xref: /openbmc/linux/arch/sparc/mm/srmmu.c (revision cff11abeca78aa782378401ca2800bd2194aa14e)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * srmmu.c:  SRMMU specific routines for memory management.
4  *
5  * Copyright (C) 1995 David S. Miller  (davem@caip.rutgers.edu)
6  * Copyright (C) 1995,2002 Pete Zaitcev (zaitcev@yahoo.com)
7  * Copyright (C) 1996 Eddie C. Dost    (ecd@skynet.be)
8  * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
9  * Copyright (C) 1999,2000 Anton Blanchard (anton@samba.org)
10  */
11 
12 #include <linux/seq_file.h>
13 #include <linux/spinlock.h>
14 #include <linux/memblock.h>
15 #include <linux/pagemap.h>
16 #include <linux/vmalloc.h>
17 #include <linux/kdebug.h>
18 #include <linux/export.h>
19 #include <linux/kernel.h>
20 #include <linux/init.h>
21 #include <linux/log2.h>
22 #include <linux/gfp.h>
23 #include <linux/fs.h>
24 #include <linux/mm.h>
25 
26 #include <asm/mmu_context.h>
27 #include <asm/cacheflush.h>
28 #include <asm/tlbflush.h>
29 #include <asm/io-unit.h>
30 #include <asm/pgalloc.h>
31 #include <asm/pgtable.h>
32 #include <asm/bitext.h>
33 #include <asm/vaddrs.h>
34 #include <asm/cache.h>
35 #include <asm/traps.h>
36 #include <asm/oplib.h>
37 #include <asm/mbus.h>
38 #include <asm/page.h>
39 #include <asm/asi.h>
40 #include <asm/smp.h>
41 #include <asm/io.h>
42 
43 /* Now the cpu specific definitions. */
44 #include <asm/turbosparc.h>
45 #include <asm/tsunami.h>
46 #include <asm/viking.h>
47 #include <asm/swift.h>
48 #include <asm/leon.h>
49 #include <asm/mxcc.h>
50 #include <asm/ross.h>
51 
52 #include "mm_32.h"
53 
54 enum mbus_module srmmu_modtype;
55 static unsigned int hwbug_bitmask;
56 int vac_cache_size;
57 EXPORT_SYMBOL(vac_cache_size);
58 int vac_line_size;
59 
60 extern struct resource sparc_iomap;
61 
62 extern unsigned long last_valid_pfn;
63 
64 static pgd_t *srmmu_swapper_pg_dir;
65 
66 const struct sparc32_cachetlb_ops *sparc32_cachetlb_ops;
67 EXPORT_SYMBOL(sparc32_cachetlb_ops);
68 
69 #ifdef CONFIG_SMP
70 const struct sparc32_cachetlb_ops *local_ops;
71 
72 #define FLUSH_BEGIN(mm)
73 #define FLUSH_END
74 #else
75 #define FLUSH_BEGIN(mm) if ((mm)->context != NO_CONTEXT) {
76 #define FLUSH_END	}
77 #endif
78 
79 int flush_page_for_dma_global = 1;
80 
81 char *srmmu_name;
82 
83 ctxd_t *srmmu_ctx_table_phys;
84 static ctxd_t *srmmu_context_table;
85 
86 int viking_mxcc_present;
87 static DEFINE_SPINLOCK(srmmu_context_spinlock);
88 
89 static int is_hypersparc;
90 
91 static int srmmu_cache_pagetables;
92 
93 /* these will be initialized in srmmu_nocache_calcsize() */
94 static unsigned long srmmu_nocache_size;
95 static unsigned long srmmu_nocache_end;
96 
97 /* 1 bit <=> 256 bytes of nocache <=> 64 PTEs */
98 #define SRMMU_NOCACHE_BITMAP_SHIFT (PAGE_SHIFT - 4)
99 
100 /* The context table is a nocache user with the biggest alignment needs. */
101 #define SRMMU_NOCACHE_ALIGN_MAX (sizeof(ctxd_t)*SRMMU_MAX_CONTEXTS)
102 
103 void *srmmu_nocache_pool;
104 static struct bit_map srmmu_nocache_map;
105 
106 static inline int srmmu_pmd_none(pmd_t pmd)
107 { return !(pmd_val(pmd) & 0xFFFFFFF); }
108 
109 /* XXX should we hyper_flush_whole_icache here - Anton */
110 static inline void srmmu_ctxd_set(ctxd_t *ctxp, pgd_t *pgdp)
111 {
112 	pte_t pte;
113 
114 	pte = __pte((SRMMU_ET_PTD | (__nocache_pa(pgdp) >> 4)));
115 	set_pte((pte_t *)ctxp, pte);
116 }
117 
118 /*
119  * Locations of MSI Registers.
120  */
121 #define MSI_MBUS_ARBEN	0xe0001008	/* MBus Arbiter Enable register */
122 
123 /*
124  * Useful bits in the MSI Registers.
125  */
126 #define MSI_ASYNC_MODE  0x80000000	/* Operate the MSI asynchronously */
127 
128 static void msi_set_sync(void)
129 {
130 	__asm__ __volatile__ ("lda [%0] %1, %%g3\n\t"
131 			      "andn %%g3, %2, %%g3\n\t"
132 			      "sta %%g3, [%0] %1\n\t" : :
133 			      "r" (MSI_MBUS_ARBEN),
134 			      "i" (ASI_M_CTL), "r" (MSI_ASYNC_MODE) : "g3");
135 }
136 
137 void pmd_set(pmd_t *pmdp, pte_t *ptep)
138 {
139 	unsigned long ptp;	/* Physical address, shifted right by 4 */
140 	int i;
141 
142 	ptp = __nocache_pa(ptep) >> 4;
143 	for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) {
144 		set_pte((pte_t *)&pmdp->pmdv[i], __pte(SRMMU_ET_PTD | ptp));
145 		ptp += (SRMMU_REAL_PTRS_PER_PTE * sizeof(pte_t) >> 4);
146 	}
147 }
148 
149 void pmd_populate(struct mm_struct *mm, pmd_t *pmdp, struct page *ptep)
150 {
151 	unsigned long ptp;	/* Physical address, shifted right by 4 */
152 	int i;
153 
154 	ptp = page_to_pfn(ptep) << (PAGE_SHIFT-4);	/* watch for overflow */
155 	for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) {
156 		set_pte((pte_t *)&pmdp->pmdv[i], __pte(SRMMU_ET_PTD | ptp));
157 		ptp += (SRMMU_REAL_PTRS_PER_PTE * sizeof(pte_t) >> 4);
158 	}
159 }
160 
161 /* Find an entry in the third-level page table.. */
162 pte_t *pte_offset_kernel(pmd_t *dir, unsigned long address)
163 {
164 	void *pte;
165 
166 	pte = __nocache_va((dir->pmdv[0] & SRMMU_PTD_PMASK) << 4);
167 	return (pte_t *) pte +
168 	    ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
169 }
170 
171 /*
172  * size: bytes to allocate in the nocache area.
173  * align: bytes, number to align at.
174  * Returns the virtual address of the allocated area.
175  */
176 static void *__srmmu_get_nocache(int size, int align)
177 {
178 	int offset;
179 	unsigned long addr;
180 
181 	if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
182 		printk(KERN_ERR "Size 0x%x too small for nocache request\n",
183 		       size);
184 		size = SRMMU_NOCACHE_BITMAP_SHIFT;
185 	}
186 	if (size & (SRMMU_NOCACHE_BITMAP_SHIFT - 1)) {
187 		printk(KERN_ERR "Size 0x%x unaligned int nocache request\n",
188 		       size);
189 		size += SRMMU_NOCACHE_BITMAP_SHIFT - 1;
190 	}
191 	BUG_ON(align > SRMMU_NOCACHE_ALIGN_MAX);
192 
193 	offset = bit_map_string_get(&srmmu_nocache_map,
194 				    size >> SRMMU_NOCACHE_BITMAP_SHIFT,
195 				    align >> SRMMU_NOCACHE_BITMAP_SHIFT);
196 	if (offset == -1) {
197 		printk(KERN_ERR "srmmu: out of nocache %d: %d/%d\n",
198 		       size, (int) srmmu_nocache_size,
199 		       srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
200 		return NULL;
201 	}
202 
203 	addr = SRMMU_NOCACHE_VADDR + (offset << SRMMU_NOCACHE_BITMAP_SHIFT);
204 	return (void *)addr;
205 }
206 
207 void *srmmu_get_nocache(int size, int align)
208 {
209 	void *tmp;
210 
211 	tmp = __srmmu_get_nocache(size, align);
212 
213 	if (tmp)
214 		memset(tmp, 0, size);
215 
216 	return tmp;
217 }
218 
219 void srmmu_free_nocache(void *addr, int size)
220 {
221 	unsigned long vaddr;
222 	int offset;
223 
224 	vaddr = (unsigned long)addr;
225 	if (vaddr < SRMMU_NOCACHE_VADDR) {
226 		printk("Vaddr %lx is smaller than nocache base 0x%lx\n",
227 		    vaddr, (unsigned long)SRMMU_NOCACHE_VADDR);
228 		BUG();
229 	}
230 	if (vaddr + size > srmmu_nocache_end) {
231 		printk("Vaddr %lx is bigger than nocache end 0x%lx\n",
232 		    vaddr, srmmu_nocache_end);
233 		BUG();
234 	}
235 	if (!is_power_of_2(size)) {
236 		printk("Size 0x%x is not a power of 2\n", size);
237 		BUG();
238 	}
239 	if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
240 		printk("Size 0x%x is too small\n", size);
241 		BUG();
242 	}
243 	if (vaddr & (size - 1)) {
244 		printk("Vaddr %lx is not aligned to size 0x%x\n", vaddr, size);
245 		BUG();
246 	}
247 
248 	offset = (vaddr - SRMMU_NOCACHE_VADDR) >> SRMMU_NOCACHE_BITMAP_SHIFT;
249 	size = size >> SRMMU_NOCACHE_BITMAP_SHIFT;
250 
251 	bit_map_clear(&srmmu_nocache_map, offset, size);
252 }
253 
254 static void srmmu_early_allocate_ptable_skeleton(unsigned long start,
255 						 unsigned long end);
256 
257 /* Return how much physical memory we have.  */
258 static unsigned long __init probe_memory(void)
259 {
260 	unsigned long total = 0;
261 	int i;
262 
263 	for (i = 0; sp_banks[i].num_bytes; i++)
264 		total += sp_banks[i].num_bytes;
265 
266 	return total;
267 }
268 
269 /*
270  * Reserve nocache dynamically proportionally to the amount of
271  * system RAM. -- Tomas Szepe <szepe@pinerecords.com>, June 2002
272  */
273 static void __init srmmu_nocache_calcsize(void)
274 {
275 	unsigned long sysmemavail = probe_memory() / 1024;
276 	int srmmu_nocache_npages;
277 
278 	srmmu_nocache_npages =
279 		sysmemavail / SRMMU_NOCACHE_ALCRATIO / 1024 * 256;
280 
281  /* P3 XXX The 4x overuse: corroborated by /proc/meminfo. */
282 	// if (srmmu_nocache_npages < 256) srmmu_nocache_npages = 256;
283 	if (srmmu_nocache_npages < SRMMU_MIN_NOCACHE_PAGES)
284 		srmmu_nocache_npages = SRMMU_MIN_NOCACHE_PAGES;
285 
286 	/* anything above 1280 blows up */
287 	if (srmmu_nocache_npages > SRMMU_MAX_NOCACHE_PAGES)
288 		srmmu_nocache_npages = SRMMU_MAX_NOCACHE_PAGES;
289 
290 	srmmu_nocache_size = srmmu_nocache_npages * PAGE_SIZE;
291 	srmmu_nocache_end = SRMMU_NOCACHE_VADDR + srmmu_nocache_size;
292 }
293 
294 static void __init srmmu_nocache_init(void)
295 {
296 	void *srmmu_nocache_bitmap;
297 	unsigned int bitmap_bits;
298 	pgd_t *pgd;
299 	p4d_t *p4d;
300 	pud_t *pud;
301 	pmd_t *pmd;
302 	pte_t *pte;
303 	unsigned long paddr, vaddr;
304 	unsigned long pteval;
305 
306 	bitmap_bits = srmmu_nocache_size >> SRMMU_NOCACHE_BITMAP_SHIFT;
307 
308 	srmmu_nocache_pool = memblock_alloc(srmmu_nocache_size,
309 					    SRMMU_NOCACHE_ALIGN_MAX);
310 	if (!srmmu_nocache_pool)
311 		panic("%s: Failed to allocate %lu bytes align=0x%x\n",
312 		      __func__, srmmu_nocache_size, SRMMU_NOCACHE_ALIGN_MAX);
313 	memset(srmmu_nocache_pool, 0, srmmu_nocache_size);
314 
315 	srmmu_nocache_bitmap =
316 		memblock_alloc(BITS_TO_LONGS(bitmap_bits) * sizeof(long),
317 			       SMP_CACHE_BYTES);
318 	if (!srmmu_nocache_bitmap)
319 		panic("%s: Failed to allocate %zu bytes\n", __func__,
320 		      BITS_TO_LONGS(bitmap_bits) * sizeof(long));
321 	bit_map_init(&srmmu_nocache_map, srmmu_nocache_bitmap, bitmap_bits);
322 
323 	srmmu_swapper_pg_dir = __srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
324 	memset(__nocache_fix(srmmu_swapper_pg_dir), 0, SRMMU_PGD_TABLE_SIZE);
325 	init_mm.pgd = srmmu_swapper_pg_dir;
326 
327 	srmmu_early_allocate_ptable_skeleton(SRMMU_NOCACHE_VADDR, srmmu_nocache_end);
328 
329 	paddr = __pa((unsigned long)srmmu_nocache_pool);
330 	vaddr = SRMMU_NOCACHE_VADDR;
331 
332 	while (vaddr < srmmu_nocache_end) {
333 		pgd = pgd_offset_k(vaddr);
334 		p4d = p4d_offset(pgd, vaddr);
335 		pud = pud_offset(p4d, vaddr);
336 		pmd = pmd_offset(__nocache_fix(pud), vaddr);
337 		pte = pte_offset_kernel(__nocache_fix(pmd), vaddr);
338 
339 		pteval = ((paddr >> 4) | SRMMU_ET_PTE | SRMMU_PRIV);
340 
341 		if (srmmu_cache_pagetables)
342 			pteval |= SRMMU_CACHE;
343 
344 		set_pte(__nocache_fix(pte), __pte(pteval));
345 
346 		vaddr += PAGE_SIZE;
347 		paddr += PAGE_SIZE;
348 	}
349 
350 	flush_cache_all();
351 	flush_tlb_all();
352 }
353 
354 pgd_t *get_pgd_fast(void)
355 {
356 	pgd_t *pgd = NULL;
357 
358 	pgd = __srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
359 	if (pgd) {
360 		pgd_t *init = pgd_offset_k(0);
361 		memset(pgd, 0, USER_PTRS_PER_PGD * sizeof(pgd_t));
362 		memcpy(pgd + USER_PTRS_PER_PGD, init + USER_PTRS_PER_PGD,
363 						(PTRS_PER_PGD - USER_PTRS_PER_PGD) * sizeof(pgd_t));
364 	}
365 
366 	return pgd;
367 }
368 
369 /*
370  * Hardware needs alignment to 256 only, but we align to whole page size
371  * to reduce fragmentation problems due to the buddy principle.
372  * XXX Provide actual fragmentation statistics in /proc.
373  *
374  * Alignments up to the page size are the same for physical and virtual
375  * addresses of the nocache area.
376  */
377 pgtable_t pte_alloc_one(struct mm_struct *mm)
378 {
379 	unsigned long pte;
380 	struct page *page;
381 
382 	if ((pte = (unsigned long)pte_alloc_one_kernel(mm)) == 0)
383 		return NULL;
384 	page = pfn_to_page(__nocache_pa(pte) >> PAGE_SHIFT);
385 	if (!pgtable_pte_page_ctor(page)) {
386 		__free_page(page);
387 		return NULL;
388 	}
389 	return page;
390 }
391 
392 void pte_free(struct mm_struct *mm, pgtable_t pte)
393 {
394 	unsigned long p;
395 
396 	pgtable_pte_page_dtor(pte);
397 	p = (unsigned long)page_address(pte);	/* Cached address (for test) */
398 	if (p == 0)
399 		BUG();
400 	p = page_to_pfn(pte) << PAGE_SHIFT;	/* Physical address */
401 
402 	/* free non cached virtual address*/
403 	srmmu_free_nocache(__nocache_va(p), PTE_SIZE);
404 }
405 
406 /* context handling - a dynamically sized pool is used */
407 #define NO_CONTEXT	-1
408 
409 struct ctx_list {
410 	struct ctx_list *next;
411 	struct ctx_list *prev;
412 	unsigned int ctx_number;
413 	struct mm_struct *ctx_mm;
414 };
415 
416 static struct ctx_list *ctx_list_pool;
417 static struct ctx_list ctx_free;
418 static struct ctx_list ctx_used;
419 
420 /* At boot time we determine the number of contexts */
421 static int num_contexts;
422 
423 static inline void remove_from_ctx_list(struct ctx_list *entry)
424 {
425 	entry->next->prev = entry->prev;
426 	entry->prev->next = entry->next;
427 }
428 
429 static inline void add_to_ctx_list(struct ctx_list *head, struct ctx_list *entry)
430 {
431 	entry->next = head;
432 	(entry->prev = head->prev)->next = entry;
433 	head->prev = entry;
434 }
435 #define add_to_free_ctxlist(entry) add_to_ctx_list(&ctx_free, entry)
436 #define add_to_used_ctxlist(entry) add_to_ctx_list(&ctx_used, entry)
437 
438 
439 static inline void alloc_context(struct mm_struct *old_mm, struct mm_struct *mm)
440 {
441 	struct ctx_list *ctxp;
442 
443 	ctxp = ctx_free.next;
444 	if (ctxp != &ctx_free) {
445 		remove_from_ctx_list(ctxp);
446 		add_to_used_ctxlist(ctxp);
447 		mm->context = ctxp->ctx_number;
448 		ctxp->ctx_mm = mm;
449 		return;
450 	}
451 	ctxp = ctx_used.next;
452 	if (ctxp->ctx_mm == old_mm)
453 		ctxp = ctxp->next;
454 	if (ctxp == &ctx_used)
455 		panic("out of mmu contexts");
456 	flush_cache_mm(ctxp->ctx_mm);
457 	flush_tlb_mm(ctxp->ctx_mm);
458 	remove_from_ctx_list(ctxp);
459 	add_to_used_ctxlist(ctxp);
460 	ctxp->ctx_mm->context = NO_CONTEXT;
461 	ctxp->ctx_mm = mm;
462 	mm->context = ctxp->ctx_number;
463 }
464 
465 static inline void free_context(int context)
466 {
467 	struct ctx_list *ctx_old;
468 
469 	ctx_old = ctx_list_pool + context;
470 	remove_from_ctx_list(ctx_old);
471 	add_to_free_ctxlist(ctx_old);
472 }
473 
474 static void __init sparc_context_init(int numctx)
475 {
476 	int ctx;
477 	unsigned long size;
478 
479 	size = numctx * sizeof(struct ctx_list);
480 	ctx_list_pool = memblock_alloc(size, SMP_CACHE_BYTES);
481 	if (!ctx_list_pool)
482 		panic("%s: Failed to allocate %lu bytes\n", __func__, size);
483 
484 	for (ctx = 0; ctx < numctx; ctx++) {
485 		struct ctx_list *clist;
486 
487 		clist = (ctx_list_pool + ctx);
488 		clist->ctx_number = ctx;
489 		clist->ctx_mm = NULL;
490 	}
491 	ctx_free.next = ctx_free.prev = &ctx_free;
492 	ctx_used.next = ctx_used.prev = &ctx_used;
493 	for (ctx = 0; ctx < numctx; ctx++)
494 		add_to_free_ctxlist(ctx_list_pool + ctx);
495 }
496 
497 void switch_mm(struct mm_struct *old_mm, struct mm_struct *mm,
498 	       struct task_struct *tsk)
499 {
500 	unsigned long flags;
501 
502 	if (mm->context == NO_CONTEXT) {
503 		spin_lock_irqsave(&srmmu_context_spinlock, flags);
504 		alloc_context(old_mm, mm);
505 		spin_unlock_irqrestore(&srmmu_context_spinlock, flags);
506 		srmmu_ctxd_set(&srmmu_context_table[mm->context], mm->pgd);
507 	}
508 
509 	if (sparc_cpu_model == sparc_leon)
510 		leon_switch_mm();
511 
512 	if (is_hypersparc)
513 		hyper_flush_whole_icache();
514 
515 	srmmu_set_context(mm->context);
516 }
517 
518 /* Low level IO area allocation on the SRMMU. */
519 static inline void srmmu_mapioaddr(unsigned long physaddr,
520 				   unsigned long virt_addr, int bus_type)
521 {
522 	pgd_t *pgdp;
523 	p4d_t *p4dp;
524 	pud_t *pudp;
525 	pmd_t *pmdp;
526 	pte_t *ptep;
527 	unsigned long tmp;
528 
529 	physaddr &= PAGE_MASK;
530 	pgdp = pgd_offset_k(virt_addr);
531 	p4dp = p4d_offset(pgdp, virt_addr);
532 	pudp = pud_offset(p4dp, virt_addr);
533 	pmdp = pmd_offset(pudp, virt_addr);
534 	ptep = pte_offset_kernel(pmdp, virt_addr);
535 	tmp = (physaddr >> 4) | SRMMU_ET_PTE;
536 
537 	/* I need to test whether this is consistent over all
538 	 * sun4m's.  The bus_type represents the upper 4 bits of
539 	 * 36-bit physical address on the I/O space lines...
540 	 */
541 	tmp |= (bus_type << 28);
542 	tmp |= SRMMU_PRIV;
543 	__flush_page_to_ram(virt_addr);
544 	set_pte(ptep, __pte(tmp));
545 }
546 
547 void srmmu_mapiorange(unsigned int bus, unsigned long xpa,
548 		      unsigned long xva, unsigned int len)
549 {
550 	while (len != 0) {
551 		len -= PAGE_SIZE;
552 		srmmu_mapioaddr(xpa, xva, bus);
553 		xva += PAGE_SIZE;
554 		xpa += PAGE_SIZE;
555 	}
556 	flush_tlb_all();
557 }
558 
559 static inline void srmmu_unmapioaddr(unsigned long virt_addr)
560 {
561 	pgd_t *pgdp;
562 	p4d_t *p4dp;
563 	pud_t *pudp;
564 	pmd_t *pmdp;
565 	pte_t *ptep;
566 
567 
568 	pgdp = pgd_offset_k(virt_addr);
569 	p4dp = p4d_offset(pgdp, virt_addr);
570 	pudp = pud_offset(p4dp, virt_addr);
571 	pmdp = pmd_offset(pudp, virt_addr);
572 	ptep = pte_offset_kernel(pmdp, virt_addr);
573 
574 	/* No need to flush uncacheable page. */
575 	__pte_clear(ptep);
576 }
577 
578 void srmmu_unmapiorange(unsigned long virt_addr, unsigned int len)
579 {
580 	while (len != 0) {
581 		len -= PAGE_SIZE;
582 		srmmu_unmapioaddr(virt_addr);
583 		virt_addr += PAGE_SIZE;
584 	}
585 	flush_tlb_all();
586 }
587 
588 /* tsunami.S */
589 extern void tsunami_flush_cache_all(void);
590 extern void tsunami_flush_cache_mm(struct mm_struct *mm);
591 extern void tsunami_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
592 extern void tsunami_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
593 extern void tsunami_flush_page_to_ram(unsigned long page);
594 extern void tsunami_flush_page_for_dma(unsigned long page);
595 extern void tsunami_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
596 extern void tsunami_flush_tlb_all(void);
597 extern void tsunami_flush_tlb_mm(struct mm_struct *mm);
598 extern void tsunami_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
599 extern void tsunami_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
600 extern void tsunami_setup_blockops(void);
601 
602 /* swift.S */
603 extern void swift_flush_cache_all(void);
604 extern void swift_flush_cache_mm(struct mm_struct *mm);
605 extern void swift_flush_cache_range(struct vm_area_struct *vma,
606 				    unsigned long start, unsigned long end);
607 extern void swift_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
608 extern void swift_flush_page_to_ram(unsigned long page);
609 extern void swift_flush_page_for_dma(unsigned long page);
610 extern void swift_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
611 extern void swift_flush_tlb_all(void);
612 extern void swift_flush_tlb_mm(struct mm_struct *mm);
613 extern void swift_flush_tlb_range(struct vm_area_struct *vma,
614 				  unsigned long start, unsigned long end);
615 extern void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
616 
617 #if 0  /* P3: deadwood to debug precise flushes on Swift. */
618 void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
619 {
620 	int cctx, ctx1;
621 
622 	page &= PAGE_MASK;
623 	if ((ctx1 = vma->vm_mm->context) != -1) {
624 		cctx = srmmu_get_context();
625 /* Is context # ever different from current context? P3 */
626 		if (cctx != ctx1) {
627 			printk("flush ctx %02x curr %02x\n", ctx1, cctx);
628 			srmmu_set_context(ctx1);
629 			swift_flush_page(page);
630 			__asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
631 					"r" (page), "i" (ASI_M_FLUSH_PROBE));
632 			srmmu_set_context(cctx);
633 		} else {
634 			 /* Rm. prot. bits from virt. c. */
635 			/* swift_flush_cache_all(); */
636 			/* swift_flush_cache_page(vma, page); */
637 			swift_flush_page(page);
638 
639 			__asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
640 				"r" (page), "i" (ASI_M_FLUSH_PROBE));
641 			/* same as above: srmmu_flush_tlb_page() */
642 		}
643 	}
644 }
645 #endif
646 
647 /*
648  * The following are all MBUS based SRMMU modules, and therefore could
649  * be found in a multiprocessor configuration.  On the whole, these
650  * chips seems to be much more touchy about DVMA and page tables
651  * with respect to cache coherency.
652  */
653 
654 /* viking.S */
655 extern void viking_flush_cache_all(void);
656 extern void viking_flush_cache_mm(struct mm_struct *mm);
657 extern void viking_flush_cache_range(struct vm_area_struct *vma, unsigned long start,
658 				     unsigned long end);
659 extern void viking_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
660 extern void viking_flush_page_to_ram(unsigned long page);
661 extern void viking_flush_page_for_dma(unsigned long page);
662 extern void viking_flush_sig_insns(struct mm_struct *mm, unsigned long addr);
663 extern void viking_flush_page(unsigned long page);
664 extern void viking_mxcc_flush_page(unsigned long page);
665 extern void viking_flush_tlb_all(void);
666 extern void viking_flush_tlb_mm(struct mm_struct *mm);
667 extern void viking_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
668 				   unsigned long end);
669 extern void viking_flush_tlb_page(struct vm_area_struct *vma,
670 				  unsigned long page);
671 extern void sun4dsmp_flush_tlb_all(void);
672 extern void sun4dsmp_flush_tlb_mm(struct mm_struct *mm);
673 extern void sun4dsmp_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
674 				   unsigned long end);
675 extern void sun4dsmp_flush_tlb_page(struct vm_area_struct *vma,
676 				  unsigned long page);
677 
678 /* hypersparc.S */
679 extern void hypersparc_flush_cache_all(void);
680 extern void hypersparc_flush_cache_mm(struct mm_struct *mm);
681 extern void hypersparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
682 extern void hypersparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
683 extern void hypersparc_flush_page_to_ram(unsigned long page);
684 extern void hypersparc_flush_page_for_dma(unsigned long page);
685 extern void hypersparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
686 extern void hypersparc_flush_tlb_all(void);
687 extern void hypersparc_flush_tlb_mm(struct mm_struct *mm);
688 extern void hypersparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
689 extern void hypersparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
690 extern void hypersparc_setup_blockops(void);
691 
692 /*
693  * NOTE: All of this startup code assumes the low 16mb (approx.) of
694  *       kernel mappings are done with one single contiguous chunk of
695  *       ram.  On small ram machines (classics mainly) we only get
696  *       around 8mb mapped for us.
697  */
698 
699 static void __init early_pgtable_allocfail(char *type)
700 {
701 	prom_printf("inherit_prom_mappings: Cannot alloc kernel %s.\n", type);
702 	prom_halt();
703 }
704 
705 static void __init srmmu_early_allocate_ptable_skeleton(unsigned long start,
706 							unsigned long end)
707 {
708 	pgd_t *pgdp;
709 	p4d_t *p4dp;
710 	pud_t *pudp;
711 	pmd_t *pmdp;
712 	pte_t *ptep;
713 
714 	while (start < end) {
715 		pgdp = pgd_offset_k(start);
716 		p4dp = p4d_offset(pgdp, start);
717 		pudp = pud_offset(p4dp, start);
718 		if (pud_none(*(pud_t *)__nocache_fix(pudp))) {
719 			pmdp = __srmmu_get_nocache(
720 			    SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
721 			if (pmdp == NULL)
722 				early_pgtable_allocfail("pmd");
723 			memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
724 			pud_set(__nocache_fix(pudp), pmdp);
725 		}
726 		pmdp = pmd_offset(__nocache_fix(pudp), start);
727 		if (srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
728 			ptep = __srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
729 			if (ptep == NULL)
730 				early_pgtable_allocfail("pte");
731 			memset(__nocache_fix(ptep), 0, PTE_SIZE);
732 			pmd_set(__nocache_fix(pmdp), ptep);
733 		}
734 		if (start > (0xffffffffUL - PMD_SIZE))
735 			break;
736 		start = (start + PMD_SIZE) & PMD_MASK;
737 	}
738 }
739 
740 static void __init srmmu_allocate_ptable_skeleton(unsigned long start,
741 						  unsigned long end)
742 {
743 	pgd_t *pgdp;
744 	p4d_t *p4dp;
745 	pud_t *pudp;
746 	pmd_t *pmdp;
747 	pte_t *ptep;
748 
749 	while (start < end) {
750 		pgdp = pgd_offset_k(start);
751 		p4dp = p4d_offset(pgdp, start);
752 		pudp = pud_offset(p4dp, start);
753 		if (pud_none(*pudp)) {
754 			pmdp = __srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
755 			if (pmdp == NULL)
756 				early_pgtable_allocfail("pmd");
757 			memset(pmdp, 0, SRMMU_PMD_TABLE_SIZE);
758 			pud_set((pud_t *)pgdp, pmdp);
759 		}
760 		pmdp = pmd_offset(pudp, start);
761 		if (srmmu_pmd_none(*pmdp)) {
762 			ptep = __srmmu_get_nocache(PTE_SIZE,
763 							     PTE_SIZE);
764 			if (ptep == NULL)
765 				early_pgtable_allocfail("pte");
766 			memset(ptep, 0, PTE_SIZE);
767 			pmd_set(pmdp, ptep);
768 		}
769 		if (start > (0xffffffffUL - PMD_SIZE))
770 			break;
771 		start = (start + PMD_SIZE) & PMD_MASK;
772 	}
773 }
774 
775 /* These flush types are not available on all chips... */
776 static inline unsigned long srmmu_probe(unsigned long vaddr)
777 {
778 	unsigned long retval;
779 
780 	if (sparc_cpu_model != sparc_leon) {
781 
782 		vaddr &= PAGE_MASK;
783 		__asm__ __volatile__("lda [%1] %2, %0\n\t" :
784 				     "=r" (retval) :
785 				     "r" (vaddr | 0x400), "i" (ASI_M_FLUSH_PROBE));
786 	} else {
787 		retval = leon_swprobe(vaddr, NULL);
788 	}
789 	return retval;
790 }
791 
792 /*
793  * This is much cleaner than poking around physical address space
794  * looking at the prom's page table directly which is what most
795  * other OS's do.  Yuck... this is much better.
796  */
797 static void __init srmmu_inherit_prom_mappings(unsigned long start,
798 					       unsigned long end)
799 {
800 	unsigned long probed;
801 	unsigned long addr;
802 	pgd_t *pgdp;
803 	p4d_t *p4dp;
804 	pud_t *pudp;
805 	pmd_t *pmdp;
806 	pte_t *ptep;
807 	int what; /* 0 = normal-pte, 1 = pmd-level pte, 2 = pgd-level pte */
808 
809 	while (start <= end) {
810 		if (start == 0)
811 			break; /* probably wrap around */
812 		if (start == 0xfef00000)
813 			start = KADB_DEBUGGER_BEGVM;
814 		probed = srmmu_probe(start);
815 		if (!probed) {
816 			/* continue probing until we find an entry */
817 			start += PAGE_SIZE;
818 			continue;
819 		}
820 
821 		/* A red snapper, see what it really is. */
822 		what = 0;
823 		addr = start - PAGE_SIZE;
824 
825 		if (!(start & ~(SRMMU_REAL_PMD_MASK))) {
826 			if (srmmu_probe(addr + SRMMU_REAL_PMD_SIZE) == probed)
827 				what = 1;
828 		}
829 
830 		if (!(start & ~(SRMMU_PGDIR_MASK))) {
831 			if (srmmu_probe(addr + SRMMU_PGDIR_SIZE) == probed)
832 				what = 2;
833 		}
834 
835 		pgdp = pgd_offset_k(start);
836 		p4dp = p4d_offset(pgdp, start);
837 		pudp = pud_offset(p4dp, start);
838 		if (what == 2) {
839 			*(pgd_t *)__nocache_fix(pgdp) = __pgd(probed);
840 			start += SRMMU_PGDIR_SIZE;
841 			continue;
842 		}
843 		if (pud_none(*(pud_t *)__nocache_fix(pudp))) {
844 			pmdp = __srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE,
845 						   SRMMU_PMD_TABLE_SIZE);
846 			if (pmdp == NULL)
847 				early_pgtable_allocfail("pmd");
848 			memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
849 			pud_set(__nocache_fix(pudp), pmdp);
850 		}
851 		pmdp = pmd_offset(__nocache_fix(pgdp), start);
852 		if (srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
853 			ptep = __srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
854 			if (ptep == NULL)
855 				early_pgtable_allocfail("pte");
856 			memset(__nocache_fix(ptep), 0, PTE_SIZE);
857 			pmd_set(__nocache_fix(pmdp), ptep);
858 		}
859 		if (what == 1) {
860 			/* We bend the rule where all 16 PTPs in a pmd_t point
861 			 * inside the same PTE page, and we leak a perfectly
862 			 * good hardware PTE piece. Alternatives seem worse.
863 			 */
864 			unsigned int x;	/* Index of HW PMD in soft cluster */
865 			unsigned long *val;
866 			x = (start >> PMD_SHIFT) & 15;
867 			val = &pmdp->pmdv[x];
868 			*(unsigned long *)__nocache_fix(val) = probed;
869 			start += SRMMU_REAL_PMD_SIZE;
870 			continue;
871 		}
872 		ptep = pte_offset_kernel(__nocache_fix(pmdp), start);
873 		*(pte_t *)__nocache_fix(ptep) = __pte(probed);
874 		start += PAGE_SIZE;
875 	}
876 }
877 
878 #define KERNEL_PTE(page_shifted) ((page_shifted)|SRMMU_CACHE|SRMMU_PRIV|SRMMU_VALID)
879 
880 /* Create a third-level SRMMU 16MB page mapping. */
881 static void __init do_large_mapping(unsigned long vaddr, unsigned long phys_base)
882 {
883 	pgd_t *pgdp = pgd_offset_k(vaddr);
884 	unsigned long big_pte;
885 
886 	big_pte = KERNEL_PTE(phys_base >> 4);
887 	*(pgd_t *)__nocache_fix(pgdp) = __pgd(big_pte);
888 }
889 
890 /* Map sp_bank entry SP_ENTRY, starting at virtual address VBASE. */
891 static unsigned long __init map_spbank(unsigned long vbase, int sp_entry)
892 {
893 	unsigned long pstart = (sp_banks[sp_entry].base_addr & SRMMU_PGDIR_MASK);
894 	unsigned long vstart = (vbase & SRMMU_PGDIR_MASK);
895 	unsigned long vend = SRMMU_PGDIR_ALIGN(vbase + sp_banks[sp_entry].num_bytes);
896 	/* Map "low" memory only */
897 	const unsigned long min_vaddr = PAGE_OFFSET;
898 	const unsigned long max_vaddr = PAGE_OFFSET + SRMMU_MAXMEM;
899 
900 	if (vstart < min_vaddr || vstart >= max_vaddr)
901 		return vstart;
902 
903 	if (vend > max_vaddr || vend < min_vaddr)
904 		vend = max_vaddr;
905 
906 	while (vstart < vend) {
907 		do_large_mapping(vstart, pstart);
908 		vstart += SRMMU_PGDIR_SIZE; pstart += SRMMU_PGDIR_SIZE;
909 	}
910 	return vstart;
911 }
912 
913 static void __init map_kernel(void)
914 {
915 	int i;
916 
917 	if (phys_base > 0) {
918 		do_large_mapping(PAGE_OFFSET, phys_base);
919 	}
920 
921 	for (i = 0; sp_banks[i].num_bytes != 0; i++) {
922 		map_spbank((unsigned long)__va(sp_banks[i].base_addr), i);
923 	}
924 }
925 
926 void (*poke_srmmu)(void) = NULL;
927 
928 void __init srmmu_paging_init(void)
929 {
930 	int i;
931 	phandle cpunode;
932 	char node_str[128];
933 	pgd_t *pgd;
934 	p4d_t *p4d;
935 	pud_t *pud;
936 	pmd_t *pmd;
937 	pte_t *pte;
938 	unsigned long pages_avail;
939 
940 	init_mm.context = (unsigned long) NO_CONTEXT;
941 	sparc_iomap.start = SUN4M_IOBASE_VADDR;	/* 16MB of IOSPACE on all sun4m's. */
942 
943 	if (sparc_cpu_model == sun4d)
944 		num_contexts = 65536; /* We know it is Viking */
945 	else {
946 		/* Find the number of contexts on the srmmu. */
947 		cpunode = prom_getchild(prom_root_node);
948 		num_contexts = 0;
949 		while (cpunode != 0) {
950 			prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
951 			if (!strcmp(node_str, "cpu")) {
952 				num_contexts = prom_getintdefault(cpunode, "mmu-nctx", 0x8);
953 				break;
954 			}
955 			cpunode = prom_getsibling(cpunode);
956 		}
957 	}
958 
959 	if (!num_contexts) {
960 		prom_printf("Something wrong, can't find cpu node in paging_init.\n");
961 		prom_halt();
962 	}
963 
964 	pages_avail = 0;
965 	last_valid_pfn = bootmem_init(&pages_avail);
966 
967 	srmmu_nocache_calcsize();
968 	srmmu_nocache_init();
969 	srmmu_inherit_prom_mappings(0xfe400000, (LINUX_OPPROM_ENDVM - PAGE_SIZE));
970 	map_kernel();
971 
972 	/* ctx table has to be physically aligned to its size */
973 	srmmu_context_table = __srmmu_get_nocache(num_contexts * sizeof(ctxd_t), num_contexts * sizeof(ctxd_t));
974 	srmmu_ctx_table_phys = (ctxd_t *)__nocache_pa(srmmu_context_table);
975 
976 	for (i = 0; i < num_contexts; i++)
977 		srmmu_ctxd_set((ctxd_t *)__nocache_fix(&srmmu_context_table[i]), srmmu_swapper_pg_dir);
978 
979 	flush_cache_all();
980 	srmmu_set_ctable_ptr((unsigned long)srmmu_ctx_table_phys);
981 #ifdef CONFIG_SMP
982 	/* Stop from hanging here... */
983 	local_ops->tlb_all();
984 #else
985 	flush_tlb_all();
986 #endif
987 	poke_srmmu();
988 
989 	srmmu_allocate_ptable_skeleton(sparc_iomap.start, IOBASE_END);
990 	srmmu_allocate_ptable_skeleton(DVMA_VADDR, DVMA_END);
991 
992 	srmmu_allocate_ptable_skeleton(
993 		__fix_to_virt(__end_of_fixed_addresses - 1), FIXADDR_TOP);
994 	srmmu_allocate_ptable_skeleton(PKMAP_BASE, PKMAP_END);
995 
996 	pgd = pgd_offset_k(PKMAP_BASE);
997 	p4d = p4d_offset(pgd, PKMAP_BASE);
998 	pud = pud_offset(p4d, PKMAP_BASE);
999 	pmd = pmd_offset(pud, PKMAP_BASE);
1000 	pte = pte_offset_kernel(pmd, PKMAP_BASE);
1001 	pkmap_page_table = pte;
1002 
1003 	flush_cache_all();
1004 	flush_tlb_all();
1005 
1006 	sparc_context_init(num_contexts);
1007 
1008 	kmap_init();
1009 
1010 	{
1011 		unsigned long max_zone_pfn[MAX_NR_ZONES] = { 0 };
1012 
1013 		max_zone_pfn[ZONE_DMA] = max_low_pfn;
1014 		max_zone_pfn[ZONE_NORMAL] = max_low_pfn;
1015 		max_zone_pfn[ZONE_HIGHMEM] = highend_pfn;
1016 
1017 		free_area_init(max_zone_pfn);
1018 	}
1019 }
1020 
1021 void mmu_info(struct seq_file *m)
1022 {
1023 	seq_printf(m,
1024 		   "MMU type\t: %s\n"
1025 		   "contexts\t: %d\n"
1026 		   "nocache total\t: %ld\n"
1027 		   "nocache used\t: %d\n",
1028 		   srmmu_name,
1029 		   num_contexts,
1030 		   srmmu_nocache_size,
1031 		   srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
1032 }
1033 
1034 int init_new_context(struct task_struct *tsk, struct mm_struct *mm)
1035 {
1036 	mm->context = NO_CONTEXT;
1037 	return 0;
1038 }
1039 
1040 void destroy_context(struct mm_struct *mm)
1041 {
1042 	unsigned long flags;
1043 
1044 	if (mm->context != NO_CONTEXT) {
1045 		flush_cache_mm(mm);
1046 		srmmu_ctxd_set(&srmmu_context_table[mm->context], srmmu_swapper_pg_dir);
1047 		flush_tlb_mm(mm);
1048 		spin_lock_irqsave(&srmmu_context_spinlock, flags);
1049 		free_context(mm->context);
1050 		spin_unlock_irqrestore(&srmmu_context_spinlock, flags);
1051 		mm->context = NO_CONTEXT;
1052 	}
1053 }
1054 
1055 /* Init various srmmu chip types. */
1056 static void __init srmmu_is_bad(void)
1057 {
1058 	prom_printf("Could not determine SRMMU chip type.\n");
1059 	prom_halt();
1060 }
1061 
1062 static void __init init_vac_layout(void)
1063 {
1064 	phandle nd;
1065 	int cache_lines;
1066 	char node_str[128];
1067 #ifdef CONFIG_SMP
1068 	int cpu = 0;
1069 	unsigned long max_size = 0;
1070 	unsigned long min_line_size = 0x10000000;
1071 #endif
1072 
1073 	nd = prom_getchild(prom_root_node);
1074 	while ((nd = prom_getsibling(nd)) != 0) {
1075 		prom_getstring(nd, "device_type", node_str, sizeof(node_str));
1076 		if (!strcmp(node_str, "cpu")) {
1077 			vac_line_size = prom_getint(nd, "cache-line-size");
1078 			if (vac_line_size == -1) {
1079 				prom_printf("can't determine cache-line-size, halting.\n");
1080 				prom_halt();
1081 			}
1082 			cache_lines = prom_getint(nd, "cache-nlines");
1083 			if (cache_lines == -1) {
1084 				prom_printf("can't determine cache-nlines, halting.\n");
1085 				prom_halt();
1086 			}
1087 
1088 			vac_cache_size = cache_lines * vac_line_size;
1089 #ifdef CONFIG_SMP
1090 			if (vac_cache_size > max_size)
1091 				max_size = vac_cache_size;
1092 			if (vac_line_size < min_line_size)
1093 				min_line_size = vac_line_size;
1094 			//FIXME: cpus not contiguous!!
1095 			cpu++;
1096 			if (cpu >= nr_cpu_ids || !cpu_online(cpu))
1097 				break;
1098 #else
1099 			break;
1100 #endif
1101 		}
1102 	}
1103 	if (nd == 0) {
1104 		prom_printf("No CPU nodes found, halting.\n");
1105 		prom_halt();
1106 	}
1107 #ifdef CONFIG_SMP
1108 	vac_cache_size = max_size;
1109 	vac_line_size = min_line_size;
1110 #endif
1111 	printk("SRMMU: Using VAC size of %d bytes, line size %d bytes.\n",
1112 	       (int)vac_cache_size, (int)vac_line_size);
1113 }
1114 
1115 static void poke_hypersparc(void)
1116 {
1117 	volatile unsigned long clear;
1118 	unsigned long mreg = srmmu_get_mmureg();
1119 
1120 	hyper_flush_unconditional_combined();
1121 
1122 	mreg &= ~(HYPERSPARC_CWENABLE);
1123 	mreg |= (HYPERSPARC_CENABLE | HYPERSPARC_WBENABLE);
1124 	mreg |= (HYPERSPARC_CMODE);
1125 
1126 	srmmu_set_mmureg(mreg);
1127 
1128 #if 0 /* XXX I think this is bad news... -DaveM */
1129 	hyper_clear_all_tags();
1130 #endif
1131 
1132 	put_ross_icr(HYPERSPARC_ICCR_FTD | HYPERSPARC_ICCR_ICE);
1133 	hyper_flush_whole_icache();
1134 	clear = srmmu_get_faddr();
1135 	clear = srmmu_get_fstatus();
1136 }
1137 
1138 static const struct sparc32_cachetlb_ops hypersparc_ops = {
1139 	.cache_all	= hypersparc_flush_cache_all,
1140 	.cache_mm	= hypersparc_flush_cache_mm,
1141 	.cache_page	= hypersparc_flush_cache_page,
1142 	.cache_range	= hypersparc_flush_cache_range,
1143 	.tlb_all	= hypersparc_flush_tlb_all,
1144 	.tlb_mm		= hypersparc_flush_tlb_mm,
1145 	.tlb_page	= hypersparc_flush_tlb_page,
1146 	.tlb_range	= hypersparc_flush_tlb_range,
1147 	.page_to_ram	= hypersparc_flush_page_to_ram,
1148 	.sig_insns	= hypersparc_flush_sig_insns,
1149 	.page_for_dma	= hypersparc_flush_page_for_dma,
1150 };
1151 
1152 static void __init init_hypersparc(void)
1153 {
1154 	srmmu_name = "ROSS HyperSparc";
1155 	srmmu_modtype = HyperSparc;
1156 
1157 	init_vac_layout();
1158 
1159 	is_hypersparc = 1;
1160 	sparc32_cachetlb_ops = &hypersparc_ops;
1161 
1162 	poke_srmmu = poke_hypersparc;
1163 
1164 	hypersparc_setup_blockops();
1165 }
1166 
1167 static void poke_swift(void)
1168 {
1169 	unsigned long mreg;
1170 
1171 	/* Clear any crap from the cache or else... */
1172 	swift_flush_cache_all();
1173 
1174 	/* Enable I & D caches */
1175 	mreg = srmmu_get_mmureg();
1176 	mreg |= (SWIFT_IE | SWIFT_DE);
1177 	/*
1178 	 * The Swift branch folding logic is completely broken.  At
1179 	 * trap time, if things are just right, if can mistakenly
1180 	 * think that a trap is coming from kernel mode when in fact
1181 	 * it is coming from user mode (it mis-executes the branch in
1182 	 * the trap code).  So you see things like crashme completely
1183 	 * hosing your machine which is completely unacceptable.  Turn
1184 	 * this shit off... nice job Fujitsu.
1185 	 */
1186 	mreg &= ~(SWIFT_BF);
1187 	srmmu_set_mmureg(mreg);
1188 }
1189 
1190 static const struct sparc32_cachetlb_ops swift_ops = {
1191 	.cache_all	= swift_flush_cache_all,
1192 	.cache_mm	= swift_flush_cache_mm,
1193 	.cache_page	= swift_flush_cache_page,
1194 	.cache_range	= swift_flush_cache_range,
1195 	.tlb_all	= swift_flush_tlb_all,
1196 	.tlb_mm		= swift_flush_tlb_mm,
1197 	.tlb_page	= swift_flush_tlb_page,
1198 	.tlb_range	= swift_flush_tlb_range,
1199 	.page_to_ram	= swift_flush_page_to_ram,
1200 	.sig_insns	= swift_flush_sig_insns,
1201 	.page_for_dma	= swift_flush_page_for_dma,
1202 };
1203 
1204 #define SWIFT_MASKID_ADDR  0x10003018
1205 static void __init init_swift(void)
1206 {
1207 	unsigned long swift_rev;
1208 
1209 	__asm__ __volatile__("lda [%1] %2, %0\n\t"
1210 			     "srl %0, 0x18, %0\n\t" :
1211 			     "=r" (swift_rev) :
1212 			     "r" (SWIFT_MASKID_ADDR), "i" (ASI_M_BYPASS));
1213 	srmmu_name = "Fujitsu Swift";
1214 	switch (swift_rev) {
1215 	case 0x11:
1216 	case 0x20:
1217 	case 0x23:
1218 	case 0x30:
1219 		srmmu_modtype = Swift_lots_o_bugs;
1220 		hwbug_bitmask |= (HWBUG_KERN_ACCBROKEN | HWBUG_KERN_CBITBROKEN);
1221 		/*
1222 		 * Gee george, I wonder why Sun is so hush hush about
1223 		 * this hardware bug... really braindamage stuff going
1224 		 * on here.  However I think we can find a way to avoid
1225 		 * all of the workaround overhead under Linux.  Basically,
1226 		 * any page fault can cause kernel pages to become user
1227 		 * accessible (the mmu gets confused and clears some of
1228 		 * the ACC bits in kernel ptes).  Aha, sounds pretty
1229 		 * horrible eh?  But wait, after extensive testing it appears
1230 		 * that if you use pgd_t level large kernel pte's (like the
1231 		 * 4MB pages on the Pentium) the bug does not get tripped
1232 		 * at all.  This avoids almost all of the major overhead.
1233 		 * Welcome to a world where your vendor tells you to,
1234 		 * "apply this kernel patch" instead of "sorry for the
1235 		 * broken hardware, send it back and we'll give you
1236 		 * properly functioning parts"
1237 		 */
1238 		break;
1239 	case 0x25:
1240 	case 0x31:
1241 		srmmu_modtype = Swift_bad_c;
1242 		hwbug_bitmask |= HWBUG_KERN_CBITBROKEN;
1243 		/*
1244 		 * You see Sun allude to this hardware bug but never
1245 		 * admit things directly, they'll say things like,
1246 		 * "the Swift chip cache problems" or similar.
1247 		 */
1248 		break;
1249 	default:
1250 		srmmu_modtype = Swift_ok;
1251 		break;
1252 	}
1253 
1254 	sparc32_cachetlb_ops = &swift_ops;
1255 	flush_page_for_dma_global = 0;
1256 
1257 	/*
1258 	 * Are you now convinced that the Swift is one of the
1259 	 * biggest VLSI abortions of all time?  Bravo Fujitsu!
1260 	 * Fujitsu, the !#?!%$'d up processor people.  I bet if
1261 	 * you examined the microcode of the Swift you'd find
1262 	 * XXX's all over the place.
1263 	 */
1264 	poke_srmmu = poke_swift;
1265 }
1266 
1267 static void turbosparc_flush_cache_all(void)
1268 {
1269 	flush_user_windows();
1270 	turbosparc_idflash_clear();
1271 }
1272 
1273 static void turbosparc_flush_cache_mm(struct mm_struct *mm)
1274 {
1275 	FLUSH_BEGIN(mm)
1276 	flush_user_windows();
1277 	turbosparc_idflash_clear();
1278 	FLUSH_END
1279 }
1280 
1281 static void turbosparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1282 {
1283 	FLUSH_BEGIN(vma->vm_mm)
1284 	flush_user_windows();
1285 	turbosparc_idflash_clear();
1286 	FLUSH_END
1287 }
1288 
1289 static void turbosparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
1290 {
1291 	FLUSH_BEGIN(vma->vm_mm)
1292 	flush_user_windows();
1293 	if (vma->vm_flags & VM_EXEC)
1294 		turbosparc_flush_icache();
1295 	turbosparc_flush_dcache();
1296 	FLUSH_END
1297 }
1298 
1299 /* TurboSparc is copy-back, if we turn it on, but this does not work. */
1300 static void turbosparc_flush_page_to_ram(unsigned long page)
1301 {
1302 #ifdef TURBOSPARC_WRITEBACK
1303 	volatile unsigned long clear;
1304 
1305 	if (srmmu_probe(page))
1306 		turbosparc_flush_page_cache(page);
1307 	clear = srmmu_get_fstatus();
1308 #endif
1309 }
1310 
1311 static void turbosparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
1312 {
1313 }
1314 
1315 static void turbosparc_flush_page_for_dma(unsigned long page)
1316 {
1317 	turbosparc_flush_dcache();
1318 }
1319 
1320 static void turbosparc_flush_tlb_all(void)
1321 {
1322 	srmmu_flush_whole_tlb();
1323 }
1324 
1325 static void turbosparc_flush_tlb_mm(struct mm_struct *mm)
1326 {
1327 	FLUSH_BEGIN(mm)
1328 	srmmu_flush_whole_tlb();
1329 	FLUSH_END
1330 }
1331 
1332 static void turbosparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1333 {
1334 	FLUSH_BEGIN(vma->vm_mm)
1335 	srmmu_flush_whole_tlb();
1336 	FLUSH_END
1337 }
1338 
1339 static void turbosparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
1340 {
1341 	FLUSH_BEGIN(vma->vm_mm)
1342 	srmmu_flush_whole_tlb();
1343 	FLUSH_END
1344 }
1345 
1346 
1347 static void poke_turbosparc(void)
1348 {
1349 	unsigned long mreg = srmmu_get_mmureg();
1350 	unsigned long ccreg;
1351 
1352 	/* Clear any crap from the cache or else... */
1353 	turbosparc_flush_cache_all();
1354 	/* Temporarily disable I & D caches */
1355 	mreg &= ~(TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE);
1356 	mreg &= ~(TURBOSPARC_PCENABLE);		/* Don't check parity */
1357 	srmmu_set_mmureg(mreg);
1358 
1359 	ccreg = turbosparc_get_ccreg();
1360 
1361 #ifdef TURBOSPARC_WRITEBACK
1362 	ccreg |= (TURBOSPARC_SNENABLE);		/* Do DVMA snooping in Dcache */
1363 	ccreg &= ~(TURBOSPARC_uS2 | TURBOSPARC_WTENABLE);
1364 			/* Write-back D-cache, emulate VLSI
1365 			 * abortion number three, not number one */
1366 #else
1367 	/* For now let's play safe, optimize later */
1368 	ccreg |= (TURBOSPARC_SNENABLE | TURBOSPARC_WTENABLE);
1369 			/* Do DVMA snooping in Dcache, Write-thru D-cache */
1370 	ccreg &= ~(TURBOSPARC_uS2);
1371 			/* Emulate VLSI abortion number three, not number one */
1372 #endif
1373 
1374 	switch (ccreg & 7) {
1375 	case 0: /* No SE cache */
1376 	case 7: /* Test mode */
1377 		break;
1378 	default:
1379 		ccreg |= (TURBOSPARC_SCENABLE);
1380 	}
1381 	turbosparc_set_ccreg(ccreg);
1382 
1383 	mreg |= (TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE); /* I & D caches on */
1384 	mreg |= (TURBOSPARC_ICSNOOP);		/* Icache snooping on */
1385 	srmmu_set_mmureg(mreg);
1386 }
1387 
1388 static const struct sparc32_cachetlb_ops turbosparc_ops = {
1389 	.cache_all	= turbosparc_flush_cache_all,
1390 	.cache_mm	= turbosparc_flush_cache_mm,
1391 	.cache_page	= turbosparc_flush_cache_page,
1392 	.cache_range	= turbosparc_flush_cache_range,
1393 	.tlb_all	= turbosparc_flush_tlb_all,
1394 	.tlb_mm		= turbosparc_flush_tlb_mm,
1395 	.tlb_page	= turbosparc_flush_tlb_page,
1396 	.tlb_range	= turbosparc_flush_tlb_range,
1397 	.page_to_ram	= turbosparc_flush_page_to_ram,
1398 	.sig_insns	= turbosparc_flush_sig_insns,
1399 	.page_for_dma	= turbosparc_flush_page_for_dma,
1400 };
1401 
1402 static void __init init_turbosparc(void)
1403 {
1404 	srmmu_name = "Fujitsu TurboSparc";
1405 	srmmu_modtype = TurboSparc;
1406 	sparc32_cachetlb_ops = &turbosparc_ops;
1407 	poke_srmmu = poke_turbosparc;
1408 }
1409 
1410 static void poke_tsunami(void)
1411 {
1412 	unsigned long mreg = srmmu_get_mmureg();
1413 
1414 	tsunami_flush_icache();
1415 	tsunami_flush_dcache();
1416 	mreg &= ~TSUNAMI_ITD;
1417 	mreg |= (TSUNAMI_IENAB | TSUNAMI_DENAB);
1418 	srmmu_set_mmureg(mreg);
1419 }
1420 
1421 static const struct sparc32_cachetlb_ops tsunami_ops = {
1422 	.cache_all	= tsunami_flush_cache_all,
1423 	.cache_mm	= tsunami_flush_cache_mm,
1424 	.cache_page	= tsunami_flush_cache_page,
1425 	.cache_range	= tsunami_flush_cache_range,
1426 	.tlb_all	= tsunami_flush_tlb_all,
1427 	.tlb_mm		= tsunami_flush_tlb_mm,
1428 	.tlb_page	= tsunami_flush_tlb_page,
1429 	.tlb_range	= tsunami_flush_tlb_range,
1430 	.page_to_ram	= tsunami_flush_page_to_ram,
1431 	.sig_insns	= tsunami_flush_sig_insns,
1432 	.page_for_dma	= tsunami_flush_page_for_dma,
1433 };
1434 
1435 static void __init init_tsunami(void)
1436 {
1437 	/*
1438 	 * Tsunami's pretty sane, Sun and TI actually got it
1439 	 * somewhat right this time.  Fujitsu should have
1440 	 * taken some lessons from them.
1441 	 */
1442 
1443 	srmmu_name = "TI Tsunami";
1444 	srmmu_modtype = Tsunami;
1445 	sparc32_cachetlb_ops = &tsunami_ops;
1446 	poke_srmmu = poke_tsunami;
1447 
1448 	tsunami_setup_blockops();
1449 }
1450 
1451 static void poke_viking(void)
1452 {
1453 	unsigned long mreg = srmmu_get_mmureg();
1454 	static int smp_catch;
1455 
1456 	if (viking_mxcc_present) {
1457 		unsigned long mxcc_control = mxcc_get_creg();
1458 
1459 		mxcc_control |= (MXCC_CTL_ECE | MXCC_CTL_PRE | MXCC_CTL_MCE);
1460 		mxcc_control &= ~(MXCC_CTL_RRC);
1461 		mxcc_set_creg(mxcc_control);
1462 
1463 		/*
1464 		 * We don't need memory parity checks.
1465 		 * XXX This is a mess, have to dig out later. ecd.
1466 		viking_mxcc_turn_off_parity(&mreg, &mxcc_control);
1467 		 */
1468 
1469 		/* We do cache ptables on MXCC. */
1470 		mreg |= VIKING_TCENABLE;
1471 	} else {
1472 		unsigned long bpreg;
1473 
1474 		mreg &= ~(VIKING_TCENABLE);
1475 		if (smp_catch++) {
1476 			/* Must disable mixed-cmd mode here for other cpu's. */
1477 			bpreg = viking_get_bpreg();
1478 			bpreg &= ~(VIKING_ACTION_MIX);
1479 			viking_set_bpreg(bpreg);
1480 
1481 			/* Just in case PROM does something funny. */
1482 			msi_set_sync();
1483 		}
1484 	}
1485 
1486 	mreg |= VIKING_SPENABLE;
1487 	mreg |= (VIKING_ICENABLE | VIKING_DCENABLE);
1488 	mreg |= VIKING_SBENABLE;
1489 	mreg &= ~(VIKING_ACENABLE);
1490 	srmmu_set_mmureg(mreg);
1491 }
1492 
1493 static struct sparc32_cachetlb_ops viking_ops __ro_after_init = {
1494 	.cache_all	= viking_flush_cache_all,
1495 	.cache_mm	= viking_flush_cache_mm,
1496 	.cache_page	= viking_flush_cache_page,
1497 	.cache_range	= viking_flush_cache_range,
1498 	.tlb_all	= viking_flush_tlb_all,
1499 	.tlb_mm		= viking_flush_tlb_mm,
1500 	.tlb_page	= viking_flush_tlb_page,
1501 	.tlb_range	= viking_flush_tlb_range,
1502 	.page_to_ram	= viking_flush_page_to_ram,
1503 	.sig_insns	= viking_flush_sig_insns,
1504 	.page_for_dma	= viking_flush_page_for_dma,
1505 };
1506 
1507 #ifdef CONFIG_SMP
1508 /* On sun4d the cpu broadcasts local TLB flushes, so we can just
1509  * perform the local TLB flush and all the other cpus will see it.
1510  * But, unfortunately, there is a bug in the sun4d XBUS backplane
1511  * that requires that we add some synchronization to these flushes.
1512  *
1513  * The bug is that the fifo which keeps track of all the pending TLB
1514  * broadcasts in the system is an entry or two too small, so if we
1515  * have too many going at once we'll overflow that fifo and lose a TLB
1516  * flush resulting in corruption.
1517  *
1518  * Our workaround is to take a global spinlock around the TLB flushes,
1519  * which guarentees we won't ever have too many pending.  It's a big
1520  * hammer, but a semaphore like system to make sure we only have N TLB
1521  * flushes going at once will require SMP locking anyways so there's
1522  * no real value in trying any harder than this.
1523  */
1524 static struct sparc32_cachetlb_ops viking_sun4d_smp_ops __ro_after_init = {
1525 	.cache_all	= viking_flush_cache_all,
1526 	.cache_mm	= viking_flush_cache_mm,
1527 	.cache_page	= viking_flush_cache_page,
1528 	.cache_range	= viking_flush_cache_range,
1529 	.tlb_all	= sun4dsmp_flush_tlb_all,
1530 	.tlb_mm		= sun4dsmp_flush_tlb_mm,
1531 	.tlb_page	= sun4dsmp_flush_tlb_page,
1532 	.tlb_range	= sun4dsmp_flush_tlb_range,
1533 	.page_to_ram	= viking_flush_page_to_ram,
1534 	.sig_insns	= viking_flush_sig_insns,
1535 	.page_for_dma	= viking_flush_page_for_dma,
1536 };
1537 #endif
1538 
1539 static void __init init_viking(void)
1540 {
1541 	unsigned long mreg = srmmu_get_mmureg();
1542 
1543 	/* Ahhh, the viking.  SRMMU VLSI abortion number two... */
1544 	if (mreg & VIKING_MMODE) {
1545 		srmmu_name = "TI Viking";
1546 		viking_mxcc_present = 0;
1547 		msi_set_sync();
1548 
1549 		/*
1550 		 * We need this to make sure old viking takes no hits
1551 		 * on it's cache for dma snoops to workaround the
1552 		 * "load from non-cacheable memory" interrupt bug.
1553 		 * This is only necessary because of the new way in
1554 		 * which we use the IOMMU.
1555 		 */
1556 		viking_ops.page_for_dma = viking_flush_page;
1557 #ifdef CONFIG_SMP
1558 		viking_sun4d_smp_ops.page_for_dma = viking_flush_page;
1559 #endif
1560 		flush_page_for_dma_global = 0;
1561 	} else {
1562 		srmmu_name = "TI Viking/MXCC";
1563 		viking_mxcc_present = 1;
1564 		srmmu_cache_pagetables = 1;
1565 	}
1566 
1567 	sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1568 		&viking_ops;
1569 #ifdef CONFIG_SMP
1570 	if (sparc_cpu_model == sun4d)
1571 		sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1572 			&viking_sun4d_smp_ops;
1573 #endif
1574 
1575 	poke_srmmu = poke_viking;
1576 }
1577 
1578 /* Probe for the srmmu chip version. */
1579 static void __init get_srmmu_type(void)
1580 {
1581 	unsigned long mreg, psr;
1582 	unsigned long mod_typ, mod_rev, psr_typ, psr_vers;
1583 
1584 	srmmu_modtype = SRMMU_INVAL_MOD;
1585 	hwbug_bitmask = 0;
1586 
1587 	mreg = srmmu_get_mmureg(); psr = get_psr();
1588 	mod_typ = (mreg & 0xf0000000) >> 28;
1589 	mod_rev = (mreg & 0x0f000000) >> 24;
1590 	psr_typ = (psr >> 28) & 0xf;
1591 	psr_vers = (psr >> 24) & 0xf;
1592 
1593 	/* First, check for sparc-leon. */
1594 	if (sparc_cpu_model == sparc_leon) {
1595 		init_leon();
1596 		return;
1597 	}
1598 
1599 	/* Second, check for HyperSparc or Cypress. */
1600 	if (mod_typ == 1) {
1601 		switch (mod_rev) {
1602 		case 7:
1603 			/* UP or MP Hypersparc */
1604 			init_hypersparc();
1605 			break;
1606 		case 0:
1607 		case 2:
1608 		case 10:
1609 		case 11:
1610 		case 12:
1611 		case 13:
1612 		case 14:
1613 		case 15:
1614 		default:
1615 			prom_printf("Sparc-Linux Cypress support does not longer exit.\n");
1616 			prom_halt();
1617 			break;
1618 		}
1619 		return;
1620 	}
1621 
1622 	/* Now Fujitsu TurboSparc. It might happen that it is
1623 	 * in Swift emulation mode, so we will check later...
1624 	 */
1625 	if (psr_typ == 0 && psr_vers == 5) {
1626 		init_turbosparc();
1627 		return;
1628 	}
1629 
1630 	/* Next check for Fujitsu Swift. */
1631 	if (psr_typ == 0 && psr_vers == 4) {
1632 		phandle cpunode;
1633 		char node_str[128];
1634 
1635 		/* Look if it is not a TurboSparc emulating Swift... */
1636 		cpunode = prom_getchild(prom_root_node);
1637 		while ((cpunode = prom_getsibling(cpunode)) != 0) {
1638 			prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
1639 			if (!strcmp(node_str, "cpu")) {
1640 				if (!prom_getintdefault(cpunode, "psr-implementation", 1) &&
1641 				    prom_getintdefault(cpunode, "psr-version", 1) == 5) {
1642 					init_turbosparc();
1643 					return;
1644 				}
1645 				break;
1646 			}
1647 		}
1648 
1649 		init_swift();
1650 		return;
1651 	}
1652 
1653 	/* Now the Viking family of srmmu. */
1654 	if (psr_typ == 4 &&
1655 	   ((psr_vers == 0) ||
1656 	    ((psr_vers == 1) && (mod_typ == 0) && (mod_rev == 0)))) {
1657 		init_viking();
1658 		return;
1659 	}
1660 
1661 	/* Finally the Tsunami. */
1662 	if (psr_typ == 4 && psr_vers == 1 && (mod_typ || mod_rev)) {
1663 		init_tsunami();
1664 		return;
1665 	}
1666 
1667 	/* Oh well */
1668 	srmmu_is_bad();
1669 }
1670 
1671 #ifdef CONFIG_SMP
1672 /* Local cross-calls. */
1673 static void smp_flush_page_for_dma(unsigned long page)
1674 {
1675 	xc1((smpfunc_t) local_ops->page_for_dma, page);
1676 	local_ops->page_for_dma(page);
1677 }
1678 
1679 static void smp_flush_cache_all(void)
1680 {
1681 	xc0((smpfunc_t) local_ops->cache_all);
1682 	local_ops->cache_all();
1683 }
1684 
1685 static void smp_flush_tlb_all(void)
1686 {
1687 	xc0((smpfunc_t) local_ops->tlb_all);
1688 	local_ops->tlb_all();
1689 }
1690 
1691 static void smp_flush_cache_mm(struct mm_struct *mm)
1692 {
1693 	if (mm->context != NO_CONTEXT) {
1694 		cpumask_t cpu_mask;
1695 		cpumask_copy(&cpu_mask, mm_cpumask(mm));
1696 		cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1697 		if (!cpumask_empty(&cpu_mask))
1698 			xc1((smpfunc_t) local_ops->cache_mm, (unsigned long) mm);
1699 		local_ops->cache_mm(mm);
1700 	}
1701 }
1702 
1703 static void smp_flush_tlb_mm(struct mm_struct *mm)
1704 {
1705 	if (mm->context != NO_CONTEXT) {
1706 		cpumask_t cpu_mask;
1707 		cpumask_copy(&cpu_mask, mm_cpumask(mm));
1708 		cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1709 		if (!cpumask_empty(&cpu_mask)) {
1710 			xc1((smpfunc_t) local_ops->tlb_mm, (unsigned long) mm);
1711 			if (atomic_read(&mm->mm_users) == 1 && current->active_mm == mm)
1712 				cpumask_copy(mm_cpumask(mm),
1713 					     cpumask_of(smp_processor_id()));
1714 		}
1715 		local_ops->tlb_mm(mm);
1716 	}
1717 }
1718 
1719 static void smp_flush_cache_range(struct vm_area_struct *vma,
1720 				  unsigned long start,
1721 				  unsigned long end)
1722 {
1723 	struct mm_struct *mm = vma->vm_mm;
1724 
1725 	if (mm->context != NO_CONTEXT) {
1726 		cpumask_t cpu_mask;
1727 		cpumask_copy(&cpu_mask, mm_cpumask(mm));
1728 		cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1729 		if (!cpumask_empty(&cpu_mask))
1730 			xc3((smpfunc_t) local_ops->cache_range,
1731 			    (unsigned long) vma, start, end);
1732 		local_ops->cache_range(vma, start, end);
1733 	}
1734 }
1735 
1736 static void smp_flush_tlb_range(struct vm_area_struct *vma,
1737 				unsigned long start,
1738 				unsigned long end)
1739 {
1740 	struct mm_struct *mm = vma->vm_mm;
1741 
1742 	if (mm->context != NO_CONTEXT) {
1743 		cpumask_t cpu_mask;
1744 		cpumask_copy(&cpu_mask, mm_cpumask(mm));
1745 		cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1746 		if (!cpumask_empty(&cpu_mask))
1747 			xc3((smpfunc_t) local_ops->tlb_range,
1748 			    (unsigned long) vma, start, end);
1749 		local_ops->tlb_range(vma, start, end);
1750 	}
1751 }
1752 
1753 static void smp_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
1754 {
1755 	struct mm_struct *mm = vma->vm_mm;
1756 
1757 	if (mm->context != NO_CONTEXT) {
1758 		cpumask_t cpu_mask;
1759 		cpumask_copy(&cpu_mask, mm_cpumask(mm));
1760 		cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1761 		if (!cpumask_empty(&cpu_mask))
1762 			xc2((smpfunc_t) local_ops->cache_page,
1763 			    (unsigned long) vma, page);
1764 		local_ops->cache_page(vma, page);
1765 	}
1766 }
1767 
1768 static void smp_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
1769 {
1770 	struct mm_struct *mm = vma->vm_mm;
1771 
1772 	if (mm->context != NO_CONTEXT) {
1773 		cpumask_t cpu_mask;
1774 		cpumask_copy(&cpu_mask, mm_cpumask(mm));
1775 		cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1776 		if (!cpumask_empty(&cpu_mask))
1777 			xc2((smpfunc_t) local_ops->tlb_page,
1778 			    (unsigned long) vma, page);
1779 		local_ops->tlb_page(vma, page);
1780 	}
1781 }
1782 
1783 static void smp_flush_page_to_ram(unsigned long page)
1784 {
1785 	/* Current theory is that those who call this are the one's
1786 	 * who have just dirtied their cache with the pages contents
1787 	 * in kernel space, therefore we only run this on local cpu.
1788 	 *
1789 	 * XXX This experiment failed, research further... -DaveM
1790 	 */
1791 #if 1
1792 	xc1((smpfunc_t) local_ops->page_to_ram, page);
1793 #endif
1794 	local_ops->page_to_ram(page);
1795 }
1796 
1797 static void smp_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
1798 {
1799 	cpumask_t cpu_mask;
1800 	cpumask_copy(&cpu_mask, mm_cpumask(mm));
1801 	cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1802 	if (!cpumask_empty(&cpu_mask))
1803 		xc2((smpfunc_t) local_ops->sig_insns,
1804 		    (unsigned long) mm, insn_addr);
1805 	local_ops->sig_insns(mm, insn_addr);
1806 }
1807 
1808 static struct sparc32_cachetlb_ops smp_cachetlb_ops __ro_after_init = {
1809 	.cache_all	= smp_flush_cache_all,
1810 	.cache_mm	= smp_flush_cache_mm,
1811 	.cache_page	= smp_flush_cache_page,
1812 	.cache_range	= smp_flush_cache_range,
1813 	.tlb_all	= smp_flush_tlb_all,
1814 	.tlb_mm		= smp_flush_tlb_mm,
1815 	.tlb_page	= smp_flush_tlb_page,
1816 	.tlb_range	= smp_flush_tlb_range,
1817 	.page_to_ram	= smp_flush_page_to_ram,
1818 	.sig_insns	= smp_flush_sig_insns,
1819 	.page_for_dma	= smp_flush_page_for_dma,
1820 };
1821 #endif
1822 
1823 /* Load up routines and constants for sun4m and sun4d mmu */
1824 void __init load_mmu(void)
1825 {
1826 	/* Functions */
1827 	get_srmmu_type();
1828 
1829 #ifdef CONFIG_SMP
1830 	/* El switcheroo... */
1831 	local_ops = sparc32_cachetlb_ops;
1832 
1833 	if (sparc_cpu_model == sun4d || sparc_cpu_model == sparc_leon) {
1834 		smp_cachetlb_ops.tlb_all = local_ops->tlb_all;
1835 		smp_cachetlb_ops.tlb_mm = local_ops->tlb_mm;
1836 		smp_cachetlb_ops.tlb_range = local_ops->tlb_range;
1837 		smp_cachetlb_ops.tlb_page = local_ops->tlb_page;
1838 	}
1839 
1840 	if (poke_srmmu == poke_viking) {
1841 		/* Avoid unnecessary cross calls. */
1842 		smp_cachetlb_ops.cache_all = local_ops->cache_all;
1843 		smp_cachetlb_ops.cache_mm = local_ops->cache_mm;
1844 		smp_cachetlb_ops.cache_range = local_ops->cache_range;
1845 		smp_cachetlb_ops.cache_page = local_ops->cache_page;
1846 
1847 		smp_cachetlb_ops.page_to_ram = local_ops->page_to_ram;
1848 		smp_cachetlb_ops.sig_insns = local_ops->sig_insns;
1849 		smp_cachetlb_ops.page_for_dma = local_ops->page_for_dma;
1850 	}
1851 
1852 	/* It really is const after this point. */
1853 	sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1854 		&smp_cachetlb_ops;
1855 #endif
1856 
1857 	if (sparc_cpu_model != sun4d)
1858 		ld_mmu_iommu();
1859 #ifdef CONFIG_SMP
1860 	if (sparc_cpu_model == sun4d)
1861 		sun4d_init_smp();
1862 	else if (sparc_cpu_model == sparc_leon)
1863 		leon_init_smp();
1864 	else
1865 		sun4m_init_smp();
1866 #endif
1867 }
1868