1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * srmmu.c: SRMMU specific routines for memory management. 4 * 5 * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu) 6 * Copyright (C) 1995,2002 Pete Zaitcev (zaitcev@yahoo.com) 7 * Copyright (C) 1996 Eddie C. Dost (ecd@skynet.be) 8 * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz) 9 * Copyright (C) 1999,2000 Anton Blanchard (anton@samba.org) 10 */ 11 12 #include <linux/seq_file.h> 13 #include <linux/spinlock.h> 14 #include <linux/memblock.h> 15 #include <linux/pagemap.h> 16 #include <linux/vmalloc.h> 17 #include <linux/kdebug.h> 18 #include <linux/export.h> 19 #include <linux/kernel.h> 20 #include <linux/init.h> 21 #include <linux/log2.h> 22 #include <linux/gfp.h> 23 #include <linux/fs.h> 24 #include <linux/mm.h> 25 26 #include <asm/mmu_context.h> 27 #include <asm/cacheflush.h> 28 #include <asm/tlbflush.h> 29 #include <asm/io-unit.h> 30 #include <asm/pgalloc.h> 31 #include <asm/pgtable.h> 32 #include <asm/bitext.h> 33 #include <asm/vaddrs.h> 34 #include <asm/cache.h> 35 #include <asm/traps.h> 36 #include <asm/oplib.h> 37 #include <asm/mbus.h> 38 #include <asm/page.h> 39 #include <asm/asi.h> 40 #include <asm/smp.h> 41 #include <asm/io.h> 42 43 /* Now the cpu specific definitions. */ 44 #include <asm/turbosparc.h> 45 #include <asm/tsunami.h> 46 #include <asm/viking.h> 47 #include <asm/swift.h> 48 #include <asm/leon.h> 49 #include <asm/mxcc.h> 50 #include <asm/ross.h> 51 52 #include "mm_32.h" 53 54 enum mbus_module srmmu_modtype; 55 static unsigned int hwbug_bitmask; 56 int vac_cache_size; 57 EXPORT_SYMBOL(vac_cache_size); 58 int vac_line_size; 59 60 extern struct resource sparc_iomap; 61 62 extern unsigned long last_valid_pfn; 63 64 static pgd_t *srmmu_swapper_pg_dir; 65 66 const struct sparc32_cachetlb_ops *sparc32_cachetlb_ops; 67 EXPORT_SYMBOL(sparc32_cachetlb_ops); 68 69 #ifdef CONFIG_SMP 70 const struct sparc32_cachetlb_ops *local_ops; 71 72 #define FLUSH_BEGIN(mm) 73 #define FLUSH_END 74 #else 75 #define FLUSH_BEGIN(mm) if ((mm)->context != NO_CONTEXT) { 76 #define FLUSH_END } 77 #endif 78 79 int flush_page_for_dma_global = 1; 80 81 char *srmmu_name; 82 83 ctxd_t *srmmu_ctx_table_phys; 84 static ctxd_t *srmmu_context_table; 85 86 int viking_mxcc_present; 87 static DEFINE_SPINLOCK(srmmu_context_spinlock); 88 89 static int is_hypersparc; 90 91 static int srmmu_cache_pagetables; 92 93 /* these will be initialized in srmmu_nocache_calcsize() */ 94 static unsigned long srmmu_nocache_size; 95 static unsigned long srmmu_nocache_end; 96 97 /* 1 bit <=> 256 bytes of nocache <=> 64 PTEs */ 98 #define SRMMU_NOCACHE_BITMAP_SHIFT (PAGE_SHIFT - 4) 99 100 /* The context table is a nocache user with the biggest alignment needs. */ 101 #define SRMMU_NOCACHE_ALIGN_MAX (sizeof(ctxd_t)*SRMMU_MAX_CONTEXTS) 102 103 void *srmmu_nocache_pool; 104 static struct bit_map srmmu_nocache_map; 105 106 static inline int srmmu_pmd_none(pmd_t pmd) 107 { return !(pmd_val(pmd) & 0xFFFFFFF); } 108 109 /* XXX should we hyper_flush_whole_icache here - Anton */ 110 static inline void srmmu_ctxd_set(ctxd_t *ctxp, pgd_t *pgdp) 111 { 112 pte_t pte; 113 114 pte = __pte((SRMMU_ET_PTD | (__nocache_pa(pgdp) >> 4))); 115 set_pte((pte_t *)ctxp, pte); 116 } 117 118 /* 119 * Locations of MSI Registers. 120 */ 121 #define MSI_MBUS_ARBEN 0xe0001008 /* MBus Arbiter Enable register */ 122 123 /* 124 * Useful bits in the MSI Registers. 125 */ 126 #define MSI_ASYNC_MODE 0x80000000 /* Operate the MSI asynchronously */ 127 128 static void msi_set_sync(void) 129 { 130 __asm__ __volatile__ ("lda [%0] %1, %%g3\n\t" 131 "andn %%g3, %2, %%g3\n\t" 132 "sta %%g3, [%0] %1\n\t" : : 133 "r" (MSI_MBUS_ARBEN), 134 "i" (ASI_M_CTL), "r" (MSI_ASYNC_MODE) : "g3"); 135 } 136 137 void pmd_set(pmd_t *pmdp, pte_t *ptep) 138 { 139 unsigned long ptp; /* Physical address, shifted right by 4 */ 140 int i; 141 142 ptp = __nocache_pa(ptep) >> 4; 143 for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) { 144 set_pte((pte_t *)&pmdp->pmdv[i], __pte(SRMMU_ET_PTD | ptp)); 145 ptp += (SRMMU_REAL_PTRS_PER_PTE * sizeof(pte_t) >> 4); 146 } 147 } 148 149 void pmd_populate(struct mm_struct *mm, pmd_t *pmdp, struct page *ptep) 150 { 151 unsigned long ptp; /* Physical address, shifted right by 4 */ 152 int i; 153 154 ptp = page_to_pfn(ptep) << (PAGE_SHIFT-4); /* watch for overflow */ 155 for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) { 156 set_pte((pte_t *)&pmdp->pmdv[i], __pte(SRMMU_ET_PTD | ptp)); 157 ptp += (SRMMU_REAL_PTRS_PER_PTE * sizeof(pte_t) >> 4); 158 } 159 } 160 161 /* Find an entry in the third-level page table.. */ 162 pte_t *pte_offset_kernel(pmd_t *dir, unsigned long address) 163 { 164 void *pte; 165 166 pte = __nocache_va((dir->pmdv[0] & SRMMU_PTD_PMASK) << 4); 167 return (pte_t *) pte + 168 ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)); 169 } 170 171 /* 172 * size: bytes to allocate in the nocache area. 173 * align: bytes, number to align at. 174 * Returns the virtual address of the allocated area. 175 */ 176 static void *__srmmu_get_nocache(int size, int align) 177 { 178 int offset; 179 unsigned long addr; 180 181 if (size < SRMMU_NOCACHE_BITMAP_SHIFT) { 182 printk(KERN_ERR "Size 0x%x too small for nocache request\n", 183 size); 184 size = SRMMU_NOCACHE_BITMAP_SHIFT; 185 } 186 if (size & (SRMMU_NOCACHE_BITMAP_SHIFT - 1)) { 187 printk(KERN_ERR "Size 0x%x unaligned int nocache request\n", 188 size); 189 size += SRMMU_NOCACHE_BITMAP_SHIFT - 1; 190 } 191 BUG_ON(align > SRMMU_NOCACHE_ALIGN_MAX); 192 193 offset = bit_map_string_get(&srmmu_nocache_map, 194 size >> SRMMU_NOCACHE_BITMAP_SHIFT, 195 align >> SRMMU_NOCACHE_BITMAP_SHIFT); 196 if (offset == -1) { 197 printk(KERN_ERR "srmmu: out of nocache %d: %d/%d\n", 198 size, (int) srmmu_nocache_size, 199 srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT); 200 return NULL; 201 } 202 203 addr = SRMMU_NOCACHE_VADDR + (offset << SRMMU_NOCACHE_BITMAP_SHIFT); 204 return (void *)addr; 205 } 206 207 void *srmmu_get_nocache(int size, int align) 208 { 209 void *tmp; 210 211 tmp = __srmmu_get_nocache(size, align); 212 213 if (tmp) 214 memset(tmp, 0, size); 215 216 return tmp; 217 } 218 219 void srmmu_free_nocache(void *addr, int size) 220 { 221 unsigned long vaddr; 222 int offset; 223 224 vaddr = (unsigned long)addr; 225 if (vaddr < SRMMU_NOCACHE_VADDR) { 226 printk("Vaddr %lx is smaller than nocache base 0x%lx\n", 227 vaddr, (unsigned long)SRMMU_NOCACHE_VADDR); 228 BUG(); 229 } 230 if (vaddr + size > srmmu_nocache_end) { 231 printk("Vaddr %lx is bigger than nocache end 0x%lx\n", 232 vaddr, srmmu_nocache_end); 233 BUG(); 234 } 235 if (!is_power_of_2(size)) { 236 printk("Size 0x%x is not a power of 2\n", size); 237 BUG(); 238 } 239 if (size < SRMMU_NOCACHE_BITMAP_SHIFT) { 240 printk("Size 0x%x is too small\n", size); 241 BUG(); 242 } 243 if (vaddr & (size - 1)) { 244 printk("Vaddr %lx is not aligned to size 0x%x\n", vaddr, size); 245 BUG(); 246 } 247 248 offset = (vaddr - SRMMU_NOCACHE_VADDR) >> SRMMU_NOCACHE_BITMAP_SHIFT; 249 size = size >> SRMMU_NOCACHE_BITMAP_SHIFT; 250 251 bit_map_clear(&srmmu_nocache_map, offset, size); 252 } 253 254 static void srmmu_early_allocate_ptable_skeleton(unsigned long start, 255 unsigned long end); 256 257 /* Return how much physical memory we have. */ 258 static unsigned long __init probe_memory(void) 259 { 260 unsigned long total = 0; 261 int i; 262 263 for (i = 0; sp_banks[i].num_bytes; i++) 264 total += sp_banks[i].num_bytes; 265 266 return total; 267 } 268 269 /* 270 * Reserve nocache dynamically proportionally to the amount of 271 * system RAM. -- Tomas Szepe <szepe@pinerecords.com>, June 2002 272 */ 273 static void __init srmmu_nocache_calcsize(void) 274 { 275 unsigned long sysmemavail = probe_memory() / 1024; 276 int srmmu_nocache_npages; 277 278 srmmu_nocache_npages = 279 sysmemavail / SRMMU_NOCACHE_ALCRATIO / 1024 * 256; 280 281 /* P3 XXX The 4x overuse: corroborated by /proc/meminfo. */ 282 // if (srmmu_nocache_npages < 256) srmmu_nocache_npages = 256; 283 if (srmmu_nocache_npages < SRMMU_MIN_NOCACHE_PAGES) 284 srmmu_nocache_npages = SRMMU_MIN_NOCACHE_PAGES; 285 286 /* anything above 1280 blows up */ 287 if (srmmu_nocache_npages > SRMMU_MAX_NOCACHE_PAGES) 288 srmmu_nocache_npages = SRMMU_MAX_NOCACHE_PAGES; 289 290 srmmu_nocache_size = srmmu_nocache_npages * PAGE_SIZE; 291 srmmu_nocache_end = SRMMU_NOCACHE_VADDR + srmmu_nocache_size; 292 } 293 294 static void __init srmmu_nocache_init(void) 295 { 296 void *srmmu_nocache_bitmap; 297 unsigned int bitmap_bits; 298 pgd_t *pgd; 299 p4d_t *p4d; 300 pud_t *pud; 301 pmd_t *pmd; 302 pte_t *pte; 303 unsigned long paddr, vaddr; 304 unsigned long pteval; 305 306 bitmap_bits = srmmu_nocache_size >> SRMMU_NOCACHE_BITMAP_SHIFT; 307 308 srmmu_nocache_pool = memblock_alloc(srmmu_nocache_size, 309 SRMMU_NOCACHE_ALIGN_MAX); 310 if (!srmmu_nocache_pool) 311 panic("%s: Failed to allocate %lu bytes align=0x%x\n", 312 __func__, srmmu_nocache_size, SRMMU_NOCACHE_ALIGN_MAX); 313 memset(srmmu_nocache_pool, 0, srmmu_nocache_size); 314 315 srmmu_nocache_bitmap = 316 memblock_alloc(BITS_TO_LONGS(bitmap_bits) * sizeof(long), 317 SMP_CACHE_BYTES); 318 if (!srmmu_nocache_bitmap) 319 panic("%s: Failed to allocate %zu bytes\n", __func__, 320 BITS_TO_LONGS(bitmap_bits) * sizeof(long)); 321 bit_map_init(&srmmu_nocache_map, srmmu_nocache_bitmap, bitmap_bits); 322 323 srmmu_swapper_pg_dir = __srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE); 324 memset(__nocache_fix(srmmu_swapper_pg_dir), 0, SRMMU_PGD_TABLE_SIZE); 325 init_mm.pgd = srmmu_swapper_pg_dir; 326 327 srmmu_early_allocate_ptable_skeleton(SRMMU_NOCACHE_VADDR, srmmu_nocache_end); 328 329 paddr = __pa((unsigned long)srmmu_nocache_pool); 330 vaddr = SRMMU_NOCACHE_VADDR; 331 332 while (vaddr < srmmu_nocache_end) { 333 pgd = pgd_offset_k(vaddr); 334 p4d = p4d_offset(pgd, vaddr); 335 pud = pud_offset(p4d, vaddr); 336 pmd = pmd_offset(__nocache_fix(pud), vaddr); 337 pte = pte_offset_kernel(__nocache_fix(pmd), vaddr); 338 339 pteval = ((paddr >> 4) | SRMMU_ET_PTE | SRMMU_PRIV); 340 341 if (srmmu_cache_pagetables) 342 pteval |= SRMMU_CACHE; 343 344 set_pte(__nocache_fix(pte), __pte(pteval)); 345 346 vaddr += PAGE_SIZE; 347 paddr += PAGE_SIZE; 348 } 349 350 flush_cache_all(); 351 flush_tlb_all(); 352 } 353 354 pgd_t *get_pgd_fast(void) 355 { 356 pgd_t *pgd = NULL; 357 358 pgd = __srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE); 359 if (pgd) { 360 pgd_t *init = pgd_offset_k(0); 361 memset(pgd, 0, USER_PTRS_PER_PGD * sizeof(pgd_t)); 362 memcpy(pgd + USER_PTRS_PER_PGD, init + USER_PTRS_PER_PGD, 363 (PTRS_PER_PGD - USER_PTRS_PER_PGD) * sizeof(pgd_t)); 364 } 365 366 return pgd; 367 } 368 369 /* 370 * Hardware needs alignment to 256 only, but we align to whole page size 371 * to reduce fragmentation problems due to the buddy principle. 372 * XXX Provide actual fragmentation statistics in /proc. 373 * 374 * Alignments up to the page size are the same for physical and virtual 375 * addresses of the nocache area. 376 */ 377 pgtable_t pte_alloc_one(struct mm_struct *mm) 378 { 379 unsigned long pte; 380 struct page *page; 381 382 if ((pte = (unsigned long)pte_alloc_one_kernel(mm)) == 0) 383 return NULL; 384 page = pfn_to_page(__nocache_pa(pte) >> PAGE_SHIFT); 385 if (!pgtable_pte_page_ctor(page)) { 386 __free_page(page); 387 return NULL; 388 } 389 return page; 390 } 391 392 void pte_free(struct mm_struct *mm, pgtable_t pte) 393 { 394 unsigned long p; 395 396 pgtable_pte_page_dtor(pte); 397 p = (unsigned long)page_address(pte); /* Cached address (for test) */ 398 if (p == 0) 399 BUG(); 400 p = page_to_pfn(pte) << PAGE_SHIFT; /* Physical address */ 401 402 /* free non cached virtual address*/ 403 srmmu_free_nocache(__nocache_va(p), PTE_SIZE); 404 } 405 406 /* context handling - a dynamically sized pool is used */ 407 #define NO_CONTEXT -1 408 409 struct ctx_list { 410 struct ctx_list *next; 411 struct ctx_list *prev; 412 unsigned int ctx_number; 413 struct mm_struct *ctx_mm; 414 }; 415 416 static struct ctx_list *ctx_list_pool; 417 static struct ctx_list ctx_free; 418 static struct ctx_list ctx_used; 419 420 /* At boot time we determine the number of contexts */ 421 static int num_contexts; 422 423 static inline void remove_from_ctx_list(struct ctx_list *entry) 424 { 425 entry->next->prev = entry->prev; 426 entry->prev->next = entry->next; 427 } 428 429 static inline void add_to_ctx_list(struct ctx_list *head, struct ctx_list *entry) 430 { 431 entry->next = head; 432 (entry->prev = head->prev)->next = entry; 433 head->prev = entry; 434 } 435 #define add_to_free_ctxlist(entry) add_to_ctx_list(&ctx_free, entry) 436 #define add_to_used_ctxlist(entry) add_to_ctx_list(&ctx_used, entry) 437 438 439 static inline void alloc_context(struct mm_struct *old_mm, struct mm_struct *mm) 440 { 441 struct ctx_list *ctxp; 442 443 ctxp = ctx_free.next; 444 if (ctxp != &ctx_free) { 445 remove_from_ctx_list(ctxp); 446 add_to_used_ctxlist(ctxp); 447 mm->context = ctxp->ctx_number; 448 ctxp->ctx_mm = mm; 449 return; 450 } 451 ctxp = ctx_used.next; 452 if (ctxp->ctx_mm == old_mm) 453 ctxp = ctxp->next; 454 if (ctxp == &ctx_used) 455 panic("out of mmu contexts"); 456 flush_cache_mm(ctxp->ctx_mm); 457 flush_tlb_mm(ctxp->ctx_mm); 458 remove_from_ctx_list(ctxp); 459 add_to_used_ctxlist(ctxp); 460 ctxp->ctx_mm->context = NO_CONTEXT; 461 ctxp->ctx_mm = mm; 462 mm->context = ctxp->ctx_number; 463 } 464 465 static inline void free_context(int context) 466 { 467 struct ctx_list *ctx_old; 468 469 ctx_old = ctx_list_pool + context; 470 remove_from_ctx_list(ctx_old); 471 add_to_free_ctxlist(ctx_old); 472 } 473 474 static void __init sparc_context_init(int numctx) 475 { 476 int ctx; 477 unsigned long size; 478 479 size = numctx * sizeof(struct ctx_list); 480 ctx_list_pool = memblock_alloc(size, SMP_CACHE_BYTES); 481 if (!ctx_list_pool) 482 panic("%s: Failed to allocate %lu bytes\n", __func__, size); 483 484 for (ctx = 0; ctx < numctx; ctx++) { 485 struct ctx_list *clist; 486 487 clist = (ctx_list_pool + ctx); 488 clist->ctx_number = ctx; 489 clist->ctx_mm = NULL; 490 } 491 ctx_free.next = ctx_free.prev = &ctx_free; 492 ctx_used.next = ctx_used.prev = &ctx_used; 493 for (ctx = 0; ctx < numctx; ctx++) 494 add_to_free_ctxlist(ctx_list_pool + ctx); 495 } 496 497 void switch_mm(struct mm_struct *old_mm, struct mm_struct *mm, 498 struct task_struct *tsk) 499 { 500 unsigned long flags; 501 502 if (mm->context == NO_CONTEXT) { 503 spin_lock_irqsave(&srmmu_context_spinlock, flags); 504 alloc_context(old_mm, mm); 505 spin_unlock_irqrestore(&srmmu_context_spinlock, flags); 506 srmmu_ctxd_set(&srmmu_context_table[mm->context], mm->pgd); 507 } 508 509 if (sparc_cpu_model == sparc_leon) 510 leon_switch_mm(); 511 512 if (is_hypersparc) 513 hyper_flush_whole_icache(); 514 515 srmmu_set_context(mm->context); 516 } 517 518 /* Low level IO area allocation on the SRMMU. */ 519 static inline void srmmu_mapioaddr(unsigned long physaddr, 520 unsigned long virt_addr, int bus_type) 521 { 522 pgd_t *pgdp; 523 p4d_t *p4dp; 524 pud_t *pudp; 525 pmd_t *pmdp; 526 pte_t *ptep; 527 unsigned long tmp; 528 529 physaddr &= PAGE_MASK; 530 pgdp = pgd_offset_k(virt_addr); 531 p4dp = p4d_offset(pgdp, virt_addr); 532 pudp = pud_offset(p4dp, virt_addr); 533 pmdp = pmd_offset(pudp, virt_addr); 534 ptep = pte_offset_kernel(pmdp, virt_addr); 535 tmp = (physaddr >> 4) | SRMMU_ET_PTE; 536 537 /* I need to test whether this is consistent over all 538 * sun4m's. The bus_type represents the upper 4 bits of 539 * 36-bit physical address on the I/O space lines... 540 */ 541 tmp |= (bus_type << 28); 542 tmp |= SRMMU_PRIV; 543 __flush_page_to_ram(virt_addr); 544 set_pte(ptep, __pte(tmp)); 545 } 546 547 void srmmu_mapiorange(unsigned int bus, unsigned long xpa, 548 unsigned long xva, unsigned int len) 549 { 550 while (len != 0) { 551 len -= PAGE_SIZE; 552 srmmu_mapioaddr(xpa, xva, bus); 553 xva += PAGE_SIZE; 554 xpa += PAGE_SIZE; 555 } 556 flush_tlb_all(); 557 } 558 559 static inline void srmmu_unmapioaddr(unsigned long virt_addr) 560 { 561 pgd_t *pgdp; 562 p4d_t *p4dp; 563 pud_t *pudp; 564 pmd_t *pmdp; 565 pte_t *ptep; 566 567 568 pgdp = pgd_offset_k(virt_addr); 569 p4dp = p4d_offset(pgdp, virt_addr); 570 pudp = pud_offset(p4dp, virt_addr); 571 pmdp = pmd_offset(pudp, virt_addr); 572 ptep = pte_offset_kernel(pmdp, virt_addr); 573 574 /* No need to flush uncacheable page. */ 575 __pte_clear(ptep); 576 } 577 578 void srmmu_unmapiorange(unsigned long virt_addr, unsigned int len) 579 { 580 while (len != 0) { 581 len -= PAGE_SIZE; 582 srmmu_unmapioaddr(virt_addr); 583 virt_addr += PAGE_SIZE; 584 } 585 flush_tlb_all(); 586 } 587 588 /* tsunami.S */ 589 extern void tsunami_flush_cache_all(void); 590 extern void tsunami_flush_cache_mm(struct mm_struct *mm); 591 extern void tsunami_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end); 592 extern void tsunami_flush_cache_page(struct vm_area_struct *vma, unsigned long page); 593 extern void tsunami_flush_page_to_ram(unsigned long page); 594 extern void tsunami_flush_page_for_dma(unsigned long page); 595 extern void tsunami_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr); 596 extern void tsunami_flush_tlb_all(void); 597 extern void tsunami_flush_tlb_mm(struct mm_struct *mm); 598 extern void tsunami_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end); 599 extern void tsunami_flush_tlb_page(struct vm_area_struct *vma, unsigned long page); 600 extern void tsunami_setup_blockops(void); 601 602 /* swift.S */ 603 extern void swift_flush_cache_all(void); 604 extern void swift_flush_cache_mm(struct mm_struct *mm); 605 extern void swift_flush_cache_range(struct vm_area_struct *vma, 606 unsigned long start, unsigned long end); 607 extern void swift_flush_cache_page(struct vm_area_struct *vma, unsigned long page); 608 extern void swift_flush_page_to_ram(unsigned long page); 609 extern void swift_flush_page_for_dma(unsigned long page); 610 extern void swift_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr); 611 extern void swift_flush_tlb_all(void); 612 extern void swift_flush_tlb_mm(struct mm_struct *mm); 613 extern void swift_flush_tlb_range(struct vm_area_struct *vma, 614 unsigned long start, unsigned long end); 615 extern void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page); 616 617 #if 0 /* P3: deadwood to debug precise flushes on Swift. */ 618 void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page) 619 { 620 int cctx, ctx1; 621 622 page &= PAGE_MASK; 623 if ((ctx1 = vma->vm_mm->context) != -1) { 624 cctx = srmmu_get_context(); 625 /* Is context # ever different from current context? P3 */ 626 if (cctx != ctx1) { 627 printk("flush ctx %02x curr %02x\n", ctx1, cctx); 628 srmmu_set_context(ctx1); 629 swift_flush_page(page); 630 __asm__ __volatile__("sta %%g0, [%0] %1\n\t" : : 631 "r" (page), "i" (ASI_M_FLUSH_PROBE)); 632 srmmu_set_context(cctx); 633 } else { 634 /* Rm. prot. bits from virt. c. */ 635 /* swift_flush_cache_all(); */ 636 /* swift_flush_cache_page(vma, page); */ 637 swift_flush_page(page); 638 639 __asm__ __volatile__("sta %%g0, [%0] %1\n\t" : : 640 "r" (page), "i" (ASI_M_FLUSH_PROBE)); 641 /* same as above: srmmu_flush_tlb_page() */ 642 } 643 } 644 } 645 #endif 646 647 /* 648 * The following are all MBUS based SRMMU modules, and therefore could 649 * be found in a multiprocessor configuration. On the whole, these 650 * chips seems to be much more touchy about DVMA and page tables 651 * with respect to cache coherency. 652 */ 653 654 /* viking.S */ 655 extern void viking_flush_cache_all(void); 656 extern void viking_flush_cache_mm(struct mm_struct *mm); 657 extern void viking_flush_cache_range(struct vm_area_struct *vma, unsigned long start, 658 unsigned long end); 659 extern void viking_flush_cache_page(struct vm_area_struct *vma, unsigned long page); 660 extern void viking_flush_page_to_ram(unsigned long page); 661 extern void viking_flush_page_for_dma(unsigned long page); 662 extern void viking_flush_sig_insns(struct mm_struct *mm, unsigned long addr); 663 extern void viking_flush_page(unsigned long page); 664 extern void viking_mxcc_flush_page(unsigned long page); 665 extern void viking_flush_tlb_all(void); 666 extern void viking_flush_tlb_mm(struct mm_struct *mm); 667 extern void viking_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, 668 unsigned long end); 669 extern void viking_flush_tlb_page(struct vm_area_struct *vma, 670 unsigned long page); 671 extern void sun4dsmp_flush_tlb_all(void); 672 extern void sun4dsmp_flush_tlb_mm(struct mm_struct *mm); 673 extern void sun4dsmp_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, 674 unsigned long end); 675 extern void sun4dsmp_flush_tlb_page(struct vm_area_struct *vma, 676 unsigned long page); 677 678 /* hypersparc.S */ 679 extern void hypersparc_flush_cache_all(void); 680 extern void hypersparc_flush_cache_mm(struct mm_struct *mm); 681 extern void hypersparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end); 682 extern void hypersparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page); 683 extern void hypersparc_flush_page_to_ram(unsigned long page); 684 extern void hypersparc_flush_page_for_dma(unsigned long page); 685 extern void hypersparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr); 686 extern void hypersparc_flush_tlb_all(void); 687 extern void hypersparc_flush_tlb_mm(struct mm_struct *mm); 688 extern void hypersparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end); 689 extern void hypersparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page); 690 extern void hypersparc_setup_blockops(void); 691 692 /* 693 * NOTE: All of this startup code assumes the low 16mb (approx.) of 694 * kernel mappings are done with one single contiguous chunk of 695 * ram. On small ram machines (classics mainly) we only get 696 * around 8mb mapped for us. 697 */ 698 699 static void __init early_pgtable_allocfail(char *type) 700 { 701 prom_printf("inherit_prom_mappings: Cannot alloc kernel %s.\n", type); 702 prom_halt(); 703 } 704 705 static void __init srmmu_early_allocate_ptable_skeleton(unsigned long start, 706 unsigned long end) 707 { 708 pgd_t *pgdp; 709 p4d_t *p4dp; 710 pud_t *pudp; 711 pmd_t *pmdp; 712 pte_t *ptep; 713 714 while (start < end) { 715 pgdp = pgd_offset_k(start); 716 p4dp = p4d_offset(pgdp, start); 717 pudp = pud_offset(p4dp, start); 718 if (pud_none(*(pud_t *)__nocache_fix(pudp))) { 719 pmdp = __srmmu_get_nocache( 720 SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE); 721 if (pmdp == NULL) 722 early_pgtable_allocfail("pmd"); 723 memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE); 724 pud_set(__nocache_fix(pudp), pmdp); 725 } 726 pmdp = pmd_offset(__nocache_fix(pudp), start); 727 if (srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) { 728 ptep = __srmmu_get_nocache(PTE_SIZE, PTE_SIZE); 729 if (ptep == NULL) 730 early_pgtable_allocfail("pte"); 731 memset(__nocache_fix(ptep), 0, PTE_SIZE); 732 pmd_set(__nocache_fix(pmdp), ptep); 733 } 734 if (start > (0xffffffffUL - PMD_SIZE)) 735 break; 736 start = (start + PMD_SIZE) & PMD_MASK; 737 } 738 } 739 740 static void __init srmmu_allocate_ptable_skeleton(unsigned long start, 741 unsigned long end) 742 { 743 pgd_t *pgdp; 744 p4d_t *p4dp; 745 pud_t *pudp; 746 pmd_t *pmdp; 747 pte_t *ptep; 748 749 while (start < end) { 750 pgdp = pgd_offset_k(start); 751 p4dp = p4d_offset(pgdp, start); 752 pudp = pud_offset(p4dp, start); 753 if (pud_none(*pudp)) { 754 pmdp = __srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE); 755 if (pmdp == NULL) 756 early_pgtable_allocfail("pmd"); 757 memset(pmdp, 0, SRMMU_PMD_TABLE_SIZE); 758 pud_set((pud_t *)pgdp, pmdp); 759 } 760 pmdp = pmd_offset(pudp, start); 761 if (srmmu_pmd_none(*pmdp)) { 762 ptep = __srmmu_get_nocache(PTE_SIZE, 763 PTE_SIZE); 764 if (ptep == NULL) 765 early_pgtable_allocfail("pte"); 766 memset(ptep, 0, PTE_SIZE); 767 pmd_set(pmdp, ptep); 768 } 769 if (start > (0xffffffffUL - PMD_SIZE)) 770 break; 771 start = (start + PMD_SIZE) & PMD_MASK; 772 } 773 } 774 775 /* These flush types are not available on all chips... */ 776 static inline unsigned long srmmu_probe(unsigned long vaddr) 777 { 778 unsigned long retval; 779 780 if (sparc_cpu_model != sparc_leon) { 781 782 vaddr &= PAGE_MASK; 783 __asm__ __volatile__("lda [%1] %2, %0\n\t" : 784 "=r" (retval) : 785 "r" (vaddr | 0x400), "i" (ASI_M_FLUSH_PROBE)); 786 } else { 787 retval = leon_swprobe(vaddr, NULL); 788 } 789 return retval; 790 } 791 792 /* 793 * This is much cleaner than poking around physical address space 794 * looking at the prom's page table directly which is what most 795 * other OS's do. Yuck... this is much better. 796 */ 797 static void __init srmmu_inherit_prom_mappings(unsigned long start, 798 unsigned long end) 799 { 800 unsigned long probed; 801 unsigned long addr; 802 pgd_t *pgdp; 803 p4d_t *p4dp; 804 pud_t *pudp; 805 pmd_t *pmdp; 806 pte_t *ptep; 807 int what; /* 0 = normal-pte, 1 = pmd-level pte, 2 = pgd-level pte */ 808 809 while (start <= end) { 810 if (start == 0) 811 break; /* probably wrap around */ 812 if (start == 0xfef00000) 813 start = KADB_DEBUGGER_BEGVM; 814 probed = srmmu_probe(start); 815 if (!probed) { 816 /* continue probing until we find an entry */ 817 start += PAGE_SIZE; 818 continue; 819 } 820 821 /* A red snapper, see what it really is. */ 822 what = 0; 823 addr = start - PAGE_SIZE; 824 825 if (!(start & ~(SRMMU_REAL_PMD_MASK))) { 826 if (srmmu_probe(addr + SRMMU_REAL_PMD_SIZE) == probed) 827 what = 1; 828 } 829 830 if (!(start & ~(SRMMU_PGDIR_MASK))) { 831 if (srmmu_probe(addr + SRMMU_PGDIR_SIZE) == probed) 832 what = 2; 833 } 834 835 pgdp = pgd_offset_k(start); 836 p4dp = p4d_offset(pgdp, start); 837 pudp = pud_offset(p4dp, start); 838 if (what == 2) { 839 *(pgd_t *)__nocache_fix(pgdp) = __pgd(probed); 840 start += SRMMU_PGDIR_SIZE; 841 continue; 842 } 843 if (pud_none(*(pud_t *)__nocache_fix(pudp))) { 844 pmdp = __srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, 845 SRMMU_PMD_TABLE_SIZE); 846 if (pmdp == NULL) 847 early_pgtable_allocfail("pmd"); 848 memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE); 849 pud_set(__nocache_fix(pudp), pmdp); 850 } 851 pmdp = pmd_offset(__nocache_fix(pgdp), start); 852 if (srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) { 853 ptep = __srmmu_get_nocache(PTE_SIZE, PTE_SIZE); 854 if (ptep == NULL) 855 early_pgtable_allocfail("pte"); 856 memset(__nocache_fix(ptep), 0, PTE_SIZE); 857 pmd_set(__nocache_fix(pmdp), ptep); 858 } 859 if (what == 1) { 860 /* We bend the rule where all 16 PTPs in a pmd_t point 861 * inside the same PTE page, and we leak a perfectly 862 * good hardware PTE piece. Alternatives seem worse. 863 */ 864 unsigned int x; /* Index of HW PMD in soft cluster */ 865 unsigned long *val; 866 x = (start >> PMD_SHIFT) & 15; 867 val = &pmdp->pmdv[x]; 868 *(unsigned long *)__nocache_fix(val) = probed; 869 start += SRMMU_REAL_PMD_SIZE; 870 continue; 871 } 872 ptep = pte_offset_kernel(__nocache_fix(pmdp), start); 873 *(pte_t *)__nocache_fix(ptep) = __pte(probed); 874 start += PAGE_SIZE; 875 } 876 } 877 878 #define KERNEL_PTE(page_shifted) ((page_shifted)|SRMMU_CACHE|SRMMU_PRIV|SRMMU_VALID) 879 880 /* Create a third-level SRMMU 16MB page mapping. */ 881 static void __init do_large_mapping(unsigned long vaddr, unsigned long phys_base) 882 { 883 pgd_t *pgdp = pgd_offset_k(vaddr); 884 unsigned long big_pte; 885 886 big_pte = KERNEL_PTE(phys_base >> 4); 887 *(pgd_t *)__nocache_fix(pgdp) = __pgd(big_pte); 888 } 889 890 /* Map sp_bank entry SP_ENTRY, starting at virtual address VBASE. */ 891 static unsigned long __init map_spbank(unsigned long vbase, int sp_entry) 892 { 893 unsigned long pstart = (sp_banks[sp_entry].base_addr & SRMMU_PGDIR_MASK); 894 unsigned long vstart = (vbase & SRMMU_PGDIR_MASK); 895 unsigned long vend = SRMMU_PGDIR_ALIGN(vbase + sp_banks[sp_entry].num_bytes); 896 /* Map "low" memory only */ 897 const unsigned long min_vaddr = PAGE_OFFSET; 898 const unsigned long max_vaddr = PAGE_OFFSET + SRMMU_MAXMEM; 899 900 if (vstart < min_vaddr || vstart >= max_vaddr) 901 return vstart; 902 903 if (vend > max_vaddr || vend < min_vaddr) 904 vend = max_vaddr; 905 906 while (vstart < vend) { 907 do_large_mapping(vstart, pstart); 908 vstart += SRMMU_PGDIR_SIZE; pstart += SRMMU_PGDIR_SIZE; 909 } 910 return vstart; 911 } 912 913 static void __init map_kernel(void) 914 { 915 int i; 916 917 if (phys_base > 0) { 918 do_large_mapping(PAGE_OFFSET, phys_base); 919 } 920 921 for (i = 0; sp_banks[i].num_bytes != 0; i++) { 922 map_spbank((unsigned long)__va(sp_banks[i].base_addr), i); 923 } 924 } 925 926 void (*poke_srmmu)(void) = NULL; 927 928 void __init srmmu_paging_init(void) 929 { 930 int i; 931 phandle cpunode; 932 char node_str[128]; 933 pgd_t *pgd; 934 p4d_t *p4d; 935 pud_t *pud; 936 pmd_t *pmd; 937 pte_t *pte; 938 unsigned long pages_avail; 939 940 init_mm.context = (unsigned long) NO_CONTEXT; 941 sparc_iomap.start = SUN4M_IOBASE_VADDR; /* 16MB of IOSPACE on all sun4m's. */ 942 943 if (sparc_cpu_model == sun4d) 944 num_contexts = 65536; /* We know it is Viking */ 945 else { 946 /* Find the number of contexts on the srmmu. */ 947 cpunode = prom_getchild(prom_root_node); 948 num_contexts = 0; 949 while (cpunode != 0) { 950 prom_getstring(cpunode, "device_type", node_str, sizeof(node_str)); 951 if (!strcmp(node_str, "cpu")) { 952 num_contexts = prom_getintdefault(cpunode, "mmu-nctx", 0x8); 953 break; 954 } 955 cpunode = prom_getsibling(cpunode); 956 } 957 } 958 959 if (!num_contexts) { 960 prom_printf("Something wrong, can't find cpu node in paging_init.\n"); 961 prom_halt(); 962 } 963 964 pages_avail = 0; 965 last_valid_pfn = bootmem_init(&pages_avail); 966 967 srmmu_nocache_calcsize(); 968 srmmu_nocache_init(); 969 srmmu_inherit_prom_mappings(0xfe400000, (LINUX_OPPROM_ENDVM - PAGE_SIZE)); 970 map_kernel(); 971 972 /* ctx table has to be physically aligned to its size */ 973 srmmu_context_table = __srmmu_get_nocache(num_contexts * sizeof(ctxd_t), num_contexts * sizeof(ctxd_t)); 974 srmmu_ctx_table_phys = (ctxd_t *)__nocache_pa(srmmu_context_table); 975 976 for (i = 0; i < num_contexts; i++) 977 srmmu_ctxd_set((ctxd_t *)__nocache_fix(&srmmu_context_table[i]), srmmu_swapper_pg_dir); 978 979 flush_cache_all(); 980 srmmu_set_ctable_ptr((unsigned long)srmmu_ctx_table_phys); 981 #ifdef CONFIG_SMP 982 /* Stop from hanging here... */ 983 local_ops->tlb_all(); 984 #else 985 flush_tlb_all(); 986 #endif 987 poke_srmmu(); 988 989 srmmu_allocate_ptable_skeleton(sparc_iomap.start, IOBASE_END); 990 srmmu_allocate_ptable_skeleton(DVMA_VADDR, DVMA_END); 991 992 srmmu_allocate_ptable_skeleton( 993 __fix_to_virt(__end_of_fixed_addresses - 1), FIXADDR_TOP); 994 srmmu_allocate_ptable_skeleton(PKMAP_BASE, PKMAP_END); 995 996 pgd = pgd_offset_k(PKMAP_BASE); 997 p4d = p4d_offset(pgd, PKMAP_BASE); 998 pud = pud_offset(p4d, PKMAP_BASE); 999 pmd = pmd_offset(pud, PKMAP_BASE); 1000 pte = pte_offset_kernel(pmd, PKMAP_BASE); 1001 pkmap_page_table = pte; 1002 1003 flush_cache_all(); 1004 flush_tlb_all(); 1005 1006 sparc_context_init(num_contexts); 1007 1008 kmap_init(); 1009 1010 { 1011 unsigned long max_zone_pfn[MAX_NR_ZONES] = { 0 }; 1012 1013 max_zone_pfn[ZONE_DMA] = max_low_pfn; 1014 max_zone_pfn[ZONE_NORMAL] = max_low_pfn; 1015 max_zone_pfn[ZONE_HIGHMEM] = highend_pfn; 1016 1017 free_area_init(max_zone_pfn); 1018 } 1019 } 1020 1021 void mmu_info(struct seq_file *m) 1022 { 1023 seq_printf(m, 1024 "MMU type\t: %s\n" 1025 "contexts\t: %d\n" 1026 "nocache total\t: %ld\n" 1027 "nocache used\t: %d\n", 1028 srmmu_name, 1029 num_contexts, 1030 srmmu_nocache_size, 1031 srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT); 1032 } 1033 1034 int init_new_context(struct task_struct *tsk, struct mm_struct *mm) 1035 { 1036 mm->context = NO_CONTEXT; 1037 return 0; 1038 } 1039 1040 void destroy_context(struct mm_struct *mm) 1041 { 1042 unsigned long flags; 1043 1044 if (mm->context != NO_CONTEXT) { 1045 flush_cache_mm(mm); 1046 srmmu_ctxd_set(&srmmu_context_table[mm->context], srmmu_swapper_pg_dir); 1047 flush_tlb_mm(mm); 1048 spin_lock_irqsave(&srmmu_context_spinlock, flags); 1049 free_context(mm->context); 1050 spin_unlock_irqrestore(&srmmu_context_spinlock, flags); 1051 mm->context = NO_CONTEXT; 1052 } 1053 } 1054 1055 /* Init various srmmu chip types. */ 1056 static void __init srmmu_is_bad(void) 1057 { 1058 prom_printf("Could not determine SRMMU chip type.\n"); 1059 prom_halt(); 1060 } 1061 1062 static void __init init_vac_layout(void) 1063 { 1064 phandle nd; 1065 int cache_lines; 1066 char node_str[128]; 1067 #ifdef CONFIG_SMP 1068 int cpu = 0; 1069 unsigned long max_size = 0; 1070 unsigned long min_line_size = 0x10000000; 1071 #endif 1072 1073 nd = prom_getchild(prom_root_node); 1074 while ((nd = prom_getsibling(nd)) != 0) { 1075 prom_getstring(nd, "device_type", node_str, sizeof(node_str)); 1076 if (!strcmp(node_str, "cpu")) { 1077 vac_line_size = prom_getint(nd, "cache-line-size"); 1078 if (vac_line_size == -1) { 1079 prom_printf("can't determine cache-line-size, halting.\n"); 1080 prom_halt(); 1081 } 1082 cache_lines = prom_getint(nd, "cache-nlines"); 1083 if (cache_lines == -1) { 1084 prom_printf("can't determine cache-nlines, halting.\n"); 1085 prom_halt(); 1086 } 1087 1088 vac_cache_size = cache_lines * vac_line_size; 1089 #ifdef CONFIG_SMP 1090 if (vac_cache_size > max_size) 1091 max_size = vac_cache_size; 1092 if (vac_line_size < min_line_size) 1093 min_line_size = vac_line_size; 1094 //FIXME: cpus not contiguous!! 1095 cpu++; 1096 if (cpu >= nr_cpu_ids || !cpu_online(cpu)) 1097 break; 1098 #else 1099 break; 1100 #endif 1101 } 1102 } 1103 if (nd == 0) { 1104 prom_printf("No CPU nodes found, halting.\n"); 1105 prom_halt(); 1106 } 1107 #ifdef CONFIG_SMP 1108 vac_cache_size = max_size; 1109 vac_line_size = min_line_size; 1110 #endif 1111 printk("SRMMU: Using VAC size of %d bytes, line size %d bytes.\n", 1112 (int)vac_cache_size, (int)vac_line_size); 1113 } 1114 1115 static void poke_hypersparc(void) 1116 { 1117 volatile unsigned long clear; 1118 unsigned long mreg = srmmu_get_mmureg(); 1119 1120 hyper_flush_unconditional_combined(); 1121 1122 mreg &= ~(HYPERSPARC_CWENABLE); 1123 mreg |= (HYPERSPARC_CENABLE | HYPERSPARC_WBENABLE); 1124 mreg |= (HYPERSPARC_CMODE); 1125 1126 srmmu_set_mmureg(mreg); 1127 1128 #if 0 /* XXX I think this is bad news... -DaveM */ 1129 hyper_clear_all_tags(); 1130 #endif 1131 1132 put_ross_icr(HYPERSPARC_ICCR_FTD | HYPERSPARC_ICCR_ICE); 1133 hyper_flush_whole_icache(); 1134 clear = srmmu_get_faddr(); 1135 clear = srmmu_get_fstatus(); 1136 } 1137 1138 static const struct sparc32_cachetlb_ops hypersparc_ops = { 1139 .cache_all = hypersparc_flush_cache_all, 1140 .cache_mm = hypersparc_flush_cache_mm, 1141 .cache_page = hypersparc_flush_cache_page, 1142 .cache_range = hypersparc_flush_cache_range, 1143 .tlb_all = hypersparc_flush_tlb_all, 1144 .tlb_mm = hypersparc_flush_tlb_mm, 1145 .tlb_page = hypersparc_flush_tlb_page, 1146 .tlb_range = hypersparc_flush_tlb_range, 1147 .page_to_ram = hypersparc_flush_page_to_ram, 1148 .sig_insns = hypersparc_flush_sig_insns, 1149 .page_for_dma = hypersparc_flush_page_for_dma, 1150 }; 1151 1152 static void __init init_hypersparc(void) 1153 { 1154 srmmu_name = "ROSS HyperSparc"; 1155 srmmu_modtype = HyperSparc; 1156 1157 init_vac_layout(); 1158 1159 is_hypersparc = 1; 1160 sparc32_cachetlb_ops = &hypersparc_ops; 1161 1162 poke_srmmu = poke_hypersparc; 1163 1164 hypersparc_setup_blockops(); 1165 } 1166 1167 static void poke_swift(void) 1168 { 1169 unsigned long mreg; 1170 1171 /* Clear any crap from the cache or else... */ 1172 swift_flush_cache_all(); 1173 1174 /* Enable I & D caches */ 1175 mreg = srmmu_get_mmureg(); 1176 mreg |= (SWIFT_IE | SWIFT_DE); 1177 /* 1178 * The Swift branch folding logic is completely broken. At 1179 * trap time, if things are just right, if can mistakenly 1180 * think that a trap is coming from kernel mode when in fact 1181 * it is coming from user mode (it mis-executes the branch in 1182 * the trap code). So you see things like crashme completely 1183 * hosing your machine which is completely unacceptable. Turn 1184 * this shit off... nice job Fujitsu. 1185 */ 1186 mreg &= ~(SWIFT_BF); 1187 srmmu_set_mmureg(mreg); 1188 } 1189 1190 static const struct sparc32_cachetlb_ops swift_ops = { 1191 .cache_all = swift_flush_cache_all, 1192 .cache_mm = swift_flush_cache_mm, 1193 .cache_page = swift_flush_cache_page, 1194 .cache_range = swift_flush_cache_range, 1195 .tlb_all = swift_flush_tlb_all, 1196 .tlb_mm = swift_flush_tlb_mm, 1197 .tlb_page = swift_flush_tlb_page, 1198 .tlb_range = swift_flush_tlb_range, 1199 .page_to_ram = swift_flush_page_to_ram, 1200 .sig_insns = swift_flush_sig_insns, 1201 .page_for_dma = swift_flush_page_for_dma, 1202 }; 1203 1204 #define SWIFT_MASKID_ADDR 0x10003018 1205 static void __init init_swift(void) 1206 { 1207 unsigned long swift_rev; 1208 1209 __asm__ __volatile__("lda [%1] %2, %0\n\t" 1210 "srl %0, 0x18, %0\n\t" : 1211 "=r" (swift_rev) : 1212 "r" (SWIFT_MASKID_ADDR), "i" (ASI_M_BYPASS)); 1213 srmmu_name = "Fujitsu Swift"; 1214 switch (swift_rev) { 1215 case 0x11: 1216 case 0x20: 1217 case 0x23: 1218 case 0x30: 1219 srmmu_modtype = Swift_lots_o_bugs; 1220 hwbug_bitmask |= (HWBUG_KERN_ACCBROKEN | HWBUG_KERN_CBITBROKEN); 1221 /* 1222 * Gee george, I wonder why Sun is so hush hush about 1223 * this hardware bug... really braindamage stuff going 1224 * on here. However I think we can find a way to avoid 1225 * all of the workaround overhead under Linux. Basically, 1226 * any page fault can cause kernel pages to become user 1227 * accessible (the mmu gets confused and clears some of 1228 * the ACC bits in kernel ptes). Aha, sounds pretty 1229 * horrible eh? But wait, after extensive testing it appears 1230 * that if you use pgd_t level large kernel pte's (like the 1231 * 4MB pages on the Pentium) the bug does not get tripped 1232 * at all. This avoids almost all of the major overhead. 1233 * Welcome to a world where your vendor tells you to, 1234 * "apply this kernel patch" instead of "sorry for the 1235 * broken hardware, send it back and we'll give you 1236 * properly functioning parts" 1237 */ 1238 break; 1239 case 0x25: 1240 case 0x31: 1241 srmmu_modtype = Swift_bad_c; 1242 hwbug_bitmask |= HWBUG_KERN_CBITBROKEN; 1243 /* 1244 * You see Sun allude to this hardware bug but never 1245 * admit things directly, they'll say things like, 1246 * "the Swift chip cache problems" or similar. 1247 */ 1248 break; 1249 default: 1250 srmmu_modtype = Swift_ok; 1251 break; 1252 } 1253 1254 sparc32_cachetlb_ops = &swift_ops; 1255 flush_page_for_dma_global = 0; 1256 1257 /* 1258 * Are you now convinced that the Swift is one of the 1259 * biggest VLSI abortions of all time? Bravo Fujitsu! 1260 * Fujitsu, the !#?!%$'d up processor people. I bet if 1261 * you examined the microcode of the Swift you'd find 1262 * XXX's all over the place. 1263 */ 1264 poke_srmmu = poke_swift; 1265 } 1266 1267 static void turbosparc_flush_cache_all(void) 1268 { 1269 flush_user_windows(); 1270 turbosparc_idflash_clear(); 1271 } 1272 1273 static void turbosparc_flush_cache_mm(struct mm_struct *mm) 1274 { 1275 FLUSH_BEGIN(mm) 1276 flush_user_windows(); 1277 turbosparc_idflash_clear(); 1278 FLUSH_END 1279 } 1280 1281 static void turbosparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end) 1282 { 1283 FLUSH_BEGIN(vma->vm_mm) 1284 flush_user_windows(); 1285 turbosparc_idflash_clear(); 1286 FLUSH_END 1287 } 1288 1289 static void turbosparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page) 1290 { 1291 FLUSH_BEGIN(vma->vm_mm) 1292 flush_user_windows(); 1293 if (vma->vm_flags & VM_EXEC) 1294 turbosparc_flush_icache(); 1295 turbosparc_flush_dcache(); 1296 FLUSH_END 1297 } 1298 1299 /* TurboSparc is copy-back, if we turn it on, but this does not work. */ 1300 static void turbosparc_flush_page_to_ram(unsigned long page) 1301 { 1302 #ifdef TURBOSPARC_WRITEBACK 1303 volatile unsigned long clear; 1304 1305 if (srmmu_probe(page)) 1306 turbosparc_flush_page_cache(page); 1307 clear = srmmu_get_fstatus(); 1308 #endif 1309 } 1310 1311 static void turbosparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr) 1312 { 1313 } 1314 1315 static void turbosparc_flush_page_for_dma(unsigned long page) 1316 { 1317 turbosparc_flush_dcache(); 1318 } 1319 1320 static void turbosparc_flush_tlb_all(void) 1321 { 1322 srmmu_flush_whole_tlb(); 1323 } 1324 1325 static void turbosparc_flush_tlb_mm(struct mm_struct *mm) 1326 { 1327 FLUSH_BEGIN(mm) 1328 srmmu_flush_whole_tlb(); 1329 FLUSH_END 1330 } 1331 1332 static void turbosparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end) 1333 { 1334 FLUSH_BEGIN(vma->vm_mm) 1335 srmmu_flush_whole_tlb(); 1336 FLUSH_END 1337 } 1338 1339 static void turbosparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page) 1340 { 1341 FLUSH_BEGIN(vma->vm_mm) 1342 srmmu_flush_whole_tlb(); 1343 FLUSH_END 1344 } 1345 1346 1347 static void poke_turbosparc(void) 1348 { 1349 unsigned long mreg = srmmu_get_mmureg(); 1350 unsigned long ccreg; 1351 1352 /* Clear any crap from the cache or else... */ 1353 turbosparc_flush_cache_all(); 1354 /* Temporarily disable I & D caches */ 1355 mreg &= ~(TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE); 1356 mreg &= ~(TURBOSPARC_PCENABLE); /* Don't check parity */ 1357 srmmu_set_mmureg(mreg); 1358 1359 ccreg = turbosparc_get_ccreg(); 1360 1361 #ifdef TURBOSPARC_WRITEBACK 1362 ccreg |= (TURBOSPARC_SNENABLE); /* Do DVMA snooping in Dcache */ 1363 ccreg &= ~(TURBOSPARC_uS2 | TURBOSPARC_WTENABLE); 1364 /* Write-back D-cache, emulate VLSI 1365 * abortion number three, not number one */ 1366 #else 1367 /* For now let's play safe, optimize later */ 1368 ccreg |= (TURBOSPARC_SNENABLE | TURBOSPARC_WTENABLE); 1369 /* Do DVMA snooping in Dcache, Write-thru D-cache */ 1370 ccreg &= ~(TURBOSPARC_uS2); 1371 /* Emulate VLSI abortion number three, not number one */ 1372 #endif 1373 1374 switch (ccreg & 7) { 1375 case 0: /* No SE cache */ 1376 case 7: /* Test mode */ 1377 break; 1378 default: 1379 ccreg |= (TURBOSPARC_SCENABLE); 1380 } 1381 turbosparc_set_ccreg(ccreg); 1382 1383 mreg |= (TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE); /* I & D caches on */ 1384 mreg |= (TURBOSPARC_ICSNOOP); /* Icache snooping on */ 1385 srmmu_set_mmureg(mreg); 1386 } 1387 1388 static const struct sparc32_cachetlb_ops turbosparc_ops = { 1389 .cache_all = turbosparc_flush_cache_all, 1390 .cache_mm = turbosparc_flush_cache_mm, 1391 .cache_page = turbosparc_flush_cache_page, 1392 .cache_range = turbosparc_flush_cache_range, 1393 .tlb_all = turbosparc_flush_tlb_all, 1394 .tlb_mm = turbosparc_flush_tlb_mm, 1395 .tlb_page = turbosparc_flush_tlb_page, 1396 .tlb_range = turbosparc_flush_tlb_range, 1397 .page_to_ram = turbosparc_flush_page_to_ram, 1398 .sig_insns = turbosparc_flush_sig_insns, 1399 .page_for_dma = turbosparc_flush_page_for_dma, 1400 }; 1401 1402 static void __init init_turbosparc(void) 1403 { 1404 srmmu_name = "Fujitsu TurboSparc"; 1405 srmmu_modtype = TurboSparc; 1406 sparc32_cachetlb_ops = &turbosparc_ops; 1407 poke_srmmu = poke_turbosparc; 1408 } 1409 1410 static void poke_tsunami(void) 1411 { 1412 unsigned long mreg = srmmu_get_mmureg(); 1413 1414 tsunami_flush_icache(); 1415 tsunami_flush_dcache(); 1416 mreg &= ~TSUNAMI_ITD; 1417 mreg |= (TSUNAMI_IENAB | TSUNAMI_DENAB); 1418 srmmu_set_mmureg(mreg); 1419 } 1420 1421 static const struct sparc32_cachetlb_ops tsunami_ops = { 1422 .cache_all = tsunami_flush_cache_all, 1423 .cache_mm = tsunami_flush_cache_mm, 1424 .cache_page = tsunami_flush_cache_page, 1425 .cache_range = tsunami_flush_cache_range, 1426 .tlb_all = tsunami_flush_tlb_all, 1427 .tlb_mm = tsunami_flush_tlb_mm, 1428 .tlb_page = tsunami_flush_tlb_page, 1429 .tlb_range = tsunami_flush_tlb_range, 1430 .page_to_ram = tsunami_flush_page_to_ram, 1431 .sig_insns = tsunami_flush_sig_insns, 1432 .page_for_dma = tsunami_flush_page_for_dma, 1433 }; 1434 1435 static void __init init_tsunami(void) 1436 { 1437 /* 1438 * Tsunami's pretty sane, Sun and TI actually got it 1439 * somewhat right this time. Fujitsu should have 1440 * taken some lessons from them. 1441 */ 1442 1443 srmmu_name = "TI Tsunami"; 1444 srmmu_modtype = Tsunami; 1445 sparc32_cachetlb_ops = &tsunami_ops; 1446 poke_srmmu = poke_tsunami; 1447 1448 tsunami_setup_blockops(); 1449 } 1450 1451 static void poke_viking(void) 1452 { 1453 unsigned long mreg = srmmu_get_mmureg(); 1454 static int smp_catch; 1455 1456 if (viking_mxcc_present) { 1457 unsigned long mxcc_control = mxcc_get_creg(); 1458 1459 mxcc_control |= (MXCC_CTL_ECE | MXCC_CTL_PRE | MXCC_CTL_MCE); 1460 mxcc_control &= ~(MXCC_CTL_RRC); 1461 mxcc_set_creg(mxcc_control); 1462 1463 /* 1464 * We don't need memory parity checks. 1465 * XXX This is a mess, have to dig out later. ecd. 1466 viking_mxcc_turn_off_parity(&mreg, &mxcc_control); 1467 */ 1468 1469 /* We do cache ptables on MXCC. */ 1470 mreg |= VIKING_TCENABLE; 1471 } else { 1472 unsigned long bpreg; 1473 1474 mreg &= ~(VIKING_TCENABLE); 1475 if (smp_catch++) { 1476 /* Must disable mixed-cmd mode here for other cpu's. */ 1477 bpreg = viking_get_bpreg(); 1478 bpreg &= ~(VIKING_ACTION_MIX); 1479 viking_set_bpreg(bpreg); 1480 1481 /* Just in case PROM does something funny. */ 1482 msi_set_sync(); 1483 } 1484 } 1485 1486 mreg |= VIKING_SPENABLE; 1487 mreg |= (VIKING_ICENABLE | VIKING_DCENABLE); 1488 mreg |= VIKING_SBENABLE; 1489 mreg &= ~(VIKING_ACENABLE); 1490 srmmu_set_mmureg(mreg); 1491 } 1492 1493 static struct sparc32_cachetlb_ops viking_ops __ro_after_init = { 1494 .cache_all = viking_flush_cache_all, 1495 .cache_mm = viking_flush_cache_mm, 1496 .cache_page = viking_flush_cache_page, 1497 .cache_range = viking_flush_cache_range, 1498 .tlb_all = viking_flush_tlb_all, 1499 .tlb_mm = viking_flush_tlb_mm, 1500 .tlb_page = viking_flush_tlb_page, 1501 .tlb_range = viking_flush_tlb_range, 1502 .page_to_ram = viking_flush_page_to_ram, 1503 .sig_insns = viking_flush_sig_insns, 1504 .page_for_dma = viking_flush_page_for_dma, 1505 }; 1506 1507 #ifdef CONFIG_SMP 1508 /* On sun4d the cpu broadcasts local TLB flushes, so we can just 1509 * perform the local TLB flush and all the other cpus will see it. 1510 * But, unfortunately, there is a bug in the sun4d XBUS backplane 1511 * that requires that we add some synchronization to these flushes. 1512 * 1513 * The bug is that the fifo which keeps track of all the pending TLB 1514 * broadcasts in the system is an entry or two too small, so if we 1515 * have too many going at once we'll overflow that fifo and lose a TLB 1516 * flush resulting in corruption. 1517 * 1518 * Our workaround is to take a global spinlock around the TLB flushes, 1519 * which guarentees we won't ever have too many pending. It's a big 1520 * hammer, but a semaphore like system to make sure we only have N TLB 1521 * flushes going at once will require SMP locking anyways so there's 1522 * no real value in trying any harder than this. 1523 */ 1524 static struct sparc32_cachetlb_ops viking_sun4d_smp_ops __ro_after_init = { 1525 .cache_all = viking_flush_cache_all, 1526 .cache_mm = viking_flush_cache_mm, 1527 .cache_page = viking_flush_cache_page, 1528 .cache_range = viking_flush_cache_range, 1529 .tlb_all = sun4dsmp_flush_tlb_all, 1530 .tlb_mm = sun4dsmp_flush_tlb_mm, 1531 .tlb_page = sun4dsmp_flush_tlb_page, 1532 .tlb_range = sun4dsmp_flush_tlb_range, 1533 .page_to_ram = viking_flush_page_to_ram, 1534 .sig_insns = viking_flush_sig_insns, 1535 .page_for_dma = viking_flush_page_for_dma, 1536 }; 1537 #endif 1538 1539 static void __init init_viking(void) 1540 { 1541 unsigned long mreg = srmmu_get_mmureg(); 1542 1543 /* Ahhh, the viking. SRMMU VLSI abortion number two... */ 1544 if (mreg & VIKING_MMODE) { 1545 srmmu_name = "TI Viking"; 1546 viking_mxcc_present = 0; 1547 msi_set_sync(); 1548 1549 /* 1550 * We need this to make sure old viking takes no hits 1551 * on it's cache for dma snoops to workaround the 1552 * "load from non-cacheable memory" interrupt bug. 1553 * This is only necessary because of the new way in 1554 * which we use the IOMMU. 1555 */ 1556 viking_ops.page_for_dma = viking_flush_page; 1557 #ifdef CONFIG_SMP 1558 viking_sun4d_smp_ops.page_for_dma = viking_flush_page; 1559 #endif 1560 flush_page_for_dma_global = 0; 1561 } else { 1562 srmmu_name = "TI Viking/MXCC"; 1563 viking_mxcc_present = 1; 1564 srmmu_cache_pagetables = 1; 1565 } 1566 1567 sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *) 1568 &viking_ops; 1569 #ifdef CONFIG_SMP 1570 if (sparc_cpu_model == sun4d) 1571 sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *) 1572 &viking_sun4d_smp_ops; 1573 #endif 1574 1575 poke_srmmu = poke_viking; 1576 } 1577 1578 /* Probe for the srmmu chip version. */ 1579 static void __init get_srmmu_type(void) 1580 { 1581 unsigned long mreg, psr; 1582 unsigned long mod_typ, mod_rev, psr_typ, psr_vers; 1583 1584 srmmu_modtype = SRMMU_INVAL_MOD; 1585 hwbug_bitmask = 0; 1586 1587 mreg = srmmu_get_mmureg(); psr = get_psr(); 1588 mod_typ = (mreg & 0xf0000000) >> 28; 1589 mod_rev = (mreg & 0x0f000000) >> 24; 1590 psr_typ = (psr >> 28) & 0xf; 1591 psr_vers = (psr >> 24) & 0xf; 1592 1593 /* First, check for sparc-leon. */ 1594 if (sparc_cpu_model == sparc_leon) { 1595 init_leon(); 1596 return; 1597 } 1598 1599 /* Second, check for HyperSparc or Cypress. */ 1600 if (mod_typ == 1) { 1601 switch (mod_rev) { 1602 case 7: 1603 /* UP or MP Hypersparc */ 1604 init_hypersparc(); 1605 break; 1606 case 0: 1607 case 2: 1608 case 10: 1609 case 11: 1610 case 12: 1611 case 13: 1612 case 14: 1613 case 15: 1614 default: 1615 prom_printf("Sparc-Linux Cypress support does not longer exit.\n"); 1616 prom_halt(); 1617 break; 1618 } 1619 return; 1620 } 1621 1622 /* Now Fujitsu TurboSparc. It might happen that it is 1623 * in Swift emulation mode, so we will check later... 1624 */ 1625 if (psr_typ == 0 && psr_vers == 5) { 1626 init_turbosparc(); 1627 return; 1628 } 1629 1630 /* Next check for Fujitsu Swift. */ 1631 if (psr_typ == 0 && psr_vers == 4) { 1632 phandle cpunode; 1633 char node_str[128]; 1634 1635 /* Look if it is not a TurboSparc emulating Swift... */ 1636 cpunode = prom_getchild(prom_root_node); 1637 while ((cpunode = prom_getsibling(cpunode)) != 0) { 1638 prom_getstring(cpunode, "device_type", node_str, sizeof(node_str)); 1639 if (!strcmp(node_str, "cpu")) { 1640 if (!prom_getintdefault(cpunode, "psr-implementation", 1) && 1641 prom_getintdefault(cpunode, "psr-version", 1) == 5) { 1642 init_turbosparc(); 1643 return; 1644 } 1645 break; 1646 } 1647 } 1648 1649 init_swift(); 1650 return; 1651 } 1652 1653 /* Now the Viking family of srmmu. */ 1654 if (psr_typ == 4 && 1655 ((psr_vers == 0) || 1656 ((psr_vers == 1) && (mod_typ == 0) && (mod_rev == 0)))) { 1657 init_viking(); 1658 return; 1659 } 1660 1661 /* Finally the Tsunami. */ 1662 if (psr_typ == 4 && psr_vers == 1 && (mod_typ || mod_rev)) { 1663 init_tsunami(); 1664 return; 1665 } 1666 1667 /* Oh well */ 1668 srmmu_is_bad(); 1669 } 1670 1671 #ifdef CONFIG_SMP 1672 /* Local cross-calls. */ 1673 static void smp_flush_page_for_dma(unsigned long page) 1674 { 1675 xc1((smpfunc_t) local_ops->page_for_dma, page); 1676 local_ops->page_for_dma(page); 1677 } 1678 1679 static void smp_flush_cache_all(void) 1680 { 1681 xc0((smpfunc_t) local_ops->cache_all); 1682 local_ops->cache_all(); 1683 } 1684 1685 static void smp_flush_tlb_all(void) 1686 { 1687 xc0((smpfunc_t) local_ops->tlb_all); 1688 local_ops->tlb_all(); 1689 } 1690 1691 static void smp_flush_cache_mm(struct mm_struct *mm) 1692 { 1693 if (mm->context != NO_CONTEXT) { 1694 cpumask_t cpu_mask; 1695 cpumask_copy(&cpu_mask, mm_cpumask(mm)); 1696 cpumask_clear_cpu(smp_processor_id(), &cpu_mask); 1697 if (!cpumask_empty(&cpu_mask)) 1698 xc1((smpfunc_t) local_ops->cache_mm, (unsigned long) mm); 1699 local_ops->cache_mm(mm); 1700 } 1701 } 1702 1703 static void smp_flush_tlb_mm(struct mm_struct *mm) 1704 { 1705 if (mm->context != NO_CONTEXT) { 1706 cpumask_t cpu_mask; 1707 cpumask_copy(&cpu_mask, mm_cpumask(mm)); 1708 cpumask_clear_cpu(smp_processor_id(), &cpu_mask); 1709 if (!cpumask_empty(&cpu_mask)) { 1710 xc1((smpfunc_t) local_ops->tlb_mm, (unsigned long) mm); 1711 if (atomic_read(&mm->mm_users) == 1 && current->active_mm == mm) 1712 cpumask_copy(mm_cpumask(mm), 1713 cpumask_of(smp_processor_id())); 1714 } 1715 local_ops->tlb_mm(mm); 1716 } 1717 } 1718 1719 static void smp_flush_cache_range(struct vm_area_struct *vma, 1720 unsigned long start, 1721 unsigned long end) 1722 { 1723 struct mm_struct *mm = vma->vm_mm; 1724 1725 if (mm->context != NO_CONTEXT) { 1726 cpumask_t cpu_mask; 1727 cpumask_copy(&cpu_mask, mm_cpumask(mm)); 1728 cpumask_clear_cpu(smp_processor_id(), &cpu_mask); 1729 if (!cpumask_empty(&cpu_mask)) 1730 xc3((smpfunc_t) local_ops->cache_range, 1731 (unsigned long) vma, start, end); 1732 local_ops->cache_range(vma, start, end); 1733 } 1734 } 1735 1736 static void smp_flush_tlb_range(struct vm_area_struct *vma, 1737 unsigned long start, 1738 unsigned long end) 1739 { 1740 struct mm_struct *mm = vma->vm_mm; 1741 1742 if (mm->context != NO_CONTEXT) { 1743 cpumask_t cpu_mask; 1744 cpumask_copy(&cpu_mask, mm_cpumask(mm)); 1745 cpumask_clear_cpu(smp_processor_id(), &cpu_mask); 1746 if (!cpumask_empty(&cpu_mask)) 1747 xc3((smpfunc_t) local_ops->tlb_range, 1748 (unsigned long) vma, start, end); 1749 local_ops->tlb_range(vma, start, end); 1750 } 1751 } 1752 1753 static void smp_flush_cache_page(struct vm_area_struct *vma, unsigned long page) 1754 { 1755 struct mm_struct *mm = vma->vm_mm; 1756 1757 if (mm->context != NO_CONTEXT) { 1758 cpumask_t cpu_mask; 1759 cpumask_copy(&cpu_mask, mm_cpumask(mm)); 1760 cpumask_clear_cpu(smp_processor_id(), &cpu_mask); 1761 if (!cpumask_empty(&cpu_mask)) 1762 xc2((smpfunc_t) local_ops->cache_page, 1763 (unsigned long) vma, page); 1764 local_ops->cache_page(vma, page); 1765 } 1766 } 1767 1768 static void smp_flush_tlb_page(struct vm_area_struct *vma, unsigned long page) 1769 { 1770 struct mm_struct *mm = vma->vm_mm; 1771 1772 if (mm->context != NO_CONTEXT) { 1773 cpumask_t cpu_mask; 1774 cpumask_copy(&cpu_mask, mm_cpumask(mm)); 1775 cpumask_clear_cpu(smp_processor_id(), &cpu_mask); 1776 if (!cpumask_empty(&cpu_mask)) 1777 xc2((smpfunc_t) local_ops->tlb_page, 1778 (unsigned long) vma, page); 1779 local_ops->tlb_page(vma, page); 1780 } 1781 } 1782 1783 static void smp_flush_page_to_ram(unsigned long page) 1784 { 1785 /* Current theory is that those who call this are the one's 1786 * who have just dirtied their cache with the pages contents 1787 * in kernel space, therefore we only run this on local cpu. 1788 * 1789 * XXX This experiment failed, research further... -DaveM 1790 */ 1791 #if 1 1792 xc1((smpfunc_t) local_ops->page_to_ram, page); 1793 #endif 1794 local_ops->page_to_ram(page); 1795 } 1796 1797 static void smp_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr) 1798 { 1799 cpumask_t cpu_mask; 1800 cpumask_copy(&cpu_mask, mm_cpumask(mm)); 1801 cpumask_clear_cpu(smp_processor_id(), &cpu_mask); 1802 if (!cpumask_empty(&cpu_mask)) 1803 xc2((smpfunc_t) local_ops->sig_insns, 1804 (unsigned long) mm, insn_addr); 1805 local_ops->sig_insns(mm, insn_addr); 1806 } 1807 1808 static struct sparc32_cachetlb_ops smp_cachetlb_ops __ro_after_init = { 1809 .cache_all = smp_flush_cache_all, 1810 .cache_mm = smp_flush_cache_mm, 1811 .cache_page = smp_flush_cache_page, 1812 .cache_range = smp_flush_cache_range, 1813 .tlb_all = smp_flush_tlb_all, 1814 .tlb_mm = smp_flush_tlb_mm, 1815 .tlb_page = smp_flush_tlb_page, 1816 .tlb_range = smp_flush_tlb_range, 1817 .page_to_ram = smp_flush_page_to_ram, 1818 .sig_insns = smp_flush_sig_insns, 1819 .page_for_dma = smp_flush_page_for_dma, 1820 }; 1821 #endif 1822 1823 /* Load up routines and constants for sun4m and sun4d mmu */ 1824 void __init load_mmu(void) 1825 { 1826 /* Functions */ 1827 get_srmmu_type(); 1828 1829 #ifdef CONFIG_SMP 1830 /* El switcheroo... */ 1831 local_ops = sparc32_cachetlb_ops; 1832 1833 if (sparc_cpu_model == sun4d || sparc_cpu_model == sparc_leon) { 1834 smp_cachetlb_ops.tlb_all = local_ops->tlb_all; 1835 smp_cachetlb_ops.tlb_mm = local_ops->tlb_mm; 1836 smp_cachetlb_ops.tlb_range = local_ops->tlb_range; 1837 smp_cachetlb_ops.tlb_page = local_ops->tlb_page; 1838 } 1839 1840 if (poke_srmmu == poke_viking) { 1841 /* Avoid unnecessary cross calls. */ 1842 smp_cachetlb_ops.cache_all = local_ops->cache_all; 1843 smp_cachetlb_ops.cache_mm = local_ops->cache_mm; 1844 smp_cachetlb_ops.cache_range = local_ops->cache_range; 1845 smp_cachetlb_ops.cache_page = local_ops->cache_page; 1846 1847 smp_cachetlb_ops.page_to_ram = local_ops->page_to_ram; 1848 smp_cachetlb_ops.sig_insns = local_ops->sig_insns; 1849 smp_cachetlb_ops.page_for_dma = local_ops->page_for_dma; 1850 } 1851 1852 /* It really is const after this point. */ 1853 sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *) 1854 &smp_cachetlb_ops; 1855 #endif 1856 1857 if (sparc_cpu_model != sun4d) 1858 ld_mmu_iommu(); 1859 #ifdef CONFIG_SMP 1860 if (sparc_cpu_model == sun4d) 1861 sun4d_init_smp(); 1862 else if (sparc_cpu_model == sparc_leon) 1863 leon_init_smp(); 1864 else 1865 sun4m_init_smp(); 1866 #endif 1867 } 1868