xref: /openbmc/linux/arch/sparc/mm/srmmu.c (revision ca79522c)
1 /*
2  * srmmu.c:  SRMMU specific routines for memory management.
3  *
4  * Copyright (C) 1995 David S. Miller  (davem@caip.rutgers.edu)
5  * Copyright (C) 1995,2002 Pete Zaitcev (zaitcev@yahoo.com)
6  * Copyright (C) 1996 Eddie C. Dost    (ecd@skynet.be)
7  * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
8  * Copyright (C) 1999,2000 Anton Blanchard (anton@samba.org)
9  */
10 
11 #include <linux/seq_file.h>
12 #include <linux/spinlock.h>
13 #include <linux/bootmem.h>
14 #include <linux/pagemap.h>
15 #include <linux/vmalloc.h>
16 #include <linux/kdebug.h>
17 #include <linux/kernel.h>
18 #include <linux/init.h>
19 #include <linux/log2.h>
20 #include <linux/gfp.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 
24 #include <asm/mmu_context.h>
25 #include <asm/cacheflush.h>
26 #include <asm/tlbflush.h>
27 #include <asm/io-unit.h>
28 #include <asm/pgalloc.h>
29 #include <asm/pgtable.h>
30 #include <asm/bitext.h>
31 #include <asm/vaddrs.h>
32 #include <asm/cache.h>
33 #include <asm/traps.h>
34 #include <asm/oplib.h>
35 #include <asm/mbus.h>
36 #include <asm/page.h>
37 #include <asm/asi.h>
38 #include <asm/msi.h>
39 #include <asm/smp.h>
40 #include <asm/io.h>
41 
42 /* Now the cpu specific definitions. */
43 #include <asm/turbosparc.h>
44 #include <asm/tsunami.h>
45 #include <asm/viking.h>
46 #include <asm/swift.h>
47 #include <asm/leon.h>
48 #include <asm/mxcc.h>
49 #include <asm/ross.h>
50 
51 #include "srmmu.h"
52 
53 enum mbus_module srmmu_modtype;
54 static unsigned int hwbug_bitmask;
55 int vac_cache_size;
56 int vac_line_size;
57 
58 extern struct resource sparc_iomap;
59 
60 extern unsigned long last_valid_pfn;
61 
62 static pgd_t *srmmu_swapper_pg_dir;
63 
64 const struct sparc32_cachetlb_ops *sparc32_cachetlb_ops;
65 
66 #ifdef CONFIG_SMP
67 const struct sparc32_cachetlb_ops *local_ops;
68 
69 #define FLUSH_BEGIN(mm)
70 #define FLUSH_END
71 #else
72 #define FLUSH_BEGIN(mm) if ((mm)->context != NO_CONTEXT) {
73 #define FLUSH_END	}
74 #endif
75 
76 int flush_page_for_dma_global = 1;
77 
78 char *srmmu_name;
79 
80 ctxd_t *srmmu_ctx_table_phys;
81 static ctxd_t *srmmu_context_table;
82 
83 int viking_mxcc_present;
84 static DEFINE_SPINLOCK(srmmu_context_spinlock);
85 
86 static int is_hypersparc;
87 
88 static int srmmu_cache_pagetables;
89 
90 /* these will be initialized in srmmu_nocache_calcsize() */
91 static unsigned long srmmu_nocache_size;
92 static unsigned long srmmu_nocache_end;
93 
94 /* 1 bit <=> 256 bytes of nocache <=> 64 PTEs */
95 #define SRMMU_NOCACHE_BITMAP_SHIFT (PAGE_SHIFT - 4)
96 
97 /* The context table is a nocache user with the biggest alignment needs. */
98 #define SRMMU_NOCACHE_ALIGN_MAX (sizeof(ctxd_t)*SRMMU_MAX_CONTEXTS)
99 
100 void *srmmu_nocache_pool;
101 void *srmmu_nocache_bitmap;
102 static struct bit_map srmmu_nocache_map;
103 
104 static inline int srmmu_pmd_none(pmd_t pmd)
105 { return !(pmd_val(pmd) & 0xFFFFFFF); }
106 
107 /* XXX should we hyper_flush_whole_icache here - Anton */
108 static inline void srmmu_ctxd_set(ctxd_t *ctxp, pgd_t *pgdp)
109 { set_pte((pte_t *)ctxp, (SRMMU_ET_PTD | (__nocache_pa((unsigned long) pgdp) >> 4))); }
110 
111 void pmd_set(pmd_t *pmdp, pte_t *ptep)
112 {
113 	unsigned long ptp;	/* Physical address, shifted right by 4 */
114 	int i;
115 
116 	ptp = __nocache_pa((unsigned long) ptep) >> 4;
117 	for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) {
118 		set_pte((pte_t *)&pmdp->pmdv[i], SRMMU_ET_PTD | ptp);
119 		ptp += (SRMMU_REAL_PTRS_PER_PTE*sizeof(pte_t) >> 4);
120 	}
121 }
122 
123 void pmd_populate(struct mm_struct *mm, pmd_t *pmdp, struct page *ptep)
124 {
125 	unsigned long ptp;	/* Physical address, shifted right by 4 */
126 	int i;
127 
128 	ptp = page_to_pfn(ptep) << (PAGE_SHIFT-4);	/* watch for overflow */
129 	for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) {
130 		set_pte((pte_t *)&pmdp->pmdv[i], SRMMU_ET_PTD | ptp);
131 		ptp += (SRMMU_REAL_PTRS_PER_PTE*sizeof(pte_t) >> 4);
132 	}
133 }
134 
135 /* Find an entry in the third-level page table.. */
136 pte_t *pte_offset_kernel(pmd_t *dir, unsigned long address)
137 {
138 	void *pte;
139 
140 	pte = __nocache_va((dir->pmdv[0] & SRMMU_PTD_PMASK) << 4);
141 	return (pte_t *) pte +
142 	    ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
143 }
144 
145 /*
146  * size: bytes to allocate in the nocache area.
147  * align: bytes, number to align at.
148  * Returns the virtual address of the allocated area.
149  */
150 static void *__srmmu_get_nocache(int size, int align)
151 {
152 	int offset;
153 	unsigned long addr;
154 
155 	if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
156 		printk(KERN_ERR "Size 0x%x too small for nocache request\n",
157 		       size);
158 		size = SRMMU_NOCACHE_BITMAP_SHIFT;
159 	}
160 	if (size & (SRMMU_NOCACHE_BITMAP_SHIFT - 1)) {
161 		printk(KERN_ERR "Size 0x%x unaligned int nocache request\n",
162 		       size);
163 		size += SRMMU_NOCACHE_BITMAP_SHIFT - 1;
164 	}
165 	BUG_ON(align > SRMMU_NOCACHE_ALIGN_MAX);
166 
167 	offset = bit_map_string_get(&srmmu_nocache_map,
168 				    size >> SRMMU_NOCACHE_BITMAP_SHIFT,
169 				    align >> SRMMU_NOCACHE_BITMAP_SHIFT);
170 	if (offset == -1) {
171 		printk(KERN_ERR "srmmu: out of nocache %d: %d/%d\n",
172 		       size, (int) srmmu_nocache_size,
173 		       srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
174 		return 0;
175 	}
176 
177 	addr = SRMMU_NOCACHE_VADDR + (offset << SRMMU_NOCACHE_BITMAP_SHIFT);
178 	return (void *)addr;
179 }
180 
181 void *srmmu_get_nocache(int size, int align)
182 {
183 	void *tmp;
184 
185 	tmp = __srmmu_get_nocache(size, align);
186 
187 	if (tmp)
188 		memset(tmp, 0, size);
189 
190 	return tmp;
191 }
192 
193 void srmmu_free_nocache(void *addr, int size)
194 {
195 	unsigned long vaddr;
196 	int offset;
197 
198 	vaddr = (unsigned long)addr;
199 	if (vaddr < SRMMU_NOCACHE_VADDR) {
200 		printk("Vaddr %lx is smaller than nocache base 0x%lx\n",
201 		    vaddr, (unsigned long)SRMMU_NOCACHE_VADDR);
202 		BUG();
203 	}
204 	if (vaddr + size > srmmu_nocache_end) {
205 		printk("Vaddr %lx is bigger than nocache end 0x%lx\n",
206 		    vaddr, srmmu_nocache_end);
207 		BUG();
208 	}
209 	if (!is_power_of_2(size)) {
210 		printk("Size 0x%x is not a power of 2\n", size);
211 		BUG();
212 	}
213 	if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
214 		printk("Size 0x%x is too small\n", size);
215 		BUG();
216 	}
217 	if (vaddr & (size - 1)) {
218 		printk("Vaddr %lx is not aligned to size 0x%x\n", vaddr, size);
219 		BUG();
220 	}
221 
222 	offset = (vaddr - SRMMU_NOCACHE_VADDR) >> SRMMU_NOCACHE_BITMAP_SHIFT;
223 	size = size >> SRMMU_NOCACHE_BITMAP_SHIFT;
224 
225 	bit_map_clear(&srmmu_nocache_map, offset, size);
226 }
227 
228 static void srmmu_early_allocate_ptable_skeleton(unsigned long start,
229 						 unsigned long end);
230 
231 /* Return how much physical memory we have.  */
232 static unsigned long __init probe_memory(void)
233 {
234 	unsigned long total = 0;
235 	int i;
236 
237 	for (i = 0; sp_banks[i].num_bytes; i++)
238 		total += sp_banks[i].num_bytes;
239 
240 	return total;
241 }
242 
243 /*
244  * Reserve nocache dynamically proportionally to the amount of
245  * system RAM. -- Tomas Szepe <szepe@pinerecords.com>, June 2002
246  */
247 static void __init srmmu_nocache_calcsize(void)
248 {
249 	unsigned long sysmemavail = probe_memory() / 1024;
250 	int srmmu_nocache_npages;
251 
252 	srmmu_nocache_npages =
253 		sysmemavail / SRMMU_NOCACHE_ALCRATIO / 1024 * 256;
254 
255  /* P3 XXX The 4x overuse: corroborated by /proc/meminfo. */
256 	// if (srmmu_nocache_npages < 256) srmmu_nocache_npages = 256;
257 	if (srmmu_nocache_npages < SRMMU_MIN_NOCACHE_PAGES)
258 		srmmu_nocache_npages = SRMMU_MIN_NOCACHE_PAGES;
259 
260 	/* anything above 1280 blows up */
261 	if (srmmu_nocache_npages > SRMMU_MAX_NOCACHE_PAGES)
262 		srmmu_nocache_npages = SRMMU_MAX_NOCACHE_PAGES;
263 
264 	srmmu_nocache_size = srmmu_nocache_npages * PAGE_SIZE;
265 	srmmu_nocache_end = SRMMU_NOCACHE_VADDR + srmmu_nocache_size;
266 }
267 
268 static void __init srmmu_nocache_init(void)
269 {
270 	unsigned int bitmap_bits;
271 	pgd_t *pgd;
272 	pmd_t *pmd;
273 	pte_t *pte;
274 	unsigned long paddr, vaddr;
275 	unsigned long pteval;
276 
277 	bitmap_bits = srmmu_nocache_size >> SRMMU_NOCACHE_BITMAP_SHIFT;
278 
279 	srmmu_nocache_pool = __alloc_bootmem(srmmu_nocache_size,
280 		SRMMU_NOCACHE_ALIGN_MAX, 0UL);
281 	memset(srmmu_nocache_pool, 0, srmmu_nocache_size);
282 
283 	srmmu_nocache_bitmap =
284 		__alloc_bootmem(BITS_TO_LONGS(bitmap_bits) * sizeof(long),
285 				SMP_CACHE_BYTES, 0UL);
286 	bit_map_init(&srmmu_nocache_map, srmmu_nocache_bitmap, bitmap_bits);
287 
288 	srmmu_swapper_pg_dir = __srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
289 	memset(__nocache_fix(srmmu_swapper_pg_dir), 0, SRMMU_PGD_TABLE_SIZE);
290 	init_mm.pgd = srmmu_swapper_pg_dir;
291 
292 	srmmu_early_allocate_ptable_skeleton(SRMMU_NOCACHE_VADDR, srmmu_nocache_end);
293 
294 	paddr = __pa((unsigned long)srmmu_nocache_pool);
295 	vaddr = SRMMU_NOCACHE_VADDR;
296 
297 	while (vaddr < srmmu_nocache_end) {
298 		pgd = pgd_offset_k(vaddr);
299 		pmd = pmd_offset(__nocache_fix(pgd), vaddr);
300 		pte = pte_offset_kernel(__nocache_fix(pmd), vaddr);
301 
302 		pteval = ((paddr >> 4) | SRMMU_ET_PTE | SRMMU_PRIV);
303 
304 		if (srmmu_cache_pagetables)
305 			pteval |= SRMMU_CACHE;
306 
307 		set_pte(__nocache_fix(pte), __pte(pteval));
308 
309 		vaddr += PAGE_SIZE;
310 		paddr += PAGE_SIZE;
311 	}
312 
313 	flush_cache_all();
314 	flush_tlb_all();
315 }
316 
317 pgd_t *get_pgd_fast(void)
318 {
319 	pgd_t *pgd = NULL;
320 
321 	pgd = __srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
322 	if (pgd) {
323 		pgd_t *init = pgd_offset_k(0);
324 		memset(pgd, 0, USER_PTRS_PER_PGD * sizeof(pgd_t));
325 		memcpy(pgd + USER_PTRS_PER_PGD, init + USER_PTRS_PER_PGD,
326 						(PTRS_PER_PGD - USER_PTRS_PER_PGD) * sizeof(pgd_t));
327 	}
328 
329 	return pgd;
330 }
331 
332 /*
333  * Hardware needs alignment to 256 only, but we align to whole page size
334  * to reduce fragmentation problems due to the buddy principle.
335  * XXX Provide actual fragmentation statistics in /proc.
336  *
337  * Alignments up to the page size are the same for physical and virtual
338  * addresses of the nocache area.
339  */
340 pgtable_t pte_alloc_one(struct mm_struct *mm, unsigned long address)
341 {
342 	unsigned long pte;
343 	struct page *page;
344 
345 	if ((pte = (unsigned long)pte_alloc_one_kernel(mm, address)) == 0)
346 		return NULL;
347 	page = pfn_to_page(__nocache_pa(pte) >> PAGE_SHIFT);
348 	pgtable_page_ctor(page);
349 	return page;
350 }
351 
352 void pte_free(struct mm_struct *mm, pgtable_t pte)
353 {
354 	unsigned long p;
355 
356 	pgtable_page_dtor(pte);
357 	p = (unsigned long)page_address(pte);	/* Cached address (for test) */
358 	if (p == 0)
359 		BUG();
360 	p = page_to_pfn(pte) << PAGE_SHIFT;	/* Physical address */
361 
362 	/* free non cached virtual address*/
363 	srmmu_free_nocache(__nocache_va(p), PTE_SIZE);
364 }
365 
366 /* context handling - a dynamically sized pool is used */
367 #define NO_CONTEXT	-1
368 
369 struct ctx_list {
370 	struct ctx_list *next;
371 	struct ctx_list *prev;
372 	unsigned int ctx_number;
373 	struct mm_struct *ctx_mm;
374 };
375 
376 static struct ctx_list *ctx_list_pool;
377 static struct ctx_list ctx_free;
378 static struct ctx_list ctx_used;
379 
380 /* At boot time we determine the number of contexts */
381 static int num_contexts;
382 
383 static inline void remove_from_ctx_list(struct ctx_list *entry)
384 {
385 	entry->next->prev = entry->prev;
386 	entry->prev->next = entry->next;
387 }
388 
389 static inline void add_to_ctx_list(struct ctx_list *head, struct ctx_list *entry)
390 {
391 	entry->next = head;
392 	(entry->prev = head->prev)->next = entry;
393 	head->prev = entry;
394 }
395 #define add_to_free_ctxlist(entry) add_to_ctx_list(&ctx_free, entry)
396 #define add_to_used_ctxlist(entry) add_to_ctx_list(&ctx_used, entry)
397 
398 
399 static inline void alloc_context(struct mm_struct *old_mm, struct mm_struct *mm)
400 {
401 	struct ctx_list *ctxp;
402 
403 	ctxp = ctx_free.next;
404 	if (ctxp != &ctx_free) {
405 		remove_from_ctx_list(ctxp);
406 		add_to_used_ctxlist(ctxp);
407 		mm->context = ctxp->ctx_number;
408 		ctxp->ctx_mm = mm;
409 		return;
410 	}
411 	ctxp = ctx_used.next;
412 	if (ctxp->ctx_mm == old_mm)
413 		ctxp = ctxp->next;
414 	if (ctxp == &ctx_used)
415 		panic("out of mmu contexts");
416 	flush_cache_mm(ctxp->ctx_mm);
417 	flush_tlb_mm(ctxp->ctx_mm);
418 	remove_from_ctx_list(ctxp);
419 	add_to_used_ctxlist(ctxp);
420 	ctxp->ctx_mm->context = NO_CONTEXT;
421 	ctxp->ctx_mm = mm;
422 	mm->context = ctxp->ctx_number;
423 }
424 
425 static inline void free_context(int context)
426 {
427 	struct ctx_list *ctx_old;
428 
429 	ctx_old = ctx_list_pool + context;
430 	remove_from_ctx_list(ctx_old);
431 	add_to_free_ctxlist(ctx_old);
432 }
433 
434 static void __init sparc_context_init(int numctx)
435 {
436 	int ctx;
437 	unsigned long size;
438 
439 	size = numctx * sizeof(struct ctx_list);
440 	ctx_list_pool = __alloc_bootmem(size, SMP_CACHE_BYTES, 0UL);
441 
442 	for (ctx = 0; ctx < numctx; ctx++) {
443 		struct ctx_list *clist;
444 
445 		clist = (ctx_list_pool + ctx);
446 		clist->ctx_number = ctx;
447 		clist->ctx_mm = NULL;
448 	}
449 	ctx_free.next = ctx_free.prev = &ctx_free;
450 	ctx_used.next = ctx_used.prev = &ctx_used;
451 	for (ctx = 0; ctx < numctx; ctx++)
452 		add_to_free_ctxlist(ctx_list_pool + ctx);
453 }
454 
455 void switch_mm(struct mm_struct *old_mm, struct mm_struct *mm,
456 	       struct task_struct *tsk)
457 {
458 	if (mm->context == NO_CONTEXT) {
459 		spin_lock(&srmmu_context_spinlock);
460 		alloc_context(old_mm, mm);
461 		spin_unlock(&srmmu_context_spinlock);
462 		srmmu_ctxd_set(&srmmu_context_table[mm->context], mm->pgd);
463 	}
464 
465 	if (sparc_cpu_model == sparc_leon)
466 		leon_switch_mm();
467 
468 	if (is_hypersparc)
469 		hyper_flush_whole_icache();
470 
471 	srmmu_set_context(mm->context);
472 }
473 
474 /* Low level IO area allocation on the SRMMU. */
475 static inline void srmmu_mapioaddr(unsigned long physaddr,
476 				   unsigned long virt_addr, int bus_type)
477 {
478 	pgd_t *pgdp;
479 	pmd_t *pmdp;
480 	pte_t *ptep;
481 	unsigned long tmp;
482 
483 	physaddr &= PAGE_MASK;
484 	pgdp = pgd_offset_k(virt_addr);
485 	pmdp = pmd_offset(pgdp, virt_addr);
486 	ptep = pte_offset_kernel(pmdp, virt_addr);
487 	tmp = (physaddr >> 4) | SRMMU_ET_PTE;
488 
489 	/* I need to test whether this is consistent over all
490 	 * sun4m's.  The bus_type represents the upper 4 bits of
491 	 * 36-bit physical address on the I/O space lines...
492 	 */
493 	tmp |= (bus_type << 28);
494 	tmp |= SRMMU_PRIV;
495 	__flush_page_to_ram(virt_addr);
496 	set_pte(ptep, __pte(tmp));
497 }
498 
499 void srmmu_mapiorange(unsigned int bus, unsigned long xpa,
500 		      unsigned long xva, unsigned int len)
501 {
502 	while (len != 0) {
503 		len -= PAGE_SIZE;
504 		srmmu_mapioaddr(xpa, xva, bus);
505 		xva += PAGE_SIZE;
506 		xpa += PAGE_SIZE;
507 	}
508 	flush_tlb_all();
509 }
510 
511 static inline void srmmu_unmapioaddr(unsigned long virt_addr)
512 {
513 	pgd_t *pgdp;
514 	pmd_t *pmdp;
515 	pte_t *ptep;
516 
517 	pgdp = pgd_offset_k(virt_addr);
518 	pmdp = pmd_offset(pgdp, virt_addr);
519 	ptep = pte_offset_kernel(pmdp, virt_addr);
520 
521 	/* No need to flush uncacheable page. */
522 	__pte_clear(ptep);
523 }
524 
525 void srmmu_unmapiorange(unsigned long virt_addr, unsigned int len)
526 {
527 	while (len != 0) {
528 		len -= PAGE_SIZE;
529 		srmmu_unmapioaddr(virt_addr);
530 		virt_addr += PAGE_SIZE;
531 	}
532 	flush_tlb_all();
533 }
534 
535 /* tsunami.S */
536 extern void tsunami_flush_cache_all(void);
537 extern void tsunami_flush_cache_mm(struct mm_struct *mm);
538 extern void tsunami_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
539 extern void tsunami_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
540 extern void tsunami_flush_page_to_ram(unsigned long page);
541 extern void tsunami_flush_page_for_dma(unsigned long page);
542 extern void tsunami_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
543 extern void tsunami_flush_tlb_all(void);
544 extern void tsunami_flush_tlb_mm(struct mm_struct *mm);
545 extern void tsunami_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
546 extern void tsunami_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
547 extern void tsunami_setup_blockops(void);
548 
549 /* swift.S */
550 extern void swift_flush_cache_all(void);
551 extern void swift_flush_cache_mm(struct mm_struct *mm);
552 extern void swift_flush_cache_range(struct vm_area_struct *vma,
553 				    unsigned long start, unsigned long end);
554 extern void swift_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
555 extern void swift_flush_page_to_ram(unsigned long page);
556 extern void swift_flush_page_for_dma(unsigned long page);
557 extern void swift_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
558 extern void swift_flush_tlb_all(void);
559 extern void swift_flush_tlb_mm(struct mm_struct *mm);
560 extern void swift_flush_tlb_range(struct vm_area_struct *vma,
561 				  unsigned long start, unsigned long end);
562 extern void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
563 
564 #if 0  /* P3: deadwood to debug precise flushes on Swift. */
565 void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
566 {
567 	int cctx, ctx1;
568 
569 	page &= PAGE_MASK;
570 	if ((ctx1 = vma->vm_mm->context) != -1) {
571 		cctx = srmmu_get_context();
572 /* Is context # ever different from current context? P3 */
573 		if (cctx != ctx1) {
574 			printk("flush ctx %02x curr %02x\n", ctx1, cctx);
575 			srmmu_set_context(ctx1);
576 			swift_flush_page(page);
577 			__asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
578 					"r" (page), "i" (ASI_M_FLUSH_PROBE));
579 			srmmu_set_context(cctx);
580 		} else {
581 			 /* Rm. prot. bits from virt. c. */
582 			/* swift_flush_cache_all(); */
583 			/* swift_flush_cache_page(vma, page); */
584 			swift_flush_page(page);
585 
586 			__asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
587 				"r" (page), "i" (ASI_M_FLUSH_PROBE));
588 			/* same as above: srmmu_flush_tlb_page() */
589 		}
590 	}
591 }
592 #endif
593 
594 /*
595  * The following are all MBUS based SRMMU modules, and therefore could
596  * be found in a multiprocessor configuration.  On the whole, these
597  * chips seems to be much more touchy about DVMA and page tables
598  * with respect to cache coherency.
599  */
600 
601 /* viking.S */
602 extern void viking_flush_cache_all(void);
603 extern void viking_flush_cache_mm(struct mm_struct *mm);
604 extern void viking_flush_cache_range(struct vm_area_struct *vma, unsigned long start,
605 				     unsigned long end);
606 extern void viking_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
607 extern void viking_flush_page_to_ram(unsigned long page);
608 extern void viking_flush_page_for_dma(unsigned long page);
609 extern void viking_flush_sig_insns(struct mm_struct *mm, unsigned long addr);
610 extern void viking_flush_page(unsigned long page);
611 extern void viking_mxcc_flush_page(unsigned long page);
612 extern void viking_flush_tlb_all(void);
613 extern void viking_flush_tlb_mm(struct mm_struct *mm);
614 extern void viking_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
615 				   unsigned long end);
616 extern void viking_flush_tlb_page(struct vm_area_struct *vma,
617 				  unsigned long page);
618 extern void sun4dsmp_flush_tlb_all(void);
619 extern void sun4dsmp_flush_tlb_mm(struct mm_struct *mm);
620 extern void sun4dsmp_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
621 				   unsigned long end);
622 extern void sun4dsmp_flush_tlb_page(struct vm_area_struct *vma,
623 				  unsigned long page);
624 
625 /* hypersparc.S */
626 extern void hypersparc_flush_cache_all(void);
627 extern void hypersparc_flush_cache_mm(struct mm_struct *mm);
628 extern void hypersparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
629 extern void hypersparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
630 extern void hypersparc_flush_page_to_ram(unsigned long page);
631 extern void hypersparc_flush_page_for_dma(unsigned long page);
632 extern void hypersparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
633 extern void hypersparc_flush_tlb_all(void);
634 extern void hypersparc_flush_tlb_mm(struct mm_struct *mm);
635 extern void hypersparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
636 extern void hypersparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
637 extern void hypersparc_setup_blockops(void);
638 
639 /*
640  * NOTE: All of this startup code assumes the low 16mb (approx.) of
641  *       kernel mappings are done with one single contiguous chunk of
642  *       ram.  On small ram machines (classics mainly) we only get
643  *       around 8mb mapped for us.
644  */
645 
646 static void __init early_pgtable_allocfail(char *type)
647 {
648 	prom_printf("inherit_prom_mappings: Cannot alloc kernel %s.\n", type);
649 	prom_halt();
650 }
651 
652 static void __init srmmu_early_allocate_ptable_skeleton(unsigned long start,
653 							unsigned long end)
654 {
655 	pgd_t *pgdp;
656 	pmd_t *pmdp;
657 	pte_t *ptep;
658 
659 	while (start < end) {
660 		pgdp = pgd_offset_k(start);
661 		if (pgd_none(*(pgd_t *)__nocache_fix(pgdp))) {
662 			pmdp = __srmmu_get_nocache(
663 			    SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
664 			if (pmdp == NULL)
665 				early_pgtable_allocfail("pmd");
666 			memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
667 			pgd_set(__nocache_fix(pgdp), pmdp);
668 		}
669 		pmdp = pmd_offset(__nocache_fix(pgdp), start);
670 		if (srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
671 			ptep = __srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
672 			if (ptep == NULL)
673 				early_pgtable_allocfail("pte");
674 			memset(__nocache_fix(ptep), 0, PTE_SIZE);
675 			pmd_set(__nocache_fix(pmdp), ptep);
676 		}
677 		if (start > (0xffffffffUL - PMD_SIZE))
678 			break;
679 		start = (start + PMD_SIZE) & PMD_MASK;
680 	}
681 }
682 
683 static void __init srmmu_allocate_ptable_skeleton(unsigned long start,
684 						  unsigned long end)
685 {
686 	pgd_t *pgdp;
687 	pmd_t *pmdp;
688 	pte_t *ptep;
689 
690 	while (start < end) {
691 		pgdp = pgd_offset_k(start);
692 		if (pgd_none(*pgdp)) {
693 			pmdp = __srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
694 			if (pmdp == NULL)
695 				early_pgtable_allocfail("pmd");
696 			memset(pmdp, 0, SRMMU_PMD_TABLE_SIZE);
697 			pgd_set(pgdp, pmdp);
698 		}
699 		pmdp = pmd_offset(pgdp, start);
700 		if (srmmu_pmd_none(*pmdp)) {
701 			ptep = __srmmu_get_nocache(PTE_SIZE,
702 							     PTE_SIZE);
703 			if (ptep == NULL)
704 				early_pgtable_allocfail("pte");
705 			memset(ptep, 0, PTE_SIZE);
706 			pmd_set(pmdp, ptep);
707 		}
708 		if (start > (0xffffffffUL - PMD_SIZE))
709 			break;
710 		start = (start + PMD_SIZE) & PMD_MASK;
711 	}
712 }
713 
714 /* These flush types are not available on all chips... */
715 static inline unsigned long srmmu_probe(unsigned long vaddr)
716 {
717 	unsigned long retval;
718 
719 	if (sparc_cpu_model != sparc_leon) {
720 
721 		vaddr &= PAGE_MASK;
722 		__asm__ __volatile__("lda [%1] %2, %0\n\t" :
723 				     "=r" (retval) :
724 				     "r" (vaddr | 0x400), "i" (ASI_M_FLUSH_PROBE));
725 	} else {
726 		retval = leon_swprobe(vaddr, 0);
727 	}
728 	return retval;
729 }
730 
731 /*
732  * This is much cleaner than poking around physical address space
733  * looking at the prom's page table directly which is what most
734  * other OS's do.  Yuck... this is much better.
735  */
736 static void __init srmmu_inherit_prom_mappings(unsigned long start,
737 					       unsigned long end)
738 {
739 	unsigned long probed;
740 	unsigned long addr;
741 	pgd_t *pgdp;
742 	pmd_t *pmdp;
743 	pte_t *ptep;
744 	int what; /* 0 = normal-pte, 1 = pmd-level pte, 2 = pgd-level pte */
745 
746 	while (start <= end) {
747 		if (start == 0)
748 			break; /* probably wrap around */
749 		if (start == 0xfef00000)
750 			start = KADB_DEBUGGER_BEGVM;
751 		probed = srmmu_probe(start);
752 		if (!probed) {
753 			/* continue probing until we find an entry */
754 			start += PAGE_SIZE;
755 			continue;
756 		}
757 
758 		/* A red snapper, see what it really is. */
759 		what = 0;
760 		addr = start - PAGE_SIZE;
761 
762 		if (!(start & ~(SRMMU_REAL_PMD_MASK))) {
763 			if (srmmu_probe(addr + SRMMU_REAL_PMD_SIZE) == probed)
764 				what = 1;
765 		}
766 
767 		if (!(start & ~(SRMMU_PGDIR_MASK))) {
768 			if (srmmu_probe(addr + SRMMU_PGDIR_SIZE) == probed)
769 				what = 2;
770 		}
771 
772 		pgdp = pgd_offset_k(start);
773 		if (what == 2) {
774 			*(pgd_t *)__nocache_fix(pgdp) = __pgd(probed);
775 			start += SRMMU_PGDIR_SIZE;
776 			continue;
777 		}
778 		if (pgd_none(*(pgd_t *)__nocache_fix(pgdp))) {
779 			pmdp = __srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE,
780 						   SRMMU_PMD_TABLE_SIZE);
781 			if (pmdp == NULL)
782 				early_pgtable_allocfail("pmd");
783 			memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
784 			pgd_set(__nocache_fix(pgdp), pmdp);
785 		}
786 		pmdp = pmd_offset(__nocache_fix(pgdp), start);
787 		if (srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
788 			ptep = __srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
789 			if (ptep == NULL)
790 				early_pgtable_allocfail("pte");
791 			memset(__nocache_fix(ptep), 0, PTE_SIZE);
792 			pmd_set(__nocache_fix(pmdp), ptep);
793 		}
794 		if (what == 1) {
795 			/* We bend the rule where all 16 PTPs in a pmd_t point
796 			 * inside the same PTE page, and we leak a perfectly
797 			 * good hardware PTE piece. Alternatives seem worse.
798 			 */
799 			unsigned int x;	/* Index of HW PMD in soft cluster */
800 			unsigned long *val;
801 			x = (start >> PMD_SHIFT) & 15;
802 			val = &pmdp->pmdv[x];
803 			*(unsigned long *)__nocache_fix(val) = probed;
804 			start += SRMMU_REAL_PMD_SIZE;
805 			continue;
806 		}
807 		ptep = pte_offset_kernel(__nocache_fix(pmdp), start);
808 		*(pte_t *)__nocache_fix(ptep) = __pte(probed);
809 		start += PAGE_SIZE;
810 	}
811 }
812 
813 #define KERNEL_PTE(page_shifted) ((page_shifted)|SRMMU_CACHE|SRMMU_PRIV|SRMMU_VALID)
814 
815 /* Create a third-level SRMMU 16MB page mapping. */
816 static void __init do_large_mapping(unsigned long vaddr, unsigned long phys_base)
817 {
818 	pgd_t *pgdp = pgd_offset_k(vaddr);
819 	unsigned long big_pte;
820 
821 	big_pte = KERNEL_PTE(phys_base >> 4);
822 	*(pgd_t *)__nocache_fix(pgdp) = __pgd(big_pte);
823 }
824 
825 /* Map sp_bank entry SP_ENTRY, starting at virtual address VBASE. */
826 static unsigned long __init map_spbank(unsigned long vbase, int sp_entry)
827 {
828 	unsigned long pstart = (sp_banks[sp_entry].base_addr & SRMMU_PGDIR_MASK);
829 	unsigned long vstart = (vbase & SRMMU_PGDIR_MASK);
830 	unsigned long vend = SRMMU_PGDIR_ALIGN(vbase + sp_banks[sp_entry].num_bytes);
831 	/* Map "low" memory only */
832 	const unsigned long min_vaddr = PAGE_OFFSET;
833 	const unsigned long max_vaddr = PAGE_OFFSET + SRMMU_MAXMEM;
834 
835 	if (vstart < min_vaddr || vstart >= max_vaddr)
836 		return vstart;
837 
838 	if (vend > max_vaddr || vend < min_vaddr)
839 		vend = max_vaddr;
840 
841 	while (vstart < vend) {
842 		do_large_mapping(vstart, pstart);
843 		vstart += SRMMU_PGDIR_SIZE; pstart += SRMMU_PGDIR_SIZE;
844 	}
845 	return vstart;
846 }
847 
848 static void __init map_kernel(void)
849 {
850 	int i;
851 
852 	if (phys_base > 0) {
853 		do_large_mapping(PAGE_OFFSET, phys_base);
854 	}
855 
856 	for (i = 0; sp_banks[i].num_bytes != 0; i++) {
857 		map_spbank((unsigned long)__va(sp_banks[i].base_addr), i);
858 	}
859 }
860 
861 void (*poke_srmmu)(void) __cpuinitdata = NULL;
862 
863 extern unsigned long bootmem_init(unsigned long *pages_avail);
864 
865 void __init srmmu_paging_init(void)
866 {
867 	int i;
868 	phandle cpunode;
869 	char node_str[128];
870 	pgd_t *pgd;
871 	pmd_t *pmd;
872 	pte_t *pte;
873 	unsigned long pages_avail;
874 
875 	init_mm.context = (unsigned long) NO_CONTEXT;
876 	sparc_iomap.start = SUN4M_IOBASE_VADDR;	/* 16MB of IOSPACE on all sun4m's. */
877 
878 	if (sparc_cpu_model == sun4d)
879 		num_contexts = 65536; /* We know it is Viking */
880 	else {
881 		/* Find the number of contexts on the srmmu. */
882 		cpunode = prom_getchild(prom_root_node);
883 		num_contexts = 0;
884 		while (cpunode != 0) {
885 			prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
886 			if (!strcmp(node_str, "cpu")) {
887 				num_contexts = prom_getintdefault(cpunode, "mmu-nctx", 0x8);
888 				break;
889 			}
890 			cpunode = prom_getsibling(cpunode);
891 		}
892 	}
893 
894 	if (!num_contexts) {
895 		prom_printf("Something wrong, can't find cpu node in paging_init.\n");
896 		prom_halt();
897 	}
898 
899 	pages_avail = 0;
900 	last_valid_pfn = bootmem_init(&pages_avail);
901 
902 	srmmu_nocache_calcsize();
903 	srmmu_nocache_init();
904 	srmmu_inherit_prom_mappings(0xfe400000, (LINUX_OPPROM_ENDVM - PAGE_SIZE));
905 	map_kernel();
906 
907 	/* ctx table has to be physically aligned to its size */
908 	srmmu_context_table = __srmmu_get_nocache(num_contexts * sizeof(ctxd_t), num_contexts * sizeof(ctxd_t));
909 	srmmu_ctx_table_phys = (ctxd_t *)__nocache_pa((unsigned long)srmmu_context_table);
910 
911 	for (i = 0; i < num_contexts; i++)
912 		srmmu_ctxd_set((ctxd_t *)__nocache_fix(&srmmu_context_table[i]), srmmu_swapper_pg_dir);
913 
914 	flush_cache_all();
915 	srmmu_set_ctable_ptr((unsigned long)srmmu_ctx_table_phys);
916 #ifdef CONFIG_SMP
917 	/* Stop from hanging here... */
918 	local_ops->tlb_all();
919 #else
920 	flush_tlb_all();
921 #endif
922 	poke_srmmu();
923 
924 	srmmu_allocate_ptable_skeleton(sparc_iomap.start, IOBASE_END);
925 	srmmu_allocate_ptable_skeleton(DVMA_VADDR, DVMA_END);
926 
927 	srmmu_allocate_ptable_skeleton(
928 		__fix_to_virt(__end_of_fixed_addresses - 1), FIXADDR_TOP);
929 	srmmu_allocate_ptable_skeleton(PKMAP_BASE, PKMAP_END);
930 
931 	pgd = pgd_offset_k(PKMAP_BASE);
932 	pmd = pmd_offset(pgd, PKMAP_BASE);
933 	pte = pte_offset_kernel(pmd, PKMAP_BASE);
934 	pkmap_page_table = pte;
935 
936 	flush_cache_all();
937 	flush_tlb_all();
938 
939 	sparc_context_init(num_contexts);
940 
941 	kmap_init();
942 
943 	{
944 		unsigned long zones_size[MAX_NR_ZONES];
945 		unsigned long zholes_size[MAX_NR_ZONES];
946 		unsigned long npages;
947 		int znum;
948 
949 		for (znum = 0; znum < MAX_NR_ZONES; znum++)
950 			zones_size[znum] = zholes_size[znum] = 0;
951 
952 		npages = max_low_pfn - pfn_base;
953 
954 		zones_size[ZONE_DMA] = npages;
955 		zholes_size[ZONE_DMA] = npages - pages_avail;
956 
957 		npages = highend_pfn - max_low_pfn;
958 		zones_size[ZONE_HIGHMEM] = npages;
959 		zholes_size[ZONE_HIGHMEM] = npages - calc_highpages();
960 
961 		free_area_init_node(0, zones_size, pfn_base, zholes_size);
962 	}
963 }
964 
965 void mmu_info(struct seq_file *m)
966 {
967 	seq_printf(m,
968 		   "MMU type\t: %s\n"
969 		   "contexts\t: %d\n"
970 		   "nocache total\t: %ld\n"
971 		   "nocache used\t: %d\n",
972 		   srmmu_name,
973 		   num_contexts,
974 		   srmmu_nocache_size,
975 		   srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
976 }
977 
978 int init_new_context(struct task_struct *tsk, struct mm_struct *mm)
979 {
980 	mm->context = NO_CONTEXT;
981 	return 0;
982 }
983 
984 void destroy_context(struct mm_struct *mm)
985 {
986 
987 	if (mm->context != NO_CONTEXT) {
988 		flush_cache_mm(mm);
989 		srmmu_ctxd_set(&srmmu_context_table[mm->context], srmmu_swapper_pg_dir);
990 		flush_tlb_mm(mm);
991 		spin_lock(&srmmu_context_spinlock);
992 		free_context(mm->context);
993 		spin_unlock(&srmmu_context_spinlock);
994 		mm->context = NO_CONTEXT;
995 	}
996 }
997 
998 /* Init various srmmu chip types. */
999 static void __init srmmu_is_bad(void)
1000 {
1001 	prom_printf("Could not determine SRMMU chip type.\n");
1002 	prom_halt();
1003 }
1004 
1005 static void __init init_vac_layout(void)
1006 {
1007 	phandle nd;
1008 	int cache_lines;
1009 	char node_str[128];
1010 #ifdef CONFIG_SMP
1011 	int cpu = 0;
1012 	unsigned long max_size = 0;
1013 	unsigned long min_line_size = 0x10000000;
1014 #endif
1015 
1016 	nd = prom_getchild(prom_root_node);
1017 	while ((nd = prom_getsibling(nd)) != 0) {
1018 		prom_getstring(nd, "device_type", node_str, sizeof(node_str));
1019 		if (!strcmp(node_str, "cpu")) {
1020 			vac_line_size = prom_getint(nd, "cache-line-size");
1021 			if (vac_line_size == -1) {
1022 				prom_printf("can't determine cache-line-size, halting.\n");
1023 				prom_halt();
1024 			}
1025 			cache_lines = prom_getint(nd, "cache-nlines");
1026 			if (cache_lines == -1) {
1027 				prom_printf("can't determine cache-nlines, halting.\n");
1028 				prom_halt();
1029 			}
1030 
1031 			vac_cache_size = cache_lines * vac_line_size;
1032 #ifdef CONFIG_SMP
1033 			if (vac_cache_size > max_size)
1034 				max_size = vac_cache_size;
1035 			if (vac_line_size < min_line_size)
1036 				min_line_size = vac_line_size;
1037 			//FIXME: cpus not contiguous!!
1038 			cpu++;
1039 			if (cpu >= nr_cpu_ids || !cpu_online(cpu))
1040 				break;
1041 #else
1042 			break;
1043 #endif
1044 		}
1045 	}
1046 	if (nd == 0) {
1047 		prom_printf("No CPU nodes found, halting.\n");
1048 		prom_halt();
1049 	}
1050 #ifdef CONFIG_SMP
1051 	vac_cache_size = max_size;
1052 	vac_line_size = min_line_size;
1053 #endif
1054 	printk("SRMMU: Using VAC size of %d bytes, line size %d bytes.\n",
1055 	       (int)vac_cache_size, (int)vac_line_size);
1056 }
1057 
1058 static void __cpuinit poke_hypersparc(void)
1059 {
1060 	volatile unsigned long clear;
1061 	unsigned long mreg = srmmu_get_mmureg();
1062 
1063 	hyper_flush_unconditional_combined();
1064 
1065 	mreg &= ~(HYPERSPARC_CWENABLE);
1066 	mreg |= (HYPERSPARC_CENABLE | HYPERSPARC_WBENABLE);
1067 	mreg |= (HYPERSPARC_CMODE);
1068 
1069 	srmmu_set_mmureg(mreg);
1070 
1071 #if 0 /* XXX I think this is bad news... -DaveM */
1072 	hyper_clear_all_tags();
1073 #endif
1074 
1075 	put_ross_icr(HYPERSPARC_ICCR_FTD | HYPERSPARC_ICCR_ICE);
1076 	hyper_flush_whole_icache();
1077 	clear = srmmu_get_faddr();
1078 	clear = srmmu_get_fstatus();
1079 }
1080 
1081 static const struct sparc32_cachetlb_ops hypersparc_ops = {
1082 	.cache_all	= hypersparc_flush_cache_all,
1083 	.cache_mm	= hypersparc_flush_cache_mm,
1084 	.cache_page	= hypersparc_flush_cache_page,
1085 	.cache_range	= hypersparc_flush_cache_range,
1086 	.tlb_all	= hypersparc_flush_tlb_all,
1087 	.tlb_mm		= hypersparc_flush_tlb_mm,
1088 	.tlb_page	= hypersparc_flush_tlb_page,
1089 	.tlb_range	= hypersparc_flush_tlb_range,
1090 	.page_to_ram	= hypersparc_flush_page_to_ram,
1091 	.sig_insns	= hypersparc_flush_sig_insns,
1092 	.page_for_dma	= hypersparc_flush_page_for_dma,
1093 };
1094 
1095 static void __init init_hypersparc(void)
1096 {
1097 	srmmu_name = "ROSS HyperSparc";
1098 	srmmu_modtype = HyperSparc;
1099 
1100 	init_vac_layout();
1101 
1102 	is_hypersparc = 1;
1103 	sparc32_cachetlb_ops = &hypersparc_ops;
1104 
1105 	poke_srmmu = poke_hypersparc;
1106 
1107 	hypersparc_setup_blockops();
1108 }
1109 
1110 static void __cpuinit poke_swift(void)
1111 {
1112 	unsigned long mreg;
1113 
1114 	/* Clear any crap from the cache or else... */
1115 	swift_flush_cache_all();
1116 
1117 	/* Enable I & D caches */
1118 	mreg = srmmu_get_mmureg();
1119 	mreg |= (SWIFT_IE | SWIFT_DE);
1120 	/*
1121 	 * The Swift branch folding logic is completely broken.  At
1122 	 * trap time, if things are just right, if can mistakenly
1123 	 * think that a trap is coming from kernel mode when in fact
1124 	 * it is coming from user mode (it mis-executes the branch in
1125 	 * the trap code).  So you see things like crashme completely
1126 	 * hosing your machine which is completely unacceptable.  Turn
1127 	 * this shit off... nice job Fujitsu.
1128 	 */
1129 	mreg &= ~(SWIFT_BF);
1130 	srmmu_set_mmureg(mreg);
1131 }
1132 
1133 static const struct sparc32_cachetlb_ops swift_ops = {
1134 	.cache_all	= swift_flush_cache_all,
1135 	.cache_mm	= swift_flush_cache_mm,
1136 	.cache_page	= swift_flush_cache_page,
1137 	.cache_range	= swift_flush_cache_range,
1138 	.tlb_all	= swift_flush_tlb_all,
1139 	.tlb_mm		= swift_flush_tlb_mm,
1140 	.tlb_page	= swift_flush_tlb_page,
1141 	.tlb_range	= swift_flush_tlb_range,
1142 	.page_to_ram	= swift_flush_page_to_ram,
1143 	.sig_insns	= swift_flush_sig_insns,
1144 	.page_for_dma	= swift_flush_page_for_dma,
1145 };
1146 
1147 #define SWIFT_MASKID_ADDR  0x10003018
1148 static void __init init_swift(void)
1149 {
1150 	unsigned long swift_rev;
1151 
1152 	__asm__ __volatile__("lda [%1] %2, %0\n\t"
1153 			     "srl %0, 0x18, %0\n\t" :
1154 			     "=r" (swift_rev) :
1155 			     "r" (SWIFT_MASKID_ADDR), "i" (ASI_M_BYPASS));
1156 	srmmu_name = "Fujitsu Swift";
1157 	switch (swift_rev) {
1158 	case 0x11:
1159 	case 0x20:
1160 	case 0x23:
1161 	case 0x30:
1162 		srmmu_modtype = Swift_lots_o_bugs;
1163 		hwbug_bitmask |= (HWBUG_KERN_ACCBROKEN | HWBUG_KERN_CBITBROKEN);
1164 		/*
1165 		 * Gee george, I wonder why Sun is so hush hush about
1166 		 * this hardware bug... really braindamage stuff going
1167 		 * on here.  However I think we can find a way to avoid
1168 		 * all of the workaround overhead under Linux.  Basically,
1169 		 * any page fault can cause kernel pages to become user
1170 		 * accessible (the mmu gets confused and clears some of
1171 		 * the ACC bits in kernel ptes).  Aha, sounds pretty
1172 		 * horrible eh?  But wait, after extensive testing it appears
1173 		 * that if you use pgd_t level large kernel pte's (like the
1174 		 * 4MB pages on the Pentium) the bug does not get tripped
1175 		 * at all.  This avoids almost all of the major overhead.
1176 		 * Welcome to a world where your vendor tells you to,
1177 		 * "apply this kernel patch" instead of "sorry for the
1178 		 * broken hardware, send it back and we'll give you
1179 		 * properly functioning parts"
1180 		 */
1181 		break;
1182 	case 0x25:
1183 	case 0x31:
1184 		srmmu_modtype = Swift_bad_c;
1185 		hwbug_bitmask |= HWBUG_KERN_CBITBROKEN;
1186 		/*
1187 		 * You see Sun allude to this hardware bug but never
1188 		 * admit things directly, they'll say things like,
1189 		 * "the Swift chip cache problems" or similar.
1190 		 */
1191 		break;
1192 	default:
1193 		srmmu_modtype = Swift_ok;
1194 		break;
1195 	}
1196 
1197 	sparc32_cachetlb_ops = &swift_ops;
1198 	flush_page_for_dma_global = 0;
1199 
1200 	/*
1201 	 * Are you now convinced that the Swift is one of the
1202 	 * biggest VLSI abortions of all time?  Bravo Fujitsu!
1203 	 * Fujitsu, the !#?!%$'d up processor people.  I bet if
1204 	 * you examined the microcode of the Swift you'd find
1205 	 * XXX's all over the place.
1206 	 */
1207 	poke_srmmu = poke_swift;
1208 }
1209 
1210 static void turbosparc_flush_cache_all(void)
1211 {
1212 	flush_user_windows();
1213 	turbosparc_idflash_clear();
1214 }
1215 
1216 static void turbosparc_flush_cache_mm(struct mm_struct *mm)
1217 {
1218 	FLUSH_BEGIN(mm)
1219 	flush_user_windows();
1220 	turbosparc_idflash_clear();
1221 	FLUSH_END
1222 }
1223 
1224 static void turbosparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1225 {
1226 	FLUSH_BEGIN(vma->vm_mm)
1227 	flush_user_windows();
1228 	turbosparc_idflash_clear();
1229 	FLUSH_END
1230 }
1231 
1232 static void turbosparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
1233 {
1234 	FLUSH_BEGIN(vma->vm_mm)
1235 	flush_user_windows();
1236 	if (vma->vm_flags & VM_EXEC)
1237 		turbosparc_flush_icache();
1238 	turbosparc_flush_dcache();
1239 	FLUSH_END
1240 }
1241 
1242 /* TurboSparc is copy-back, if we turn it on, but this does not work. */
1243 static void turbosparc_flush_page_to_ram(unsigned long page)
1244 {
1245 #ifdef TURBOSPARC_WRITEBACK
1246 	volatile unsigned long clear;
1247 
1248 	if (srmmu_probe(page))
1249 		turbosparc_flush_page_cache(page);
1250 	clear = srmmu_get_fstatus();
1251 #endif
1252 }
1253 
1254 static void turbosparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
1255 {
1256 }
1257 
1258 static void turbosparc_flush_page_for_dma(unsigned long page)
1259 {
1260 	turbosparc_flush_dcache();
1261 }
1262 
1263 static void turbosparc_flush_tlb_all(void)
1264 {
1265 	srmmu_flush_whole_tlb();
1266 }
1267 
1268 static void turbosparc_flush_tlb_mm(struct mm_struct *mm)
1269 {
1270 	FLUSH_BEGIN(mm)
1271 	srmmu_flush_whole_tlb();
1272 	FLUSH_END
1273 }
1274 
1275 static void turbosparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1276 {
1277 	FLUSH_BEGIN(vma->vm_mm)
1278 	srmmu_flush_whole_tlb();
1279 	FLUSH_END
1280 }
1281 
1282 static void turbosparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
1283 {
1284 	FLUSH_BEGIN(vma->vm_mm)
1285 	srmmu_flush_whole_tlb();
1286 	FLUSH_END
1287 }
1288 
1289 
1290 static void __cpuinit poke_turbosparc(void)
1291 {
1292 	unsigned long mreg = srmmu_get_mmureg();
1293 	unsigned long ccreg;
1294 
1295 	/* Clear any crap from the cache or else... */
1296 	turbosparc_flush_cache_all();
1297 	/* Temporarily disable I & D caches */
1298 	mreg &= ~(TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE);
1299 	mreg &= ~(TURBOSPARC_PCENABLE);		/* Don't check parity */
1300 	srmmu_set_mmureg(mreg);
1301 
1302 	ccreg = turbosparc_get_ccreg();
1303 
1304 #ifdef TURBOSPARC_WRITEBACK
1305 	ccreg |= (TURBOSPARC_SNENABLE);		/* Do DVMA snooping in Dcache */
1306 	ccreg &= ~(TURBOSPARC_uS2 | TURBOSPARC_WTENABLE);
1307 			/* Write-back D-cache, emulate VLSI
1308 			 * abortion number three, not number one */
1309 #else
1310 	/* For now let's play safe, optimize later */
1311 	ccreg |= (TURBOSPARC_SNENABLE | TURBOSPARC_WTENABLE);
1312 			/* Do DVMA snooping in Dcache, Write-thru D-cache */
1313 	ccreg &= ~(TURBOSPARC_uS2);
1314 			/* Emulate VLSI abortion number three, not number one */
1315 #endif
1316 
1317 	switch (ccreg & 7) {
1318 	case 0: /* No SE cache */
1319 	case 7: /* Test mode */
1320 		break;
1321 	default:
1322 		ccreg |= (TURBOSPARC_SCENABLE);
1323 	}
1324 	turbosparc_set_ccreg(ccreg);
1325 
1326 	mreg |= (TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE); /* I & D caches on */
1327 	mreg |= (TURBOSPARC_ICSNOOP);		/* Icache snooping on */
1328 	srmmu_set_mmureg(mreg);
1329 }
1330 
1331 static const struct sparc32_cachetlb_ops turbosparc_ops = {
1332 	.cache_all	= turbosparc_flush_cache_all,
1333 	.cache_mm	= turbosparc_flush_cache_mm,
1334 	.cache_page	= turbosparc_flush_cache_page,
1335 	.cache_range	= turbosparc_flush_cache_range,
1336 	.tlb_all	= turbosparc_flush_tlb_all,
1337 	.tlb_mm		= turbosparc_flush_tlb_mm,
1338 	.tlb_page	= turbosparc_flush_tlb_page,
1339 	.tlb_range	= turbosparc_flush_tlb_range,
1340 	.page_to_ram	= turbosparc_flush_page_to_ram,
1341 	.sig_insns	= turbosparc_flush_sig_insns,
1342 	.page_for_dma	= turbosparc_flush_page_for_dma,
1343 };
1344 
1345 static void __init init_turbosparc(void)
1346 {
1347 	srmmu_name = "Fujitsu TurboSparc";
1348 	srmmu_modtype = TurboSparc;
1349 	sparc32_cachetlb_ops = &turbosparc_ops;
1350 	poke_srmmu = poke_turbosparc;
1351 }
1352 
1353 static void __cpuinit poke_tsunami(void)
1354 {
1355 	unsigned long mreg = srmmu_get_mmureg();
1356 
1357 	tsunami_flush_icache();
1358 	tsunami_flush_dcache();
1359 	mreg &= ~TSUNAMI_ITD;
1360 	mreg |= (TSUNAMI_IENAB | TSUNAMI_DENAB);
1361 	srmmu_set_mmureg(mreg);
1362 }
1363 
1364 static const struct sparc32_cachetlb_ops tsunami_ops = {
1365 	.cache_all	= tsunami_flush_cache_all,
1366 	.cache_mm	= tsunami_flush_cache_mm,
1367 	.cache_page	= tsunami_flush_cache_page,
1368 	.cache_range	= tsunami_flush_cache_range,
1369 	.tlb_all	= tsunami_flush_tlb_all,
1370 	.tlb_mm		= tsunami_flush_tlb_mm,
1371 	.tlb_page	= tsunami_flush_tlb_page,
1372 	.tlb_range	= tsunami_flush_tlb_range,
1373 	.page_to_ram	= tsunami_flush_page_to_ram,
1374 	.sig_insns	= tsunami_flush_sig_insns,
1375 	.page_for_dma	= tsunami_flush_page_for_dma,
1376 };
1377 
1378 static void __init init_tsunami(void)
1379 {
1380 	/*
1381 	 * Tsunami's pretty sane, Sun and TI actually got it
1382 	 * somewhat right this time.  Fujitsu should have
1383 	 * taken some lessons from them.
1384 	 */
1385 
1386 	srmmu_name = "TI Tsunami";
1387 	srmmu_modtype = Tsunami;
1388 	sparc32_cachetlb_ops = &tsunami_ops;
1389 	poke_srmmu = poke_tsunami;
1390 
1391 	tsunami_setup_blockops();
1392 }
1393 
1394 static void __cpuinit poke_viking(void)
1395 {
1396 	unsigned long mreg = srmmu_get_mmureg();
1397 	static int smp_catch;
1398 
1399 	if (viking_mxcc_present) {
1400 		unsigned long mxcc_control = mxcc_get_creg();
1401 
1402 		mxcc_control |= (MXCC_CTL_ECE | MXCC_CTL_PRE | MXCC_CTL_MCE);
1403 		mxcc_control &= ~(MXCC_CTL_RRC);
1404 		mxcc_set_creg(mxcc_control);
1405 
1406 		/*
1407 		 * We don't need memory parity checks.
1408 		 * XXX This is a mess, have to dig out later. ecd.
1409 		viking_mxcc_turn_off_parity(&mreg, &mxcc_control);
1410 		 */
1411 
1412 		/* We do cache ptables on MXCC. */
1413 		mreg |= VIKING_TCENABLE;
1414 	} else {
1415 		unsigned long bpreg;
1416 
1417 		mreg &= ~(VIKING_TCENABLE);
1418 		if (smp_catch++) {
1419 			/* Must disable mixed-cmd mode here for other cpu's. */
1420 			bpreg = viking_get_bpreg();
1421 			bpreg &= ~(VIKING_ACTION_MIX);
1422 			viking_set_bpreg(bpreg);
1423 
1424 			/* Just in case PROM does something funny. */
1425 			msi_set_sync();
1426 		}
1427 	}
1428 
1429 	mreg |= VIKING_SPENABLE;
1430 	mreg |= (VIKING_ICENABLE | VIKING_DCENABLE);
1431 	mreg |= VIKING_SBENABLE;
1432 	mreg &= ~(VIKING_ACENABLE);
1433 	srmmu_set_mmureg(mreg);
1434 }
1435 
1436 static struct sparc32_cachetlb_ops viking_ops = {
1437 	.cache_all	= viking_flush_cache_all,
1438 	.cache_mm	= viking_flush_cache_mm,
1439 	.cache_page	= viking_flush_cache_page,
1440 	.cache_range	= viking_flush_cache_range,
1441 	.tlb_all	= viking_flush_tlb_all,
1442 	.tlb_mm		= viking_flush_tlb_mm,
1443 	.tlb_page	= viking_flush_tlb_page,
1444 	.tlb_range	= viking_flush_tlb_range,
1445 	.page_to_ram	= viking_flush_page_to_ram,
1446 	.sig_insns	= viking_flush_sig_insns,
1447 	.page_for_dma	= viking_flush_page_for_dma,
1448 };
1449 
1450 #ifdef CONFIG_SMP
1451 /* On sun4d the cpu broadcasts local TLB flushes, so we can just
1452  * perform the local TLB flush and all the other cpus will see it.
1453  * But, unfortunately, there is a bug in the sun4d XBUS backplane
1454  * that requires that we add some synchronization to these flushes.
1455  *
1456  * The bug is that the fifo which keeps track of all the pending TLB
1457  * broadcasts in the system is an entry or two too small, so if we
1458  * have too many going at once we'll overflow that fifo and lose a TLB
1459  * flush resulting in corruption.
1460  *
1461  * Our workaround is to take a global spinlock around the TLB flushes,
1462  * which guarentees we won't ever have too many pending.  It's a big
1463  * hammer, but a semaphore like system to make sure we only have N TLB
1464  * flushes going at once will require SMP locking anyways so there's
1465  * no real value in trying any harder than this.
1466  */
1467 static struct sparc32_cachetlb_ops viking_sun4d_smp_ops = {
1468 	.cache_all	= viking_flush_cache_all,
1469 	.cache_mm	= viking_flush_cache_mm,
1470 	.cache_page	= viking_flush_cache_page,
1471 	.cache_range	= viking_flush_cache_range,
1472 	.tlb_all	= sun4dsmp_flush_tlb_all,
1473 	.tlb_mm		= sun4dsmp_flush_tlb_mm,
1474 	.tlb_page	= sun4dsmp_flush_tlb_page,
1475 	.tlb_range	= sun4dsmp_flush_tlb_range,
1476 	.page_to_ram	= viking_flush_page_to_ram,
1477 	.sig_insns	= viking_flush_sig_insns,
1478 	.page_for_dma	= viking_flush_page_for_dma,
1479 };
1480 #endif
1481 
1482 static void __init init_viking(void)
1483 {
1484 	unsigned long mreg = srmmu_get_mmureg();
1485 
1486 	/* Ahhh, the viking.  SRMMU VLSI abortion number two... */
1487 	if (mreg & VIKING_MMODE) {
1488 		srmmu_name = "TI Viking";
1489 		viking_mxcc_present = 0;
1490 		msi_set_sync();
1491 
1492 		/*
1493 		 * We need this to make sure old viking takes no hits
1494 		 * on it's cache for dma snoops to workaround the
1495 		 * "load from non-cacheable memory" interrupt bug.
1496 		 * This is only necessary because of the new way in
1497 		 * which we use the IOMMU.
1498 		 */
1499 		viking_ops.page_for_dma = viking_flush_page;
1500 #ifdef CONFIG_SMP
1501 		viking_sun4d_smp_ops.page_for_dma = viking_flush_page;
1502 #endif
1503 		flush_page_for_dma_global = 0;
1504 	} else {
1505 		srmmu_name = "TI Viking/MXCC";
1506 		viking_mxcc_present = 1;
1507 		srmmu_cache_pagetables = 1;
1508 	}
1509 
1510 	sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1511 		&viking_ops;
1512 #ifdef CONFIG_SMP
1513 	if (sparc_cpu_model == sun4d)
1514 		sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1515 			&viking_sun4d_smp_ops;
1516 #endif
1517 
1518 	poke_srmmu = poke_viking;
1519 }
1520 
1521 /* Probe for the srmmu chip version. */
1522 static void __init get_srmmu_type(void)
1523 {
1524 	unsigned long mreg, psr;
1525 	unsigned long mod_typ, mod_rev, psr_typ, psr_vers;
1526 
1527 	srmmu_modtype = SRMMU_INVAL_MOD;
1528 	hwbug_bitmask = 0;
1529 
1530 	mreg = srmmu_get_mmureg(); psr = get_psr();
1531 	mod_typ = (mreg & 0xf0000000) >> 28;
1532 	mod_rev = (mreg & 0x0f000000) >> 24;
1533 	psr_typ = (psr >> 28) & 0xf;
1534 	psr_vers = (psr >> 24) & 0xf;
1535 
1536 	/* First, check for sparc-leon. */
1537 	if (sparc_cpu_model == sparc_leon) {
1538 		init_leon();
1539 		return;
1540 	}
1541 
1542 	/* Second, check for HyperSparc or Cypress. */
1543 	if (mod_typ == 1) {
1544 		switch (mod_rev) {
1545 		case 7:
1546 			/* UP or MP Hypersparc */
1547 			init_hypersparc();
1548 			break;
1549 		case 0:
1550 		case 2:
1551 		case 10:
1552 		case 11:
1553 		case 12:
1554 		case 13:
1555 		case 14:
1556 		case 15:
1557 		default:
1558 			prom_printf("Sparc-Linux Cypress support does not longer exit.\n");
1559 			prom_halt();
1560 			break;
1561 		}
1562 		return;
1563 	}
1564 
1565 	/* Now Fujitsu TurboSparc. It might happen that it is
1566 	 * in Swift emulation mode, so we will check later...
1567 	 */
1568 	if (psr_typ == 0 && psr_vers == 5) {
1569 		init_turbosparc();
1570 		return;
1571 	}
1572 
1573 	/* Next check for Fujitsu Swift. */
1574 	if (psr_typ == 0 && psr_vers == 4) {
1575 		phandle cpunode;
1576 		char node_str[128];
1577 
1578 		/* Look if it is not a TurboSparc emulating Swift... */
1579 		cpunode = prom_getchild(prom_root_node);
1580 		while ((cpunode = prom_getsibling(cpunode)) != 0) {
1581 			prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
1582 			if (!strcmp(node_str, "cpu")) {
1583 				if (!prom_getintdefault(cpunode, "psr-implementation", 1) &&
1584 				    prom_getintdefault(cpunode, "psr-version", 1) == 5) {
1585 					init_turbosparc();
1586 					return;
1587 				}
1588 				break;
1589 			}
1590 		}
1591 
1592 		init_swift();
1593 		return;
1594 	}
1595 
1596 	/* Now the Viking family of srmmu. */
1597 	if (psr_typ == 4 &&
1598 	   ((psr_vers == 0) ||
1599 	    ((psr_vers == 1) && (mod_typ == 0) && (mod_rev == 0)))) {
1600 		init_viking();
1601 		return;
1602 	}
1603 
1604 	/* Finally the Tsunami. */
1605 	if (psr_typ == 4 && psr_vers == 1 && (mod_typ || mod_rev)) {
1606 		init_tsunami();
1607 		return;
1608 	}
1609 
1610 	/* Oh well */
1611 	srmmu_is_bad();
1612 }
1613 
1614 #ifdef CONFIG_SMP
1615 /* Local cross-calls. */
1616 static void smp_flush_page_for_dma(unsigned long page)
1617 {
1618 	xc1((smpfunc_t) local_ops->page_for_dma, page);
1619 	local_ops->page_for_dma(page);
1620 }
1621 
1622 static void smp_flush_cache_all(void)
1623 {
1624 	xc0((smpfunc_t) local_ops->cache_all);
1625 	local_ops->cache_all();
1626 }
1627 
1628 static void smp_flush_tlb_all(void)
1629 {
1630 	xc0((smpfunc_t) local_ops->tlb_all);
1631 	local_ops->tlb_all();
1632 }
1633 
1634 static void smp_flush_cache_mm(struct mm_struct *mm)
1635 {
1636 	if (mm->context != NO_CONTEXT) {
1637 		cpumask_t cpu_mask;
1638 		cpumask_copy(&cpu_mask, mm_cpumask(mm));
1639 		cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1640 		if (!cpumask_empty(&cpu_mask))
1641 			xc1((smpfunc_t) local_ops->cache_mm, (unsigned long) mm);
1642 		local_ops->cache_mm(mm);
1643 	}
1644 }
1645 
1646 static void smp_flush_tlb_mm(struct mm_struct *mm)
1647 {
1648 	if (mm->context != NO_CONTEXT) {
1649 		cpumask_t cpu_mask;
1650 		cpumask_copy(&cpu_mask, mm_cpumask(mm));
1651 		cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1652 		if (!cpumask_empty(&cpu_mask)) {
1653 			xc1((smpfunc_t) local_ops->tlb_mm, (unsigned long) mm);
1654 			if (atomic_read(&mm->mm_users) == 1 && current->active_mm == mm)
1655 				cpumask_copy(mm_cpumask(mm),
1656 					     cpumask_of(smp_processor_id()));
1657 		}
1658 		local_ops->tlb_mm(mm);
1659 	}
1660 }
1661 
1662 static void smp_flush_cache_range(struct vm_area_struct *vma,
1663 				  unsigned long start,
1664 				  unsigned long end)
1665 {
1666 	struct mm_struct *mm = vma->vm_mm;
1667 
1668 	if (mm->context != NO_CONTEXT) {
1669 		cpumask_t cpu_mask;
1670 		cpumask_copy(&cpu_mask, mm_cpumask(mm));
1671 		cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1672 		if (!cpumask_empty(&cpu_mask))
1673 			xc3((smpfunc_t) local_ops->cache_range,
1674 			    (unsigned long) vma, start, end);
1675 		local_ops->cache_range(vma, start, end);
1676 	}
1677 }
1678 
1679 static void smp_flush_tlb_range(struct vm_area_struct *vma,
1680 				unsigned long start,
1681 				unsigned long end)
1682 {
1683 	struct mm_struct *mm = vma->vm_mm;
1684 
1685 	if (mm->context != NO_CONTEXT) {
1686 		cpumask_t cpu_mask;
1687 		cpumask_copy(&cpu_mask, mm_cpumask(mm));
1688 		cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1689 		if (!cpumask_empty(&cpu_mask))
1690 			xc3((smpfunc_t) local_ops->tlb_range,
1691 			    (unsigned long) vma, start, end);
1692 		local_ops->tlb_range(vma, start, end);
1693 	}
1694 }
1695 
1696 static void smp_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
1697 {
1698 	struct mm_struct *mm = vma->vm_mm;
1699 
1700 	if (mm->context != NO_CONTEXT) {
1701 		cpumask_t cpu_mask;
1702 		cpumask_copy(&cpu_mask, mm_cpumask(mm));
1703 		cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1704 		if (!cpumask_empty(&cpu_mask))
1705 			xc2((smpfunc_t) local_ops->cache_page,
1706 			    (unsigned long) vma, page);
1707 		local_ops->cache_page(vma, page);
1708 	}
1709 }
1710 
1711 static void smp_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
1712 {
1713 	struct mm_struct *mm = vma->vm_mm;
1714 
1715 	if (mm->context != NO_CONTEXT) {
1716 		cpumask_t cpu_mask;
1717 		cpumask_copy(&cpu_mask, mm_cpumask(mm));
1718 		cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1719 		if (!cpumask_empty(&cpu_mask))
1720 			xc2((smpfunc_t) local_ops->tlb_page,
1721 			    (unsigned long) vma, page);
1722 		local_ops->tlb_page(vma, page);
1723 	}
1724 }
1725 
1726 static void smp_flush_page_to_ram(unsigned long page)
1727 {
1728 	/* Current theory is that those who call this are the one's
1729 	 * who have just dirtied their cache with the pages contents
1730 	 * in kernel space, therefore we only run this on local cpu.
1731 	 *
1732 	 * XXX This experiment failed, research further... -DaveM
1733 	 */
1734 #if 1
1735 	xc1((smpfunc_t) local_ops->page_to_ram, page);
1736 #endif
1737 	local_ops->page_to_ram(page);
1738 }
1739 
1740 static void smp_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
1741 {
1742 	cpumask_t cpu_mask;
1743 	cpumask_copy(&cpu_mask, mm_cpumask(mm));
1744 	cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1745 	if (!cpumask_empty(&cpu_mask))
1746 		xc2((smpfunc_t) local_ops->sig_insns,
1747 		    (unsigned long) mm, insn_addr);
1748 	local_ops->sig_insns(mm, insn_addr);
1749 }
1750 
1751 static struct sparc32_cachetlb_ops smp_cachetlb_ops = {
1752 	.cache_all	= smp_flush_cache_all,
1753 	.cache_mm	= smp_flush_cache_mm,
1754 	.cache_page	= smp_flush_cache_page,
1755 	.cache_range	= smp_flush_cache_range,
1756 	.tlb_all	= smp_flush_tlb_all,
1757 	.tlb_mm		= smp_flush_tlb_mm,
1758 	.tlb_page	= smp_flush_tlb_page,
1759 	.tlb_range	= smp_flush_tlb_range,
1760 	.page_to_ram	= smp_flush_page_to_ram,
1761 	.sig_insns	= smp_flush_sig_insns,
1762 	.page_for_dma	= smp_flush_page_for_dma,
1763 };
1764 #endif
1765 
1766 /* Load up routines and constants for sun4m and sun4d mmu */
1767 void __init load_mmu(void)
1768 {
1769 	extern void ld_mmu_iommu(void);
1770 	extern void ld_mmu_iounit(void);
1771 
1772 	/* Functions */
1773 	get_srmmu_type();
1774 
1775 #ifdef CONFIG_SMP
1776 	/* El switcheroo... */
1777 	local_ops = sparc32_cachetlb_ops;
1778 
1779 	if (sparc_cpu_model == sun4d || sparc_cpu_model == sparc_leon) {
1780 		smp_cachetlb_ops.tlb_all = local_ops->tlb_all;
1781 		smp_cachetlb_ops.tlb_mm = local_ops->tlb_mm;
1782 		smp_cachetlb_ops.tlb_range = local_ops->tlb_range;
1783 		smp_cachetlb_ops.tlb_page = local_ops->tlb_page;
1784 	}
1785 
1786 	if (poke_srmmu == poke_viking) {
1787 		/* Avoid unnecessary cross calls. */
1788 		smp_cachetlb_ops.cache_all = local_ops->cache_all;
1789 		smp_cachetlb_ops.cache_mm = local_ops->cache_mm;
1790 		smp_cachetlb_ops.cache_range = local_ops->cache_range;
1791 		smp_cachetlb_ops.cache_page = local_ops->cache_page;
1792 
1793 		smp_cachetlb_ops.page_to_ram = local_ops->page_to_ram;
1794 		smp_cachetlb_ops.sig_insns = local_ops->sig_insns;
1795 		smp_cachetlb_ops.page_for_dma = local_ops->page_for_dma;
1796 	}
1797 
1798 	/* It really is const after this point. */
1799 	sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1800 		&smp_cachetlb_ops;
1801 #endif
1802 
1803 	if (sparc_cpu_model == sun4d)
1804 		ld_mmu_iounit();
1805 	else
1806 		ld_mmu_iommu();
1807 #ifdef CONFIG_SMP
1808 	if (sparc_cpu_model == sun4d)
1809 		sun4d_init_smp();
1810 	else if (sparc_cpu_model == sparc_leon)
1811 		leon_init_smp();
1812 	else
1813 		sun4m_init_smp();
1814 #endif
1815 }
1816