1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * srmmu.c: SRMMU specific routines for memory management. 4 * 5 * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu) 6 * Copyright (C) 1995,2002 Pete Zaitcev (zaitcev@yahoo.com) 7 * Copyright (C) 1996 Eddie C. Dost (ecd@skynet.be) 8 * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz) 9 * Copyright (C) 1999,2000 Anton Blanchard (anton@samba.org) 10 */ 11 12 #include <linux/seq_file.h> 13 #include <linux/spinlock.h> 14 #include <linux/memblock.h> 15 #include <linux/pagemap.h> 16 #include <linux/vmalloc.h> 17 #include <linux/kdebug.h> 18 #include <linux/export.h> 19 #include <linux/kernel.h> 20 #include <linux/init.h> 21 #include <linux/log2.h> 22 #include <linux/gfp.h> 23 #include <linux/fs.h> 24 #include <linux/mm.h> 25 26 #include <asm/mmu_context.h> 27 #include <asm/cacheflush.h> 28 #include <asm/tlbflush.h> 29 #include <asm/io-unit.h> 30 #include <asm/pgalloc.h> 31 #include <asm/pgtable.h> 32 #include <asm/bitext.h> 33 #include <asm/vaddrs.h> 34 #include <asm/cache.h> 35 #include <asm/traps.h> 36 #include <asm/oplib.h> 37 #include <asm/mbus.h> 38 #include <asm/page.h> 39 #include <asm/asi.h> 40 #include <asm/smp.h> 41 #include <asm/io.h> 42 43 /* Now the cpu specific definitions. */ 44 #include <asm/turbosparc.h> 45 #include <asm/tsunami.h> 46 #include <asm/viking.h> 47 #include <asm/swift.h> 48 #include <asm/leon.h> 49 #include <asm/mxcc.h> 50 #include <asm/ross.h> 51 52 #include "mm_32.h" 53 54 enum mbus_module srmmu_modtype; 55 static unsigned int hwbug_bitmask; 56 int vac_cache_size; 57 EXPORT_SYMBOL(vac_cache_size); 58 int vac_line_size; 59 60 extern struct resource sparc_iomap; 61 62 extern unsigned long last_valid_pfn; 63 64 static pgd_t *srmmu_swapper_pg_dir; 65 66 const struct sparc32_cachetlb_ops *sparc32_cachetlb_ops; 67 EXPORT_SYMBOL(sparc32_cachetlb_ops); 68 69 #ifdef CONFIG_SMP 70 const struct sparc32_cachetlb_ops *local_ops; 71 72 #define FLUSH_BEGIN(mm) 73 #define FLUSH_END 74 #else 75 #define FLUSH_BEGIN(mm) if ((mm)->context != NO_CONTEXT) { 76 #define FLUSH_END } 77 #endif 78 79 int flush_page_for_dma_global = 1; 80 81 char *srmmu_name; 82 83 ctxd_t *srmmu_ctx_table_phys; 84 static ctxd_t *srmmu_context_table; 85 86 int viking_mxcc_present; 87 static DEFINE_SPINLOCK(srmmu_context_spinlock); 88 89 static int is_hypersparc; 90 91 static int srmmu_cache_pagetables; 92 93 /* these will be initialized in srmmu_nocache_calcsize() */ 94 static unsigned long srmmu_nocache_size; 95 static unsigned long srmmu_nocache_end; 96 97 /* 1 bit <=> 256 bytes of nocache <=> 64 PTEs */ 98 #define SRMMU_NOCACHE_BITMAP_SHIFT (PAGE_SHIFT - 4) 99 100 /* The context table is a nocache user with the biggest alignment needs. */ 101 #define SRMMU_NOCACHE_ALIGN_MAX (sizeof(ctxd_t)*SRMMU_MAX_CONTEXTS) 102 103 void *srmmu_nocache_pool; 104 static struct bit_map srmmu_nocache_map; 105 106 static inline int srmmu_pmd_none(pmd_t pmd) 107 { return !(pmd_val(pmd) & 0xFFFFFFF); } 108 109 /* XXX should we hyper_flush_whole_icache here - Anton */ 110 static inline void srmmu_ctxd_set(ctxd_t *ctxp, pgd_t *pgdp) 111 { 112 pte_t pte; 113 114 pte = __pte((SRMMU_ET_PTD | (__nocache_pa(pgdp) >> 4))); 115 set_pte((pte_t *)ctxp, pte); 116 } 117 118 /* 119 * Locations of MSI Registers. 120 */ 121 #define MSI_MBUS_ARBEN 0xe0001008 /* MBus Arbiter Enable register */ 122 123 /* 124 * Useful bits in the MSI Registers. 125 */ 126 #define MSI_ASYNC_MODE 0x80000000 /* Operate the MSI asynchronously */ 127 128 static void msi_set_sync(void) 129 { 130 __asm__ __volatile__ ("lda [%0] %1, %%g3\n\t" 131 "andn %%g3, %2, %%g3\n\t" 132 "sta %%g3, [%0] %1\n\t" : : 133 "r" (MSI_MBUS_ARBEN), 134 "i" (ASI_M_CTL), "r" (MSI_ASYNC_MODE) : "g3"); 135 } 136 137 void pmd_set(pmd_t *pmdp, pte_t *ptep) 138 { 139 unsigned long ptp; /* Physical address, shifted right by 4 */ 140 int i; 141 142 ptp = __nocache_pa(ptep) >> 4; 143 for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) { 144 set_pte((pte_t *)&pmdp->pmdv[i], __pte(SRMMU_ET_PTD | ptp)); 145 ptp += (SRMMU_REAL_PTRS_PER_PTE * sizeof(pte_t) >> 4); 146 } 147 } 148 149 void pmd_populate(struct mm_struct *mm, pmd_t *pmdp, struct page *ptep) 150 { 151 unsigned long ptp; /* Physical address, shifted right by 4 */ 152 int i; 153 154 ptp = page_to_pfn(ptep) << (PAGE_SHIFT-4); /* watch for overflow */ 155 for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) { 156 set_pte((pte_t *)&pmdp->pmdv[i], __pte(SRMMU_ET_PTD | ptp)); 157 ptp += (SRMMU_REAL_PTRS_PER_PTE * sizeof(pte_t) >> 4); 158 } 159 } 160 161 /* Find an entry in the third-level page table.. */ 162 pte_t *pte_offset_kernel(pmd_t *dir, unsigned long address) 163 { 164 void *pte; 165 166 pte = __nocache_va((dir->pmdv[0] & SRMMU_PTD_PMASK) << 4); 167 return (pte_t *) pte + 168 ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)); 169 } 170 171 /* 172 * size: bytes to allocate in the nocache area. 173 * align: bytes, number to align at. 174 * Returns the virtual address of the allocated area. 175 */ 176 static void *__srmmu_get_nocache(int size, int align) 177 { 178 int offset; 179 unsigned long addr; 180 181 if (size < SRMMU_NOCACHE_BITMAP_SHIFT) { 182 printk(KERN_ERR "Size 0x%x too small for nocache request\n", 183 size); 184 size = SRMMU_NOCACHE_BITMAP_SHIFT; 185 } 186 if (size & (SRMMU_NOCACHE_BITMAP_SHIFT - 1)) { 187 printk(KERN_ERR "Size 0x%x unaligned int nocache request\n", 188 size); 189 size += SRMMU_NOCACHE_BITMAP_SHIFT - 1; 190 } 191 BUG_ON(align > SRMMU_NOCACHE_ALIGN_MAX); 192 193 offset = bit_map_string_get(&srmmu_nocache_map, 194 size >> SRMMU_NOCACHE_BITMAP_SHIFT, 195 align >> SRMMU_NOCACHE_BITMAP_SHIFT); 196 if (offset == -1) { 197 printk(KERN_ERR "srmmu: out of nocache %d: %d/%d\n", 198 size, (int) srmmu_nocache_size, 199 srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT); 200 return NULL; 201 } 202 203 addr = SRMMU_NOCACHE_VADDR + (offset << SRMMU_NOCACHE_BITMAP_SHIFT); 204 return (void *)addr; 205 } 206 207 void *srmmu_get_nocache(int size, int align) 208 { 209 void *tmp; 210 211 tmp = __srmmu_get_nocache(size, align); 212 213 if (tmp) 214 memset(tmp, 0, size); 215 216 return tmp; 217 } 218 219 void srmmu_free_nocache(void *addr, int size) 220 { 221 unsigned long vaddr; 222 int offset; 223 224 vaddr = (unsigned long)addr; 225 if (vaddr < SRMMU_NOCACHE_VADDR) { 226 printk("Vaddr %lx is smaller than nocache base 0x%lx\n", 227 vaddr, (unsigned long)SRMMU_NOCACHE_VADDR); 228 BUG(); 229 } 230 if (vaddr + size > srmmu_nocache_end) { 231 printk("Vaddr %lx is bigger than nocache end 0x%lx\n", 232 vaddr, srmmu_nocache_end); 233 BUG(); 234 } 235 if (!is_power_of_2(size)) { 236 printk("Size 0x%x is not a power of 2\n", size); 237 BUG(); 238 } 239 if (size < SRMMU_NOCACHE_BITMAP_SHIFT) { 240 printk("Size 0x%x is too small\n", size); 241 BUG(); 242 } 243 if (vaddr & (size - 1)) { 244 printk("Vaddr %lx is not aligned to size 0x%x\n", vaddr, size); 245 BUG(); 246 } 247 248 offset = (vaddr - SRMMU_NOCACHE_VADDR) >> SRMMU_NOCACHE_BITMAP_SHIFT; 249 size = size >> SRMMU_NOCACHE_BITMAP_SHIFT; 250 251 bit_map_clear(&srmmu_nocache_map, offset, size); 252 } 253 254 static void srmmu_early_allocate_ptable_skeleton(unsigned long start, 255 unsigned long end); 256 257 /* Return how much physical memory we have. */ 258 static unsigned long __init probe_memory(void) 259 { 260 unsigned long total = 0; 261 int i; 262 263 for (i = 0; sp_banks[i].num_bytes; i++) 264 total += sp_banks[i].num_bytes; 265 266 return total; 267 } 268 269 /* 270 * Reserve nocache dynamically proportionally to the amount of 271 * system RAM. -- Tomas Szepe <szepe@pinerecords.com>, June 2002 272 */ 273 static void __init srmmu_nocache_calcsize(void) 274 { 275 unsigned long sysmemavail = probe_memory() / 1024; 276 int srmmu_nocache_npages; 277 278 srmmu_nocache_npages = 279 sysmemavail / SRMMU_NOCACHE_ALCRATIO / 1024 * 256; 280 281 /* P3 XXX The 4x overuse: corroborated by /proc/meminfo. */ 282 // if (srmmu_nocache_npages < 256) srmmu_nocache_npages = 256; 283 if (srmmu_nocache_npages < SRMMU_MIN_NOCACHE_PAGES) 284 srmmu_nocache_npages = SRMMU_MIN_NOCACHE_PAGES; 285 286 /* anything above 1280 blows up */ 287 if (srmmu_nocache_npages > SRMMU_MAX_NOCACHE_PAGES) 288 srmmu_nocache_npages = SRMMU_MAX_NOCACHE_PAGES; 289 290 srmmu_nocache_size = srmmu_nocache_npages * PAGE_SIZE; 291 srmmu_nocache_end = SRMMU_NOCACHE_VADDR + srmmu_nocache_size; 292 } 293 294 static void __init srmmu_nocache_init(void) 295 { 296 void *srmmu_nocache_bitmap; 297 unsigned int bitmap_bits; 298 pgd_t *pgd; 299 pmd_t *pmd; 300 pte_t *pte; 301 unsigned long paddr, vaddr; 302 unsigned long pteval; 303 304 bitmap_bits = srmmu_nocache_size >> SRMMU_NOCACHE_BITMAP_SHIFT; 305 306 srmmu_nocache_pool = memblock_alloc_from(srmmu_nocache_size, 307 SRMMU_NOCACHE_ALIGN_MAX, 0UL); 308 memset(srmmu_nocache_pool, 0, srmmu_nocache_size); 309 310 srmmu_nocache_bitmap = 311 memblock_alloc_from(BITS_TO_LONGS(bitmap_bits) * sizeof(long), 312 SMP_CACHE_BYTES, 0UL); 313 bit_map_init(&srmmu_nocache_map, srmmu_nocache_bitmap, bitmap_bits); 314 315 srmmu_swapper_pg_dir = __srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE); 316 memset(__nocache_fix(srmmu_swapper_pg_dir), 0, SRMMU_PGD_TABLE_SIZE); 317 init_mm.pgd = srmmu_swapper_pg_dir; 318 319 srmmu_early_allocate_ptable_skeleton(SRMMU_NOCACHE_VADDR, srmmu_nocache_end); 320 321 paddr = __pa((unsigned long)srmmu_nocache_pool); 322 vaddr = SRMMU_NOCACHE_VADDR; 323 324 while (vaddr < srmmu_nocache_end) { 325 pgd = pgd_offset_k(vaddr); 326 pmd = pmd_offset(__nocache_fix(pgd), vaddr); 327 pte = pte_offset_kernel(__nocache_fix(pmd), vaddr); 328 329 pteval = ((paddr >> 4) | SRMMU_ET_PTE | SRMMU_PRIV); 330 331 if (srmmu_cache_pagetables) 332 pteval |= SRMMU_CACHE; 333 334 set_pte(__nocache_fix(pte), __pte(pteval)); 335 336 vaddr += PAGE_SIZE; 337 paddr += PAGE_SIZE; 338 } 339 340 flush_cache_all(); 341 flush_tlb_all(); 342 } 343 344 pgd_t *get_pgd_fast(void) 345 { 346 pgd_t *pgd = NULL; 347 348 pgd = __srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE); 349 if (pgd) { 350 pgd_t *init = pgd_offset_k(0); 351 memset(pgd, 0, USER_PTRS_PER_PGD * sizeof(pgd_t)); 352 memcpy(pgd + USER_PTRS_PER_PGD, init + USER_PTRS_PER_PGD, 353 (PTRS_PER_PGD - USER_PTRS_PER_PGD) * sizeof(pgd_t)); 354 } 355 356 return pgd; 357 } 358 359 /* 360 * Hardware needs alignment to 256 only, but we align to whole page size 361 * to reduce fragmentation problems due to the buddy principle. 362 * XXX Provide actual fragmentation statistics in /proc. 363 * 364 * Alignments up to the page size are the same for physical and virtual 365 * addresses of the nocache area. 366 */ 367 pgtable_t pte_alloc_one(struct mm_struct *mm) 368 { 369 unsigned long pte; 370 struct page *page; 371 372 if ((pte = (unsigned long)pte_alloc_one_kernel(mm)) == 0) 373 return NULL; 374 page = pfn_to_page(__nocache_pa(pte) >> PAGE_SHIFT); 375 if (!pgtable_page_ctor(page)) { 376 __free_page(page); 377 return NULL; 378 } 379 return page; 380 } 381 382 void pte_free(struct mm_struct *mm, pgtable_t pte) 383 { 384 unsigned long p; 385 386 pgtable_page_dtor(pte); 387 p = (unsigned long)page_address(pte); /* Cached address (for test) */ 388 if (p == 0) 389 BUG(); 390 p = page_to_pfn(pte) << PAGE_SHIFT; /* Physical address */ 391 392 /* free non cached virtual address*/ 393 srmmu_free_nocache(__nocache_va(p), PTE_SIZE); 394 } 395 396 /* context handling - a dynamically sized pool is used */ 397 #define NO_CONTEXT -1 398 399 struct ctx_list { 400 struct ctx_list *next; 401 struct ctx_list *prev; 402 unsigned int ctx_number; 403 struct mm_struct *ctx_mm; 404 }; 405 406 static struct ctx_list *ctx_list_pool; 407 static struct ctx_list ctx_free; 408 static struct ctx_list ctx_used; 409 410 /* At boot time we determine the number of contexts */ 411 static int num_contexts; 412 413 static inline void remove_from_ctx_list(struct ctx_list *entry) 414 { 415 entry->next->prev = entry->prev; 416 entry->prev->next = entry->next; 417 } 418 419 static inline void add_to_ctx_list(struct ctx_list *head, struct ctx_list *entry) 420 { 421 entry->next = head; 422 (entry->prev = head->prev)->next = entry; 423 head->prev = entry; 424 } 425 #define add_to_free_ctxlist(entry) add_to_ctx_list(&ctx_free, entry) 426 #define add_to_used_ctxlist(entry) add_to_ctx_list(&ctx_used, entry) 427 428 429 static inline void alloc_context(struct mm_struct *old_mm, struct mm_struct *mm) 430 { 431 struct ctx_list *ctxp; 432 433 ctxp = ctx_free.next; 434 if (ctxp != &ctx_free) { 435 remove_from_ctx_list(ctxp); 436 add_to_used_ctxlist(ctxp); 437 mm->context = ctxp->ctx_number; 438 ctxp->ctx_mm = mm; 439 return; 440 } 441 ctxp = ctx_used.next; 442 if (ctxp->ctx_mm == old_mm) 443 ctxp = ctxp->next; 444 if (ctxp == &ctx_used) 445 panic("out of mmu contexts"); 446 flush_cache_mm(ctxp->ctx_mm); 447 flush_tlb_mm(ctxp->ctx_mm); 448 remove_from_ctx_list(ctxp); 449 add_to_used_ctxlist(ctxp); 450 ctxp->ctx_mm->context = NO_CONTEXT; 451 ctxp->ctx_mm = mm; 452 mm->context = ctxp->ctx_number; 453 } 454 455 static inline void free_context(int context) 456 { 457 struct ctx_list *ctx_old; 458 459 ctx_old = ctx_list_pool + context; 460 remove_from_ctx_list(ctx_old); 461 add_to_free_ctxlist(ctx_old); 462 } 463 464 static void __init sparc_context_init(int numctx) 465 { 466 int ctx; 467 unsigned long size; 468 469 size = numctx * sizeof(struct ctx_list); 470 ctx_list_pool = memblock_alloc_from(size, SMP_CACHE_BYTES, 0UL); 471 472 for (ctx = 0; ctx < numctx; ctx++) { 473 struct ctx_list *clist; 474 475 clist = (ctx_list_pool + ctx); 476 clist->ctx_number = ctx; 477 clist->ctx_mm = NULL; 478 } 479 ctx_free.next = ctx_free.prev = &ctx_free; 480 ctx_used.next = ctx_used.prev = &ctx_used; 481 for (ctx = 0; ctx < numctx; ctx++) 482 add_to_free_ctxlist(ctx_list_pool + ctx); 483 } 484 485 void switch_mm(struct mm_struct *old_mm, struct mm_struct *mm, 486 struct task_struct *tsk) 487 { 488 unsigned long flags; 489 490 if (mm->context == NO_CONTEXT) { 491 spin_lock_irqsave(&srmmu_context_spinlock, flags); 492 alloc_context(old_mm, mm); 493 spin_unlock_irqrestore(&srmmu_context_spinlock, flags); 494 srmmu_ctxd_set(&srmmu_context_table[mm->context], mm->pgd); 495 } 496 497 if (sparc_cpu_model == sparc_leon) 498 leon_switch_mm(); 499 500 if (is_hypersparc) 501 hyper_flush_whole_icache(); 502 503 srmmu_set_context(mm->context); 504 } 505 506 /* Low level IO area allocation on the SRMMU. */ 507 static inline void srmmu_mapioaddr(unsigned long physaddr, 508 unsigned long virt_addr, int bus_type) 509 { 510 pgd_t *pgdp; 511 pmd_t *pmdp; 512 pte_t *ptep; 513 unsigned long tmp; 514 515 physaddr &= PAGE_MASK; 516 pgdp = pgd_offset_k(virt_addr); 517 pmdp = pmd_offset(pgdp, virt_addr); 518 ptep = pte_offset_kernel(pmdp, virt_addr); 519 tmp = (physaddr >> 4) | SRMMU_ET_PTE; 520 521 /* I need to test whether this is consistent over all 522 * sun4m's. The bus_type represents the upper 4 bits of 523 * 36-bit physical address on the I/O space lines... 524 */ 525 tmp |= (bus_type << 28); 526 tmp |= SRMMU_PRIV; 527 __flush_page_to_ram(virt_addr); 528 set_pte(ptep, __pte(tmp)); 529 } 530 531 void srmmu_mapiorange(unsigned int bus, unsigned long xpa, 532 unsigned long xva, unsigned int len) 533 { 534 while (len != 0) { 535 len -= PAGE_SIZE; 536 srmmu_mapioaddr(xpa, xva, bus); 537 xva += PAGE_SIZE; 538 xpa += PAGE_SIZE; 539 } 540 flush_tlb_all(); 541 } 542 543 static inline void srmmu_unmapioaddr(unsigned long virt_addr) 544 { 545 pgd_t *pgdp; 546 pmd_t *pmdp; 547 pte_t *ptep; 548 549 pgdp = pgd_offset_k(virt_addr); 550 pmdp = pmd_offset(pgdp, virt_addr); 551 ptep = pte_offset_kernel(pmdp, virt_addr); 552 553 /* No need to flush uncacheable page. */ 554 __pte_clear(ptep); 555 } 556 557 void srmmu_unmapiorange(unsigned long virt_addr, unsigned int len) 558 { 559 while (len != 0) { 560 len -= PAGE_SIZE; 561 srmmu_unmapioaddr(virt_addr); 562 virt_addr += PAGE_SIZE; 563 } 564 flush_tlb_all(); 565 } 566 567 /* tsunami.S */ 568 extern void tsunami_flush_cache_all(void); 569 extern void tsunami_flush_cache_mm(struct mm_struct *mm); 570 extern void tsunami_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end); 571 extern void tsunami_flush_cache_page(struct vm_area_struct *vma, unsigned long page); 572 extern void tsunami_flush_page_to_ram(unsigned long page); 573 extern void tsunami_flush_page_for_dma(unsigned long page); 574 extern void tsunami_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr); 575 extern void tsunami_flush_tlb_all(void); 576 extern void tsunami_flush_tlb_mm(struct mm_struct *mm); 577 extern void tsunami_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end); 578 extern void tsunami_flush_tlb_page(struct vm_area_struct *vma, unsigned long page); 579 extern void tsunami_setup_blockops(void); 580 581 /* swift.S */ 582 extern void swift_flush_cache_all(void); 583 extern void swift_flush_cache_mm(struct mm_struct *mm); 584 extern void swift_flush_cache_range(struct vm_area_struct *vma, 585 unsigned long start, unsigned long end); 586 extern void swift_flush_cache_page(struct vm_area_struct *vma, unsigned long page); 587 extern void swift_flush_page_to_ram(unsigned long page); 588 extern void swift_flush_page_for_dma(unsigned long page); 589 extern void swift_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr); 590 extern void swift_flush_tlb_all(void); 591 extern void swift_flush_tlb_mm(struct mm_struct *mm); 592 extern void swift_flush_tlb_range(struct vm_area_struct *vma, 593 unsigned long start, unsigned long end); 594 extern void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page); 595 596 #if 0 /* P3: deadwood to debug precise flushes on Swift. */ 597 void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page) 598 { 599 int cctx, ctx1; 600 601 page &= PAGE_MASK; 602 if ((ctx1 = vma->vm_mm->context) != -1) { 603 cctx = srmmu_get_context(); 604 /* Is context # ever different from current context? P3 */ 605 if (cctx != ctx1) { 606 printk("flush ctx %02x curr %02x\n", ctx1, cctx); 607 srmmu_set_context(ctx1); 608 swift_flush_page(page); 609 __asm__ __volatile__("sta %%g0, [%0] %1\n\t" : : 610 "r" (page), "i" (ASI_M_FLUSH_PROBE)); 611 srmmu_set_context(cctx); 612 } else { 613 /* Rm. prot. bits from virt. c. */ 614 /* swift_flush_cache_all(); */ 615 /* swift_flush_cache_page(vma, page); */ 616 swift_flush_page(page); 617 618 __asm__ __volatile__("sta %%g0, [%0] %1\n\t" : : 619 "r" (page), "i" (ASI_M_FLUSH_PROBE)); 620 /* same as above: srmmu_flush_tlb_page() */ 621 } 622 } 623 } 624 #endif 625 626 /* 627 * The following are all MBUS based SRMMU modules, and therefore could 628 * be found in a multiprocessor configuration. On the whole, these 629 * chips seems to be much more touchy about DVMA and page tables 630 * with respect to cache coherency. 631 */ 632 633 /* viking.S */ 634 extern void viking_flush_cache_all(void); 635 extern void viking_flush_cache_mm(struct mm_struct *mm); 636 extern void viking_flush_cache_range(struct vm_area_struct *vma, unsigned long start, 637 unsigned long end); 638 extern void viking_flush_cache_page(struct vm_area_struct *vma, unsigned long page); 639 extern void viking_flush_page_to_ram(unsigned long page); 640 extern void viking_flush_page_for_dma(unsigned long page); 641 extern void viking_flush_sig_insns(struct mm_struct *mm, unsigned long addr); 642 extern void viking_flush_page(unsigned long page); 643 extern void viking_mxcc_flush_page(unsigned long page); 644 extern void viking_flush_tlb_all(void); 645 extern void viking_flush_tlb_mm(struct mm_struct *mm); 646 extern void viking_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, 647 unsigned long end); 648 extern void viking_flush_tlb_page(struct vm_area_struct *vma, 649 unsigned long page); 650 extern void sun4dsmp_flush_tlb_all(void); 651 extern void sun4dsmp_flush_tlb_mm(struct mm_struct *mm); 652 extern void sun4dsmp_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, 653 unsigned long end); 654 extern void sun4dsmp_flush_tlb_page(struct vm_area_struct *vma, 655 unsigned long page); 656 657 /* hypersparc.S */ 658 extern void hypersparc_flush_cache_all(void); 659 extern void hypersparc_flush_cache_mm(struct mm_struct *mm); 660 extern void hypersparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end); 661 extern void hypersparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page); 662 extern void hypersparc_flush_page_to_ram(unsigned long page); 663 extern void hypersparc_flush_page_for_dma(unsigned long page); 664 extern void hypersparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr); 665 extern void hypersparc_flush_tlb_all(void); 666 extern void hypersparc_flush_tlb_mm(struct mm_struct *mm); 667 extern void hypersparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end); 668 extern void hypersparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page); 669 extern void hypersparc_setup_blockops(void); 670 671 /* 672 * NOTE: All of this startup code assumes the low 16mb (approx.) of 673 * kernel mappings are done with one single contiguous chunk of 674 * ram. On small ram machines (classics mainly) we only get 675 * around 8mb mapped for us. 676 */ 677 678 static void __init early_pgtable_allocfail(char *type) 679 { 680 prom_printf("inherit_prom_mappings: Cannot alloc kernel %s.\n", type); 681 prom_halt(); 682 } 683 684 static void __init srmmu_early_allocate_ptable_skeleton(unsigned long start, 685 unsigned long end) 686 { 687 pgd_t *pgdp; 688 pmd_t *pmdp; 689 pte_t *ptep; 690 691 while (start < end) { 692 pgdp = pgd_offset_k(start); 693 if (pgd_none(*(pgd_t *)__nocache_fix(pgdp))) { 694 pmdp = __srmmu_get_nocache( 695 SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE); 696 if (pmdp == NULL) 697 early_pgtable_allocfail("pmd"); 698 memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE); 699 pgd_set(__nocache_fix(pgdp), pmdp); 700 } 701 pmdp = pmd_offset(__nocache_fix(pgdp), start); 702 if (srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) { 703 ptep = __srmmu_get_nocache(PTE_SIZE, PTE_SIZE); 704 if (ptep == NULL) 705 early_pgtable_allocfail("pte"); 706 memset(__nocache_fix(ptep), 0, PTE_SIZE); 707 pmd_set(__nocache_fix(pmdp), ptep); 708 } 709 if (start > (0xffffffffUL - PMD_SIZE)) 710 break; 711 start = (start + PMD_SIZE) & PMD_MASK; 712 } 713 } 714 715 static void __init srmmu_allocate_ptable_skeleton(unsigned long start, 716 unsigned long end) 717 { 718 pgd_t *pgdp; 719 pmd_t *pmdp; 720 pte_t *ptep; 721 722 while (start < end) { 723 pgdp = pgd_offset_k(start); 724 if (pgd_none(*pgdp)) { 725 pmdp = __srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE); 726 if (pmdp == NULL) 727 early_pgtable_allocfail("pmd"); 728 memset(pmdp, 0, SRMMU_PMD_TABLE_SIZE); 729 pgd_set(pgdp, pmdp); 730 } 731 pmdp = pmd_offset(pgdp, start); 732 if (srmmu_pmd_none(*pmdp)) { 733 ptep = __srmmu_get_nocache(PTE_SIZE, 734 PTE_SIZE); 735 if (ptep == NULL) 736 early_pgtable_allocfail("pte"); 737 memset(ptep, 0, PTE_SIZE); 738 pmd_set(pmdp, ptep); 739 } 740 if (start > (0xffffffffUL - PMD_SIZE)) 741 break; 742 start = (start + PMD_SIZE) & PMD_MASK; 743 } 744 } 745 746 /* These flush types are not available on all chips... */ 747 static inline unsigned long srmmu_probe(unsigned long vaddr) 748 { 749 unsigned long retval; 750 751 if (sparc_cpu_model != sparc_leon) { 752 753 vaddr &= PAGE_MASK; 754 __asm__ __volatile__("lda [%1] %2, %0\n\t" : 755 "=r" (retval) : 756 "r" (vaddr | 0x400), "i" (ASI_M_FLUSH_PROBE)); 757 } else { 758 retval = leon_swprobe(vaddr, NULL); 759 } 760 return retval; 761 } 762 763 /* 764 * This is much cleaner than poking around physical address space 765 * looking at the prom's page table directly which is what most 766 * other OS's do. Yuck... this is much better. 767 */ 768 static void __init srmmu_inherit_prom_mappings(unsigned long start, 769 unsigned long end) 770 { 771 unsigned long probed; 772 unsigned long addr; 773 pgd_t *pgdp; 774 pmd_t *pmdp; 775 pte_t *ptep; 776 int what; /* 0 = normal-pte, 1 = pmd-level pte, 2 = pgd-level pte */ 777 778 while (start <= end) { 779 if (start == 0) 780 break; /* probably wrap around */ 781 if (start == 0xfef00000) 782 start = KADB_DEBUGGER_BEGVM; 783 probed = srmmu_probe(start); 784 if (!probed) { 785 /* continue probing until we find an entry */ 786 start += PAGE_SIZE; 787 continue; 788 } 789 790 /* A red snapper, see what it really is. */ 791 what = 0; 792 addr = start - PAGE_SIZE; 793 794 if (!(start & ~(SRMMU_REAL_PMD_MASK))) { 795 if (srmmu_probe(addr + SRMMU_REAL_PMD_SIZE) == probed) 796 what = 1; 797 } 798 799 if (!(start & ~(SRMMU_PGDIR_MASK))) { 800 if (srmmu_probe(addr + SRMMU_PGDIR_SIZE) == probed) 801 what = 2; 802 } 803 804 pgdp = pgd_offset_k(start); 805 if (what == 2) { 806 *(pgd_t *)__nocache_fix(pgdp) = __pgd(probed); 807 start += SRMMU_PGDIR_SIZE; 808 continue; 809 } 810 if (pgd_none(*(pgd_t *)__nocache_fix(pgdp))) { 811 pmdp = __srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, 812 SRMMU_PMD_TABLE_SIZE); 813 if (pmdp == NULL) 814 early_pgtable_allocfail("pmd"); 815 memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE); 816 pgd_set(__nocache_fix(pgdp), pmdp); 817 } 818 pmdp = pmd_offset(__nocache_fix(pgdp), start); 819 if (srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) { 820 ptep = __srmmu_get_nocache(PTE_SIZE, PTE_SIZE); 821 if (ptep == NULL) 822 early_pgtable_allocfail("pte"); 823 memset(__nocache_fix(ptep), 0, PTE_SIZE); 824 pmd_set(__nocache_fix(pmdp), ptep); 825 } 826 if (what == 1) { 827 /* We bend the rule where all 16 PTPs in a pmd_t point 828 * inside the same PTE page, and we leak a perfectly 829 * good hardware PTE piece. Alternatives seem worse. 830 */ 831 unsigned int x; /* Index of HW PMD in soft cluster */ 832 unsigned long *val; 833 x = (start >> PMD_SHIFT) & 15; 834 val = &pmdp->pmdv[x]; 835 *(unsigned long *)__nocache_fix(val) = probed; 836 start += SRMMU_REAL_PMD_SIZE; 837 continue; 838 } 839 ptep = pte_offset_kernel(__nocache_fix(pmdp), start); 840 *(pte_t *)__nocache_fix(ptep) = __pte(probed); 841 start += PAGE_SIZE; 842 } 843 } 844 845 #define KERNEL_PTE(page_shifted) ((page_shifted)|SRMMU_CACHE|SRMMU_PRIV|SRMMU_VALID) 846 847 /* Create a third-level SRMMU 16MB page mapping. */ 848 static void __init do_large_mapping(unsigned long vaddr, unsigned long phys_base) 849 { 850 pgd_t *pgdp = pgd_offset_k(vaddr); 851 unsigned long big_pte; 852 853 big_pte = KERNEL_PTE(phys_base >> 4); 854 *(pgd_t *)__nocache_fix(pgdp) = __pgd(big_pte); 855 } 856 857 /* Map sp_bank entry SP_ENTRY, starting at virtual address VBASE. */ 858 static unsigned long __init map_spbank(unsigned long vbase, int sp_entry) 859 { 860 unsigned long pstart = (sp_banks[sp_entry].base_addr & SRMMU_PGDIR_MASK); 861 unsigned long vstart = (vbase & SRMMU_PGDIR_MASK); 862 unsigned long vend = SRMMU_PGDIR_ALIGN(vbase + sp_banks[sp_entry].num_bytes); 863 /* Map "low" memory only */ 864 const unsigned long min_vaddr = PAGE_OFFSET; 865 const unsigned long max_vaddr = PAGE_OFFSET + SRMMU_MAXMEM; 866 867 if (vstart < min_vaddr || vstart >= max_vaddr) 868 return vstart; 869 870 if (vend > max_vaddr || vend < min_vaddr) 871 vend = max_vaddr; 872 873 while (vstart < vend) { 874 do_large_mapping(vstart, pstart); 875 vstart += SRMMU_PGDIR_SIZE; pstart += SRMMU_PGDIR_SIZE; 876 } 877 return vstart; 878 } 879 880 static void __init map_kernel(void) 881 { 882 int i; 883 884 if (phys_base > 0) { 885 do_large_mapping(PAGE_OFFSET, phys_base); 886 } 887 888 for (i = 0; sp_banks[i].num_bytes != 0; i++) { 889 map_spbank((unsigned long)__va(sp_banks[i].base_addr), i); 890 } 891 } 892 893 void (*poke_srmmu)(void) = NULL; 894 895 void __init srmmu_paging_init(void) 896 { 897 int i; 898 phandle cpunode; 899 char node_str[128]; 900 pgd_t *pgd; 901 pmd_t *pmd; 902 pte_t *pte; 903 unsigned long pages_avail; 904 905 init_mm.context = (unsigned long) NO_CONTEXT; 906 sparc_iomap.start = SUN4M_IOBASE_VADDR; /* 16MB of IOSPACE on all sun4m's. */ 907 908 if (sparc_cpu_model == sun4d) 909 num_contexts = 65536; /* We know it is Viking */ 910 else { 911 /* Find the number of contexts on the srmmu. */ 912 cpunode = prom_getchild(prom_root_node); 913 num_contexts = 0; 914 while (cpunode != 0) { 915 prom_getstring(cpunode, "device_type", node_str, sizeof(node_str)); 916 if (!strcmp(node_str, "cpu")) { 917 num_contexts = prom_getintdefault(cpunode, "mmu-nctx", 0x8); 918 break; 919 } 920 cpunode = prom_getsibling(cpunode); 921 } 922 } 923 924 if (!num_contexts) { 925 prom_printf("Something wrong, can't find cpu node in paging_init.\n"); 926 prom_halt(); 927 } 928 929 pages_avail = 0; 930 last_valid_pfn = bootmem_init(&pages_avail); 931 932 srmmu_nocache_calcsize(); 933 srmmu_nocache_init(); 934 srmmu_inherit_prom_mappings(0xfe400000, (LINUX_OPPROM_ENDVM - PAGE_SIZE)); 935 map_kernel(); 936 937 /* ctx table has to be physically aligned to its size */ 938 srmmu_context_table = __srmmu_get_nocache(num_contexts * sizeof(ctxd_t), num_contexts * sizeof(ctxd_t)); 939 srmmu_ctx_table_phys = (ctxd_t *)__nocache_pa(srmmu_context_table); 940 941 for (i = 0; i < num_contexts; i++) 942 srmmu_ctxd_set((ctxd_t *)__nocache_fix(&srmmu_context_table[i]), srmmu_swapper_pg_dir); 943 944 flush_cache_all(); 945 srmmu_set_ctable_ptr((unsigned long)srmmu_ctx_table_phys); 946 #ifdef CONFIG_SMP 947 /* Stop from hanging here... */ 948 local_ops->tlb_all(); 949 #else 950 flush_tlb_all(); 951 #endif 952 poke_srmmu(); 953 954 srmmu_allocate_ptable_skeleton(sparc_iomap.start, IOBASE_END); 955 srmmu_allocate_ptable_skeleton(DVMA_VADDR, DVMA_END); 956 957 srmmu_allocate_ptable_skeleton( 958 __fix_to_virt(__end_of_fixed_addresses - 1), FIXADDR_TOP); 959 srmmu_allocate_ptable_skeleton(PKMAP_BASE, PKMAP_END); 960 961 pgd = pgd_offset_k(PKMAP_BASE); 962 pmd = pmd_offset(pgd, PKMAP_BASE); 963 pte = pte_offset_kernel(pmd, PKMAP_BASE); 964 pkmap_page_table = pte; 965 966 flush_cache_all(); 967 flush_tlb_all(); 968 969 sparc_context_init(num_contexts); 970 971 kmap_init(); 972 973 { 974 unsigned long zones_size[MAX_NR_ZONES]; 975 unsigned long zholes_size[MAX_NR_ZONES]; 976 unsigned long npages; 977 int znum; 978 979 for (znum = 0; znum < MAX_NR_ZONES; znum++) 980 zones_size[znum] = zholes_size[znum] = 0; 981 982 npages = max_low_pfn - pfn_base; 983 984 zones_size[ZONE_DMA] = npages; 985 zholes_size[ZONE_DMA] = npages - pages_avail; 986 987 npages = highend_pfn - max_low_pfn; 988 zones_size[ZONE_HIGHMEM] = npages; 989 zholes_size[ZONE_HIGHMEM] = npages - calc_highpages(); 990 991 free_area_init_node(0, zones_size, pfn_base, zholes_size); 992 } 993 } 994 995 void mmu_info(struct seq_file *m) 996 { 997 seq_printf(m, 998 "MMU type\t: %s\n" 999 "contexts\t: %d\n" 1000 "nocache total\t: %ld\n" 1001 "nocache used\t: %d\n", 1002 srmmu_name, 1003 num_contexts, 1004 srmmu_nocache_size, 1005 srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT); 1006 } 1007 1008 int init_new_context(struct task_struct *tsk, struct mm_struct *mm) 1009 { 1010 mm->context = NO_CONTEXT; 1011 return 0; 1012 } 1013 1014 void destroy_context(struct mm_struct *mm) 1015 { 1016 unsigned long flags; 1017 1018 if (mm->context != NO_CONTEXT) { 1019 flush_cache_mm(mm); 1020 srmmu_ctxd_set(&srmmu_context_table[mm->context], srmmu_swapper_pg_dir); 1021 flush_tlb_mm(mm); 1022 spin_lock_irqsave(&srmmu_context_spinlock, flags); 1023 free_context(mm->context); 1024 spin_unlock_irqrestore(&srmmu_context_spinlock, flags); 1025 mm->context = NO_CONTEXT; 1026 } 1027 } 1028 1029 /* Init various srmmu chip types. */ 1030 static void __init srmmu_is_bad(void) 1031 { 1032 prom_printf("Could not determine SRMMU chip type.\n"); 1033 prom_halt(); 1034 } 1035 1036 static void __init init_vac_layout(void) 1037 { 1038 phandle nd; 1039 int cache_lines; 1040 char node_str[128]; 1041 #ifdef CONFIG_SMP 1042 int cpu = 0; 1043 unsigned long max_size = 0; 1044 unsigned long min_line_size = 0x10000000; 1045 #endif 1046 1047 nd = prom_getchild(prom_root_node); 1048 while ((nd = prom_getsibling(nd)) != 0) { 1049 prom_getstring(nd, "device_type", node_str, sizeof(node_str)); 1050 if (!strcmp(node_str, "cpu")) { 1051 vac_line_size = prom_getint(nd, "cache-line-size"); 1052 if (vac_line_size == -1) { 1053 prom_printf("can't determine cache-line-size, halting.\n"); 1054 prom_halt(); 1055 } 1056 cache_lines = prom_getint(nd, "cache-nlines"); 1057 if (cache_lines == -1) { 1058 prom_printf("can't determine cache-nlines, halting.\n"); 1059 prom_halt(); 1060 } 1061 1062 vac_cache_size = cache_lines * vac_line_size; 1063 #ifdef CONFIG_SMP 1064 if (vac_cache_size > max_size) 1065 max_size = vac_cache_size; 1066 if (vac_line_size < min_line_size) 1067 min_line_size = vac_line_size; 1068 //FIXME: cpus not contiguous!! 1069 cpu++; 1070 if (cpu >= nr_cpu_ids || !cpu_online(cpu)) 1071 break; 1072 #else 1073 break; 1074 #endif 1075 } 1076 } 1077 if (nd == 0) { 1078 prom_printf("No CPU nodes found, halting.\n"); 1079 prom_halt(); 1080 } 1081 #ifdef CONFIG_SMP 1082 vac_cache_size = max_size; 1083 vac_line_size = min_line_size; 1084 #endif 1085 printk("SRMMU: Using VAC size of %d bytes, line size %d bytes.\n", 1086 (int)vac_cache_size, (int)vac_line_size); 1087 } 1088 1089 static void poke_hypersparc(void) 1090 { 1091 volatile unsigned long clear; 1092 unsigned long mreg = srmmu_get_mmureg(); 1093 1094 hyper_flush_unconditional_combined(); 1095 1096 mreg &= ~(HYPERSPARC_CWENABLE); 1097 mreg |= (HYPERSPARC_CENABLE | HYPERSPARC_WBENABLE); 1098 mreg |= (HYPERSPARC_CMODE); 1099 1100 srmmu_set_mmureg(mreg); 1101 1102 #if 0 /* XXX I think this is bad news... -DaveM */ 1103 hyper_clear_all_tags(); 1104 #endif 1105 1106 put_ross_icr(HYPERSPARC_ICCR_FTD | HYPERSPARC_ICCR_ICE); 1107 hyper_flush_whole_icache(); 1108 clear = srmmu_get_faddr(); 1109 clear = srmmu_get_fstatus(); 1110 } 1111 1112 static const struct sparc32_cachetlb_ops hypersparc_ops = { 1113 .cache_all = hypersparc_flush_cache_all, 1114 .cache_mm = hypersparc_flush_cache_mm, 1115 .cache_page = hypersparc_flush_cache_page, 1116 .cache_range = hypersparc_flush_cache_range, 1117 .tlb_all = hypersparc_flush_tlb_all, 1118 .tlb_mm = hypersparc_flush_tlb_mm, 1119 .tlb_page = hypersparc_flush_tlb_page, 1120 .tlb_range = hypersparc_flush_tlb_range, 1121 .page_to_ram = hypersparc_flush_page_to_ram, 1122 .sig_insns = hypersparc_flush_sig_insns, 1123 .page_for_dma = hypersparc_flush_page_for_dma, 1124 }; 1125 1126 static void __init init_hypersparc(void) 1127 { 1128 srmmu_name = "ROSS HyperSparc"; 1129 srmmu_modtype = HyperSparc; 1130 1131 init_vac_layout(); 1132 1133 is_hypersparc = 1; 1134 sparc32_cachetlb_ops = &hypersparc_ops; 1135 1136 poke_srmmu = poke_hypersparc; 1137 1138 hypersparc_setup_blockops(); 1139 } 1140 1141 static void poke_swift(void) 1142 { 1143 unsigned long mreg; 1144 1145 /* Clear any crap from the cache or else... */ 1146 swift_flush_cache_all(); 1147 1148 /* Enable I & D caches */ 1149 mreg = srmmu_get_mmureg(); 1150 mreg |= (SWIFT_IE | SWIFT_DE); 1151 /* 1152 * The Swift branch folding logic is completely broken. At 1153 * trap time, if things are just right, if can mistakenly 1154 * think that a trap is coming from kernel mode when in fact 1155 * it is coming from user mode (it mis-executes the branch in 1156 * the trap code). So you see things like crashme completely 1157 * hosing your machine which is completely unacceptable. Turn 1158 * this shit off... nice job Fujitsu. 1159 */ 1160 mreg &= ~(SWIFT_BF); 1161 srmmu_set_mmureg(mreg); 1162 } 1163 1164 static const struct sparc32_cachetlb_ops swift_ops = { 1165 .cache_all = swift_flush_cache_all, 1166 .cache_mm = swift_flush_cache_mm, 1167 .cache_page = swift_flush_cache_page, 1168 .cache_range = swift_flush_cache_range, 1169 .tlb_all = swift_flush_tlb_all, 1170 .tlb_mm = swift_flush_tlb_mm, 1171 .tlb_page = swift_flush_tlb_page, 1172 .tlb_range = swift_flush_tlb_range, 1173 .page_to_ram = swift_flush_page_to_ram, 1174 .sig_insns = swift_flush_sig_insns, 1175 .page_for_dma = swift_flush_page_for_dma, 1176 }; 1177 1178 #define SWIFT_MASKID_ADDR 0x10003018 1179 static void __init init_swift(void) 1180 { 1181 unsigned long swift_rev; 1182 1183 __asm__ __volatile__("lda [%1] %2, %0\n\t" 1184 "srl %0, 0x18, %0\n\t" : 1185 "=r" (swift_rev) : 1186 "r" (SWIFT_MASKID_ADDR), "i" (ASI_M_BYPASS)); 1187 srmmu_name = "Fujitsu Swift"; 1188 switch (swift_rev) { 1189 case 0x11: 1190 case 0x20: 1191 case 0x23: 1192 case 0x30: 1193 srmmu_modtype = Swift_lots_o_bugs; 1194 hwbug_bitmask |= (HWBUG_KERN_ACCBROKEN | HWBUG_KERN_CBITBROKEN); 1195 /* 1196 * Gee george, I wonder why Sun is so hush hush about 1197 * this hardware bug... really braindamage stuff going 1198 * on here. However I think we can find a way to avoid 1199 * all of the workaround overhead under Linux. Basically, 1200 * any page fault can cause kernel pages to become user 1201 * accessible (the mmu gets confused and clears some of 1202 * the ACC bits in kernel ptes). Aha, sounds pretty 1203 * horrible eh? But wait, after extensive testing it appears 1204 * that if you use pgd_t level large kernel pte's (like the 1205 * 4MB pages on the Pentium) the bug does not get tripped 1206 * at all. This avoids almost all of the major overhead. 1207 * Welcome to a world where your vendor tells you to, 1208 * "apply this kernel patch" instead of "sorry for the 1209 * broken hardware, send it back and we'll give you 1210 * properly functioning parts" 1211 */ 1212 break; 1213 case 0x25: 1214 case 0x31: 1215 srmmu_modtype = Swift_bad_c; 1216 hwbug_bitmask |= HWBUG_KERN_CBITBROKEN; 1217 /* 1218 * You see Sun allude to this hardware bug but never 1219 * admit things directly, they'll say things like, 1220 * "the Swift chip cache problems" or similar. 1221 */ 1222 break; 1223 default: 1224 srmmu_modtype = Swift_ok; 1225 break; 1226 } 1227 1228 sparc32_cachetlb_ops = &swift_ops; 1229 flush_page_for_dma_global = 0; 1230 1231 /* 1232 * Are you now convinced that the Swift is one of the 1233 * biggest VLSI abortions of all time? Bravo Fujitsu! 1234 * Fujitsu, the !#?!%$'d up processor people. I bet if 1235 * you examined the microcode of the Swift you'd find 1236 * XXX's all over the place. 1237 */ 1238 poke_srmmu = poke_swift; 1239 } 1240 1241 static void turbosparc_flush_cache_all(void) 1242 { 1243 flush_user_windows(); 1244 turbosparc_idflash_clear(); 1245 } 1246 1247 static void turbosparc_flush_cache_mm(struct mm_struct *mm) 1248 { 1249 FLUSH_BEGIN(mm) 1250 flush_user_windows(); 1251 turbosparc_idflash_clear(); 1252 FLUSH_END 1253 } 1254 1255 static void turbosparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end) 1256 { 1257 FLUSH_BEGIN(vma->vm_mm) 1258 flush_user_windows(); 1259 turbosparc_idflash_clear(); 1260 FLUSH_END 1261 } 1262 1263 static void turbosparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page) 1264 { 1265 FLUSH_BEGIN(vma->vm_mm) 1266 flush_user_windows(); 1267 if (vma->vm_flags & VM_EXEC) 1268 turbosparc_flush_icache(); 1269 turbosparc_flush_dcache(); 1270 FLUSH_END 1271 } 1272 1273 /* TurboSparc is copy-back, if we turn it on, but this does not work. */ 1274 static void turbosparc_flush_page_to_ram(unsigned long page) 1275 { 1276 #ifdef TURBOSPARC_WRITEBACK 1277 volatile unsigned long clear; 1278 1279 if (srmmu_probe(page)) 1280 turbosparc_flush_page_cache(page); 1281 clear = srmmu_get_fstatus(); 1282 #endif 1283 } 1284 1285 static void turbosparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr) 1286 { 1287 } 1288 1289 static void turbosparc_flush_page_for_dma(unsigned long page) 1290 { 1291 turbosparc_flush_dcache(); 1292 } 1293 1294 static void turbosparc_flush_tlb_all(void) 1295 { 1296 srmmu_flush_whole_tlb(); 1297 } 1298 1299 static void turbosparc_flush_tlb_mm(struct mm_struct *mm) 1300 { 1301 FLUSH_BEGIN(mm) 1302 srmmu_flush_whole_tlb(); 1303 FLUSH_END 1304 } 1305 1306 static void turbosparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end) 1307 { 1308 FLUSH_BEGIN(vma->vm_mm) 1309 srmmu_flush_whole_tlb(); 1310 FLUSH_END 1311 } 1312 1313 static void turbosparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page) 1314 { 1315 FLUSH_BEGIN(vma->vm_mm) 1316 srmmu_flush_whole_tlb(); 1317 FLUSH_END 1318 } 1319 1320 1321 static void poke_turbosparc(void) 1322 { 1323 unsigned long mreg = srmmu_get_mmureg(); 1324 unsigned long ccreg; 1325 1326 /* Clear any crap from the cache or else... */ 1327 turbosparc_flush_cache_all(); 1328 /* Temporarily disable I & D caches */ 1329 mreg &= ~(TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE); 1330 mreg &= ~(TURBOSPARC_PCENABLE); /* Don't check parity */ 1331 srmmu_set_mmureg(mreg); 1332 1333 ccreg = turbosparc_get_ccreg(); 1334 1335 #ifdef TURBOSPARC_WRITEBACK 1336 ccreg |= (TURBOSPARC_SNENABLE); /* Do DVMA snooping in Dcache */ 1337 ccreg &= ~(TURBOSPARC_uS2 | TURBOSPARC_WTENABLE); 1338 /* Write-back D-cache, emulate VLSI 1339 * abortion number three, not number one */ 1340 #else 1341 /* For now let's play safe, optimize later */ 1342 ccreg |= (TURBOSPARC_SNENABLE | TURBOSPARC_WTENABLE); 1343 /* Do DVMA snooping in Dcache, Write-thru D-cache */ 1344 ccreg &= ~(TURBOSPARC_uS2); 1345 /* Emulate VLSI abortion number three, not number one */ 1346 #endif 1347 1348 switch (ccreg & 7) { 1349 case 0: /* No SE cache */ 1350 case 7: /* Test mode */ 1351 break; 1352 default: 1353 ccreg |= (TURBOSPARC_SCENABLE); 1354 } 1355 turbosparc_set_ccreg(ccreg); 1356 1357 mreg |= (TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE); /* I & D caches on */ 1358 mreg |= (TURBOSPARC_ICSNOOP); /* Icache snooping on */ 1359 srmmu_set_mmureg(mreg); 1360 } 1361 1362 static const struct sparc32_cachetlb_ops turbosparc_ops = { 1363 .cache_all = turbosparc_flush_cache_all, 1364 .cache_mm = turbosparc_flush_cache_mm, 1365 .cache_page = turbosparc_flush_cache_page, 1366 .cache_range = turbosparc_flush_cache_range, 1367 .tlb_all = turbosparc_flush_tlb_all, 1368 .tlb_mm = turbosparc_flush_tlb_mm, 1369 .tlb_page = turbosparc_flush_tlb_page, 1370 .tlb_range = turbosparc_flush_tlb_range, 1371 .page_to_ram = turbosparc_flush_page_to_ram, 1372 .sig_insns = turbosparc_flush_sig_insns, 1373 .page_for_dma = turbosparc_flush_page_for_dma, 1374 }; 1375 1376 static void __init init_turbosparc(void) 1377 { 1378 srmmu_name = "Fujitsu TurboSparc"; 1379 srmmu_modtype = TurboSparc; 1380 sparc32_cachetlb_ops = &turbosparc_ops; 1381 poke_srmmu = poke_turbosparc; 1382 } 1383 1384 static void poke_tsunami(void) 1385 { 1386 unsigned long mreg = srmmu_get_mmureg(); 1387 1388 tsunami_flush_icache(); 1389 tsunami_flush_dcache(); 1390 mreg &= ~TSUNAMI_ITD; 1391 mreg |= (TSUNAMI_IENAB | TSUNAMI_DENAB); 1392 srmmu_set_mmureg(mreg); 1393 } 1394 1395 static const struct sparc32_cachetlb_ops tsunami_ops = { 1396 .cache_all = tsunami_flush_cache_all, 1397 .cache_mm = tsunami_flush_cache_mm, 1398 .cache_page = tsunami_flush_cache_page, 1399 .cache_range = tsunami_flush_cache_range, 1400 .tlb_all = tsunami_flush_tlb_all, 1401 .tlb_mm = tsunami_flush_tlb_mm, 1402 .tlb_page = tsunami_flush_tlb_page, 1403 .tlb_range = tsunami_flush_tlb_range, 1404 .page_to_ram = tsunami_flush_page_to_ram, 1405 .sig_insns = tsunami_flush_sig_insns, 1406 .page_for_dma = tsunami_flush_page_for_dma, 1407 }; 1408 1409 static void __init init_tsunami(void) 1410 { 1411 /* 1412 * Tsunami's pretty sane, Sun and TI actually got it 1413 * somewhat right this time. Fujitsu should have 1414 * taken some lessons from them. 1415 */ 1416 1417 srmmu_name = "TI Tsunami"; 1418 srmmu_modtype = Tsunami; 1419 sparc32_cachetlb_ops = &tsunami_ops; 1420 poke_srmmu = poke_tsunami; 1421 1422 tsunami_setup_blockops(); 1423 } 1424 1425 static void poke_viking(void) 1426 { 1427 unsigned long mreg = srmmu_get_mmureg(); 1428 static int smp_catch; 1429 1430 if (viking_mxcc_present) { 1431 unsigned long mxcc_control = mxcc_get_creg(); 1432 1433 mxcc_control |= (MXCC_CTL_ECE | MXCC_CTL_PRE | MXCC_CTL_MCE); 1434 mxcc_control &= ~(MXCC_CTL_RRC); 1435 mxcc_set_creg(mxcc_control); 1436 1437 /* 1438 * We don't need memory parity checks. 1439 * XXX This is a mess, have to dig out later. ecd. 1440 viking_mxcc_turn_off_parity(&mreg, &mxcc_control); 1441 */ 1442 1443 /* We do cache ptables on MXCC. */ 1444 mreg |= VIKING_TCENABLE; 1445 } else { 1446 unsigned long bpreg; 1447 1448 mreg &= ~(VIKING_TCENABLE); 1449 if (smp_catch++) { 1450 /* Must disable mixed-cmd mode here for other cpu's. */ 1451 bpreg = viking_get_bpreg(); 1452 bpreg &= ~(VIKING_ACTION_MIX); 1453 viking_set_bpreg(bpreg); 1454 1455 /* Just in case PROM does something funny. */ 1456 msi_set_sync(); 1457 } 1458 } 1459 1460 mreg |= VIKING_SPENABLE; 1461 mreg |= (VIKING_ICENABLE | VIKING_DCENABLE); 1462 mreg |= VIKING_SBENABLE; 1463 mreg &= ~(VIKING_ACENABLE); 1464 srmmu_set_mmureg(mreg); 1465 } 1466 1467 static struct sparc32_cachetlb_ops viking_ops __ro_after_init = { 1468 .cache_all = viking_flush_cache_all, 1469 .cache_mm = viking_flush_cache_mm, 1470 .cache_page = viking_flush_cache_page, 1471 .cache_range = viking_flush_cache_range, 1472 .tlb_all = viking_flush_tlb_all, 1473 .tlb_mm = viking_flush_tlb_mm, 1474 .tlb_page = viking_flush_tlb_page, 1475 .tlb_range = viking_flush_tlb_range, 1476 .page_to_ram = viking_flush_page_to_ram, 1477 .sig_insns = viking_flush_sig_insns, 1478 .page_for_dma = viking_flush_page_for_dma, 1479 }; 1480 1481 #ifdef CONFIG_SMP 1482 /* On sun4d the cpu broadcasts local TLB flushes, so we can just 1483 * perform the local TLB flush and all the other cpus will see it. 1484 * But, unfortunately, there is a bug in the sun4d XBUS backplane 1485 * that requires that we add some synchronization to these flushes. 1486 * 1487 * The bug is that the fifo which keeps track of all the pending TLB 1488 * broadcasts in the system is an entry or two too small, so if we 1489 * have too many going at once we'll overflow that fifo and lose a TLB 1490 * flush resulting in corruption. 1491 * 1492 * Our workaround is to take a global spinlock around the TLB flushes, 1493 * which guarentees we won't ever have too many pending. It's a big 1494 * hammer, but a semaphore like system to make sure we only have N TLB 1495 * flushes going at once will require SMP locking anyways so there's 1496 * no real value in trying any harder than this. 1497 */ 1498 static struct sparc32_cachetlb_ops viking_sun4d_smp_ops __ro_after_init = { 1499 .cache_all = viking_flush_cache_all, 1500 .cache_mm = viking_flush_cache_mm, 1501 .cache_page = viking_flush_cache_page, 1502 .cache_range = viking_flush_cache_range, 1503 .tlb_all = sun4dsmp_flush_tlb_all, 1504 .tlb_mm = sun4dsmp_flush_tlb_mm, 1505 .tlb_page = sun4dsmp_flush_tlb_page, 1506 .tlb_range = sun4dsmp_flush_tlb_range, 1507 .page_to_ram = viking_flush_page_to_ram, 1508 .sig_insns = viking_flush_sig_insns, 1509 .page_for_dma = viking_flush_page_for_dma, 1510 }; 1511 #endif 1512 1513 static void __init init_viking(void) 1514 { 1515 unsigned long mreg = srmmu_get_mmureg(); 1516 1517 /* Ahhh, the viking. SRMMU VLSI abortion number two... */ 1518 if (mreg & VIKING_MMODE) { 1519 srmmu_name = "TI Viking"; 1520 viking_mxcc_present = 0; 1521 msi_set_sync(); 1522 1523 /* 1524 * We need this to make sure old viking takes no hits 1525 * on it's cache for dma snoops to workaround the 1526 * "load from non-cacheable memory" interrupt bug. 1527 * This is only necessary because of the new way in 1528 * which we use the IOMMU. 1529 */ 1530 viking_ops.page_for_dma = viking_flush_page; 1531 #ifdef CONFIG_SMP 1532 viking_sun4d_smp_ops.page_for_dma = viking_flush_page; 1533 #endif 1534 flush_page_for_dma_global = 0; 1535 } else { 1536 srmmu_name = "TI Viking/MXCC"; 1537 viking_mxcc_present = 1; 1538 srmmu_cache_pagetables = 1; 1539 } 1540 1541 sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *) 1542 &viking_ops; 1543 #ifdef CONFIG_SMP 1544 if (sparc_cpu_model == sun4d) 1545 sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *) 1546 &viking_sun4d_smp_ops; 1547 #endif 1548 1549 poke_srmmu = poke_viking; 1550 } 1551 1552 /* Probe for the srmmu chip version. */ 1553 static void __init get_srmmu_type(void) 1554 { 1555 unsigned long mreg, psr; 1556 unsigned long mod_typ, mod_rev, psr_typ, psr_vers; 1557 1558 srmmu_modtype = SRMMU_INVAL_MOD; 1559 hwbug_bitmask = 0; 1560 1561 mreg = srmmu_get_mmureg(); psr = get_psr(); 1562 mod_typ = (mreg & 0xf0000000) >> 28; 1563 mod_rev = (mreg & 0x0f000000) >> 24; 1564 psr_typ = (psr >> 28) & 0xf; 1565 psr_vers = (psr >> 24) & 0xf; 1566 1567 /* First, check for sparc-leon. */ 1568 if (sparc_cpu_model == sparc_leon) { 1569 init_leon(); 1570 return; 1571 } 1572 1573 /* Second, check for HyperSparc or Cypress. */ 1574 if (mod_typ == 1) { 1575 switch (mod_rev) { 1576 case 7: 1577 /* UP or MP Hypersparc */ 1578 init_hypersparc(); 1579 break; 1580 case 0: 1581 case 2: 1582 case 10: 1583 case 11: 1584 case 12: 1585 case 13: 1586 case 14: 1587 case 15: 1588 default: 1589 prom_printf("Sparc-Linux Cypress support does not longer exit.\n"); 1590 prom_halt(); 1591 break; 1592 } 1593 return; 1594 } 1595 1596 /* Now Fujitsu TurboSparc. It might happen that it is 1597 * in Swift emulation mode, so we will check later... 1598 */ 1599 if (psr_typ == 0 && psr_vers == 5) { 1600 init_turbosparc(); 1601 return; 1602 } 1603 1604 /* Next check for Fujitsu Swift. */ 1605 if (psr_typ == 0 && psr_vers == 4) { 1606 phandle cpunode; 1607 char node_str[128]; 1608 1609 /* Look if it is not a TurboSparc emulating Swift... */ 1610 cpunode = prom_getchild(prom_root_node); 1611 while ((cpunode = prom_getsibling(cpunode)) != 0) { 1612 prom_getstring(cpunode, "device_type", node_str, sizeof(node_str)); 1613 if (!strcmp(node_str, "cpu")) { 1614 if (!prom_getintdefault(cpunode, "psr-implementation", 1) && 1615 prom_getintdefault(cpunode, "psr-version", 1) == 5) { 1616 init_turbosparc(); 1617 return; 1618 } 1619 break; 1620 } 1621 } 1622 1623 init_swift(); 1624 return; 1625 } 1626 1627 /* Now the Viking family of srmmu. */ 1628 if (psr_typ == 4 && 1629 ((psr_vers == 0) || 1630 ((psr_vers == 1) && (mod_typ == 0) && (mod_rev == 0)))) { 1631 init_viking(); 1632 return; 1633 } 1634 1635 /* Finally the Tsunami. */ 1636 if (psr_typ == 4 && psr_vers == 1 && (mod_typ || mod_rev)) { 1637 init_tsunami(); 1638 return; 1639 } 1640 1641 /* Oh well */ 1642 srmmu_is_bad(); 1643 } 1644 1645 #ifdef CONFIG_SMP 1646 /* Local cross-calls. */ 1647 static void smp_flush_page_for_dma(unsigned long page) 1648 { 1649 xc1((smpfunc_t) local_ops->page_for_dma, page); 1650 local_ops->page_for_dma(page); 1651 } 1652 1653 static void smp_flush_cache_all(void) 1654 { 1655 xc0((smpfunc_t) local_ops->cache_all); 1656 local_ops->cache_all(); 1657 } 1658 1659 static void smp_flush_tlb_all(void) 1660 { 1661 xc0((smpfunc_t) local_ops->tlb_all); 1662 local_ops->tlb_all(); 1663 } 1664 1665 static void smp_flush_cache_mm(struct mm_struct *mm) 1666 { 1667 if (mm->context != NO_CONTEXT) { 1668 cpumask_t cpu_mask; 1669 cpumask_copy(&cpu_mask, mm_cpumask(mm)); 1670 cpumask_clear_cpu(smp_processor_id(), &cpu_mask); 1671 if (!cpumask_empty(&cpu_mask)) 1672 xc1((smpfunc_t) local_ops->cache_mm, (unsigned long) mm); 1673 local_ops->cache_mm(mm); 1674 } 1675 } 1676 1677 static void smp_flush_tlb_mm(struct mm_struct *mm) 1678 { 1679 if (mm->context != NO_CONTEXT) { 1680 cpumask_t cpu_mask; 1681 cpumask_copy(&cpu_mask, mm_cpumask(mm)); 1682 cpumask_clear_cpu(smp_processor_id(), &cpu_mask); 1683 if (!cpumask_empty(&cpu_mask)) { 1684 xc1((smpfunc_t) local_ops->tlb_mm, (unsigned long) mm); 1685 if (atomic_read(&mm->mm_users) == 1 && current->active_mm == mm) 1686 cpumask_copy(mm_cpumask(mm), 1687 cpumask_of(smp_processor_id())); 1688 } 1689 local_ops->tlb_mm(mm); 1690 } 1691 } 1692 1693 static void smp_flush_cache_range(struct vm_area_struct *vma, 1694 unsigned long start, 1695 unsigned long end) 1696 { 1697 struct mm_struct *mm = vma->vm_mm; 1698 1699 if (mm->context != NO_CONTEXT) { 1700 cpumask_t cpu_mask; 1701 cpumask_copy(&cpu_mask, mm_cpumask(mm)); 1702 cpumask_clear_cpu(smp_processor_id(), &cpu_mask); 1703 if (!cpumask_empty(&cpu_mask)) 1704 xc3((smpfunc_t) local_ops->cache_range, 1705 (unsigned long) vma, start, end); 1706 local_ops->cache_range(vma, start, end); 1707 } 1708 } 1709 1710 static void smp_flush_tlb_range(struct vm_area_struct *vma, 1711 unsigned long start, 1712 unsigned long end) 1713 { 1714 struct mm_struct *mm = vma->vm_mm; 1715 1716 if (mm->context != NO_CONTEXT) { 1717 cpumask_t cpu_mask; 1718 cpumask_copy(&cpu_mask, mm_cpumask(mm)); 1719 cpumask_clear_cpu(smp_processor_id(), &cpu_mask); 1720 if (!cpumask_empty(&cpu_mask)) 1721 xc3((smpfunc_t) local_ops->tlb_range, 1722 (unsigned long) vma, start, end); 1723 local_ops->tlb_range(vma, start, end); 1724 } 1725 } 1726 1727 static void smp_flush_cache_page(struct vm_area_struct *vma, unsigned long page) 1728 { 1729 struct mm_struct *mm = vma->vm_mm; 1730 1731 if (mm->context != NO_CONTEXT) { 1732 cpumask_t cpu_mask; 1733 cpumask_copy(&cpu_mask, mm_cpumask(mm)); 1734 cpumask_clear_cpu(smp_processor_id(), &cpu_mask); 1735 if (!cpumask_empty(&cpu_mask)) 1736 xc2((smpfunc_t) local_ops->cache_page, 1737 (unsigned long) vma, page); 1738 local_ops->cache_page(vma, page); 1739 } 1740 } 1741 1742 static void smp_flush_tlb_page(struct vm_area_struct *vma, unsigned long page) 1743 { 1744 struct mm_struct *mm = vma->vm_mm; 1745 1746 if (mm->context != NO_CONTEXT) { 1747 cpumask_t cpu_mask; 1748 cpumask_copy(&cpu_mask, mm_cpumask(mm)); 1749 cpumask_clear_cpu(smp_processor_id(), &cpu_mask); 1750 if (!cpumask_empty(&cpu_mask)) 1751 xc2((smpfunc_t) local_ops->tlb_page, 1752 (unsigned long) vma, page); 1753 local_ops->tlb_page(vma, page); 1754 } 1755 } 1756 1757 static void smp_flush_page_to_ram(unsigned long page) 1758 { 1759 /* Current theory is that those who call this are the one's 1760 * who have just dirtied their cache with the pages contents 1761 * in kernel space, therefore we only run this on local cpu. 1762 * 1763 * XXX This experiment failed, research further... -DaveM 1764 */ 1765 #if 1 1766 xc1((smpfunc_t) local_ops->page_to_ram, page); 1767 #endif 1768 local_ops->page_to_ram(page); 1769 } 1770 1771 static void smp_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr) 1772 { 1773 cpumask_t cpu_mask; 1774 cpumask_copy(&cpu_mask, mm_cpumask(mm)); 1775 cpumask_clear_cpu(smp_processor_id(), &cpu_mask); 1776 if (!cpumask_empty(&cpu_mask)) 1777 xc2((smpfunc_t) local_ops->sig_insns, 1778 (unsigned long) mm, insn_addr); 1779 local_ops->sig_insns(mm, insn_addr); 1780 } 1781 1782 static struct sparc32_cachetlb_ops smp_cachetlb_ops __ro_after_init = { 1783 .cache_all = smp_flush_cache_all, 1784 .cache_mm = smp_flush_cache_mm, 1785 .cache_page = smp_flush_cache_page, 1786 .cache_range = smp_flush_cache_range, 1787 .tlb_all = smp_flush_tlb_all, 1788 .tlb_mm = smp_flush_tlb_mm, 1789 .tlb_page = smp_flush_tlb_page, 1790 .tlb_range = smp_flush_tlb_range, 1791 .page_to_ram = smp_flush_page_to_ram, 1792 .sig_insns = smp_flush_sig_insns, 1793 .page_for_dma = smp_flush_page_for_dma, 1794 }; 1795 #endif 1796 1797 /* Load up routines and constants for sun4m and sun4d mmu */ 1798 void __init load_mmu(void) 1799 { 1800 /* Functions */ 1801 get_srmmu_type(); 1802 1803 #ifdef CONFIG_SMP 1804 /* El switcheroo... */ 1805 local_ops = sparc32_cachetlb_ops; 1806 1807 if (sparc_cpu_model == sun4d || sparc_cpu_model == sparc_leon) { 1808 smp_cachetlb_ops.tlb_all = local_ops->tlb_all; 1809 smp_cachetlb_ops.tlb_mm = local_ops->tlb_mm; 1810 smp_cachetlb_ops.tlb_range = local_ops->tlb_range; 1811 smp_cachetlb_ops.tlb_page = local_ops->tlb_page; 1812 } 1813 1814 if (poke_srmmu == poke_viking) { 1815 /* Avoid unnecessary cross calls. */ 1816 smp_cachetlb_ops.cache_all = local_ops->cache_all; 1817 smp_cachetlb_ops.cache_mm = local_ops->cache_mm; 1818 smp_cachetlb_ops.cache_range = local_ops->cache_range; 1819 smp_cachetlb_ops.cache_page = local_ops->cache_page; 1820 1821 smp_cachetlb_ops.page_to_ram = local_ops->page_to_ram; 1822 smp_cachetlb_ops.sig_insns = local_ops->sig_insns; 1823 smp_cachetlb_ops.page_for_dma = local_ops->page_for_dma; 1824 } 1825 1826 /* It really is const after this point. */ 1827 sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *) 1828 &smp_cachetlb_ops; 1829 #endif 1830 1831 if (sparc_cpu_model == sun4d) 1832 ld_mmu_iounit(); 1833 else 1834 ld_mmu_iommu(); 1835 #ifdef CONFIG_SMP 1836 if (sparc_cpu_model == sun4d) 1837 sun4d_init_smp(); 1838 else if (sparc_cpu_model == sparc_leon) 1839 leon_init_smp(); 1840 else 1841 sun4m_init_smp(); 1842 #endif 1843 } 1844