xref: /openbmc/linux/arch/sparc/mm/srmmu.c (revision b627b4ed)
1 /*
2  * srmmu.c:  SRMMU specific routines for memory management.
3  *
4  * Copyright (C) 1995 David S. Miller  (davem@caip.rutgers.edu)
5  * Copyright (C) 1995,2002 Pete Zaitcev (zaitcev@yahoo.com)
6  * Copyright (C) 1996 Eddie C. Dost    (ecd@skynet.be)
7  * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
8  * Copyright (C) 1999,2000 Anton Blanchard (anton@samba.org)
9  */
10 
11 #include <linux/kernel.h>
12 #include <linux/mm.h>
13 #include <linux/slab.h>
14 #include <linux/vmalloc.h>
15 #include <linux/pagemap.h>
16 #include <linux/init.h>
17 #include <linux/spinlock.h>
18 #include <linux/bootmem.h>
19 #include <linux/fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/kdebug.h>
22 
23 #include <asm/bitext.h>
24 #include <asm/page.h>
25 #include <asm/pgalloc.h>
26 #include <asm/pgtable.h>
27 #include <asm/io.h>
28 #include <asm/vaddrs.h>
29 #include <asm/traps.h>
30 #include <asm/smp.h>
31 #include <asm/mbus.h>
32 #include <asm/cache.h>
33 #include <asm/oplib.h>
34 #include <asm/asi.h>
35 #include <asm/msi.h>
36 #include <asm/mmu_context.h>
37 #include <asm/io-unit.h>
38 #include <asm/cacheflush.h>
39 #include <asm/tlbflush.h>
40 
41 /* Now the cpu specific definitions. */
42 #include <asm/viking.h>
43 #include <asm/mxcc.h>
44 #include <asm/ross.h>
45 #include <asm/tsunami.h>
46 #include <asm/swift.h>
47 #include <asm/turbosparc.h>
48 
49 #include <asm/btfixup.h>
50 
51 enum mbus_module srmmu_modtype;
52 static unsigned int hwbug_bitmask;
53 int vac_cache_size;
54 int vac_line_size;
55 
56 extern struct resource sparc_iomap;
57 
58 extern unsigned long last_valid_pfn;
59 
60 extern unsigned long page_kernel;
61 
62 static pgd_t *srmmu_swapper_pg_dir;
63 
64 #ifdef CONFIG_SMP
65 #define FLUSH_BEGIN(mm)
66 #define FLUSH_END
67 #else
68 #define FLUSH_BEGIN(mm) if((mm)->context != NO_CONTEXT) {
69 #define FLUSH_END	}
70 #endif
71 
72 BTFIXUPDEF_CALL(void, flush_page_for_dma, unsigned long)
73 #define flush_page_for_dma(page) BTFIXUP_CALL(flush_page_for_dma)(page)
74 
75 int flush_page_for_dma_global = 1;
76 
77 #ifdef CONFIG_SMP
78 BTFIXUPDEF_CALL(void, local_flush_page_for_dma, unsigned long)
79 #define local_flush_page_for_dma(page) BTFIXUP_CALL(local_flush_page_for_dma)(page)
80 #endif
81 
82 char *srmmu_name;
83 
84 ctxd_t *srmmu_ctx_table_phys;
85 static ctxd_t *srmmu_context_table;
86 
87 int viking_mxcc_present;
88 static DEFINE_SPINLOCK(srmmu_context_spinlock);
89 
90 static int is_hypersparc;
91 
92 /*
93  * In general all page table modifications should use the V8 atomic
94  * swap instruction.  This insures the mmu and the cpu are in sync
95  * with respect to ref/mod bits in the page tables.
96  */
97 static inline unsigned long srmmu_swap(unsigned long *addr, unsigned long value)
98 {
99 	__asm__ __volatile__("swap [%2], %0" : "=&r" (value) : "0" (value), "r" (addr));
100 	return value;
101 }
102 
103 static inline void srmmu_set_pte(pte_t *ptep, pte_t pteval)
104 {
105 	srmmu_swap((unsigned long *)ptep, pte_val(pteval));
106 }
107 
108 /* The very generic SRMMU page table operations. */
109 static inline int srmmu_device_memory(unsigned long x)
110 {
111 	return ((x & 0xF0000000) != 0);
112 }
113 
114 static int srmmu_cache_pagetables;
115 
116 /* these will be initialized in srmmu_nocache_calcsize() */
117 static unsigned long srmmu_nocache_size;
118 static unsigned long srmmu_nocache_end;
119 
120 /* 1 bit <=> 256 bytes of nocache <=> 64 PTEs */
121 #define SRMMU_NOCACHE_BITMAP_SHIFT (PAGE_SHIFT - 4)
122 
123 /* The context table is a nocache user with the biggest alignment needs. */
124 #define SRMMU_NOCACHE_ALIGN_MAX (sizeof(ctxd_t)*SRMMU_MAX_CONTEXTS)
125 
126 void *srmmu_nocache_pool;
127 void *srmmu_nocache_bitmap;
128 static struct bit_map srmmu_nocache_map;
129 
130 static unsigned long srmmu_pte_pfn(pte_t pte)
131 {
132 	if (srmmu_device_memory(pte_val(pte))) {
133 		/* Just return something that will cause
134 		 * pfn_valid() to return false.  This makes
135 		 * copy_one_pte() to just directly copy to
136 		 * PTE over.
137 		 */
138 		return ~0UL;
139 	}
140 	return (pte_val(pte) & SRMMU_PTE_PMASK) >> (PAGE_SHIFT-4);
141 }
142 
143 static struct page *srmmu_pmd_page(pmd_t pmd)
144 {
145 
146 	if (srmmu_device_memory(pmd_val(pmd)))
147 		BUG();
148 	return pfn_to_page((pmd_val(pmd) & SRMMU_PTD_PMASK) >> (PAGE_SHIFT-4));
149 }
150 
151 static inline unsigned long srmmu_pgd_page(pgd_t pgd)
152 { return srmmu_device_memory(pgd_val(pgd))?~0:(unsigned long)__nocache_va((pgd_val(pgd) & SRMMU_PTD_PMASK) << 4); }
153 
154 
155 static inline int srmmu_pte_none(pte_t pte)
156 { return !(pte_val(pte) & 0xFFFFFFF); }
157 
158 static inline int srmmu_pte_present(pte_t pte)
159 { return ((pte_val(pte) & SRMMU_ET_MASK) == SRMMU_ET_PTE); }
160 
161 static inline void srmmu_pte_clear(pte_t *ptep)
162 { srmmu_set_pte(ptep, __pte(0)); }
163 
164 static inline int srmmu_pmd_none(pmd_t pmd)
165 { return !(pmd_val(pmd) & 0xFFFFFFF); }
166 
167 static inline int srmmu_pmd_bad(pmd_t pmd)
168 { return (pmd_val(pmd) & SRMMU_ET_MASK) != SRMMU_ET_PTD; }
169 
170 static inline int srmmu_pmd_present(pmd_t pmd)
171 { return ((pmd_val(pmd) & SRMMU_ET_MASK) == SRMMU_ET_PTD); }
172 
173 static inline void srmmu_pmd_clear(pmd_t *pmdp) {
174 	int i;
175 	for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++)
176 		srmmu_set_pte((pte_t *)&pmdp->pmdv[i], __pte(0));
177 }
178 
179 static inline int srmmu_pgd_none(pgd_t pgd)
180 { return !(pgd_val(pgd) & 0xFFFFFFF); }
181 
182 static inline int srmmu_pgd_bad(pgd_t pgd)
183 { return (pgd_val(pgd) & SRMMU_ET_MASK) != SRMMU_ET_PTD; }
184 
185 static inline int srmmu_pgd_present(pgd_t pgd)
186 { return ((pgd_val(pgd) & SRMMU_ET_MASK) == SRMMU_ET_PTD); }
187 
188 static inline void srmmu_pgd_clear(pgd_t * pgdp)
189 { srmmu_set_pte((pte_t *)pgdp, __pte(0)); }
190 
191 static inline pte_t srmmu_pte_wrprotect(pte_t pte)
192 { return __pte(pte_val(pte) & ~SRMMU_WRITE);}
193 
194 static inline pte_t srmmu_pte_mkclean(pte_t pte)
195 { return __pte(pte_val(pte) & ~SRMMU_DIRTY);}
196 
197 static inline pte_t srmmu_pte_mkold(pte_t pte)
198 { return __pte(pte_val(pte) & ~SRMMU_REF);}
199 
200 static inline pte_t srmmu_pte_mkwrite(pte_t pte)
201 { return __pte(pte_val(pte) | SRMMU_WRITE);}
202 
203 static inline pte_t srmmu_pte_mkdirty(pte_t pte)
204 { return __pte(pte_val(pte) | SRMMU_DIRTY);}
205 
206 static inline pte_t srmmu_pte_mkyoung(pte_t pte)
207 { return __pte(pte_val(pte) | SRMMU_REF);}
208 
209 /*
210  * Conversion functions: convert a page and protection to a page entry,
211  * and a page entry and page directory to the page they refer to.
212  */
213 static pte_t srmmu_mk_pte(struct page *page, pgprot_t pgprot)
214 { return __pte((page_to_pfn(page) << (PAGE_SHIFT-4)) | pgprot_val(pgprot)); }
215 
216 static pte_t srmmu_mk_pte_phys(unsigned long page, pgprot_t pgprot)
217 { return __pte(((page) >> 4) | pgprot_val(pgprot)); }
218 
219 static pte_t srmmu_mk_pte_io(unsigned long page, pgprot_t pgprot, int space)
220 { return __pte(((page) >> 4) | (space << 28) | pgprot_val(pgprot)); }
221 
222 /* XXX should we hyper_flush_whole_icache here - Anton */
223 static inline void srmmu_ctxd_set(ctxd_t *ctxp, pgd_t *pgdp)
224 { srmmu_set_pte((pte_t *)ctxp, (SRMMU_ET_PTD | (__nocache_pa((unsigned long) pgdp) >> 4))); }
225 
226 static inline void srmmu_pgd_set(pgd_t * pgdp, pmd_t * pmdp)
227 { srmmu_set_pte((pte_t *)pgdp, (SRMMU_ET_PTD | (__nocache_pa((unsigned long) pmdp) >> 4))); }
228 
229 static void srmmu_pmd_set(pmd_t *pmdp, pte_t *ptep)
230 {
231 	unsigned long ptp;	/* Physical address, shifted right by 4 */
232 	int i;
233 
234 	ptp = __nocache_pa((unsigned long) ptep) >> 4;
235 	for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) {
236 		srmmu_set_pte((pte_t *)&pmdp->pmdv[i], SRMMU_ET_PTD | ptp);
237 		ptp += (SRMMU_REAL_PTRS_PER_PTE*sizeof(pte_t) >> 4);
238 	}
239 }
240 
241 static void srmmu_pmd_populate(pmd_t *pmdp, struct page *ptep)
242 {
243 	unsigned long ptp;	/* Physical address, shifted right by 4 */
244 	int i;
245 
246 	ptp = page_to_pfn(ptep) << (PAGE_SHIFT-4);	/* watch for overflow */
247 	for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) {
248 		srmmu_set_pte((pte_t *)&pmdp->pmdv[i], SRMMU_ET_PTD | ptp);
249 		ptp += (SRMMU_REAL_PTRS_PER_PTE*sizeof(pte_t) >> 4);
250 	}
251 }
252 
253 static inline pte_t srmmu_pte_modify(pte_t pte, pgprot_t newprot)
254 { return __pte((pte_val(pte) & SRMMU_CHG_MASK) | pgprot_val(newprot)); }
255 
256 /* to find an entry in a top-level page table... */
257 static inline pgd_t *srmmu_pgd_offset(struct mm_struct * mm, unsigned long address)
258 { return mm->pgd + (address >> SRMMU_PGDIR_SHIFT); }
259 
260 /* Find an entry in the second-level page table.. */
261 static inline pmd_t *srmmu_pmd_offset(pgd_t * dir, unsigned long address)
262 {
263 	return (pmd_t *) srmmu_pgd_page(*dir) +
264 	    ((address >> PMD_SHIFT) & (PTRS_PER_PMD - 1));
265 }
266 
267 /* Find an entry in the third-level page table.. */
268 static inline pte_t *srmmu_pte_offset(pmd_t * dir, unsigned long address)
269 {
270 	void *pte;
271 
272 	pte = __nocache_va((dir->pmdv[0] & SRMMU_PTD_PMASK) << 4);
273 	return (pte_t *) pte +
274 	    ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
275 }
276 
277 static unsigned long srmmu_swp_type(swp_entry_t entry)
278 {
279 	return (entry.val >> SRMMU_SWP_TYPE_SHIFT) & SRMMU_SWP_TYPE_MASK;
280 }
281 
282 static unsigned long srmmu_swp_offset(swp_entry_t entry)
283 {
284 	return (entry.val >> SRMMU_SWP_OFF_SHIFT) & SRMMU_SWP_OFF_MASK;
285 }
286 
287 static swp_entry_t srmmu_swp_entry(unsigned long type, unsigned long offset)
288 {
289 	return (swp_entry_t) {
290 		  (type & SRMMU_SWP_TYPE_MASK) << SRMMU_SWP_TYPE_SHIFT
291 		| (offset & SRMMU_SWP_OFF_MASK) << SRMMU_SWP_OFF_SHIFT };
292 }
293 
294 /*
295  * size: bytes to allocate in the nocache area.
296  * align: bytes, number to align at.
297  * Returns the virtual address of the allocated area.
298  */
299 static unsigned long __srmmu_get_nocache(int size, int align)
300 {
301 	int offset;
302 
303 	if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
304 		printk("Size 0x%x too small for nocache request\n", size);
305 		size = SRMMU_NOCACHE_BITMAP_SHIFT;
306 	}
307 	if (size & (SRMMU_NOCACHE_BITMAP_SHIFT-1)) {
308 		printk("Size 0x%x unaligned int nocache request\n", size);
309 		size += SRMMU_NOCACHE_BITMAP_SHIFT-1;
310 	}
311 	BUG_ON(align > SRMMU_NOCACHE_ALIGN_MAX);
312 
313 	offset = bit_map_string_get(&srmmu_nocache_map,
314 		       			size >> SRMMU_NOCACHE_BITMAP_SHIFT,
315 					align >> SRMMU_NOCACHE_BITMAP_SHIFT);
316 	if (offset == -1) {
317 		printk("srmmu: out of nocache %d: %d/%d\n",
318 		    size, (int) srmmu_nocache_size,
319 		    srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
320 		return 0;
321 	}
322 
323 	return (SRMMU_NOCACHE_VADDR + (offset << SRMMU_NOCACHE_BITMAP_SHIFT));
324 }
325 
326 static unsigned long srmmu_get_nocache(int size, int align)
327 {
328 	unsigned long tmp;
329 
330 	tmp = __srmmu_get_nocache(size, align);
331 
332 	if (tmp)
333 		memset((void *)tmp, 0, size);
334 
335 	return tmp;
336 }
337 
338 static void srmmu_free_nocache(unsigned long vaddr, int size)
339 {
340 	int offset;
341 
342 	if (vaddr < SRMMU_NOCACHE_VADDR) {
343 		printk("Vaddr %lx is smaller than nocache base 0x%lx\n",
344 		    vaddr, (unsigned long)SRMMU_NOCACHE_VADDR);
345 		BUG();
346 	}
347 	if (vaddr+size > srmmu_nocache_end) {
348 		printk("Vaddr %lx is bigger than nocache end 0x%lx\n",
349 		    vaddr, srmmu_nocache_end);
350 		BUG();
351 	}
352 	if (size & (size-1)) {
353 		printk("Size 0x%x is not a power of 2\n", size);
354 		BUG();
355 	}
356 	if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
357 		printk("Size 0x%x is too small\n", size);
358 		BUG();
359 	}
360 	if (vaddr & (size-1)) {
361 		printk("Vaddr %lx is not aligned to size 0x%x\n", vaddr, size);
362 		BUG();
363 	}
364 
365 	offset = (vaddr - SRMMU_NOCACHE_VADDR) >> SRMMU_NOCACHE_BITMAP_SHIFT;
366 	size = size >> SRMMU_NOCACHE_BITMAP_SHIFT;
367 
368 	bit_map_clear(&srmmu_nocache_map, offset, size);
369 }
370 
371 static void srmmu_early_allocate_ptable_skeleton(unsigned long start,
372 						 unsigned long end);
373 
374 extern unsigned long probe_memory(void);	/* in fault.c */
375 
376 /*
377  * Reserve nocache dynamically proportionally to the amount of
378  * system RAM. -- Tomas Szepe <szepe@pinerecords.com>, June 2002
379  */
380 static void srmmu_nocache_calcsize(void)
381 {
382 	unsigned long sysmemavail = probe_memory() / 1024;
383 	int srmmu_nocache_npages;
384 
385 	srmmu_nocache_npages =
386 		sysmemavail / SRMMU_NOCACHE_ALCRATIO / 1024 * 256;
387 
388  /* P3 XXX The 4x overuse: corroborated by /proc/meminfo. */
389 	// if (srmmu_nocache_npages < 256) srmmu_nocache_npages = 256;
390 	if (srmmu_nocache_npages < SRMMU_MIN_NOCACHE_PAGES)
391 		srmmu_nocache_npages = SRMMU_MIN_NOCACHE_PAGES;
392 
393 	/* anything above 1280 blows up */
394 	if (srmmu_nocache_npages > SRMMU_MAX_NOCACHE_PAGES)
395 		srmmu_nocache_npages = SRMMU_MAX_NOCACHE_PAGES;
396 
397 	srmmu_nocache_size = srmmu_nocache_npages * PAGE_SIZE;
398 	srmmu_nocache_end = SRMMU_NOCACHE_VADDR + srmmu_nocache_size;
399 }
400 
401 static void __init srmmu_nocache_init(void)
402 {
403 	unsigned int bitmap_bits;
404 	pgd_t *pgd;
405 	pmd_t *pmd;
406 	pte_t *pte;
407 	unsigned long paddr, vaddr;
408 	unsigned long pteval;
409 
410 	bitmap_bits = srmmu_nocache_size >> SRMMU_NOCACHE_BITMAP_SHIFT;
411 
412 	srmmu_nocache_pool = __alloc_bootmem(srmmu_nocache_size,
413 		SRMMU_NOCACHE_ALIGN_MAX, 0UL);
414 	memset(srmmu_nocache_pool, 0, srmmu_nocache_size);
415 
416 	srmmu_nocache_bitmap = __alloc_bootmem(bitmap_bits >> 3, SMP_CACHE_BYTES, 0UL);
417 	bit_map_init(&srmmu_nocache_map, srmmu_nocache_bitmap, bitmap_bits);
418 
419 	srmmu_swapper_pg_dir = (pgd_t *)__srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
420 	memset(__nocache_fix(srmmu_swapper_pg_dir), 0, SRMMU_PGD_TABLE_SIZE);
421 	init_mm.pgd = srmmu_swapper_pg_dir;
422 
423 	srmmu_early_allocate_ptable_skeleton(SRMMU_NOCACHE_VADDR, srmmu_nocache_end);
424 
425 	paddr = __pa((unsigned long)srmmu_nocache_pool);
426 	vaddr = SRMMU_NOCACHE_VADDR;
427 
428 	while (vaddr < srmmu_nocache_end) {
429 		pgd = pgd_offset_k(vaddr);
430 		pmd = srmmu_pmd_offset(__nocache_fix(pgd), vaddr);
431 		pte = srmmu_pte_offset(__nocache_fix(pmd), vaddr);
432 
433 		pteval = ((paddr >> 4) | SRMMU_ET_PTE | SRMMU_PRIV);
434 
435 		if (srmmu_cache_pagetables)
436 			pteval |= SRMMU_CACHE;
437 
438 		srmmu_set_pte(__nocache_fix(pte), __pte(pteval));
439 
440 		vaddr += PAGE_SIZE;
441 		paddr += PAGE_SIZE;
442 	}
443 
444 	flush_cache_all();
445 	flush_tlb_all();
446 }
447 
448 static inline pgd_t *srmmu_get_pgd_fast(void)
449 {
450 	pgd_t *pgd = NULL;
451 
452 	pgd = (pgd_t *)__srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
453 	if (pgd) {
454 		pgd_t *init = pgd_offset_k(0);
455 		memset(pgd, 0, USER_PTRS_PER_PGD * sizeof(pgd_t));
456 		memcpy(pgd + USER_PTRS_PER_PGD, init + USER_PTRS_PER_PGD,
457 						(PTRS_PER_PGD - USER_PTRS_PER_PGD) * sizeof(pgd_t));
458 	}
459 
460 	return pgd;
461 }
462 
463 static void srmmu_free_pgd_fast(pgd_t *pgd)
464 {
465 	srmmu_free_nocache((unsigned long)pgd, SRMMU_PGD_TABLE_SIZE);
466 }
467 
468 static pmd_t *srmmu_pmd_alloc_one(struct mm_struct *mm, unsigned long address)
469 {
470 	return (pmd_t *)srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
471 }
472 
473 static void srmmu_pmd_free(pmd_t * pmd)
474 {
475 	srmmu_free_nocache((unsigned long)pmd, SRMMU_PMD_TABLE_SIZE);
476 }
477 
478 /*
479  * Hardware needs alignment to 256 only, but we align to whole page size
480  * to reduce fragmentation problems due to the buddy principle.
481  * XXX Provide actual fragmentation statistics in /proc.
482  *
483  * Alignments up to the page size are the same for physical and virtual
484  * addresses of the nocache area.
485  */
486 static pte_t *
487 srmmu_pte_alloc_one_kernel(struct mm_struct *mm, unsigned long address)
488 {
489 	return (pte_t *)srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
490 }
491 
492 static pgtable_t
493 srmmu_pte_alloc_one(struct mm_struct *mm, unsigned long address)
494 {
495 	unsigned long pte;
496 	struct page *page;
497 
498 	if ((pte = (unsigned long)srmmu_pte_alloc_one_kernel(mm, address)) == 0)
499 		return NULL;
500 	page = pfn_to_page( __nocache_pa(pte) >> PAGE_SHIFT );
501 	pgtable_page_ctor(page);
502 	return page;
503 }
504 
505 static void srmmu_free_pte_fast(pte_t *pte)
506 {
507 	srmmu_free_nocache((unsigned long)pte, PTE_SIZE);
508 }
509 
510 static void srmmu_pte_free(pgtable_t pte)
511 {
512 	unsigned long p;
513 
514 	pgtable_page_dtor(pte);
515 	p = (unsigned long)page_address(pte);	/* Cached address (for test) */
516 	if (p == 0)
517 		BUG();
518 	p = page_to_pfn(pte) << PAGE_SHIFT;	/* Physical address */
519 	p = (unsigned long) __nocache_va(p);	/* Nocached virtual */
520 	srmmu_free_nocache(p, PTE_SIZE);
521 }
522 
523 /*
524  */
525 static inline void alloc_context(struct mm_struct *old_mm, struct mm_struct *mm)
526 {
527 	struct ctx_list *ctxp;
528 
529 	ctxp = ctx_free.next;
530 	if(ctxp != &ctx_free) {
531 		remove_from_ctx_list(ctxp);
532 		add_to_used_ctxlist(ctxp);
533 		mm->context = ctxp->ctx_number;
534 		ctxp->ctx_mm = mm;
535 		return;
536 	}
537 	ctxp = ctx_used.next;
538 	if(ctxp->ctx_mm == old_mm)
539 		ctxp = ctxp->next;
540 	if(ctxp == &ctx_used)
541 		panic("out of mmu contexts");
542 	flush_cache_mm(ctxp->ctx_mm);
543 	flush_tlb_mm(ctxp->ctx_mm);
544 	remove_from_ctx_list(ctxp);
545 	add_to_used_ctxlist(ctxp);
546 	ctxp->ctx_mm->context = NO_CONTEXT;
547 	ctxp->ctx_mm = mm;
548 	mm->context = ctxp->ctx_number;
549 }
550 
551 static inline void free_context(int context)
552 {
553 	struct ctx_list *ctx_old;
554 
555 	ctx_old = ctx_list_pool + context;
556 	remove_from_ctx_list(ctx_old);
557 	add_to_free_ctxlist(ctx_old);
558 }
559 
560 
561 static void srmmu_switch_mm(struct mm_struct *old_mm, struct mm_struct *mm,
562     struct task_struct *tsk, int cpu)
563 {
564 	if(mm->context == NO_CONTEXT) {
565 		spin_lock(&srmmu_context_spinlock);
566 		alloc_context(old_mm, mm);
567 		spin_unlock(&srmmu_context_spinlock);
568 		srmmu_ctxd_set(&srmmu_context_table[mm->context], mm->pgd);
569 	}
570 
571 	if (is_hypersparc)
572 		hyper_flush_whole_icache();
573 
574 	srmmu_set_context(mm->context);
575 }
576 
577 /* Low level IO area allocation on the SRMMU. */
578 static inline void srmmu_mapioaddr(unsigned long physaddr,
579     unsigned long virt_addr, int bus_type)
580 {
581 	pgd_t *pgdp;
582 	pmd_t *pmdp;
583 	pte_t *ptep;
584 	unsigned long tmp;
585 
586 	physaddr &= PAGE_MASK;
587 	pgdp = pgd_offset_k(virt_addr);
588 	pmdp = srmmu_pmd_offset(pgdp, virt_addr);
589 	ptep = srmmu_pte_offset(pmdp, virt_addr);
590 	tmp = (physaddr >> 4) | SRMMU_ET_PTE;
591 
592 	/*
593 	 * I need to test whether this is consistent over all
594 	 * sun4m's.  The bus_type represents the upper 4 bits of
595 	 * 36-bit physical address on the I/O space lines...
596 	 */
597 	tmp |= (bus_type << 28);
598 	tmp |= SRMMU_PRIV;
599 	__flush_page_to_ram(virt_addr);
600 	srmmu_set_pte(ptep, __pte(tmp));
601 }
602 
603 static void srmmu_mapiorange(unsigned int bus, unsigned long xpa,
604     unsigned long xva, unsigned int len)
605 {
606 	while (len != 0) {
607 		len -= PAGE_SIZE;
608 		srmmu_mapioaddr(xpa, xva, bus);
609 		xva += PAGE_SIZE;
610 		xpa += PAGE_SIZE;
611 	}
612 	flush_tlb_all();
613 }
614 
615 static inline void srmmu_unmapioaddr(unsigned long virt_addr)
616 {
617 	pgd_t *pgdp;
618 	pmd_t *pmdp;
619 	pte_t *ptep;
620 
621 	pgdp = pgd_offset_k(virt_addr);
622 	pmdp = srmmu_pmd_offset(pgdp, virt_addr);
623 	ptep = srmmu_pte_offset(pmdp, virt_addr);
624 
625 	/* No need to flush uncacheable page. */
626 	srmmu_pte_clear(ptep);
627 }
628 
629 static void srmmu_unmapiorange(unsigned long virt_addr, unsigned int len)
630 {
631 	while (len != 0) {
632 		len -= PAGE_SIZE;
633 		srmmu_unmapioaddr(virt_addr);
634 		virt_addr += PAGE_SIZE;
635 	}
636 	flush_tlb_all();
637 }
638 
639 /*
640  * On the SRMMU we do not have the problems with limited tlb entries
641  * for mapping kernel pages, so we just take things from the free page
642  * pool.  As a side effect we are putting a little too much pressure
643  * on the gfp() subsystem.  This setup also makes the logic of the
644  * iommu mapping code a lot easier as we can transparently handle
645  * mappings on the kernel stack without any special code as we did
646  * need on the sun4c.
647  */
648 static struct thread_info *srmmu_alloc_thread_info(void)
649 {
650 	struct thread_info *ret;
651 
652 	ret = (struct thread_info *)__get_free_pages(GFP_KERNEL,
653 						     THREAD_INFO_ORDER);
654 #ifdef CONFIG_DEBUG_STACK_USAGE
655 	if (ret)
656 		memset(ret, 0, PAGE_SIZE << THREAD_INFO_ORDER);
657 #endif /* DEBUG_STACK_USAGE */
658 
659 	return ret;
660 }
661 
662 static void srmmu_free_thread_info(struct thread_info *ti)
663 {
664 	free_pages((unsigned long)ti, THREAD_INFO_ORDER);
665 }
666 
667 /* tsunami.S */
668 extern void tsunami_flush_cache_all(void);
669 extern void tsunami_flush_cache_mm(struct mm_struct *mm);
670 extern void tsunami_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
671 extern void tsunami_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
672 extern void tsunami_flush_page_to_ram(unsigned long page);
673 extern void tsunami_flush_page_for_dma(unsigned long page);
674 extern void tsunami_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
675 extern void tsunami_flush_tlb_all(void);
676 extern void tsunami_flush_tlb_mm(struct mm_struct *mm);
677 extern void tsunami_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
678 extern void tsunami_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
679 extern void tsunami_setup_blockops(void);
680 
681 /*
682  * Workaround, until we find what's going on with Swift. When low on memory,
683  * it sometimes loops in fault/handle_mm_fault incl. flush_tlb_page to find
684  * out it is already in page tables/ fault again on the same instruction.
685  * I really don't understand it, have checked it and contexts
686  * are right, flush_tlb_all is done as well, and it faults again...
687  * Strange. -jj
688  *
689  * The following code is a deadwood that may be necessary when
690  * we start to make precise page flushes again. --zaitcev
691  */
692 static void swift_update_mmu_cache(struct vm_area_struct * vma, unsigned long address, pte_t pte)
693 {
694 #if 0
695 	static unsigned long last;
696 	unsigned int val;
697 	/* unsigned int n; */
698 
699 	if (address == last) {
700 		val = srmmu_hwprobe(address);
701 		if (val != 0 && pte_val(pte) != val) {
702 			printk("swift_update_mmu_cache: "
703 			    "addr %lx put %08x probed %08x from %p\n",
704 			    address, pte_val(pte), val,
705 			    __builtin_return_address(0));
706 			srmmu_flush_whole_tlb();
707 		}
708 	}
709 	last = address;
710 #endif
711 }
712 
713 /* swift.S */
714 extern void swift_flush_cache_all(void);
715 extern void swift_flush_cache_mm(struct mm_struct *mm);
716 extern void swift_flush_cache_range(struct vm_area_struct *vma,
717 				    unsigned long start, unsigned long end);
718 extern void swift_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
719 extern void swift_flush_page_to_ram(unsigned long page);
720 extern void swift_flush_page_for_dma(unsigned long page);
721 extern void swift_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
722 extern void swift_flush_tlb_all(void);
723 extern void swift_flush_tlb_mm(struct mm_struct *mm);
724 extern void swift_flush_tlb_range(struct vm_area_struct *vma,
725 				  unsigned long start, unsigned long end);
726 extern void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
727 
728 #if 0  /* P3: deadwood to debug precise flushes on Swift. */
729 void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
730 {
731 	int cctx, ctx1;
732 
733 	page &= PAGE_MASK;
734 	if ((ctx1 = vma->vm_mm->context) != -1) {
735 		cctx = srmmu_get_context();
736 /* Is context # ever different from current context? P3 */
737 		if (cctx != ctx1) {
738 			printk("flush ctx %02x curr %02x\n", ctx1, cctx);
739 			srmmu_set_context(ctx1);
740 			swift_flush_page(page);
741 			__asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
742 					"r" (page), "i" (ASI_M_FLUSH_PROBE));
743 			srmmu_set_context(cctx);
744 		} else {
745 			 /* Rm. prot. bits from virt. c. */
746 			/* swift_flush_cache_all(); */
747 			/* swift_flush_cache_page(vma, page); */
748 			swift_flush_page(page);
749 
750 			__asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
751 				"r" (page), "i" (ASI_M_FLUSH_PROBE));
752 			/* same as above: srmmu_flush_tlb_page() */
753 		}
754 	}
755 }
756 #endif
757 
758 /*
759  * The following are all MBUS based SRMMU modules, and therefore could
760  * be found in a multiprocessor configuration.  On the whole, these
761  * chips seems to be much more touchy about DVMA and page tables
762  * with respect to cache coherency.
763  */
764 
765 /* Cypress flushes. */
766 static void cypress_flush_cache_all(void)
767 {
768 	volatile unsigned long cypress_sucks;
769 	unsigned long faddr, tagval;
770 
771 	flush_user_windows();
772 	for(faddr = 0; faddr < 0x10000; faddr += 0x20) {
773 		__asm__ __volatile__("lda [%1 + %2] %3, %0\n\t" :
774 				     "=r" (tagval) :
775 				     "r" (faddr), "r" (0x40000),
776 				     "i" (ASI_M_DATAC_TAG));
777 
778 		/* If modified and valid, kick it. */
779 		if((tagval & 0x60) == 0x60)
780 			cypress_sucks = *(unsigned long *)(0xf0020000 + faddr);
781 	}
782 }
783 
784 static void cypress_flush_cache_mm(struct mm_struct *mm)
785 {
786 	register unsigned long a, b, c, d, e, f, g;
787 	unsigned long flags, faddr;
788 	int octx;
789 
790 	FLUSH_BEGIN(mm)
791 	flush_user_windows();
792 	local_irq_save(flags);
793 	octx = srmmu_get_context();
794 	srmmu_set_context(mm->context);
795 	a = 0x20; b = 0x40; c = 0x60;
796 	d = 0x80; e = 0xa0; f = 0xc0; g = 0xe0;
797 
798 	faddr = (0x10000 - 0x100);
799 	goto inside;
800 	do {
801 		faddr -= 0x100;
802 	inside:
803 		__asm__ __volatile__("sta %%g0, [%0] %1\n\t"
804 				     "sta %%g0, [%0 + %2] %1\n\t"
805 				     "sta %%g0, [%0 + %3] %1\n\t"
806 				     "sta %%g0, [%0 + %4] %1\n\t"
807 				     "sta %%g0, [%0 + %5] %1\n\t"
808 				     "sta %%g0, [%0 + %6] %1\n\t"
809 				     "sta %%g0, [%0 + %7] %1\n\t"
810 				     "sta %%g0, [%0 + %8] %1\n\t" : :
811 				     "r" (faddr), "i" (ASI_M_FLUSH_CTX),
812 				     "r" (a), "r" (b), "r" (c), "r" (d),
813 				     "r" (e), "r" (f), "r" (g));
814 	} while(faddr);
815 	srmmu_set_context(octx);
816 	local_irq_restore(flags);
817 	FLUSH_END
818 }
819 
820 static void cypress_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
821 {
822 	struct mm_struct *mm = vma->vm_mm;
823 	register unsigned long a, b, c, d, e, f, g;
824 	unsigned long flags, faddr;
825 	int octx;
826 
827 	FLUSH_BEGIN(mm)
828 	flush_user_windows();
829 	local_irq_save(flags);
830 	octx = srmmu_get_context();
831 	srmmu_set_context(mm->context);
832 	a = 0x20; b = 0x40; c = 0x60;
833 	d = 0x80; e = 0xa0; f = 0xc0; g = 0xe0;
834 
835 	start &= SRMMU_REAL_PMD_MASK;
836 	while(start < end) {
837 		faddr = (start + (0x10000 - 0x100));
838 		goto inside;
839 		do {
840 			faddr -= 0x100;
841 		inside:
842 			__asm__ __volatile__("sta %%g0, [%0] %1\n\t"
843 					     "sta %%g0, [%0 + %2] %1\n\t"
844 					     "sta %%g0, [%0 + %3] %1\n\t"
845 					     "sta %%g0, [%0 + %4] %1\n\t"
846 					     "sta %%g0, [%0 + %5] %1\n\t"
847 					     "sta %%g0, [%0 + %6] %1\n\t"
848 					     "sta %%g0, [%0 + %7] %1\n\t"
849 					     "sta %%g0, [%0 + %8] %1\n\t" : :
850 					     "r" (faddr),
851 					     "i" (ASI_M_FLUSH_SEG),
852 					     "r" (a), "r" (b), "r" (c), "r" (d),
853 					     "r" (e), "r" (f), "r" (g));
854 		} while (faddr != start);
855 		start += SRMMU_REAL_PMD_SIZE;
856 	}
857 	srmmu_set_context(octx);
858 	local_irq_restore(flags);
859 	FLUSH_END
860 }
861 
862 static void cypress_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
863 {
864 	register unsigned long a, b, c, d, e, f, g;
865 	struct mm_struct *mm = vma->vm_mm;
866 	unsigned long flags, line;
867 	int octx;
868 
869 	FLUSH_BEGIN(mm)
870 	flush_user_windows();
871 	local_irq_save(flags);
872 	octx = srmmu_get_context();
873 	srmmu_set_context(mm->context);
874 	a = 0x20; b = 0x40; c = 0x60;
875 	d = 0x80; e = 0xa0; f = 0xc0; g = 0xe0;
876 
877 	page &= PAGE_MASK;
878 	line = (page + PAGE_SIZE) - 0x100;
879 	goto inside;
880 	do {
881 		line -= 0x100;
882 	inside:
883 			__asm__ __volatile__("sta %%g0, [%0] %1\n\t"
884 					     "sta %%g0, [%0 + %2] %1\n\t"
885 					     "sta %%g0, [%0 + %3] %1\n\t"
886 					     "sta %%g0, [%0 + %4] %1\n\t"
887 					     "sta %%g0, [%0 + %5] %1\n\t"
888 					     "sta %%g0, [%0 + %6] %1\n\t"
889 					     "sta %%g0, [%0 + %7] %1\n\t"
890 					     "sta %%g0, [%0 + %8] %1\n\t" : :
891 					     "r" (line),
892 					     "i" (ASI_M_FLUSH_PAGE),
893 					     "r" (a), "r" (b), "r" (c), "r" (d),
894 					     "r" (e), "r" (f), "r" (g));
895 	} while(line != page);
896 	srmmu_set_context(octx);
897 	local_irq_restore(flags);
898 	FLUSH_END
899 }
900 
901 /* Cypress is copy-back, at least that is how we configure it. */
902 static void cypress_flush_page_to_ram(unsigned long page)
903 {
904 	register unsigned long a, b, c, d, e, f, g;
905 	unsigned long line;
906 
907 	a = 0x20; b = 0x40; c = 0x60; d = 0x80; e = 0xa0; f = 0xc0; g = 0xe0;
908 	page &= PAGE_MASK;
909 	line = (page + PAGE_SIZE) - 0x100;
910 	goto inside;
911 	do {
912 		line -= 0x100;
913 	inside:
914 		__asm__ __volatile__("sta %%g0, [%0] %1\n\t"
915 				     "sta %%g0, [%0 + %2] %1\n\t"
916 				     "sta %%g0, [%0 + %3] %1\n\t"
917 				     "sta %%g0, [%0 + %4] %1\n\t"
918 				     "sta %%g0, [%0 + %5] %1\n\t"
919 				     "sta %%g0, [%0 + %6] %1\n\t"
920 				     "sta %%g0, [%0 + %7] %1\n\t"
921 				     "sta %%g0, [%0 + %8] %1\n\t" : :
922 				     "r" (line),
923 				     "i" (ASI_M_FLUSH_PAGE),
924 				     "r" (a), "r" (b), "r" (c), "r" (d),
925 				     "r" (e), "r" (f), "r" (g));
926 	} while(line != page);
927 }
928 
929 /* Cypress is also IO cache coherent. */
930 static void cypress_flush_page_for_dma(unsigned long page)
931 {
932 }
933 
934 /* Cypress has unified L2 VIPT, from which both instructions and data
935  * are stored.  It does not have an onboard icache of any sort, therefore
936  * no flush is necessary.
937  */
938 static void cypress_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
939 {
940 }
941 
942 static void cypress_flush_tlb_all(void)
943 {
944 	srmmu_flush_whole_tlb();
945 }
946 
947 static void cypress_flush_tlb_mm(struct mm_struct *mm)
948 {
949 	FLUSH_BEGIN(mm)
950 	__asm__ __volatile__(
951 	"lda	[%0] %3, %%g5\n\t"
952 	"sta	%2, [%0] %3\n\t"
953 	"sta	%%g0, [%1] %4\n\t"
954 	"sta	%%g5, [%0] %3\n"
955 	: /* no outputs */
956 	: "r" (SRMMU_CTX_REG), "r" (0x300), "r" (mm->context),
957 	  "i" (ASI_M_MMUREGS), "i" (ASI_M_FLUSH_PROBE)
958 	: "g5");
959 	FLUSH_END
960 }
961 
962 static void cypress_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
963 {
964 	struct mm_struct *mm = vma->vm_mm;
965 	unsigned long size;
966 
967 	FLUSH_BEGIN(mm)
968 	start &= SRMMU_PGDIR_MASK;
969 	size = SRMMU_PGDIR_ALIGN(end) - start;
970 	__asm__ __volatile__(
971 		"lda	[%0] %5, %%g5\n\t"
972 		"sta	%1, [%0] %5\n"
973 		"1:\n\t"
974 		"subcc	%3, %4, %3\n\t"
975 		"bne	1b\n\t"
976 		" sta	%%g0, [%2 + %3] %6\n\t"
977 		"sta	%%g5, [%0] %5\n"
978 	: /* no outputs */
979 	: "r" (SRMMU_CTX_REG), "r" (mm->context), "r" (start | 0x200),
980 	  "r" (size), "r" (SRMMU_PGDIR_SIZE), "i" (ASI_M_MMUREGS),
981 	  "i" (ASI_M_FLUSH_PROBE)
982 	: "g5", "cc");
983 	FLUSH_END
984 }
985 
986 static void cypress_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
987 {
988 	struct mm_struct *mm = vma->vm_mm;
989 
990 	FLUSH_BEGIN(mm)
991 	__asm__ __volatile__(
992 	"lda	[%0] %3, %%g5\n\t"
993 	"sta	%1, [%0] %3\n\t"
994 	"sta	%%g0, [%2] %4\n\t"
995 	"sta	%%g5, [%0] %3\n"
996 	: /* no outputs */
997 	: "r" (SRMMU_CTX_REG), "r" (mm->context), "r" (page & PAGE_MASK),
998 	  "i" (ASI_M_MMUREGS), "i" (ASI_M_FLUSH_PROBE)
999 	: "g5");
1000 	FLUSH_END
1001 }
1002 
1003 /* viking.S */
1004 extern void viking_flush_cache_all(void);
1005 extern void viking_flush_cache_mm(struct mm_struct *mm);
1006 extern void viking_flush_cache_range(struct vm_area_struct *vma, unsigned long start,
1007 				     unsigned long end);
1008 extern void viking_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
1009 extern void viking_flush_page_to_ram(unsigned long page);
1010 extern void viking_flush_page_for_dma(unsigned long page);
1011 extern void viking_flush_sig_insns(struct mm_struct *mm, unsigned long addr);
1012 extern void viking_flush_page(unsigned long page);
1013 extern void viking_mxcc_flush_page(unsigned long page);
1014 extern void viking_flush_tlb_all(void);
1015 extern void viking_flush_tlb_mm(struct mm_struct *mm);
1016 extern void viking_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
1017 				   unsigned long end);
1018 extern void viking_flush_tlb_page(struct vm_area_struct *vma,
1019 				  unsigned long page);
1020 extern void sun4dsmp_flush_tlb_all(void);
1021 extern void sun4dsmp_flush_tlb_mm(struct mm_struct *mm);
1022 extern void sun4dsmp_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
1023 				   unsigned long end);
1024 extern void sun4dsmp_flush_tlb_page(struct vm_area_struct *vma,
1025 				  unsigned long page);
1026 
1027 /* hypersparc.S */
1028 extern void hypersparc_flush_cache_all(void);
1029 extern void hypersparc_flush_cache_mm(struct mm_struct *mm);
1030 extern void hypersparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
1031 extern void hypersparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
1032 extern void hypersparc_flush_page_to_ram(unsigned long page);
1033 extern void hypersparc_flush_page_for_dma(unsigned long page);
1034 extern void hypersparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
1035 extern void hypersparc_flush_tlb_all(void);
1036 extern void hypersparc_flush_tlb_mm(struct mm_struct *mm);
1037 extern void hypersparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
1038 extern void hypersparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
1039 extern void hypersparc_setup_blockops(void);
1040 
1041 /*
1042  * NOTE: All of this startup code assumes the low 16mb (approx.) of
1043  *       kernel mappings are done with one single contiguous chunk of
1044  *       ram.  On small ram machines (classics mainly) we only get
1045  *       around 8mb mapped for us.
1046  */
1047 
1048 static void __init early_pgtable_allocfail(char *type)
1049 {
1050 	prom_printf("inherit_prom_mappings: Cannot alloc kernel %s.\n", type);
1051 	prom_halt();
1052 }
1053 
1054 static void __init srmmu_early_allocate_ptable_skeleton(unsigned long start,
1055 							unsigned long end)
1056 {
1057 	pgd_t *pgdp;
1058 	pmd_t *pmdp;
1059 	pte_t *ptep;
1060 
1061 	while(start < end) {
1062 		pgdp = pgd_offset_k(start);
1063 		if(srmmu_pgd_none(*(pgd_t *)__nocache_fix(pgdp))) {
1064 			pmdp = (pmd_t *) __srmmu_get_nocache(
1065 			    SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
1066 			if (pmdp == NULL)
1067 				early_pgtable_allocfail("pmd");
1068 			memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
1069 			srmmu_pgd_set(__nocache_fix(pgdp), pmdp);
1070 		}
1071 		pmdp = srmmu_pmd_offset(__nocache_fix(pgdp), start);
1072 		if(srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
1073 			ptep = (pte_t *)__srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
1074 			if (ptep == NULL)
1075 				early_pgtable_allocfail("pte");
1076 			memset(__nocache_fix(ptep), 0, PTE_SIZE);
1077 			srmmu_pmd_set(__nocache_fix(pmdp), ptep);
1078 		}
1079 		if (start > (0xffffffffUL - PMD_SIZE))
1080 			break;
1081 		start = (start + PMD_SIZE) & PMD_MASK;
1082 	}
1083 }
1084 
1085 static void __init srmmu_allocate_ptable_skeleton(unsigned long start,
1086 						  unsigned long end)
1087 {
1088 	pgd_t *pgdp;
1089 	pmd_t *pmdp;
1090 	pte_t *ptep;
1091 
1092 	while(start < end) {
1093 		pgdp = pgd_offset_k(start);
1094 		if(srmmu_pgd_none(*pgdp)) {
1095 			pmdp = (pmd_t *)__srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
1096 			if (pmdp == NULL)
1097 				early_pgtable_allocfail("pmd");
1098 			memset(pmdp, 0, SRMMU_PMD_TABLE_SIZE);
1099 			srmmu_pgd_set(pgdp, pmdp);
1100 		}
1101 		pmdp = srmmu_pmd_offset(pgdp, start);
1102 		if(srmmu_pmd_none(*pmdp)) {
1103 			ptep = (pte_t *) __srmmu_get_nocache(PTE_SIZE,
1104 							     PTE_SIZE);
1105 			if (ptep == NULL)
1106 				early_pgtable_allocfail("pte");
1107 			memset(ptep, 0, PTE_SIZE);
1108 			srmmu_pmd_set(pmdp, ptep);
1109 		}
1110 		if (start > (0xffffffffUL - PMD_SIZE))
1111 			break;
1112 		start = (start + PMD_SIZE) & PMD_MASK;
1113 	}
1114 }
1115 
1116 /*
1117  * This is much cleaner than poking around physical address space
1118  * looking at the prom's page table directly which is what most
1119  * other OS's do.  Yuck... this is much better.
1120  */
1121 static void __init srmmu_inherit_prom_mappings(unsigned long start,
1122 					       unsigned long end)
1123 {
1124 	pgd_t *pgdp;
1125 	pmd_t *pmdp;
1126 	pte_t *ptep;
1127 	int what = 0; /* 0 = normal-pte, 1 = pmd-level pte, 2 = pgd-level pte */
1128 	unsigned long prompte;
1129 
1130 	while(start <= end) {
1131 		if (start == 0)
1132 			break; /* probably wrap around */
1133 		if(start == 0xfef00000)
1134 			start = KADB_DEBUGGER_BEGVM;
1135 		if(!(prompte = srmmu_hwprobe(start))) {
1136 			start += PAGE_SIZE;
1137 			continue;
1138 		}
1139 
1140 		/* A red snapper, see what it really is. */
1141 		what = 0;
1142 
1143 		if(!(start & ~(SRMMU_REAL_PMD_MASK))) {
1144 			if(srmmu_hwprobe((start-PAGE_SIZE) + SRMMU_REAL_PMD_SIZE) == prompte)
1145 				what = 1;
1146 		}
1147 
1148 		if(!(start & ~(SRMMU_PGDIR_MASK))) {
1149 			if(srmmu_hwprobe((start-PAGE_SIZE) + SRMMU_PGDIR_SIZE) ==
1150 			   prompte)
1151 				what = 2;
1152 		}
1153 
1154 		pgdp = pgd_offset_k(start);
1155 		if(what == 2) {
1156 			*(pgd_t *)__nocache_fix(pgdp) = __pgd(prompte);
1157 			start += SRMMU_PGDIR_SIZE;
1158 			continue;
1159 		}
1160 		if(srmmu_pgd_none(*(pgd_t *)__nocache_fix(pgdp))) {
1161 			pmdp = (pmd_t *)__srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
1162 			if (pmdp == NULL)
1163 				early_pgtable_allocfail("pmd");
1164 			memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
1165 			srmmu_pgd_set(__nocache_fix(pgdp), pmdp);
1166 		}
1167 		pmdp = srmmu_pmd_offset(__nocache_fix(pgdp), start);
1168 		if(srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
1169 			ptep = (pte_t *) __srmmu_get_nocache(PTE_SIZE,
1170 							     PTE_SIZE);
1171 			if (ptep == NULL)
1172 				early_pgtable_allocfail("pte");
1173 			memset(__nocache_fix(ptep), 0, PTE_SIZE);
1174 			srmmu_pmd_set(__nocache_fix(pmdp), ptep);
1175 		}
1176 		if(what == 1) {
1177 			/*
1178 			 * We bend the rule where all 16 PTPs in a pmd_t point
1179 			 * inside the same PTE page, and we leak a perfectly
1180 			 * good hardware PTE piece. Alternatives seem worse.
1181 			 */
1182 			unsigned int x;	/* Index of HW PMD in soft cluster */
1183 			x = (start >> PMD_SHIFT) & 15;
1184 			*(unsigned long *)__nocache_fix(&pmdp->pmdv[x]) = prompte;
1185 			start += SRMMU_REAL_PMD_SIZE;
1186 			continue;
1187 		}
1188 		ptep = srmmu_pte_offset(__nocache_fix(pmdp), start);
1189 		*(pte_t *)__nocache_fix(ptep) = __pte(prompte);
1190 		start += PAGE_SIZE;
1191 	}
1192 }
1193 
1194 #define KERNEL_PTE(page_shifted) ((page_shifted)|SRMMU_CACHE|SRMMU_PRIV|SRMMU_VALID)
1195 
1196 /* Create a third-level SRMMU 16MB page mapping. */
1197 static void __init do_large_mapping(unsigned long vaddr, unsigned long phys_base)
1198 {
1199 	pgd_t *pgdp = pgd_offset_k(vaddr);
1200 	unsigned long big_pte;
1201 
1202 	big_pte = KERNEL_PTE(phys_base >> 4);
1203 	*(pgd_t *)__nocache_fix(pgdp) = __pgd(big_pte);
1204 }
1205 
1206 /* Map sp_bank entry SP_ENTRY, starting at virtual address VBASE. */
1207 static unsigned long __init map_spbank(unsigned long vbase, int sp_entry)
1208 {
1209 	unsigned long pstart = (sp_banks[sp_entry].base_addr & SRMMU_PGDIR_MASK);
1210 	unsigned long vstart = (vbase & SRMMU_PGDIR_MASK);
1211 	unsigned long vend = SRMMU_PGDIR_ALIGN(vbase + sp_banks[sp_entry].num_bytes);
1212 	/* Map "low" memory only */
1213 	const unsigned long min_vaddr = PAGE_OFFSET;
1214 	const unsigned long max_vaddr = PAGE_OFFSET + SRMMU_MAXMEM;
1215 
1216 	if (vstart < min_vaddr || vstart >= max_vaddr)
1217 		return vstart;
1218 
1219 	if (vend > max_vaddr || vend < min_vaddr)
1220 		vend = max_vaddr;
1221 
1222 	while(vstart < vend) {
1223 		do_large_mapping(vstart, pstart);
1224 		vstart += SRMMU_PGDIR_SIZE; pstart += SRMMU_PGDIR_SIZE;
1225 	}
1226 	return vstart;
1227 }
1228 
1229 static inline void memprobe_error(char *msg)
1230 {
1231 	prom_printf(msg);
1232 	prom_printf("Halting now...\n");
1233 	prom_halt();
1234 }
1235 
1236 static inline void map_kernel(void)
1237 {
1238 	int i;
1239 
1240 	if (phys_base > 0) {
1241 		do_large_mapping(PAGE_OFFSET, phys_base);
1242 	}
1243 
1244 	for (i = 0; sp_banks[i].num_bytes != 0; i++) {
1245 		map_spbank((unsigned long)__va(sp_banks[i].base_addr), i);
1246 	}
1247 
1248 	BTFIXUPSET_SIMM13(user_ptrs_per_pgd, PAGE_OFFSET / SRMMU_PGDIR_SIZE);
1249 }
1250 
1251 /* Paging initialization on the Sparc Reference MMU. */
1252 extern void sparc_context_init(int);
1253 
1254 void (*poke_srmmu)(void) __cpuinitdata = NULL;
1255 
1256 extern unsigned long bootmem_init(unsigned long *pages_avail);
1257 
1258 void __init srmmu_paging_init(void)
1259 {
1260 	int i, cpunode;
1261 	char node_str[128];
1262 	pgd_t *pgd;
1263 	pmd_t *pmd;
1264 	pte_t *pte;
1265 	unsigned long pages_avail;
1266 
1267 	sparc_iomap.start = SUN4M_IOBASE_VADDR;	/* 16MB of IOSPACE on all sun4m's. */
1268 
1269 	if (sparc_cpu_model == sun4d)
1270 		num_contexts = 65536; /* We know it is Viking */
1271 	else {
1272 		/* Find the number of contexts on the srmmu. */
1273 		cpunode = prom_getchild(prom_root_node);
1274 		num_contexts = 0;
1275 		while(cpunode != 0) {
1276 			prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
1277 			if(!strcmp(node_str, "cpu")) {
1278 				num_contexts = prom_getintdefault(cpunode, "mmu-nctx", 0x8);
1279 				break;
1280 			}
1281 			cpunode = prom_getsibling(cpunode);
1282 		}
1283 	}
1284 
1285 	if(!num_contexts) {
1286 		prom_printf("Something wrong, can't find cpu node in paging_init.\n");
1287 		prom_halt();
1288 	}
1289 
1290 	pages_avail = 0;
1291 	last_valid_pfn = bootmem_init(&pages_avail);
1292 
1293 	srmmu_nocache_calcsize();
1294 	srmmu_nocache_init();
1295         srmmu_inherit_prom_mappings(0xfe400000,(LINUX_OPPROM_ENDVM-PAGE_SIZE));
1296 	map_kernel();
1297 
1298 	/* ctx table has to be physically aligned to its size */
1299 	srmmu_context_table = (ctxd_t *)__srmmu_get_nocache(num_contexts*sizeof(ctxd_t), num_contexts*sizeof(ctxd_t));
1300 	srmmu_ctx_table_phys = (ctxd_t *)__nocache_pa((unsigned long)srmmu_context_table);
1301 
1302 	for(i = 0; i < num_contexts; i++)
1303 		srmmu_ctxd_set((ctxd_t *)__nocache_fix(&srmmu_context_table[i]), srmmu_swapper_pg_dir);
1304 
1305 	flush_cache_all();
1306 	srmmu_set_ctable_ptr((unsigned long)srmmu_ctx_table_phys);
1307 #ifdef CONFIG_SMP
1308 	/* Stop from hanging here... */
1309 	local_flush_tlb_all();
1310 #else
1311 	flush_tlb_all();
1312 #endif
1313 	poke_srmmu();
1314 
1315 	srmmu_allocate_ptable_skeleton(sparc_iomap.start, IOBASE_END);
1316 	srmmu_allocate_ptable_skeleton(DVMA_VADDR, DVMA_END);
1317 
1318 	srmmu_allocate_ptable_skeleton(
1319 		__fix_to_virt(__end_of_fixed_addresses - 1), FIXADDR_TOP);
1320 	srmmu_allocate_ptable_skeleton(PKMAP_BASE, PKMAP_END);
1321 
1322 	pgd = pgd_offset_k(PKMAP_BASE);
1323 	pmd = srmmu_pmd_offset(pgd, PKMAP_BASE);
1324 	pte = srmmu_pte_offset(pmd, PKMAP_BASE);
1325 	pkmap_page_table = pte;
1326 
1327 	flush_cache_all();
1328 	flush_tlb_all();
1329 
1330 	sparc_context_init(num_contexts);
1331 
1332 	kmap_init();
1333 
1334 	{
1335 		unsigned long zones_size[MAX_NR_ZONES];
1336 		unsigned long zholes_size[MAX_NR_ZONES];
1337 		unsigned long npages;
1338 		int znum;
1339 
1340 		for (znum = 0; znum < MAX_NR_ZONES; znum++)
1341 			zones_size[znum] = zholes_size[znum] = 0;
1342 
1343 		npages = max_low_pfn - pfn_base;
1344 
1345 		zones_size[ZONE_DMA] = npages;
1346 		zholes_size[ZONE_DMA] = npages - pages_avail;
1347 
1348 		npages = highend_pfn - max_low_pfn;
1349 		zones_size[ZONE_HIGHMEM] = npages;
1350 		zholes_size[ZONE_HIGHMEM] = npages - calc_highpages();
1351 
1352 		free_area_init_node(0, zones_size, pfn_base, zholes_size);
1353 	}
1354 }
1355 
1356 static void srmmu_mmu_info(struct seq_file *m)
1357 {
1358 	seq_printf(m,
1359 		   "MMU type\t: %s\n"
1360 		   "contexts\t: %d\n"
1361 		   "nocache total\t: %ld\n"
1362 		   "nocache used\t: %d\n",
1363 		   srmmu_name,
1364 		   num_contexts,
1365 		   srmmu_nocache_size,
1366 		   srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
1367 }
1368 
1369 static void srmmu_update_mmu_cache(struct vm_area_struct * vma, unsigned long address, pte_t pte)
1370 {
1371 }
1372 
1373 static void srmmu_destroy_context(struct mm_struct *mm)
1374 {
1375 
1376 	if(mm->context != NO_CONTEXT) {
1377 		flush_cache_mm(mm);
1378 		srmmu_ctxd_set(&srmmu_context_table[mm->context], srmmu_swapper_pg_dir);
1379 		flush_tlb_mm(mm);
1380 		spin_lock(&srmmu_context_spinlock);
1381 		free_context(mm->context);
1382 		spin_unlock(&srmmu_context_spinlock);
1383 		mm->context = NO_CONTEXT;
1384 	}
1385 }
1386 
1387 /* Init various srmmu chip types. */
1388 static void __init srmmu_is_bad(void)
1389 {
1390 	prom_printf("Could not determine SRMMU chip type.\n");
1391 	prom_halt();
1392 }
1393 
1394 static void __init init_vac_layout(void)
1395 {
1396 	int nd, cache_lines;
1397 	char node_str[128];
1398 #ifdef CONFIG_SMP
1399 	int cpu = 0;
1400 	unsigned long max_size = 0;
1401 	unsigned long min_line_size = 0x10000000;
1402 #endif
1403 
1404 	nd = prom_getchild(prom_root_node);
1405 	while((nd = prom_getsibling(nd)) != 0) {
1406 		prom_getstring(nd, "device_type", node_str, sizeof(node_str));
1407 		if(!strcmp(node_str, "cpu")) {
1408 			vac_line_size = prom_getint(nd, "cache-line-size");
1409 			if (vac_line_size == -1) {
1410 				prom_printf("can't determine cache-line-size, "
1411 					    "halting.\n");
1412 				prom_halt();
1413 			}
1414 			cache_lines = prom_getint(nd, "cache-nlines");
1415 			if (cache_lines == -1) {
1416 				prom_printf("can't determine cache-nlines, halting.\n");
1417 				prom_halt();
1418 			}
1419 
1420 			vac_cache_size = cache_lines * vac_line_size;
1421 #ifdef CONFIG_SMP
1422 			if(vac_cache_size > max_size)
1423 				max_size = vac_cache_size;
1424 			if(vac_line_size < min_line_size)
1425 				min_line_size = vac_line_size;
1426 			//FIXME: cpus not contiguous!!
1427 			cpu++;
1428 			if (cpu >= nr_cpu_ids || !cpu_online(cpu))
1429 				break;
1430 #else
1431 			break;
1432 #endif
1433 		}
1434 	}
1435 	if(nd == 0) {
1436 		prom_printf("No CPU nodes found, halting.\n");
1437 		prom_halt();
1438 	}
1439 #ifdef CONFIG_SMP
1440 	vac_cache_size = max_size;
1441 	vac_line_size = min_line_size;
1442 #endif
1443 	printk("SRMMU: Using VAC size of %d bytes, line size %d bytes.\n",
1444 	       (int)vac_cache_size, (int)vac_line_size);
1445 }
1446 
1447 static void __cpuinit poke_hypersparc(void)
1448 {
1449 	volatile unsigned long clear;
1450 	unsigned long mreg = srmmu_get_mmureg();
1451 
1452 	hyper_flush_unconditional_combined();
1453 
1454 	mreg &= ~(HYPERSPARC_CWENABLE);
1455 	mreg |= (HYPERSPARC_CENABLE | HYPERSPARC_WBENABLE);
1456 	mreg |= (HYPERSPARC_CMODE);
1457 
1458 	srmmu_set_mmureg(mreg);
1459 
1460 #if 0 /* XXX I think this is bad news... -DaveM */
1461 	hyper_clear_all_tags();
1462 #endif
1463 
1464 	put_ross_icr(HYPERSPARC_ICCR_FTD | HYPERSPARC_ICCR_ICE);
1465 	hyper_flush_whole_icache();
1466 	clear = srmmu_get_faddr();
1467 	clear = srmmu_get_fstatus();
1468 }
1469 
1470 static void __init init_hypersparc(void)
1471 {
1472 	srmmu_name = "ROSS HyperSparc";
1473 	srmmu_modtype = HyperSparc;
1474 
1475 	init_vac_layout();
1476 
1477 	is_hypersparc = 1;
1478 
1479 	BTFIXUPSET_CALL(pte_clear, srmmu_pte_clear, BTFIXUPCALL_NORM);
1480 	BTFIXUPSET_CALL(pmd_clear, srmmu_pmd_clear, BTFIXUPCALL_NORM);
1481 	BTFIXUPSET_CALL(pgd_clear, srmmu_pgd_clear, BTFIXUPCALL_NORM);
1482 	BTFIXUPSET_CALL(flush_cache_all, hypersparc_flush_cache_all, BTFIXUPCALL_NORM);
1483 	BTFIXUPSET_CALL(flush_cache_mm, hypersparc_flush_cache_mm, BTFIXUPCALL_NORM);
1484 	BTFIXUPSET_CALL(flush_cache_range, hypersparc_flush_cache_range, BTFIXUPCALL_NORM);
1485 	BTFIXUPSET_CALL(flush_cache_page, hypersparc_flush_cache_page, BTFIXUPCALL_NORM);
1486 
1487 	BTFIXUPSET_CALL(flush_tlb_all, hypersparc_flush_tlb_all, BTFIXUPCALL_NORM);
1488 	BTFIXUPSET_CALL(flush_tlb_mm, hypersparc_flush_tlb_mm, BTFIXUPCALL_NORM);
1489 	BTFIXUPSET_CALL(flush_tlb_range, hypersparc_flush_tlb_range, BTFIXUPCALL_NORM);
1490 	BTFIXUPSET_CALL(flush_tlb_page, hypersparc_flush_tlb_page, BTFIXUPCALL_NORM);
1491 
1492 	BTFIXUPSET_CALL(__flush_page_to_ram, hypersparc_flush_page_to_ram, BTFIXUPCALL_NORM);
1493 	BTFIXUPSET_CALL(flush_sig_insns, hypersparc_flush_sig_insns, BTFIXUPCALL_NORM);
1494 	BTFIXUPSET_CALL(flush_page_for_dma, hypersparc_flush_page_for_dma, BTFIXUPCALL_NOP);
1495 
1496 
1497 	poke_srmmu = poke_hypersparc;
1498 
1499 	hypersparc_setup_blockops();
1500 }
1501 
1502 static void __cpuinit poke_cypress(void)
1503 {
1504 	unsigned long mreg = srmmu_get_mmureg();
1505 	unsigned long faddr, tagval;
1506 	volatile unsigned long cypress_sucks;
1507 	volatile unsigned long clear;
1508 
1509 	clear = srmmu_get_faddr();
1510 	clear = srmmu_get_fstatus();
1511 
1512 	if (!(mreg & CYPRESS_CENABLE)) {
1513 		for(faddr = 0x0; faddr < 0x10000; faddr += 20) {
1514 			__asm__ __volatile__("sta %%g0, [%0 + %1] %2\n\t"
1515 					     "sta %%g0, [%0] %2\n\t" : :
1516 					     "r" (faddr), "r" (0x40000),
1517 					     "i" (ASI_M_DATAC_TAG));
1518 		}
1519 	} else {
1520 		for(faddr = 0; faddr < 0x10000; faddr += 0x20) {
1521 			__asm__ __volatile__("lda [%1 + %2] %3, %0\n\t" :
1522 					     "=r" (tagval) :
1523 					     "r" (faddr), "r" (0x40000),
1524 					     "i" (ASI_M_DATAC_TAG));
1525 
1526 			/* If modified and valid, kick it. */
1527 			if((tagval & 0x60) == 0x60)
1528 				cypress_sucks = *(unsigned long *)
1529 							(0xf0020000 + faddr);
1530 		}
1531 	}
1532 
1533 	/* And one more, for our good neighbor, Mr. Broken Cypress. */
1534 	clear = srmmu_get_faddr();
1535 	clear = srmmu_get_fstatus();
1536 
1537 	mreg |= (CYPRESS_CENABLE | CYPRESS_CMODE);
1538 	srmmu_set_mmureg(mreg);
1539 }
1540 
1541 static void __init init_cypress_common(void)
1542 {
1543 	init_vac_layout();
1544 
1545 	BTFIXUPSET_CALL(pte_clear, srmmu_pte_clear, BTFIXUPCALL_NORM);
1546 	BTFIXUPSET_CALL(pmd_clear, srmmu_pmd_clear, BTFIXUPCALL_NORM);
1547 	BTFIXUPSET_CALL(pgd_clear, srmmu_pgd_clear, BTFIXUPCALL_NORM);
1548 	BTFIXUPSET_CALL(flush_cache_all, cypress_flush_cache_all, BTFIXUPCALL_NORM);
1549 	BTFIXUPSET_CALL(flush_cache_mm, cypress_flush_cache_mm, BTFIXUPCALL_NORM);
1550 	BTFIXUPSET_CALL(flush_cache_range, cypress_flush_cache_range, BTFIXUPCALL_NORM);
1551 	BTFIXUPSET_CALL(flush_cache_page, cypress_flush_cache_page, BTFIXUPCALL_NORM);
1552 
1553 	BTFIXUPSET_CALL(flush_tlb_all, cypress_flush_tlb_all, BTFIXUPCALL_NORM);
1554 	BTFIXUPSET_CALL(flush_tlb_mm, cypress_flush_tlb_mm, BTFIXUPCALL_NORM);
1555 	BTFIXUPSET_CALL(flush_tlb_page, cypress_flush_tlb_page, BTFIXUPCALL_NORM);
1556 	BTFIXUPSET_CALL(flush_tlb_range, cypress_flush_tlb_range, BTFIXUPCALL_NORM);
1557 
1558 
1559 	BTFIXUPSET_CALL(__flush_page_to_ram, cypress_flush_page_to_ram, BTFIXUPCALL_NORM);
1560 	BTFIXUPSET_CALL(flush_sig_insns, cypress_flush_sig_insns, BTFIXUPCALL_NOP);
1561 	BTFIXUPSET_CALL(flush_page_for_dma, cypress_flush_page_for_dma, BTFIXUPCALL_NOP);
1562 
1563 	poke_srmmu = poke_cypress;
1564 }
1565 
1566 static void __init init_cypress_604(void)
1567 {
1568 	srmmu_name = "ROSS Cypress-604(UP)";
1569 	srmmu_modtype = Cypress;
1570 	init_cypress_common();
1571 }
1572 
1573 static void __init init_cypress_605(unsigned long mrev)
1574 {
1575 	srmmu_name = "ROSS Cypress-605(MP)";
1576 	if(mrev == 0xe) {
1577 		srmmu_modtype = Cypress_vE;
1578 		hwbug_bitmask |= HWBUG_COPYBACK_BROKEN;
1579 	} else {
1580 		if(mrev == 0xd) {
1581 			srmmu_modtype = Cypress_vD;
1582 			hwbug_bitmask |= HWBUG_ASIFLUSH_BROKEN;
1583 		} else {
1584 			srmmu_modtype = Cypress;
1585 		}
1586 	}
1587 	init_cypress_common();
1588 }
1589 
1590 static void __cpuinit poke_swift(void)
1591 {
1592 	unsigned long mreg;
1593 
1594 	/* Clear any crap from the cache or else... */
1595 	swift_flush_cache_all();
1596 
1597 	/* Enable I & D caches */
1598 	mreg = srmmu_get_mmureg();
1599 	mreg |= (SWIFT_IE | SWIFT_DE);
1600 	/*
1601 	 * The Swift branch folding logic is completely broken.  At
1602 	 * trap time, if things are just right, if can mistakenly
1603 	 * think that a trap is coming from kernel mode when in fact
1604 	 * it is coming from user mode (it mis-executes the branch in
1605 	 * the trap code).  So you see things like crashme completely
1606 	 * hosing your machine which is completely unacceptable.  Turn
1607 	 * this shit off... nice job Fujitsu.
1608 	 */
1609 	mreg &= ~(SWIFT_BF);
1610 	srmmu_set_mmureg(mreg);
1611 }
1612 
1613 #define SWIFT_MASKID_ADDR  0x10003018
1614 static void __init init_swift(void)
1615 {
1616 	unsigned long swift_rev;
1617 
1618 	__asm__ __volatile__("lda [%1] %2, %0\n\t"
1619 			     "srl %0, 0x18, %0\n\t" :
1620 			     "=r" (swift_rev) :
1621 			     "r" (SWIFT_MASKID_ADDR), "i" (ASI_M_BYPASS));
1622 	srmmu_name = "Fujitsu Swift";
1623 	switch(swift_rev) {
1624 	case 0x11:
1625 	case 0x20:
1626 	case 0x23:
1627 	case 0x30:
1628 		srmmu_modtype = Swift_lots_o_bugs;
1629 		hwbug_bitmask |= (HWBUG_KERN_ACCBROKEN | HWBUG_KERN_CBITBROKEN);
1630 		/*
1631 		 * Gee george, I wonder why Sun is so hush hush about
1632 		 * this hardware bug... really braindamage stuff going
1633 		 * on here.  However I think we can find a way to avoid
1634 		 * all of the workaround overhead under Linux.  Basically,
1635 		 * any page fault can cause kernel pages to become user
1636 		 * accessible (the mmu gets confused and clears some of
1637 		 * the ACC bits in kernel ptes).  Aha, sounds pretty
1638 		 * horrible eh?  But wait, after extensive testing it appears
1639 		 * that if you use pgd_t level large kernel pte's (like the
1640 		 * 4MB pages on the Pentium) the bug does not get tripped
1641 		 * at all.  This avoids almost all of the major overhead.
1642 		 * Welcome to a world where your vendor tells you to,
1643 		 * "apply this kernel patch" instead of "sorry for the
1644 		 * broken hardware, send it back and we'll give you
1645 		 * properly functioning parts"
1646 		 */
1647 		break;
1648 	case 0x25:
1649 	case 0x31:
1650 		srmmu_modtype = Swift_bad_c;
1651 		hwbug_bitmask |= HWBUG_KERN_CBITBROKEN;
1652 		/*
1653 		 * You see Sun allude to this hardware bug but never
1654 		 * admit things directly, they'll say things like,
1655 		 * "the Swift chip cache problems" or similar.
1656 		 */
1657 		break;
1658 	default:
1659 		srmmu_modtype = Swift_ok;
1660 		break;
1661 	};
1662 
1663 	BTFIXUPSET_CALL(flush_cache_all, swift_flush_cache_all, BTFIXUPCALL_NORM);
1664 	BTFIXUPSET_CALL(flush_cache_mm, swift_flush_cache_mm, BTFIXUPCALL_NORM);
1665 	BTFIXUPSET_CALL(flush_cache_page, swift_flush_cache_page, BTFIXUPCALL_NORM);
1666 	BTFIXUPSET_CALL(flush_cache_range, swift_flush_cache_range, BTFIXUPCALL_NORM);
1667 
1668 
1669 	BTFIXUPSET_CALL(flush_tlb_all, swift_flush_tlb_all, BTFIXUPCALL_NORM);
1670 	BTFIXUPSET_CALL(flush_tlb_mm, swift_flush_tlb_mm, BTFIXUPCALL_NORM);
1671 	BTFIXUPSET_CALL(flush_tlb_page, swift_flush_tlb_page, BTFIXUPCALL_NORM);
1672 	BTFIXUPSET_CALL(flush_tlb_range, swift_flush_tlb_range, BTFIXUPCALL_NORM);
1673 
1674 	BTFIXUPSET_CALL(__flush_page_to_ram, swift_flush_page_to_ram, BTFIXUPCALL_NORM);
1675 	BTFIXUPSET_CALL(flush_sig_insns, swift_flush_sig_insns, BTFIXUPCALL_NORM);
1676 	BTFIXUPSET_CALL(flush_page_for_dma, swift_flush_page_for_dma, BTFIXUPCALL_NORM);
1677 
1678 	BTFIXUPSET_CALL(update_mmu_cache, swift_update_mmu_cache, BTFIXUPCALL_NORM);
1679 
1680 	flush_page_for_dma_global = 0;
1681 
1682 	/*
1683 	 * Are you now convinced that the Swift is one of the
1684 	 * biggest VLSI abortions of all time?  Bravo Fujitsu!
1685 	 * Fujitsu, the !#?!%$'d up processor people.  I bet if
1686 	 * you examined the microcode of the Swift you'd find
1687 	 * XXX's all over the place.
1688 	 */
1689 	poke_srmmu = poke_swift;
1690 }
1691 
1692 static void turbosparc_flush_cache_all(void)
1693 {
1694 	flush_user_windows();
1695 	turbosparc_idflash_clear();
1696 }
1697 
1698 static void turbosparc_flush_cache_mm(struct mm_struct *mm)
1699 {
1700 	FLUSH_BEGIN(mm)
1701 	flush_user_windows();
1702 	turbosparc_idflash_clear();
1703 	FLUSH_END
1704 }
1705 
1706 static void turbosparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1707 {
1708 	FLUSH_BEGIN(vma->vm_mm)
1709 	flush_user_windows();
1710 	turbosparc_idflash_clear();
1711 	FLUSH_END
1712 }
1713 
1714 static void turbosparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
1715 {
1716 	FLUSH_BEGIN(vma->vm_mm)
1717 	flush_user_windows();
1718 	if (vma->vm_flags & VM_EXEC)
1719 		turbosparc_flush_icache();
1720 	turbosparc_flush_dcache();
1721 	FLUSH_END
1722 }
1723 
1724 /* TurboSparc is copy-back, if we turn it on, but this does not work. */
1725 static void turbosparc_flush_page_to_ram(unsigned long page)
1726 {
1727 #ifdef TURBOSPARC_WRITEBACK
1728 	volatile unsigned long clear;
1729 
1730 	if (srmmu_hwprobe(page))
1731 		turbosparc_flush_page_cache(page);
1732 	clear = srmmu_get_fstatus();
1733 #endif
1734 }
1735 
1736 static void turbosparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
1737 {
1738 }
1739 
1740 static void turbosparc_flush_page_for_dma(unsigned long page)
1741 {
1742 	turbosparc_flush_dcache();
1743 }
1744 
1745 static void turbosparc_flush_tlb_all(void)
1746 {
1747 	srmmu_flush_whole_tlb();
1748 }
1749 
1750 static void turbosparc_flush_tlb_mm(struct mm_struct *mm)
1751 {
1752 	FLUSH_BEGIN(mm)
1753 	srmmu_flush_whole_tlb();
1754 	FLUSH_END
1755 }
1756 
1757 static void turbosparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1758 {
1759 	FLUSH_BEGIN(vma->vm_mm)
1760 	srmmu_flush_whole_tlb();
1761 	FLUSH_END
1762 }
1763 
1764 static void turbosparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
1765 {
1766 	FLUSH_BEGIN(vma->vm_mm)
1767 	srmmu_flush_whole_tlb();
1768 	FLUSH_END
1769 }
1770 
1771 
1772 static void __cpuinit poke_turbosparc(void)
1773 {
1774 	unsigned long mreg = srmmu_get_mmureg();
1775 	unsigned long ccreg;
1776 
1777 	/* Clear any crap from the cache or else... */
1778 	turbosparc_flush_cache_all();
1779 	mreg &= ~(TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE); /* Temporarily disable I & D caches */
1780 	mreg &= ~(TURBOSPARC_PCENABLE);		/* Don't check parity */
1781 	srmmu_set_mmureg(mreg);
1782 
1783 	ccreg = turbosparc_get_ccreg();
1784 
1785 #ifdef TURBOSPARC_WRITEBACK
1786 	ccreg |= (TURBOSPARC_SNENABLE);		/* Do DVMA snooping in Dcache */
1787 	ccreg &= ~(TURBOSPARC_uS2 | TURBOSPARC_WTENABLE);
1788 			/* Write-back D-cache, emulate VLSI
1789 			 * abortion number three, not number one */
1790 #else
1791 	/* For now let's play safe, optimize later */
1792 	ccreg |= (TURBOSPARC_SNENABLE | TURBOSPARC_WTENABLE);
1793 			/* Do DVMA snooping in Dcache, Write-thru D-cache */
1794 	ccreg &= ~(TURBOSPARC_uS2);
1795 			/* Emulate VLSI abortion number three, not number one */
1796 #endif
1797 
1798 	switch (ccreg & 7) {
1799 	case 0: /* No SE cache */
1800 	case 7: /* Test mode */
1801 		break;
1802 	default:
1803 		ccreg |= (TURBOSPARC_SCENABLE);
1804 	}
1805 	turbosparc_set_ccreg (ccreg);
1806 
1807 	mreg |= (TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE); /* I & D caches on */
1808 	mreg |= (TURBOSPARC_ICSNOOP);		/* Icache snooping on */
1809 	srmmu_set_mmureg(mreg);
1810 }
1811 
1812 static void __init init_turbosparc(void)
1813 {
1814 	srmmu_name = "Fujitsu TurboSparc";
1815 	srmmu_modtype = TurboSparc;
1816 
1817 	BTFIXUPSET_CALL(flush_cache_all, turbosparc_flush_cache_all, BTFIXUPCALL_NORM);
1818 	BTFIXUPSET_CALL(flush_cache_mm, turbosparc_flush_cache_mm, BTFIXUPCALL_NORM);
1819 	BTFIXUPSET_CALL(flush_cache_page, turbosparc_flush_cache_page, BTFIXUPCALL_NORM);
1820 	BTFIXUPSET_CALL(flush_cache_range, turbosparc_flush_cache_range, BTFIXUPCALL_NORM);
1821 
1822 	BTFIXUPSET_CALL(flush_tlb_all, turbosparc_flush_tlb_all, BTFIXUPCALL_NORM);
1823 	BTFIXUPSET_CALL(flush_tlb_mm, turbosparc_flush_tlb_mm, BTFIXUPCALL_NORM);
1824 	BTFIXUPSET_CALL(flush_tlb_page, turbosparc_flush_tlb_page, BTFIXUPCALL_NORM);
1825 	BTFIXUPSET_CALL(flush_tlb_range, turbosparc_flush_tlb_range, BTFIXUPCALL_NORM);
1826 
1827 	BTFIXUPSET_CALL(__flush_page_to_ram, turbosparc_flush_page_to_ram, BTFIXUPCALL_NORM);
1828 
1829 	BTFIXUPSET_CALL(flush_sig_insns, turbosparc_flush_sig_insns, BTFIXUPCALL_NOP);
1830 	BTFIXUPSET_CALL(flush_page_for_dma, turbosparc_flush_page_for_dma, BTFIXUPCALL_NORM);
1831 
1832 	poke_srmmu = poke_turbosparc;
1833 }
1834 
1835 static void __cpuinit poke_tsunami(void)
1836 {
1837 	unsigned long mreg = srmmu_get_mmureg();
1838 
1839 	tsunami_flush_icache();
1840 	tsunami_flush_dcache();
1841 	mreg &= ~TSUNAMI_ITD;
1842 	mreg |= (TSUNAMI_IENAB | TSUNAMI_DENAB);
1843 	srmmu_set_mmureg(mreg);
1844 }
1845 
1846 static void __init init_tsunami(void)
1847 {
1848 	/*
1849 	 * Tsunami's pretty sane, Sun and TI actually got it
1850 	 * somewhat right this time.  Fujitsu should have
1851 	 * taken some lessons from them.
1852 	 */
1853 
1854 	srmmu_name = "TI Tsunami";
1855 	srmmu_modtype = Tsunami;
1856 
1857 	BTFIXUPSET_CALL(flush_cache_all, tsunami_flush_cache_all, BTFIXUPCALL_NORM);
1858 	BTFIXUPSET_CALL(flush_cache_mm, tsunami_flush_cache_mm, BTFIXUPCALL_NORM);
1859 	BTFIXUPSET_CALL(flush_cache_page, tsunami_flush_cache_page, BTFIXUPCALL_NORM);
1860 	BTFIXUPSET_CALL(flush_cache_range, tsunami_flush_cache_range, BTFIXUPCALL_NORM);
1861 
1862 
1863 	BTFIXUPSET_CALL(flush_tlb_all, tsunami_flush_tlb_all, BTFIXUPCALL_NORM);
1864 	BTFIXUPSET_CALL(flush_tlb_mm, tsunami_flush_tlb_mm, BTFIXUPCALL_NORM);
1865 	BTFIXUPSET_CALL(flush_tlb_page, tsunami_flush_tlb_page, BTFIXUPCALL_NORM);
1866 	BTFIXUPSET_CALL(flush_tlb_range, tsunami_flush_tlb_range, BTFIXUPCALL_NORM);
1867 
1868 	BTFIXUPSET_CALL(__flush_page_to_ram, tsunami_flush_page_to_ram, BTFIXUPCALL_NOP);
1869 	BTFIXUPSET_CALL(flush_sig_insns, tsunami_flush_sig_insns, BTFIXUPCALL_NORM);
1870 	BTFIXUPSET_CALL(flush_page_for_dma, tsunami_flush_page_for_dma, BTFIXUPCALL_NORM);
1871 
1872 	poke_srmmu = poke_tsunami;
1873 
1874 	tsunami_setup_blockops();
1875 }
1876 
1877 static void __cpuinit poke_viking(void)
1878 {
1879 	unsigned long mreg = srmmu_get_mmureg();
1880 	static int smp_catch;
1881 
1882 	if(viking_mxcc_present) {
1883 		unsigned long mxcc_control = mxcc_get_creg();
1884 
1885 		mxcc_control |= (MXCC_CTL_ECE | MXCC_CTL_PRE | MXCC_CTL_MCE);
1886 		mxcc_control &= ~(MXCC_CTL_RRC);
1887 		mxcc_set_creg(mxcc_control);
1888 
1889 		/*
1890 		 * We don't need memory parity checks.
1891 		 * XXX This is a mess, have to dig out later. ecd.
1892 		viking_mxcc_turn_off_parity(&mreg, &mxcc_control);
1893 		 */
1894 
1895 		/* We do cache ptables on MXCC. */
1896 		mreg |= VIKING_TCENABLE;
1897 	} else {
1898 		unsigned long bpreg;
1899 
1900 		mreg &= ~(VIKING_TCENABLE);
1901 		if(smp_catch++) {
1902 			/* Must disable mixed-cmd mode here for other cpu's. */
1903 			bpreg = viking_get_bpreg();
1904 			bpreg &= ~(VIKING_ACTION_MIX);
1905 			viking_set_bpreg(bpreg);
1906 
1907 			/* Just in case PROM does something funny. */
1908 			msi_set_sync();
1909 		}
1910 	}
1911 
1912 	mreg |= VIKING_SPENABLE;
1913 	mreg |= (VIKING_ICENABLE | VIKING_DCENABLE);
1914 	mreg |= VIKING_SBENABLE;
1915 	mreg &= ~(VIKING_ACENABLE);
1916 	srmmu_set_mmureg(mreg);
1917 }
1918 
1919 static void __init init_viking(void)
1920 {
1921 	unsigned long mreg = srmmu_get_mmureg();
1922 
1923 	/* Ahhh, the viking.  SRMMU VLSI abortion number two... */
1924 	if(mreg & VIKING_MMODE) {
1925 		srmmu_name = "TI Viking";
1926 		viking_mxcc_present = 0;
1927 		msi_set_sync();
1928 
1929 		BTFIXUPSET_CALL(pte_clear, srmmu_pte_clear, BTFIXUPCALL_NORM);
1930 		BTFIXUPSET_CALL(pmd_clear, srmmu_pmd_clear, BTFIXUPCALL_NORM);
1931 		BTFIXUPSET_CALL(pgd_clear, srmmu_pgd_clear, BTFIXUPCALL_NORM);
1932 
1933 		/*
1934 		 * We need this to make sure old viking takes no hits
1935 		 * on it's cache for dma snoops to workaround the
1936 		 * "load from non-cacheable memory" interrupt bug.
1937 		 * This is only necessary because of the new way in
1938 		 * which we use the IOMMU.
1939 		 */
1940 		BTFIXUPSET_CALL(flush_page_for_dma, viking_flush_page, BTFIXUPCALL_NORM);
1941 
1942 		flush_page_for_dma_global = 0;
1943 	} else {
1944 		srmmu_name = "TI Viking/MXCC";
1945 		viking_mxcc_present = 1;
1946 
1947 		srmmu_cache_pagetables = 1;
1948 
1949 		/* MXCC vikings lack the DMA snooping bug. */
1950 		BTFIXUPSET_CALL(flush_page_for_dma, viking_flush_page_for_dma, BTFIXUPCALL_NOP);
1951 	}
1952 
1953 	BTFIXUPSET_CALL(flush_cache_all, viking_flush_cache_all, BTFIXUPCALL_NORM);
1954 	BTFIXUPSET_CALL(flush_cache_mm, viking_flush_cache_mm, BTFIXUPCALL_NORM);
1955 	BTFIXUPSET_CALL(flush_cache_page, viking_flush_cache_page, BTFIXUPCALL_NORM);
1956 	BTFIXUPSET_CALL(flush_cache_range, viking_flush_cache_range, BTFIXUPCALL_NORM);
1957 
1958 #ifdef CONFIG_SMP
1959 	if (sparc_cpu_model == sun4d) {
1960 		BTFIXUPSET_CALL(flush_tlb_all, sun4dsmp_flush_tlb_all, BTFIXUPCALL_NORM);
1961 		BTFIXUPSET_CALL(flush_tlb_mm, sun4dsmp_flush_tlb_mm, BTFIXUPCALL_NORM);
1962 		BTFIXUPSET_CALL(flush_tlb_page, sun4dsmp_flush_tlb_page, BTFIXUPCALL_NORM);
1963 		BTFIXUPSET_CALL(flush_tlb_range, sun4dsmp_flush_tlb_range, BTFIXUPCALL_NORM);
1964 	} else
1965 #endif
1966 	{
1967 		BTFIXUPSET_CALL(flush_tlb_all, viking_flush_tlb_all, BTFIXUPCALL_NORM);
1968 		BTFIXUPSET_CALL(flush_tlb_mm, viking_flush_tlb_mm, BTFIXUPCALL_NORM);
1969 		BTFIXUPSET_CALL(flush_tlb_page, viking_flush_tlb_page, BTFIXUPCALL_NORM);
1970 		BTFIXUPSET_CALL(flush_tlb_range, viking_flush_tlb_range, BTFIXUPCALL_NORM);
1971 	}
1972 
1973 	BTFIXUPSET_CALL(__flush_page_to_ram, viking_flush_page_to_ram, BTFIXUPCALL_NOP);
1974 	BTFIXUPSET_CALL(flush_sig_insns, viking_flush_sig_insns, BTFIXUPCALL_NOP);
1975 
1976 	poke_srmmu = poke_viking;
1977 }
1978 
1979 /* Probe for the srmmu chip version. */
1980 static void __init get_srmmu_type(void)
1981 {
1982 	unsigned long mreg, psr;
1983 	unsigned long mod_typ, mod_rev, psr_typ, psr_vers;
1984 
1985 	srmmu_modtype = SRMMU_INVAL_MOD;
1986 	hwbug_bitmask = 0;
1987 
1988 	mreg = srmmu_get_mmureg(); psr = get_psr();
1989 	mod_typ = (mreg & 0xf0000000) >> 28;
1990 	mod_rev = (mreg & 0x0f000000) >> 24;
1991 	psr_typ = (psr >> 28) & 0xf;
1992 	psr_vers = (psr >> 24) & 0xf;
1993 
1994 	/* First, check for HyperSparc or Cypress. */
1995 	if(mod_typ == 1) {
1996 		switch(mod_rev) {
1997 		case 7:
1998 			/* UP or MP Hypersparc */
1999 			init_hypersparc();
2000 			break;
2001 		case 0:
2002 		case 2:
2003 			/* Uniprocessor Cypress */
2004 			init_cypress_604();
2005 			break;
2006 		case 10:
2007 		case 11:
2008 		case 12:
2009 			/* _REALLY OLD_ Cypress MP chips... */
2010 		case 13:
2011 		case 14:
2012 		case 15:
2013 			/* MP Cypress mmu/cache-controller */
2014 			init_cypress_605(mod_rev);
2015 			break;
2016 		default:
2017 			/* Some other Cypress revision, assume a 605. */
2018 			init_cypress_605(mod_rev);
2019 			break;
2020 		};
2021 		return;
2022 	}
2023 
2024 	/*
2025 	 * Now Fujitsu TurboSparc. It might happen that it is
2026 	 * in Swift emulation mode, so we will check later...
2027 	 */
2028 	if (psr_typ == 0 && psr_vers == 5) {
2029 		init_turbosparc();
2030 		return;
2031 	}
2032 
2033 	/* Next check for Fujitsu Swift. */
2034 	if(psr_typ == 0 && psr_vers == 4) {
2035 		int cpunode;
2036 		char node_str[128];
2037 
2038 		/* Look if it is not a TurboSparc emulating Swift... */
2039 		cpunode = prom_getchild(prom_root_node);
2040 		while((cpunode = prom_getsibling(cpunode)) != 0) {
2041 			prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
2042 			if(!strcmp(node_str, "cpu")) {
2043 				if (!prom_getintdefault(cpunode, "psr-implementation", 1) &&
2044 				    prom_getintdefault(cpunode, "psr-version", 1) == 5) {
2045 					init_turbosparc();
2046 					return;
2047 				}
2048 				break;
2049 			}
2050 		}
2051 
2052 		init_swift();
2053 		return;
2054 	}
2055 
2056 	/* Now the Viking family of srmmu. */
2057 	if(psr_typ == 4 &&
2058 	   ((psr_vers == 0) ||
2059 	    ((psr_vers == 1) && (mod_typ == 0) && (mod_rev == 0)))) {
2060 		init_viking();
2061 		return;
2062 	}
2063 
2064 	/* Finally the Tsunami. */
2065 	if(psr_typ == 4 && psr_vers == 1 && (mod_typ || mod_rev)) {
2066 		init_tsunami();
2067 		return;
2068 	}
2069 
2070 	/* Oh well */
2071 	srmmu_is_bad();
2072 }
2073 
2074 /* don't laugh, static pagetables */
2075 static void srmmu_check_pgt_cache(int low, int high)
2076 {
2077 }
2078 
2079 extern unsigned long spwin_mmu_patchme, fwin_mmu_patchme,
2080 	tsetup_mmu_patchme, rtrap_mmu_patchme;
2081 
2082 extern unsigned long spwin_srmmu_stackchk, srmmu_fwin_stackchk,
2083 	tsetup_srmmu_stackchk, srmmu_rett_stackchk;
2084 
2085 extern unsigned long srmmu_fault;
2086 
2087 #define PATCH_BRANCH(insn, dest) do { \
2088 		iaddr = &(insn); \
2089 		daddr = &(dest); \
2090 		*iaddr = SPARC_BRANCH((unsigned long) daddr, (unsigned long) iaddr); \
2091 	} while(0)
2092 
2093 static void __init patch_window_trap_handlers(void)
2094 {
2095 	unsigned long *iaddr, *daddr;
2096 
2097 	PATCH_BRANCH(spwin_mmu_patchme, spwin_srmmu_stackchk);
2098 	PATCH_BRANCH(fwin_mmu_patchme, srmmu_fwin_stackchk);
2099 	PATCH_BRANCH(tsetup_mmu_patchme, tsetup_srmmu_stackchk);
2100 	PATCH_BRANCH(rtrap_mmu_patchme, srmmu_rett_stackchk);
2101 	PATCH_BRANCH(sparc_ttable[SP_TRAP_TFLT].inst_three, srmmu_fault);
2102 	PATCH_BRANCH(sparc_ttable[SP_TRAP_DFLT].inst_three, srmmu_fault);
2103 	PATCH_BRANCH(sparc_ttable[SP_TRAP_DACC].inst_three, srmmu_fault);
2104 }
2105 
2106 #ifdef CONFIG_SMP
2107 /* Local cross-calls. */
2108 static void smp_flush_page_for_dma(unsigned long page)
2109 {
2110 	xc1((smpfunc_t) BTFIXUP_CALL(local_flush_page_for_dma), page);
2111 	local_flush_page_for_dma(page);
2112 }
2113 
2114 #endif
2115 
2116 static pte_t srmmu_pgoff_to_pte(unsigned long pgoff)
2117 {
2118 	return __pte((pgoff << SRMMU_PTE_FILE_SHIFT) | SRMMU_FILE);
2119 }
2120 
2121 static unsigned long srmmu_pte_to_pgoff(pte_t pte)
2122 {
2123 	return pte_val(pte) >> SRMMU_PTE_FILE_SHIFT;
2124 }
2125 
2126 static pgprot_t srmmu_pgprot_noncached(pgprot_t prot)
2127 {
2128 	prot &= ~__pgprot(SRMMU_CACHE);
2129 
2130 	return prot;
2131 }
2132 
2133 /* Load up routines and constants for sun4m and sun4d mmu */
2134 void __init ld_mmu_srmmu(void)
2135 {
2136 	extern void ld_mmu_iommu(void);
2137 	extern void ld_mmu_iounit(void);
2138 	extern void ___xchg32_sun4md(void);
2139 
2140 	BTFIXUPSET_SIMM13(pgdir_shift, SRMMU_PGDIR_SHIFT);
2141 	BTFIXUPSET_SETHI(pgdir_size, SRMMU_PGDIR_SIZE);
2142 	BTFIXUPSET_SETHI(pgdir_mask, SRMMU_PGDIR_MASK);
2143 
2144 	BTFIXUPSET_SIMM13(ptrs_per_pmd, SRMMU_PTRS_PER_PMD);
2145 	BTFIXUPSET_SIMM13(ptrs_per_pgd, SRMMU_PTRS_PER_PGD);
2146 
2147 	BTFIXUPSET_INT(page_none, pgprot_val(SRMMU_PAGE_NONE));
2148 	PAGE_SHARED = pgprot_val(SRMMU_PAGE_SHARED);
2149 	BTFIXUPSET_INT(page_copy, pgprot_val(SRMMU_PAGE_COPY));
2150 	BTFIXUPSET_INT(page_readonly, pgprot_val(SRMMU_PAGE_RDONLY));
2151 	BTFIXUPSET_INT(page_kernel, pgprot_val(SRMMU_PAGE_KERNEL));
2152 	page_kernel = pgprot_val(SRMMU_PAGE_KERNEL);
2153 
2154 	/* Functions */
2155 	BTFIXUPSET_CALL(pgprot_noncached, srmmu_pgprot_noncached, BTFIXUPCALL_NORM);
2156 #ifndef CONFIG_SMP
2157 	BTFIXUPSET_CALL(___xchg32, ___xchg32_sun4md, BTFIXUPCALL_SWAPG1G2);
2158 #endif
2159 	BTFIXUPSET_CALL(do_check_pgt_cache, srmmu_check_pgt_cache, BTFIXUPCALL_NOP);
2160 
2161 	BTFIXUPSET_CALL(set_pte, srmmu_set_pte, BTFIXUPCALL_SWAPO0O1);
2162 	BTFIXUPSET_CALL(switch_mm, srmmu_switch_mm, BTFIXUPCALL_NORM);
2163 
2164 	BTFIXUPSET_CALL(pte_pfn, srmmu_pte_pfn, BTFIXUPCALL_NORM);
2165 	BTFIXUPSET_CALL(pmd_page, srmmu_pmd_page, BTFIXUPCALL_NORM);
2166 	BTFIXUPSET_CALL(pgd_page_vaddr, srmmu_pgd_page, BTFIXUPCALL_NORM);
2167 
2168 	BTFIXUPSET_SETHI(none_mask, 0xF0000000);
2169 
2170 	BTFIXUPSET_CALL(pte_present, srmmu_pte_present, BTFIXUPCALL_NORM);
2171 	BTFIXUPSET_CALL(pte_clear, srmmu_pte_clear, BTFIXUPCALL_SWAPO0G0);
2172 
2173 	BTFIXUPSET_CALL(pmd_bad, srmmu_pmd_bad, BTFIXUPCALL_NORM);
2174 	BTFIXUPSET_CALL(pmd_present, srmmu_pmd_present, BTFIXUPCALL_NORM);
2175 	BTFIXUPSET_CALL(pmd_clear, srmmu_pmd_clear, BTFIXUPCALL_SWAPO0G0);
2176 
2177 	BTFIXUPSET_CALL(pgd_none, srmmu_pgd_none, BTFIXUPCALL_NORM);
2178 	BTFIXUPSET_CALL(pgd_bad, srmmu_pgd_bad, BTFIXUPCALL_NORM);
2179 	BTFIXUPSET_CALL(pgd_present, srmmu_pgd_present, BTFIXUPCALL_NORM);
2180 	BTFIXUPSET_CALL(pgd_clear, srmmu_pgd_clear, BTFIXUPCALL_SWAPO0G0);
2181 
2182 	BTFIXUPSET_CALL(mk_pte, srmmu_mk_pte, BTFIXUPCALL_NORM);
2183 	BTFIXUPSET_CALL(mk_pte_phys, srmmu_mk_pte_phys, BTFIXUPCALL_NORM);
2184 	BTFIXUPSET_CALL(mk_pte_io, srmmu_mk_pte_io, BTFIXUPCALL_NORM);
2185 	BTFIXUPSET_CALL(pgd_set, srmmu_pgd_set, BTFIXUPCALL_NORM);
2186 	BTFIXUPSET_CALL(pmd_set, srmmu_pmd_set, BTFIXUPCALL_NORM);
2187 	BTFIXUPSET_CALL(pmd_populate, srmmu_pmd_populate, BTFIXUPCALL_NORM);
2188 
2189 	BTFIXUPSET_INT(pte_modify_mask, SRMMU_CHG_MASK);
2190 	BTFIXUPSET_CALL(pmd_offset, srmmu_pmd_offset, BTFIXUPCALL_NORM);
2191 	BTFIXUPSET_CALL(pte_offset_kernel, srmmu_pte_offset, BTFIXUPCALL_NORM);
2192 
2193 	BTFIXUPSET_CALL(free_pte_fast, srmmu_free_pte_fast, BTFIXUPCALL_NORM);
2194 	BTFIXUPSET_CALL(pte_free, srmmu_pte_free, BTFIXUPCALL_NORM);
2195 	BTFIXUPSET_CALL(pte_alloc_one_kernel, srmmu_pte_alloc_one_kernel, BTFIXUPCALL_NORM);
2196 	BTFIXUPSET_CALL(pte_alloc_one, srmmu_pte_alloc_one, BTFIXUPCALL_NORM);
2197 	BTFIXUPSET_CALL(free_pmd_fast, srmmu_pmd_free, BTFIXUPCALL_NORM);
2198 	BTFIXUPSET_CALL(pmd_alloc_one, srmmu_pmd_alloc_one, BTFIXUPCALL_NORM);
2199 	BTFIXUPSET_CALL(free_pgd_fast, srmmu_free_pgd_fast, BTFIXUPCALL_NORM);
2200 	BTFIXUPSET_CALL(get_pgd_fast, srmmu_get_pgd_fast, BTFIXUPCALL_NORM);
2201 
2202 	BTFIXUPSET_HALF(pte_writei, SRMMU_WRITE);
2203 	BTFIXUPSET_HALF(pte_dirtyi, SRMMU_DIRTY);
2204 	BTFIXUPSET_HALF(pte_youngi, SRMMU_REF);
2205 	BTFIXUPSET_HALF(pte_filei, SRMMU_FILE);
2206 	BTFIXUPSET_HALF(pte_wrprotecti, SRMMU_WRITE);
2207 	BTFIXUPSET_HALF(pte_mkcleani, SRMMU_DIRTY);
2208 	BTFIXUPSET_HALF(pte_mkoldi, SRMMU_REF);
2209 	BTFIXUPSET_CALL(pte_mkwrite, srmmu_pte_mkwrite, BTFIXUPCALL_ORINT(SRMMU_WRITE));
2210 	BTFIXUPSET_CALL(pte_mkdirty, srmmu_pte_mkdirty, BTFIXUPCALL_ORINT(SRMMU_DIRTY));
2211 	BTFIXUPSET_CALL(pte_mkyoung, srmmu_pte_mkyoung, BTFIXUPCALL_ORINT(SRMMU_REF));
2212 	BTFIXUPSET_CALL(update_mmu_cache, srmmu_update_mmu_cache, BTFIXUPCALL_NOP);
2213 	BTFIXUPSET_CALL(destroy_context, srmmu_destroy_context, BTFIXUPCALL_NORM);
2214 
2215 	BTFIXUPSET_CALL(sparc_mapiorange, srmmu_mapiorange, BTFIXUPCALL_NORM);
2216 	BTFIXUPSET_CALL(sparc_unmapiorange, srmmu_unmapiorange, BTFIXUPCALL_NORM);
2217 
2218 	BTFIXUPSET_CALL(__swp_type, srmmu_swp_type, BTFIXUPCALL_NORM);
2219 	BTFIXUPSET_CALL(__swp_offset, srmmu_swp_offset, BTFIXUPCALL_NORM);
2220 	BTFIXUPSET_CALL(__swp_entry, srmmu_swp_entry, BTFIXUPCALL_NORM);
2221 
2222 	BTFIXUPSET_CALL(mmu_info, srmmu_mmu_info, BTFIXUPCALL_NORM);
2223 
2224 	BTFIXUPSET_CALL(alloc_thread_info, srmmu_alloc_thread_info, BTFIXUPCALL_NORM);
2225 	BTFIXUPSET_CALL(free_thread_info, srmmu_free_thread_info, BTFIXUPCALL_NORM);
2226 
2227 	BTFIXUPSET_CALL(pte_to_pgoff, srmmu_pte_to_pgoff, BTFIXUPCALL_NORM);
2228 	BTFIXUPSET_CALL(pgoff_to_pte, srmmu_pgoff_to_pte, BTFIXUPCALL_NORM);
2229 
2230 	get_srmmu_type();
2231 	patch_window_trap_handlers();
2232 
2233 #ifdef CONFIG_SMP
2234 	/* El switcheroo... */
2235 
2236 	BTFIXUPCOPY_CALL(local_flush_cache_all, flush_cache_all);
2237 	BTFIXUPCOPY_CALL(local_flush_cache_mm, flush_cache_mm);
2238 	BTFIXUPCOPY_CALL(local_flush_cache_range, flush_cache_range);
2239 	BTFIXUPCOPY_CALL(local_flush_cache_page, flush_cache_page);
2240 	BTFIXUPCOPY_CALL(local_flush_tlb_all, flush_tlb_all);
2241 	BTFIXUPCOPY_CALL(local_flush_tlb_mm, flush_tlb_mm);
2242 	BTFIXUPCOPY_CALL(local_flush_tlb_range, flush_tlb_range);
2243 	BTFIXUPCOPY_CALL(local_flush_tlb_page, flush_tlb_page);
2244 	BTFIXUPCOPY_CALL(local_flush_page_to_ram, __flush_page_to_ram);
2245 	BTFIXUPCOPY_CALL(local_flush_sig_insns, flush_sig_insns);
2246 	BTFIXUPCOPY_CALL(local_flush_page_for_dma, flush_page_for_dma);
2247 
2248 	BTFIXUPSET_CALL(flush_cache_all, smp_flush_cache_all, BTFIXUPCALL_NORM);
2249 	BTFIXUPSET_CALL(flush_cache_mm, smp_flush_cache_mm, BTFIXUPCALL_NORM);
2250 	BTFIXUPSET_CALL(flush_cache_range, smp_flush_cache_range, BTFIXUPCALL_NORM);
2251 	BTFIXUPSET_CALL(flush_cache_page, smp_flush_cache_page, BTFIXUPCALL_NORM);
2252 	if (sparc_cpu_model != sun4d) {
2253 		BTFIXUPSET_CALL(flush_tlb_all, smp_flush_tlb_all, BTFIXUPCALL_NORM);
2254 		BTFIXUPSET_CALL(flush_tlb_mm, smp_flush_tlb_mm, BTFIXUPCALL_NORM);
2255 		BTFIXUPSET_CALL(flush_tlb_range, smp_flush_tlb_range, BTFIXUPCALL_NORM);
2256 		BTFIXUPSET_CALL(flush_tlb_page, smp_flush_tlb_page, BTFIXUPCALL_NORM);
2257 	}
2258 	BTFIXUPSET_CALL(__flush_page_to_ram, smp_flush_page_to_ram, BTFIXUPCALL_NORM);
2259 	BTFIXUPSET_CALL(flush_sig_insns, smp_flush_sig_insns, BTFIXUPCALL_NORM);
2260 	BTFIXUPSET_CALL(flush_page_for_dma, smp_flush_page_for_dma, BTFIXUPCALL_NORM);
2261 
2262 	if (poke_srmmu == poke_viking) {
2263 		/* Avoid unnecessary cross calls. */
2264 		BTFIXUPCOPY_CALL(flush_cache_all, local_flush_cache_all);
2265 		BTFIXUPCOPY_CALL(flush_cache_mm, local_flush_cache_mm);
2266 		BTFIXUPCOPY_CALL(flush_cache_range, local_flush_cache_range);
2267 		BTFIXUPCOPY_CALL(flush_cache_page, local_flush_cache_page);
2268 		BTFIXUPCOPY_CALL(__flush_page_to_ram, local_flush_page_to_ram);
2269 		BTFIXUPCOPY_CALL(flush_sig_insns, local_flush_sig_insns);
2270 		BTFIXUPCOPY_CALL(flush_page_for_dma, local_flush_page_for_dma);
2271 	}
2272 #endif
2273 
2274 	if (sparc_cpu_model == sun4d)
2275 		ld_mmu_iounit();
2276 	else
2277 		ld_mmu_iommu();
2278 #ifdef CONFIG_SMP
2279 	if (sparc_cpu_model == sun4d)
2280 		sun4d_init_smp();
2281 	else
2282 		sun4m_init_smp();
2283 #endif
2284 }
2285