { 1488 srmmu_name = "TI Viking"; 1489 viking_mxcc_present = 0; 1490 msi_set_sync(); 1491 1492 /* 1493 * We need this to make sure old viking takes no hits 1494 * on it's cache for dma snoops to workaround the 1495 * "load from non-cacheable memory" interrupt bug. 1496 * This is only necessary because of the new way in 1497 * which we use the IOMMU. 1498 */ 1499 viking_ops.page_for_dma = viking_flush_page; 1500 #ifdef CONFIG_SMP 1501 viking_sun4d_smp_ops.page_for_dma = viking_flush_page; 1502 #endif 1503 flush_page_for_dma_global = 0; 1504 } else { 1505 srmmu_name = "TI Viking/MXCC"; 1506 viking_mxcc_present = 1; 1507 srmmu_cache_pagetables = 1; 1508 } 1509 1510 sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *) 1511 &viking_ops; 1512 #ifdef CONFIG_SMP 1513 if (sparc_cpu_model == sun4d) 1514 sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *) 1515 &viking_sun4d_smp_ops; 1516 #endif 1517 1518 poke_srmmu = poke_viking; 1519 } 1520 1521 /* Probe for the srmmu chip version. */ 1522 static void __init get_srmmu_type(void) 1523 { 1524 unsigned long mreg, psr; 1525 unsigned long mod_typ, mod_rev, psr_typ, psr_vers; 1526 1527 srmmu_modtype = SRMMU_INVAL_MOD; 1528 hwbug_bitmask = 0; 1529 1530 mreg = srmmu_get_mmureg(); psr = get_psr(); 1531 mod_typ = (mreg & 0xf0000000) >> 28; 1532 mod_rev = (mreg & 0x0f000000) >> 24; 1533 psr_typ = (psr >> 28) & 0xf; 1534 psr_vers = (psr >> 24) & 0xf; 1535 1536 /* First, check for sparc-leon. */ 1537 if (sparc_cpu_model == sparc_leon) { 1538 init_leon(); 1539 return; 1540 } 1541 1542 /* Second, check for HyperSparc or Cypress. */ 1543 if (mod_typ == 1) { 1544 switch (mod_rev) { 1545 case 7: 1546 /* UP or MP Hypersparc */ 1547 init_hypersparc(); 1548 break; 1549 case 0: 1550 case 2: 1551 case 10: 1552 case 11: 1553 case 12: 1554 case 13: 1555 case 14: 1556 case 15: 1557 default: 1558 prom_printf("Sparc-Linux Cypress support does not longer exit.\n"); 1559 prom_halt(); 1560 break; 1561 } 1562 return; 1563 } 1564 1565 /* Now Fujitsu TurboSparc. It might happen that it is 1566 * in Swift emulation mode, so we will check later... 1567 */ 1568 if (psr_typ == 0 && psr_vers == 5) { 1569 init_turbosparc(); 1570 return; 1571 } 1572 1573 /* Next check for Fujitsu Swift. */ 1574 if (psr_typ == 0 && psr_vers == 4) { 1575 phandle cpunode; 1576 char node_str[128]; 1577 1578 /* Look if it is not a TurboSparc emulating Swift... */ 1579 cpunode = prom_getchild(prom_root_node); 1580 while ((cpunode = prom_getsibling(cpunode)) != 0) { 1581 prom_getstring(cpunode, "device_type", node_str, sizeof(node_str)); 1582 if (!strcmp(node_str, "cpu")) { 1583 if (!prom_getintdefault(cpunode, "psr-implementation", 1) && 1584 prom_getintdefault(cpunode, "psr-version", 1) == 5) { 1585 init_turbosparc(); 1586 return; 1587 } 1588 break; 1589 } 1590 } 1591 1592 init_swift(); 1593 return; 1594 } 1595 1596 /* Now the Viking family of srmmu. */ 1597 if (psr_typ == 4 && 1598 ((psr_vers == 0) || 1599 ((psr_vers == 1) && (mod_typ == 0) && (mod_rev == 0)))) { 1600 init_viking(); 1601 return; 1602 } 1603 1604 /* Finally the Tsunami. */ 1605 if (psr_typ == 4 && psr_vers == 1 && (mod_typ || mod_rev)) { 1606 init_tsunami(); 1607 return; 1608 } 1609 1610 /* Oh well */ 1611 srmmu_is_bad(); 1612 } 1613 1614 #ifdef CONFIG_SMP 1615 /* Local cross-calls. */ 1616 static void smp_flush_page_for_dma(unsigned long page) 1617 { 1618 xc1((smpfunc_t) local_ops->page_for_dma, page); 1619 local_ops->page_for_dma(page); 1620 } 1621 1622 static void smp_flush_cache_all(void) 1623 { 1624 xc0((smpfunc_t) local_ops->cache_all); 1625 local_ops->cache_all(); 1626 } 1627 1628 static void smp_flush_tlb_all(void) 1629 { 1630 xc0((smpfunc_t) local_ops->tlb_all); 1631 local_ops->tlb_all(); 1632 } 1633 1634 static void smp_flush_cache_mm(struct mm_struct *mm) 1635 { 1636 if (mm->context != NO_CONTEXT) { 1637 cpumask_t cpu_mask; 1638 cpumask_copy(&cpu_mask, mm_cpumask(mm)); 1639 cpumask_clear_cpu(smp_processor_id(), &cpu_mask); 1640 if (!cpumask_empty(&cpu_mask)) 1641 xc1((smpfunc_t) local_ops->cache_mm, (unsigned long) mm); 1642 local_ops->cache_mm(mm); 1643 } 1644 } 1645 1646 static void smp_flush_tlb_mm(struct mm_struct *mm) 1647 { 1648 if (mm->context != NO_CONTEXT) { 1649 cpumask_t cpu_mask; 1650 cpumask_copy(&cpu_mask, mm_cpumask(mm)); 1651 cpumask_clear_cpu(smp_processor_id(), &cpu_mask); 1652 if (!cpumask_empty(&cpu_mask)) { 1653 xc1((smpfunc_t) local_ops->tlb_mm, (unsigned long) mm); 1654 if (atomic_read(&mm->mm_users) == 1 && current->active_mm == mm) 1655 cpumask_copy(mm_cpumask(mm), 1656 cpumask_of(smp_processor_id())); 1657 } 1658 local_ops->tlb_mm(mm); 1659 } 1660 } 1661 1662 static void smp_flush_cache_range(struct vm_area_struct *vma, 1663 unsigned long start, 1664 unsigned long end) 1665 { 1666 struct mm_struct *mm = vma->vm_mm; 1667 1668 if (mm->context != NO_CONTEXT) { 1669 cpumask_t cpu_mask; 1670 cpumask_copy(&cpu_mask, mm_cpumask(mm)); 1671 cpumask_clear_cpu(smp_processor_id(), &cpu_mask); 1672 if (!cpumask_empty(&cpu_mask)) 1673 xc3((smpfunc_t) local_ops->cache_range, 1674 (unsigned long) vma, start, end); 1675 local_ops->cache_range(vma, start, end); 1676 } 1677 } 1678 1679 static void smp_flush_tlb_range(struct vm_area_struct *vma, 1680 unsigned long start, 1681 unsigned long end) 1682 { 1683 struct mm_struct *mm = vma->vm_mm; 1684 1685 if (mm->context != NO_CONTEXT) { 1686 cpumask_t cpu_mask; 1687 cpumask_copy(&cpu_mask, mm_cpumask(mm)); 1688 cpumask_clear_cpu(smp_processor_id(), &cpu_mask); 1689 if (!cpumask_empty(&cpu_mask)) 1690 xc3((smpfunc_t) local_ops->tlb_range, 1691 (unsigned long) vma, start, end); 1692 local_ops->tlb_range(vma, start, end); 1693 } 1694 } 1695 1696 static void smp_flush_cache_page(struct vm_area_struct *vma, unsigned long page) 1697 { 1698 struct mm_struct *mm = vma->vm_mm; 1699 1700 if (mm->context != NO_CONTEXT) { 1701 cpumask_t cpu_mask; 1702 cpumask_copy(&cpu_mask, mm_cpumask(mm)); 1703 cpumask_clear_cpu(smp_processor_id(), &cpu_mask); 1704 if (!cpumask_empty(&cpu_mask)) 1705 xc2((smpfunc_t) local_ops->cache_page, 1706 (unsigned long) vma, page); 1707 local_ops->cache_page(vma, page); 1708 } 1709 } 1710 1711 static void smp_flush_tlb_page(struct vm_area_struct *vma, unsigned long page) 1712 { 1713 struct mm_struct *mm = vma->vm_mm; 1714 1715 if (mm->context != NO_CONTEXT) { 1716 cpumask_t cpu_mask; 1717 cpumask_copy(&cpu_mask, mm_cpumask(mm)); 1718 cpumask_clear_cpu(smp_processor_id(), &cpu_mask); 1719 if (!cpumask_empty(&cpu_mask)) 1720 xc2((smpfunc_t) local_ops->tlb_page, 1721 (unsigned long) vma, page); 1722 local_ops->tlb_page(vma, page); 1723 } 1724 } 1725 1726 static void smp_flush_page_to_ram(unsigned long page) 1727 { 1728 /* Current theory is that those who call this are the one's 1729 * who have just dirtied their cache with the pages contents 1730 * in kernel space, therefore we only run this on local cpu. 1731 * 1732 * XXX This experiment failed, research further... -DaveM 1733 */ 1734 #if 1 1735 xc1((smpfunc_t) local_ops->page_to_ram, page); 1736 #endif 1737 local_ops->page_to_ram(page); 1738 } 1739 1740 static void smp_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr) 1741 { 1742 cpumask_t cpu_mask; 1743 cpumask_copy(&cpu_mask, mm_cpumask(mm)); 1744 cpumask_clear_cpu(smp_processor_id(), &cpu_mask); 1745 if (!cpumask_empty(&cpu_mask)) 1746 xc2((smpfunc_t) local_ops->sig_insns, 1747 (unsigned long) mm, insn_addr); 1748 local_ops->sig_insns(mm, insn_addr); 1749 } 1750 1751 static struct sparc32_cachetlb_ops smp_cachetlb_ops = { 1752 .cache_all = smp_flush_cache_all, 1753 .cache_mm = smp_flush_cache_mm, 1754 .cache_page = smp_flush_cache_page, 1755 .cache_range = smp_flush_cache_range, 1756 .tlb_all = smp_flush_tlb_all, 1757 .tlb_mm = smp_flush_tlb_mm, 1758 .tlb_page = smp_flush_tlb_page, 1759 .tlb_range = smp_flush_tlb_range, 1760 .page_to_ram = smp_flush_page_to_ram, 1761 .sig_insns = smp_flush_sig_insns, 1762 .page_for_dma = smp_flush_page_for_dma, 1763 }; 1764 #endif 1765 1766 /* Load up routines and constants for sun4m and sun4d mmu */ 1767 void __init load_mmu(void) 1768 { 1769 extern void ld_mmu_iommu(void); 1770 extern void ld_mmu_iounit(void); 1771 1772 /* Functions */ 1773 get_srmmu_type(); 1774 1775 #ifdef CONFIG_SMP 1776 /* El switcheroo... */ 1777 local_ops = sparc32_cachetlb_ops; 1778 1779 if (sparc_cpu_model == sun4d || sparc_cpu_model == sparc_leon) { 1780 smp_cachetlb_ops.tlb_all = local_ops->tlb_all; 1781 smp_cachetlb_ops.tlb_mm = local_ops->tlb_mm; 1782 smp_cachetlb_ops.tlb_range = local_ops->tlb_range; 1783 smp_cachetlb_ops.tlb_page = local_ops->tlb_page; 1784 } 1785 1786 if (poke_srmmu == poke_viking) { 1787 /* Avoid unnecessary cross calls. */ 1788 smp_cachetlb_ops.cache_all = local_ops->cache_all; 1789 smp_cachetlb_ops.cache_mm = local_ops->cache_mm; 1790 smp_cachetlb_ops.cache_range = local_ops->cache_range; 1791 smp_cachetlb_ops.cache_page = local_ops->cache_page; 1792 1793 smp_cachetlb_ops.page_to_ram = local_ops->page_to_ram; 1794 smp_cachetlb_ops.sig_insns = local_ops->sig_insns; 1795 smp_cachetlb_ops.page_for_dma = local_ops->page_for_dma; 1796 } 1797 1798 /* It really is const after this point. */ 1799 sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *) 1800 &smp_cachetlb_ops; 1801 #endif 1802 1803 if (sparc_cpu_model == sun4d) 1804 ld_mmu_iounit(); 1805 else 1806 ld_mmu_iommu(); 1807 #ifdef CONFIG_SMP 1808 if (sparc_cpu_model == sun4d) 1809 sun4d_init_smp(); 1810 else if (sparc_cpu_model == sparc_leon) 1811 leon_init_smp(); 1812 else 1813 sun4m_init_smp(); 1814 #endif 1815 } 1816