1 /* 2 * srmmu.c: SRMMU specific routines for memory management. 3 * 4 * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu) 5 * Copyright (C) 1995,2002 Pete Zaitcev (zaitcev@yahoo.com) 6 * Copyright (C) 1996 Eddie C. Dost (ecd@skynet.be) 7 * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz) 8 * Copyright (C) 1999,2000 Anton Blanchard (anton@samba.org) 9 */ 10 11 #include <linux/kernel.h> 12 #include <linux/mm.h> 13 #include <linux/slab.h> 14 #include <linux/vmalloc.h> 15 #include <linux/pagemap.h> 16 #include <linux/init.h> 17 #include <linux/spinlock.h> 18 #include <linux/bootmem.h> 19 #include <linux/fs.h> 20 #include <linux/seq_file.h> 21 #include <linux/kdebug.h> 22 23 #include <asm/bitext.h> 24 #include <asm/page.h> 25 #include <asm/pgalloc.h> 26 #include <asm/pgtable.h> 27 #include <asm/io.h> 28 #include <asm/vaddrs.h> 29 #include <asm/traps.h> 30 #include <asm/smp.h> 31 #include <asm/mbus.h> 32 #include <asm/cache.h> 33 #include <asm/oplib.h> 34 #include <asm/sbus.h> 35 #include <asm/asi.h> 36 #include <asm/msi.h> 37 #include <asm/mmu_context.h> 38 #include <asm/io-unit.h> 39 #include <asm/cacheflush.h> 40 #include <asm/tlbflush.h> 41 42 /* Now the cpu specific definitions. */ 43 #include <asm/viking.h> 44 #include <asm/mxcc.h> 45 #include <asm/ross.h> 46 #include <asm/tsunami.h> 47 #include <asm/swift.h> 48 #include <asm/turbosparc.h> 49 50 #include <asm/btfixup.h> 51 52 enum mbus_module srmmu_modtype; 53 unsigned int hwbug_bitmask; 54 int vac_cache_size; 55 int vac_line_size; 56 57 extern struct resource sparc_iomap; 58 59 extern unsigned long last_valid_pfn; 60 61 extern unsigned long page_kernel; 62 63 pgd_t *srmmu_swapper_pg_dir; 64 65 #ifdef CONFIG_SMP 66 #define FLUSH_BEGIN(mm) 67 #define FLUSH_END 68 #else 69 #define FLUSH_BEGIN(mm) if((mm)->context != NO_CONTEXT) { 70 #define FLUSH_END } 71 #endif 72 73 BTFIXUPDEF_CALL(void, flush_page_for_dma, unsigned long) 74 #define flush_page_for_dma(page) BTFIXUP_CALL(flush_page_for_dma)(page) 75 76 int flush_page_for_dma_global = 1; 77 78 #ifdef CONFIG_SMP 79 BTFIXUPDEF_CALL(void, local_flush_page_for_dma, unsigned long) 80 #define local_flush_page_for_dma(page) BTFIXUP_CALL(local_flush_page_for_dma)(page) 81 #endif 82 83 char *srmmu_name; 84 85 ctxd_t *srmmu_ctx_table_phys; 86 ctxd_t *srmmu_context_table; 87 88 int viking_mxcc_present; 89 static DEFINE_SPINLOCK(srmmu_context_spinlock); 90 91 int is_hypersparc; 92 93 /* 94 * In general all page table modifications should use the V8 atomic 95 * swap instruction. This insures the mmu and the cpu are in sync 96 * with respect to ref/mod bits in the page tables. 97 */ 98 static inline unsigned long srmmu_swap(unsigned long *addr, unsigned long value) 99 { 100 __asm__ __volatile__("swap [%2], %0" : "=&r" (value) : "0" (value), "r" (addr)); 101 return value; 102 } 103 104 static inline void srmmu_set_pte(pte_t *ptep, pte_t pteval) 105 { 106 srmmu_swap((unsigned long *)ptep, pte_val(pteval)); 107 } 108 109 /* The very generic SRMMU page table operations. */ 110 static inline int srmmu_device_memory(unsigned long x) 111 { 112 return ((x & 0xF0000000) != 0); 113 } 114 115 int srmmu_cache_pagetables; 116 117 /* these will be initialized in srmmu_nocache_calcsize() */ 118 unsigned long srmmu_nocache_size; 119 unsigned long srmmu_nocache_end; 120 121 /* 1 bit <=> 256 bytes of nocache <=> 64 PTEs */ 122 #define SRMMU_NOCACHE_BITMAP_SHIFT (PAGE_SHIFT - 4) 123 124 /* The context table is a nocache user with the biggest alignment needs. */ 125 #define SRMMU_NOCACHE_ALIGN_MAX (sizeof(ctxd_t)*SRMMU_MAX_CONTEXTS) 126 127 void *srmmu_nocache_pool; 128 void *srmmu_nocache_bitmap; 129 static struct bit_map srmmu_nocache_map; 130 131 static unsigned long srmmu_pte_pfn(pte_t pte) 132 { 133 if (srmmu_device_memory(pte_val(pte))) { 134 /* Just return something that will cause 135 * pfn_valid() to return false. This makes 136 * copy_one_pte() to just directly copy to 137 * PTE over. 138 */ 139 return ~0UL; 140 } 141 return (pte_val(pte) & SRMMU_PTE_PMASK) >> (PAGE_SHIFT-4); 142 } 143 144 static struct page *srmmu_pmd_page(pmd_t pmd) 145 { 146 147 if (srmmu_device_memory(pmd_val(pmd))) 148 BUG(); 149 return pfn_to_page((pmd_val(pmd) & SRMMU_PTD_PMASK) >> (PAGE_SHIFT-4)); 150 } 151 152 static inline unsigned long srmmu_pgd_page(pgd_t pgd) 153 { return srmmu_device_memory(pgd_val(pgd))?~0:(unsigned long)__nocache_va((pgd_val(pgd) & SRMMU_PTD_PMASK) << 4); } 154 155 156 static inline int srmmu_pte_none(pte_t pte) 157 { return !(pte_val(pte) & 0xFFFFFFF); } 158 159 static inline int srmmu_pte_present(pte_t pte) 160 { return ((pte_val(pte) & SRMMU_ET_MASK) == SRMMU_ET_PTE); } 161 162 static inline void srmmu_pte_clear(pte_t *ptep) 163 { srmmu_set_pte(ptep, __pte(0)); } 164 165 static inline int srmmu_pmd_none(pmd_t pmd) 166 { return !(pmd_val(pmd) & 0xFFFFFFF); } 167 168 static inline int srmmu_pmd_bad(pmd_t pmd) 169 { return (pmd_val(pmd) & SRMMU_ET_MASK) != SRMMU_ET_PTD; } 170 171 static inline int srmmu_pmd_present(pmd_t pmd) 172 { return ((pmd_val(pmd) & SRMMU_ET_MASK) == SRMMU_ET_PTD); } 173 174 static inline void srmmu_pmd_clear(pmd_t *pmdp) { 175 int i; 176 for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) 177 srmmu_set_pte((pte_t *)&pmdp->pmdv[i], __pte(0)); 178 } 179 180 static inline int srmmu_pgd_none(pgd_t pgd) 181 { return !(pgd_val(pgd) & 0xFFFFFFF); } 182 183 static inline int srmmu_pgd_bad(pgd_t pgd) 184 { return (pgd_val(pgd) & SRMMU_ET_MASK) != SRMMU_ET_PTD; } 185 186 static inline int srmmu_pgd_present(pgd_t pgd) 187 { return ((pgd_val(pgd) & SRMMU_ET_MASK) == SRMMU_ET_PTD); } 188 189 static inline void srmmu_pgd_clear(pgd_t * pgdp) 190 { srmmu_set_pte((pte_t *)pgdp, __pte(0)); } 191 192 static inline pte_t srmmu_pte_wrprotect(pte_t pte) 193 { return __pte(pte_val(pte) & ~SRMMU_WRITE);} 194 195 static inline pte_t srmmu_pte_mkclean(pte_t pte) 196 { return __pte(pte_val(pte) & ~SRMMU_DIRTY);} 197 198 static inline pte_t srmmu_pte_mkold(pte_t pte) 199 { return __pte(pte_val(pte) & ~SRMMU_REF);} 200 201 static inline pte_t srmmu_pte_mkwrite(pte_t pte) 202 { return __pte(pte_val(pte) | SRMMU_WRITE);} 203 204 static inline pte_t srmmu_pte_mkdirty(pte_t pte) 205 { return __pte(pte_val(pte) | SRMMU_DIRTY);} 206 207 static inline pte_t srmmu_pte_mkyoung(pte_t pte) 208 { return __pte(pte_val(pte) | SRMMU_REF);} 209 210 /* 211 * Conversion functions: convert a page and protection to a page entry, 212 * and a page entry and page directory to the page they refer to. 213 */ 214 static pte_t srmmu_mk_pte(struct page *page, pgprot_t pgprot) 215 { return __pte((page_to_pfn(page) << (PAGE_SHIFT-4)) | pgprot_val(pgprot)); } 216 217 static pte_t srmmu_mk_pte_phys(unsigned long page, pgprot_t pgprot) 218 { return __pte(((page) >> 4) | pgprot_val(pgprot)); } 219 220 static pte_t srmmu_mk_pte_io(unsigned long page, pgprot_t pgprot, int space) 221 { return __pte(((page) >> 4) | (space << 28) | pgprot_val(pgprot)); } 222 223 /* XXX should we hyper_flush_whole_icache here - Anton */ 224 static inline void srmmu_ctxd_set(ctxd_t *ctxp, pgd_t *pgdp) 225 { srmmu_set_pte((pte_t *)ctxp, (SRMMU_ET_PTD | (__nocache_pa((unsigned long) pgdp) >> 4))); } 226 227 static inline void srmmu_pgd_set(pgd_t * pgdp, pmd_t * pmdp) 228 { srmmu_set_pte((pte_t *)pgdp, (SRMMU_ET_PTD | (__nocache_pa((unsigned long) pmdp) >> 4))); } 229 230 static void srmmu_pmd_set(pmd_t *pmdp, pte_t *ptep) 231 { 232 unsigned long ptp; /* Physical address, shifted right by 4 */ 233 int i; 234 235 ptp = __nocache_pa((unsigned long) ptep) >> 4; 236 for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) { 237 srmmu_set_pte((pte_t *)&pmdp->pmdv[i], SRMMU_ET_PTD | ptp); 238 ptp += (SRMMU_REAL_PTRS_PER_PTE*sizeof(pte_t) >> 4); 239 } 240 } 241 242 static void srmmu_pmd_populate(pmd_t *pmdp, struct page *ptep) 243 { 244 unsigned long ptp; /* Physical address, shifted right by 4 */ 245 int i; 246 247 ptp = page_to_pfn(ptep) << (PAGE_SHIFT-4); /* watch for overflow */ 248 for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) { 249 srmmu_set_pte((pte_t *)&pmdp->pmdv[i], SRMMU_ET_PTD | ptp); 250 ptp += (SRMMU_REAL_PTRS_PER_PTE*sizeof(pte_t) >> 4); 251 } 252 } 253 254 static inline pte_t srmmu_pte_modify(pte_t pte, pgprot_t newprot) 255 { return __pte((pte_val(pte) & SRMMU_CHG_MASK) | pgprot_val(newprot)); } 256 257 /* to find an entry in a top-level page table... */ 258 static inline pgd_t *srmmu_pgd_offset(struct mm_struct * mm, unsigned long address) 259 { return mm->pgd + (address >> SRMMU_PGDIR_SHIFT); } 260 261 /* Find an entry in the second-level page table.. */ 262 static inline pmd_t *srmmu_pmd_offset(pgd_t * dir, unsigned long address) 263 { 264 return (pmd_t *) srmmu_pgd_page(*dir) + 265 ((address >> PMD_SHIFT) & (PTRS_PER_PMD - 1)); 266 } 267 268 /* Find an entry in the third-level page table.. */ 269 static inline pte_t *srmmu_pte_offset(pmd_t * dir, unsigned long address) 270 { 271 void *pte; 272 273 pte = __nocache_va((dir->pmdv[0] & SRMMU_PTD_PMASK) << 4); 274 return (pte_t *) pte + 275 ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)); 276 } 277 278 static unsigned long srmmu_swp_type(swp_entry_t entry) 279 { 280 return (entry.val >> SRMMU_SWP_TYPE_SHIFT) & SRMMU_SWP_TYPE_MASK; 281 } 282 283 static unsigned long srmmu_swp_offset(swp_entry_t entry) 284 { 285 return (entry.val >> SRMMU_SWP_OFF_SHIFT) & SRMMU_SWP_OFF_MASK; 286 } 287 288 static swp_entry_t srmmu_swp_entry(unsigned long type, unsigned long offset) 289 { 290 return (swp_entry_t) { 291 (type & SRMMU_SWP_TYPE_MASK) << SRMMU_SWP_TYPE_SHIFT 292 | (offset & SRMMU_SWP_OFF_MASK) << SRMMU_SWP_OFF_SHIFT }; 293 } 294 295 /* 296 * size: bytes to allocate in the nocache area. 297 * align: bytes, number to align at. 298 * Returns the virtual address of the allocated area. 299 */ 300 static unsigned long __srmmu_get_nocache(int size, int align) 301 { 302 int offset; 303 304 if (size < SRMMU_NOCACHE_BITMAP_SHIFT) { 305 printk("Size 0x%x too small for nocache request\n", size); 306 size = SRMMU_NOCACHE_BITMAP_SHIFT; 307 } 308 if (size & (SRMMU_NOCACHE_BITMAP_SHIFT-1)) { 309 printk("Size 0x%x unaligned int nocache request\n", size); 310 size += SRMMU_NOCACHE_BITMAP_SHIFT-1; 311 } 312 BUG_ON(align > SRMMU_NOCACHE_ALIGN_MAX); 313 314 offset = bit_map_string_get(&srmmu_nocache_map, 315 size >> SRMMU_NOCACHE_BITMAP_SHIFT, 316 align >> SRMMU_NOCACHE_BITMAP_SHIFT); 317 if (offset == -1) { 318 printk("srmmu: out of nocache %d: %d/%d\n", 319 size, (int) srmmu_nocache_size, 320 srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT); 321 return 0; 322 } 323 324 return (SRMMU_NOCACHE_VADDR + (offset << SRMMU_NOCACHE_BITMAP_SHIFT)); 325 } 326 327 unsigned inline long srmmu_get_nocache(int size, int align) 328 { 329 unsigned long tmp; 330 331 tmp = __srmmu_get_nocache(size, align); 332 333 if (tmp) 334 memset((void *)tmp, 0, size); 335 336 return tmp; 337 } 338 339 void srmmu_free_nocache(unsigned long vaddr, int size) 340 { 341 int offset; 342 343 if (vaddr < SRMMU_NOCACHE_VADDR) { 344 printk("Vaddr %lx is smaller than nocache base 0x%lx\n", 345 vaddr, (unsigned long)SRMMU_NOCACHE_VADDR); 346 BUG(); 347 } 348 if (vaddr+size > srmmu_nocache_end) { 349 printk("Vaddr %lx is bigger than nocache end 0x%lx\n", 350 vaddr, srmmu_nocache_end); 351 BUG(); 352 } 353 if (size & (size-1)) { 354 printk("Size 0x%x is not a power of 2\n", size); 355 BUG(); 356 } 357 if (size < SRMMU_NOCACHE_BITMAP_SHIFT) { 358 printk("Size 0x%x is too small\n", size); 359 BUG(); 360 } 361 if (vaddr & (size-1)) { 362 printk("Vaddr %lx is not aligned to size 0x%x\n", vaddr, size); 363 BUG(); 364 } 365 366 offset = (vaddr - SRMMU_NOCACHE_VADDR) >> SRMMU_NOCACHE_BITMAP_SHIFT; 367 size = size >> SRMMU_NOCACHE_BITMAP_SHIFT; 368 369 bit_map_clear(&srmmu_nocache_map, offset, size); 370 } 371 372 void srmmu_early_allocate_ptable_skeleton(unsigned long start, unsigned long end); 373 374 extern unsigned long probe_memory(void); /* in fault.c */ 375 376 /* 377 * Reserve nocache dynamically proportionally to the amount of 378 * system RAM. -- Tomas Szepe <szepe@pinerecords.com>, June 2002 379 */ 380 void srmmu_nocache_calcsize(void) 381 { 382 unsigned long sysmemavail = probe_memory() / 1024; 383 int srmmu_nocache_npages; 384 385 srmmu_nocache_npages = 386 sysmemavail / SRMMU_NOCACHE_ALCRATIO / 1024 * 256; 387 388 /* P3 XXX The 4x overuse: corroborated by /proc/meminfo. */ 389 // if (srmmu_nocache_npages < 256) srmmu_nocache_npages = 256; 390 if (srmmu_nocache_npages < SRMMU_MIN_NOCACHE_PAGES) 391 srmmu_nocache_npages = SRMMU_MIN_NOCACHE_PAGES; 392 393 /* anything above 1280 blows up */ 394 if (srmmu_nocache_npages > SRMMU_MAX_NOCACHE_PAGES) 395 srmmu_nocache_npages = SRMMU_MAX_NOCACHE_PAGES; 396 397 srmmu_nocache_size = srmmu_nocache_npages * PAGE_SIZE; 398 srmmu_nocache_end = SRMMU_NOCACHE_VADDR + srmmu_nocache_size; 399 } 400 401 void __init srmmu_nocache_init(void) 402 { 403 unsigned int bitmap_bits; 404 pgd_t *pgd; 405 pmd_t *pmd; 406 pte_t *pte; 407 unsigned long paddr, vaddr; 408 unsigned long pteval; 409 410 bitmap_bits = srmmu_nocache_size >> SRMMU_NOCACHE_BITMAP_SHIFT; 411 412 srmmu_nocache_pool = __alloc_bootmem(srmmu_nocache_size, 413 SRMMU_NOCACHE_ALIGN_MAX, 0UL); 414 memset(srmmu_nocache_pool, 0, srmmu_nocache_size); 415 416 srmmu_nocache_bitmap = __alloc_bootmem(bitmap_bits >> 3, SMP_CACHE_BYTES, 0UL); 417 bit_map_init(&srmmu_nocache_map, srmmu_nocache_bitmap, bitmap_bits); 418 419 srmmu_swapper_pg_dir = (pgd_t *)__srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE); 420 memset(__nocache_fix(srmmu_swapper_pg_dir), 0, SRMMU_PGD_TABLE_SIZE); 421 init_mm.pgd = srmmu_swapper_pg_dir; 422 423 srmmu_early_allocate_ptable_skeleton(SRMMU_NOCACHE_VADDR, srmmu_nocache_end); 424 425 paddr = __pa((unsigned long)srmmu_nocache_pool); 426 vaddr = SRMMU_NOCACHE_VADDR; 427 428 while (vaddr < srmmu_nocache_end) { 429 pgd = pgd_offset_k(vaddr); 430 pmd = srmmu_pmd_offset(__nocache_fix(pgd), vaddr); 431 pte = srmmu_pte_offset(__nocache_fix(pmd), vaddr); 432 433 pteval = ((paddr >> 4) | SRMMU_ET_PTE | SRMMU_PRIV); 434 435 if (srmmu_cache_pagetables) 436 pteval |= SRMMU_CACHE; 437 438 srmmu_set_pte(__nocache_fix(pte), __pte(pteval)); 439 440 vaddr += PAGE_SIZE; 441 paddr += PAGE_SIZE; 442 } 443 444 flush_cache_all(); 445 flush_tlb_all(); 446 } 447 448 static inline pgd_t *srmmu_get_pgd_fast(void) 449 { 450 pgd_t *pgd = NULL; 451 452 pgd = (pgd_t *)__srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE); 453 if (pgd) { 454 pgd_t *init = pgd_offset_k(0); 455 memset(pgd, 0, USER_PTRS_PER_PGD * sizeof(pgd_t)); 456 memcpy(pgd + USER_PTRS_PER_PGD, init + USER_PTRS_PER_PGD, 457 (PTRS_PER_PGD - USER_PTRS_PER_PGD) * sizeof(pgd_t)); 458 } 459 460 return pgd; 461 } 462 463 static void srmmu_free_pgd_fast(pgd_t *pgd) 464 { 465 srmmu_free_nocache((unsigned long)pgd, SRMMU_PGD_TABLE_SIZE); 466 } 467 468 static pmd_t *srmmu_pmd_alloc_one(struct mm_struct *mm, unsigned long address) 469 { 470 return (pmd_t *)srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE); 471 } 472 473 static void srmmu_pmd_free(pmd_t * pmd) 474 { 475 srmmu_free_nocache((unsigned long)pmd, SRMMU_PMD_TABLE_SIZE); 476 } 477 478 /* 479 * Hardware needs alignment to 256 only, but we align to whole page size 480 * to reduce fragmentation problems due to the buddy principle. 481 * XXX Provide actual fragmentation statistics in /proc. 482 * 483 * Alignments up to the page size are the same for physical and virtual 484 * addresses of the nocache area. 485 */ 486 static pte_t * 487 srmmu_pte_alloc_one_kernel(struct mm_struct *mm, unsigned long address) 488 { 489 return (pte_t *)srmmu_get_nocache(PTE_SIZE, PTE_SIZE); 490 } 491 492 static pgtable_t 493 srmmu_pte_alloc_one(struct mm_struct *mm, unsigned long address) 494 { 495 unsigned long pte; 496 struct page *page; 497 498 if ((pte = (unsigned long)srmmu_pte_alloc_one_kernel(mm, address)) == 0) 499 return NULL; 500 page = pfn_to_page( __nocache_pa(pte) >> PAGE_SHIFT ); 501 pgtable_page_ctor(page); 502 return page; 503 } 504 505 static void srmmu_free_pte_fast(pte_t *pte) 506 { 507 srmmu_free_nocache((unsigned long)pte, PTE_SIZE); 508 } 509 510 static void srmmu_pte_free(pgtable_t pte) 511 { 512 unsigned long p; 513 514 pgtable_page_dtor(pte); 515 p = (unsigned long)page_address(pte); /* Cached address (for test) */ 516 if (p == 0) 517 BUG(); 518 p = page_to_pfn(pte) << PAGE_SHIFT; /* Physical address */ 519 p = (unsigned long) __nocache_va(p); /* Nocached virtual */ 520 srmmu_free_nocache(p, PTE_SIZE); 521 } 522 523 /* 524 */ 525 static inline void alloc_context(struct mm_struct *old_mm, struct mm_struct *mm) 526 { 527 struct ctx_list *ctxp; 528 529 ctxp = ctx_free.next; 530 if(ctxp != &ctx_free) { 531 remove_from_ctx_list(ctxp); 532 add_to_used_ctxlist(ctxp); 533 mm->context = ctxp->ctx_number; 534 ctxp->ctx_mm = mm; 535 return; 536 } 537 ctxp = ctx_used.next; 538 if(ctxp->ctx_mm == old_mm) 539 ctxp = ctxp->next; 540 if(ctxp == &ctx_used) 541 panic("out of mmu contexts"); 542 flush_cache_mm(ctxp->ctx_mm); 543 flush_tlb_mm(ctxp->ctx_mm); 544 remove_from_ctx_list(ctxp); 545 add_to_used_ctxlist(ctxp); 546 ctxp->ctx_mm->context = NO_CONTEXT; 547 ctxp->ctx_mm = mm; 548 mm->context = ctxp->ctx_number; 549 } 550 551 static inline void free_context(int context) 552 { 553 struct ctx_list *ctx_old; 554 555 ctx_old = ctx_list_pool + context; 556 remove_from_ctx_list(ctx_old); 557 add_to_free_ctxlist(ctx_old); 558 } 559 560 561 static void srmmu_switch_mm(struct mm_struct *old_mm, struct mm_struct *mm, 562 struct task_struct *tsk, int cpu) 563 { 564 if(mm->context == NO_CONTEXT) { 565 spin_lock(&srmmu_context_spinlock); 566 alloc_context(old_mm, mm); 567 spin_unlock(&srmmu_context_spinlock); 568 srmmu_ctxd_set(&srmmu_context_table[mm->context], mm->pgd); 569 } 570 571 if (is_hypersparc) 572 hyper_flush_whole_icache(); 573 574 srmmu_set_context(mm->context); 575 } 576 577 /* Low level IO area allocation on the SRMMU. */ 578 static inline void srmmu_mapioaddr(unsigned long physaddr, 579 unsigned long virt_addr, int bus_type) 580 { 581 pgd_t *pgdp; 582 pmd_t *pmdp; 583 pte_t *ptep; 584 unsigned long tmp; 585 586 physaddr &= PAGE_MASK; 587 pgdp = pgd_offset_k(virt_addr); 588 pmdp = srmmu_pmd_offset(pgdp, virt_addr); 589 ptep = srmmu_pte_offset(pmdp, virt_addr); 590 tmp = (physaddr >> 4) | SRMMU_ET_PTE; 591 592 /* 593 * I need to test whether this is consistent over all 594 * sun4m's. The bus_type represents the upper 4 bits of 595 * 36-bit physical address on the I/O space lines... 596 */ 597 tmp |= (bus_type << 28); 598 tmp |= SRMMU_PRIV; 599 __flush_page_to_ram(virt_addr); 600 srmmu_set_pte(ptep, __pte(tmp)); 601 } 602 603 static void srmmu_mapiorange(unsigned int bus, unsigned long xpa, 604 unsigned long xva, unsigned int len) 605 { 606 while (len != 0) { 607 len -= PAGE_SIZE; 608 srmmu_mapioaddr(xpa, xva, bus); 609 xva += PAGE_SIZE; 610 xpa += PAGE_SIZE; 611 } 612 flush_tlb_all(); 613 } 614 615 static inline void srmmu_unmapioaddr(unsigned long virt_addr) 616 { 617 pgd_t *pgdp; 618 pmd_t *pmdp; 619 pte_t *ptep; 620 621 pgdp = pgd_offset_k(virt_addr); 622 pmdp = srmmu_pmd_offset(pgdp, virt_addr); 623 ptep = srmmu_pte_offset(pmdp, virt_addr); 624 625 /* No need to flush uncacheable page. */ 626 srmmu_pte_clear(ptep); 627 } 628 629 static void srmmu_unmapiorange(unsigned long virt_addr, unsigned int len) 630 { 631 while (len != 0) { 632 len -= PAGE_SIZE; 633 srmmu_unmapioaddr(virt_addr); 634 virt_addr += PAGE_SIZE; 635 } 636 flush_tlb_all(); 637 } 638 639 /* 640 * On the SRMMU we do not have the problems with limited tlb entries 641 * for mapping kernel pages, so we just take things from the free page 642 * pool. As a side effect we are putting a little too much pressure 643 * on the gfp() subsystem. This setup also makes the logic of the 644 * iommu mapping code a lot easier as we can transparently handle 645 * mappings on the kernel stack without any special code as we did 646 * need on the sun4c. 647 */ 648 struct thread_info *srmmu_alloc_thread_info(void) 649 { 650 struct thread_info *ret; 651 652 ret = (struct thread_info *)__get_free_pages(GFP_KERNEL, 653 THREAD_INFO_ORDER); 654 #ifdef CONFIG_DEBUG_STACK_USAGE 655 if (ret) 656 memset(ret, 0, PAGE_SIZE << THREAD_INFO_ORDER); 657 #endif /* DEBUG_STACK_USAGE */ 658 659 return ret; 660 } 661 662 static void srmmu_free_thread_info(struct thread_info *ti) 663 { 664 free_pages((unsigned long)ti, THREAD_INFO_ORDER); 665 } 666 667 /* tsunami.S */ 668 extern void tsunami_flush_cache_all(void); 669 extern void tsunami_flush_cache_mm(struct mm_struct *mm); 670 extern void tsunami_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end); 671 extern void tsunami_flush_cache_page(struct vm_area_struct *vma, unsigned long page); 672 extern void tsunami_flush_page_to_ram(unsigned long page); 673 extern void tsunami_flush_page_for_dma(unsigned long page); 674 extern void tsunami_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr); 675 extern void tsunami_flush_tlb_all(void); 676 extern void tsunami_flush_tlb_mm(struct mm_struct *mm); 677 extern void tsunami_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end); 678 extern void tsunami_flush_tlb_page(struct vm_area_struct *vma, unsigned long page); 679 extern void tsunami_setup_blockops(void); 680 681 /* 682 * Workaround, until we find what's going on with Swift. When low on memory, 683 * it sometimes loops in fault/handle_mm_fault incl. flush_tlb_page to find 684 * out it is already in page tables/ fault again on the same instruction. 685 * I really don't understand it, have checked it and contexts 686 * are right, flush_tlb_all is done as well, and it faults again... 687 * Strange. -jj 688 * 689 * The following code is a deadwood that may be necessary when 690 * we start to make precise page flushes again. --zaitcev 691 */ 692 static void swift_update_mmu_cache(struct vm_area_struct * vma, unsigned long address, pte_t pte) 693 { 694 #if 0 695 static unsigned long last; 696 unsigned int val; 697 /* unsigned int n; */ 698 699 if (address == last) { 700 val = srmmu_hwprobe(address); 701 if (val != 0 && pte_val(pte) != val) { 702 printk("swift_update_mmu_cache: " 703 "addr %lx put %08x probed %08x from %p\n", 704 address, pte_val(pte), val, 705 __builtin_return_address(0)); 706 srmmu_flush_whole_tlb(); 707 } 708 } 709 last = address; 710 #endif 711 } 712 713 /* swift.S */ 714 extern void swift_flush_cache_all(void); 715 extern void swift_flush_cache_mm(struct mm_struct *mm); 716 extern void swift_flush_cache_range(struct vm_area_struct *vma, 717 unsigned long start, unsigned long end); 718 extern void swift_flush_cache_page(struct vm_area_struct *vma, unsigned long page); 719 extern void swift_flush_page_to_ram(unsigned long page); 720 extern void swift_flush_page_for_dma(unsigned long page); 721 extern void swift_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr); 722 extern void swift_flush_tlb_all(void); 723 extern void swift_flush_tlb_mm(struct mm_struct *mm); 724 extern void swift_flush_tlb_range(struct vm_area_struct *vma, 725 unsigned long start, unsigned long end); 726 extern void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page); 727 728 #if 0 /* P3: deadwood to debug precise flushes on Swift. */ 729 void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page) 730 { 731 int cctx, ctx1; 732 733 page &= PAGE_MASK; 734 if ((ctx1 = vma->vm_mm->context) != -1) { 735 cctx = srmmu_get_context(); 736 /* Is context # ever different from current context? P3 */ 737 if (cctx != ctx1) { 738 printk("flush ctx %02x curr %02x\n", ctx1, cctx); 739 srmmu_set_context(ctx1); 740 swift_flush_page(page); 741 __asm__ __volatile__("sta %%g0, [%0] %1\n\t" : : 742 "r" (page), "i" (ASI_M_FLUSH_PROBE)); 743 srmmu_set_context(cctx); 744 } else { 745 /* Rm. prot. bits from virt. c. */ 746 /* swift_flush_cache_all(); */ 747 /* swift_flush_cache_page(vma, page); */ 748 swift_flush_page(page); 749 750 __asm__ __volatile__("sta %%g0, [%0] %1\n\t" : : 751 "r" (page), "i" (ASI_M_FLUSH_PROBE)); 752 /* same as above: srmmu_flush_tlb_page() */ 753 } 754 } 755 } 756 #endif 757 758 /* 759 * The following are all MBUS based SRMMU modules, and therefore could 760 * be found in a multiprocessor configuration. On the whole, these 761 * chips seems to be much more touchy about DVMA and page tables 762 * with respect to cache coherency. 763 */ 764 765 /* Cypress flushes. */ 766 static void cypress_flush_cache_all(void) 767 { 768 volatile unsigned long cypress_sucks; 769 unsigned long faddr, tagval; 770 771 flush_user_windows(); 772 for(faddr = 0; faddr < 0x10000; faddr += 0x20) { 773 __asm__ __volatile__("lda [%1 + %2] %3, %0\n\t" : 774 "=r" (tagval) : 775 "r" (faddr), "r" (0x40000), 776 "i" (ASI_M_DATAC_TAG)); 777 778 /* If modified and valid, kick it. */ 779 if((tagval & 0x60) == 0x60) 780 cypress_sucks = *(unsigned long *)(0xf0020000 + faddr); 781 } 782 } 783 784 static void cypress_flush_cache_mm(struct mm_struct *mm) 785 { 786 register unsigned long a, b, c, d, e, f, g; 787 unsigned long flags, faddr; 788 int octx; 789 790 FLUSH_BEGIN(mm) 791 flush_user_windows(); 792 local_irq_save(flags); 793 octx = srmmu_get_context(); 794 srmmu_set_context(mm->context); 795 a = 0x20; b = 0x40; c = 0x60; 796 d = 0x80; e = 0xa0; f = 0xc0; g = 0xe0; 797 798 faddr = (0x10000 - 0x100); 799 goto inside; 800 do { 801 faddr -= 0x100; 802 inside: 803 __asm__ __volatile__("sta %%g0, [%0] %1\n\t" 804 "sta %%g0, [%0 + %2] %1\n\t" 805 "sta %%g0, [%0 + %3] %1\n\t" 806 "sta %%g0, [%0 + %4] %1\n\t" 807 "sta %%g0, [%0 + %5] %1\n\t" 808 "sta %%g0, [%0 + %6] %1\n\t" 809 "sta %%g0, [%0 + %7] %1\n\t" 810 "sta %%g0, [%0 + %8] %1\n\t" : : 811 "r" (faddr), "i" (ASI_M_FLUSH_CTX), 812 "r" (a), "r" (b), "r" (c), "r" (d), 813 "r" (e), "r" (f), "r" (g)); 814 } while(faddr); 815 srmmu_set_context(octx); 816 local_irq_restore(flags); 817 FLUSH_END 818 } 819 820 static void cypress_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end) 821 { 822 struct mm_struct *mm = vma->vm_mm; 823 register unsigned long a, b, c, d, e, f, g; 824 unsigned long flags, faddr; 825 int octx; 826 827 FLUSH_BEGIN(mm) 828 flush_user_windows(); 829 local_irq_save(flags); 830 octx = srmmu_get_context(); 831 srmmu_set_context(mm->context); 832 a = 0x20; b = 0x40; c = 0x60; 833 d = 0x80; e = 0xa0; f = 0xc0; g = 0xe0; 834 835 start &= SRMMU_REAL_PMD_MASK; 836 while(start < end) { 837 faddr = (start + (0x10000 - 0x100)); 838 goto inside; 839 do { 840 faddr -= 0x100; 841 inside: 842 __asm__ __volatile__("sta %%g0, [%0] %1\n\t" 843 "sta %%g0, [%0 + %2] %1\n\t" 844 "sta %%g0, [%0 + %3] %1\n\t" 845 "sta %%g0, [%0 + %4] %1\n\t" 846 "sta %%g0, [%0 + %5] %1\n\t" 847 "sta %%g0, [%0 + %6] %1\n\t" 848 "sta %%g0, [%0 + %7] %1\n\t" 849 "sta %%g0, [%0 + %8] %1\n\t" : : 850 "r" (faddr), 851 "i" (ASI_M_FLUSH_SEG), 852 "r" (a), "r" (b), "r" (c), "r" (d), 853 "r" (e), "r" (f), "r" (g)); 854 } while (faddr != start); 855 start += SRMMU_REAL_PMD_SIZE; 856 } 857 srmmu_set_context(octx); 858 local_irq_restore(flags); 859 FLUSH_END 860 } 861 862 static void cypress_flush_cache_page(struct vm_area_struct *vma, unsigned long page) 863 { 864 register unsigned long a, b, c, d, e, f, g; 865 struct mm_struct *mm = vma->vm_mm; 866 unsigned long flags, line; 867 int octx; 868 869 FLUSH_BEGIN(mm) 870 flush_user_windows(); 871 local_irq_save(flags); 872 octx = srmmu_get_context(); 873 srmmu_set_context(mm->context); 874 a = 0x20; b = 0x40; c = 0x60; 875 d = 0x80; e = 0xa0; f = 0xc0; g = 0xe0; 876 877 page &= PAGE_MASK; 878 line = (page + PAGE_SIZE) - 0x100; 879 goto inside; 880 do { 881 line -= 0x100; 882 inside: 883 __asm__ __volatile__("sta %%g0, [%0] %1\n\t" 884 "sta %%g0, [%0 + %2] %1\n\t" 885 "sta %%g0, [%0 + %3] %1\n\t" 886 "sta %%g0, [%0 + %4] %1\n\t" 887 "sta %%g0, [%0 + %5] %1\n\t" 888 "sta %%g0, [%0 + %6] %1\n\t" 889 "sta %%g0, [%0 + %7] %1\n\t" 890 "sta %%g0, [%0 + %8] %1\n\t" : : 891 "r" (line), 892 "i" (ASI_M_FLUSH_PAGE), 893 "r" (a), "r" (b), "r" (c), "r" (d), 894 "r" (e), "r" (f), "r" (g)); 895 } while(line != page); 896 srmmu_set_context(octx); 897 local_irq_restore(flags); 898 FLUSH_END 899 } 900 901 /* Cypress is copy-back, at least that is how we configure it. */ 902 static void cypress_flush_page_to_ram(unsigned long page) 903 { 904 register unsigned long a, b, c, d, e, f, g; 905 unsigned long line; 906 907 a = 0x20; b = 0x40; c = 0x60; d = 0x80; e = 0xa0; f = 0xc0; g = 0xe0; 908 page &= PAGE_MASK; 909 line = (page + PAGE_SIZE) - 0x100; 910 goto inside; 911 do { 912 line -= 0x100; 913 inside: 914 __asm__ __volatile__("sta %%g0, [%0] %1\n\t" 915 "sta %%g0, [%0 + %2] %1\n\t" 916 "sta %%g0, [%0 + %3] %1\n\t" 917 "sta %%g0, [%0 + %4] %1\n\t" 918 "sta %%g0, [%0 + %5] %1\n\t" 919 "sta %%g0, [%0 + %6] %1\n\t" 920 "sta %%g0, [%0 + %7] %1\n\t" 921 "sta %%g0, [%0 + %8] %1\n\t" : : 922 "r" (line), 923 "i" (ASI_M_FLUSH_PAGE), 924 "r" (a), "r" (b), "r" (c), "r" (d), 925 "r" (e), "r" (f), "r" (g)); 926 } while(line != page); 927 } 928 929 /* Cypress is also IO cache coherent. */ 930 static void cypress_flush_page_for_dma(unsigned long page) 931 { 932 } 933 934 /* Cypress has unified L2 VIPT, from which both instructions and data 935 * are stored. It does not have an onboard icache of any sort, therefore 936 * no flush is necessary. 937 */ 938 static void cypress_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr) 939 { 940 } 941 942 static void cypress_flush_tlb_all(void) 943 { 944 srmmu_flush_whole_tlb(); 945 } 946 947 static void cypress_flush_tlb_mm(struct mm_struct *mm) 948 { 949 FLUSH_BEGIN(mm) 950 __asm__ __volatile__( 951 "lda [%0] %3, %%g5\n\t" 952 "sta %2, [%0] %3\n\t" 953 "sta %%g0, [%1] %4\n\t" 954 "sta %%g5, [%0] %3\n" 955 : /* no outputs */ 956 : "r" (SRMMU_CTX_REG), "r" (0x300), "r" (mm->context), 957 "i" (ASI_M_MMUREGS), "i" (ASI_M_FLUSH_PROBE) 958 : "g5"); 959 FLUSH_END 960 } 961 962 static void cypress_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end) 963 { 964 struct mm_struct *mm = vma->vm_mm; 965 unsigned long size; 966 967 FLUSH_BEGIN(mm) 968 start &= SRMMU_PGDIR_MASK; 969 size = SRMMU_PGDIR_ALIGN(end) - start; 970 __asm__ __volatile__( 971 "lda [%0] %5, %%g5\n\t" 972 "sta %1, [%0] %5\n" 973 "1:\n\t" 974 "subcc %3, %4, %3\n\t" 975 "bne 1b\n\t" 976 " sta %%g0, [%2 + %3] %6\n\t" 977 "sta %%g5, [%0] %5\n" 978 : /* no outputs */ 979 : "r" (SRMMU_CTX_REG), "r" (mm->context), "r" (start | 0x200), 980 "r" (size), "r" (SRMMU_PGDIR_SIZE), "i" (ASI_M_MMUREGS), 981 "i" (ASI_M_FLUSH_PROBE) 982 : "g5", "cc"); 983 FLUSH_END 984 } 985 986 static void cypress_flush_tlb_page(struct vm_area_struct *vma, unsigned long page) 987 { 988 struct mm_struct *mm = vma->vm_mm; 989 990 FLUSH_BEGIN(mm) 991 __asm__ __volatile__( 992 "lda [%0] %3, %%g5\n\t" 993 "sta %1, [%0] %3\n\t" 994 "sta %%g0, [%2] %4\n\t" 995 "sta %%g5, [%0] %3\n" 996 : /* no outputs */ 997 : "r" (SRMMU_CTX_REG), "r" (mm->context), "r" (page & PAGE_MASK), 998 "i" (ASI_M_MMUREGS), "i" (ASI_M_FLUSH_PROBE) 999 : "g5"); 1000 FLUSH_END 1001 } 1002 1003 /* viking.S */ 1004 extern void viking_flush_cache_all(void); 1005 extern void viking_flush_cache_mm(struct mm_struct *mm); 1006 extern void viking_flush_cache_range(struct vm_area_struct *vma, unsigned long start, 1007 unsigned long end); 1008 extern void viking_flush_cache_page(struct vm_area_struct *vma, unsigned long page); 1009 extern void viking_flush_page_to_ram(unsigned long page); 1010 extern void viking_flush_page_for_dma(unsigned long page); 1011 extern void viking_flush_sig_insns(struct mm_struct *mm, unsigned long addr); 1012 extern void viking_flush_page(unsigned long page); 1013 extern void viking_mxcc_flush_page(unsigned long page); 1014 extern void viking_flush_tlb_all(void); 1015 extern void viking_flush_tlb_mm(struct mm_struct *mm); 1016 extern void viking_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, 1017 unsigned long end); 1018 extern void viking_flush_tlb_page(struct vm_area_struct *vma, 1019 unsigned long page); 1020 extern void sun4dsmp_flush_tlb_all(void); 1021 extern void sun4dsmp_flush_tlb_mm(struct mm_struct *mm); 1022 extern void sun4dsmp_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, 1023 unsigned long end); 1024 extern void sun4dsmp_flush_tlb_page(struct vm_area_struct *vma, 1025 unsigned long page); 1026 1027 /* hypersparc.S */ 1028 extern void hypersparc_flush_cache_all(void); 1029 extern void hypersparc_flush_cache_mm(struct mm_struct *mm); 1030 extern void hypersparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end); 1031 extern void hypersparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page); 1032 extern void hypersparc_flush_page_to_ram(unsigned long page); 1033 extern void hypersparc_flush_page_for_dma(unsigned long page); 1034 extern void hypersparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr); 1035 extern void hypersparc_flush_tlb_all(void); 1036 extern void hypersparc_flush_tlb_mm(struct mm_struct *mm); 1037 extern void hypersparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end); 1038 extern void hypersparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page); 1039 extern void hypersparc_setup_blockops(void); 1040 1041 /* 1042 * NOTE: All of this startup code assumes the low 16mb (approx.) of 1043 * kernel mappings are done with one single contiguous chunk of 1044 * ram. On small ram machines (classics mainly) we only get 1045 * around 8mb mapped for us. 1046 */ 1047 1048 void __init early_pgtable_allocfail(char *type) 1049 { 1050 prom_printf("inherit_prom_mappings: Cannot alloc kernel %s.\n", type); 1051 prom_halt(); 1052 } 1053 1054 void __init srmmu_early_allocate_ptable_skeleton(unsigned long start, unsigned long end) 1055 { 1056 pgd_t *pgdp; 1057 pmd_t *pmdp; 1058 pte_t *ptep; 1059 1060 while(start < end) { 1061 pgdp = pgd_offset_k(start); 1062 if(srmmu_pgd_none(*(pgd_t *)__nocache_fix(pgdp))) { 1063 pmdp = (pmd_t *) __srmmu_get_nocache( 1064 SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE); 1065 if (pmdp == NULL) 1066 early_pgtable_allocfail("pmd"); 1067 memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE); 1068 srmmu_pgd_set(__nocache_fix(pgdp), pmdp); 1069 } 1070 pmdp = srmmu_pmd_offset(__nocache_fix(pgdp), start); 1071 if(srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) { 1072 ptep = (pte_t *)__srmmu_get_nocache(PTE_SIZE, PTE_SIZE); 1073 if (ptep == NULL) 1074 early_pgtable_allocfail("pte"); 1075 memset(__nocache_fix(ptep), 0, PTE_SIZE); 1076 srmmu_pmd_set(__nocache_fix(pmdp), ptep); 1077 } 1078 if (start > (0xffffffffUL - PMD_SIZE)) 1079 break; 1080 start = (start + PMD_SIZE) & PMD_MASK; 1081 } 1082 } 1083 1084 void __init srmmu_allocate_ptable_skeleton(unsigned long start, unsigned long end) 1085 { 1086 pgd_t *pgdp; 1087 pmd_t *pmdp; 1088 pte_t *ptep; 1089 1090 while(start < end) { 1091 pgdp = pgd_offset_k(start); 1092 if(srmmu_pgd_none(*pgdp)) { 1093 pmdp = (pmd_t *)__srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE); 1094 if (pmdp == NULL) 1095 early_pgtable_allocfail("pmd"); 1096 memset(pmdp, 0, SRMMU_PMD_TABLE_SIZE); 1097 srmmu_pgd_set(pgdp, pmdp); 1098 } 1099 pmdp = srmmu_pmd_offset(pgdp, start); 1100 if(srmmu_pmd_none(*pmdp)) { 1101 ptep = (pte_t *) __srmmu_get_nocache(PTE_SIZE, 1102 PTE_SIZE); 1103 if (ptep == NULL) 1104 early_pgtable_allocfail("pte"); 1105 memset(ptep, 0, PTE_SIZE); 1106 srmmu_pmd_set(pmdp, ptep); 1107 } 1108 if (start > (0xffffffffUL - PMD_SIZE)) 1109 break; 1110 start = (start + PMD_SIZE) & PMD_MASK; 1111 } 1112 } 1113 1114 /* 1115 * This is much cleaner than poking around physical address space 1116 * looking at the prom's page table directly which is what most 1117 * other OS's do. Yuck... this is much better. 1118 */ 1119 void __init srmmu_inherit_prom_mappings(unsigned long start,unsigned long end) 1120 { 1121 pgd_t *pgdp; 1122 pmd_t *pmdp; 1123 pte_t *ptep; 1124 int what = 0; /* 0 = normal-pte, 1 = pmd-level pte, 2 = pgd-level pte */ 1125 unsigned long prompte; 1126 1127 while(start <= end) { 1128 if (start == 0) 1129 break; /* probably wrap around */ 1130 if(start == 0xfef00000) 1131 start = KADB_DEBUGGER_BEGVM; 1132 if(!(prompte = srmmu_hwprobe(start))) { 1133 start += PAGE_SIZE; 1134 continue; 1135 } 1136 1137 /* A red snapper, see what it really is. */ 1138 what = 0; 1139 1140 if(!(start & ~(SRMMU_REAL_PMD_MASK))) { 1141 if(srmmu_hwprobe((start-PAGE_SIZE) + SRMMU_REAL_PMD_SIZE) == prompte) 1142 what = 1; 1143 } 1144 1145 if(!(start & ~(SRMMU_PGDIR_MASK))) { 1146 if(srmmu_hwprobe((start-PAGE_SIZE) + SRMMU_PGDIR_SIZE) == 1147 prompte) 1148 what = 2; 1149 } 1150 1151 pgdp = pgd_offset_k(start); 1152 if(what == 2) { 1153 *(pgd_t *)__nocache_fix(pgdp) = __pgd(prompte); 1154 start += SRMMU_PGDIR_SIZE; 1155 continue; 1156 } 1157 if(srmmu_pgd_none(*(pgd_t *)__nocache_fix(pgdp))) { 1158 pmdp = (pmd_t *)__srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE); 1159 if (pmdp == NULL) 1160 early_pgtable_allocfail("pmd"); 1161 memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE); 1162 srmmu_pgd_set(__nocache_fix(pgdp), pmdp); 1163 } 1164 pmdp = srmmu_pmd_offset(__nocache_fix(pgdp), start); 1165 if(srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) { 1166 ptep = (pte_t *) __srmmu_get_nocache(PTE_SIZE, 1167 PTE_SIZE); 1168 if (ptep == NULL) 1169 early_pgtable_allocfail("pte"); 1170 memset(__nocache_fix(ptep), 0, PTE_SIZE); 1171 srmmu_pmd_set(__nocache_fix(pmdp), ptep); 1172 } 1173 if(what == 1) { 1174 /* 1175 * We bend the rule where all 16 PTPs in a pmd_t point 1176 * inside the same PTE page, and we leak a perfectly 1177 * good hardware PTE piece. Alternatives seem worse. 1178 */ 1179 unsigned int x; /* Index of HW PMD in soft cluster */ 1180 x = (start >> PMD_SHIFT) & 15; 1181 *(unsigned long *)__nocache_fix(&pmdp->pmdv[x]) = prompte; 1182 start += SRMMU_REAL_PMD_SIZE; 1183 continue; 1184 } 1185 ptep = srmmu_pte_offset(__nocache_fix(pmdp), start); 1186 *(pte_t *)__nocache_fix(ptep) = __pte(prompte); 1187 start += PAGE_SIZE; 1188 } 1189 } 1190 1191 #define KERNEL_PTE(page_shifted) ((page_shifted)|SRMMU_CACHE|SRMMU_PRIV|SRMMU_VALID) 1192 1193 /* Create a third-level SRMMU 16MB page mapping. */ 1194 static void __init do_large_mapping(unsigned long vaddr, unsigned long phys_base) 1195 { 1196 pgd_t *pgdp = pgd_offset_k(vaddr); 1197 unsigned long big_pte; 1198 1199 big_pte = KERNEL_PTE(phys_base >> 4); 1200 *(pgd_t *)__nocache_fix(pgdp) = __pgd(big_pte); 1201 } 1202 1203 /* Map sp_bank entry SP_ENTRY, starting at virtual address VBASE. */ 1204 static unsigned long __init map_spbank(unsigned long vbase, int sp_entry) 1205 { 1206 unsigned long pstart = (sp_banks[sp_entry].base_addr & SRMMU_PGDIR_MASK); 1207 unsigned long vstart = (vbase & SRMMU_PGDIR_MASK); 1208 unsigned long vend = SRMMU_PGDIR_ALIGN(vbase + sp_banks[sp_entry].num_bytes); 1209 /* Map "low" memory only */ 1210 const unsigned long min_vaddr = PAGE_OFFSET; 1211 const unsigned long max_vaddr = PAGE_OFFSET + SRMMU_MAXMEM; 1212 1213 if (vstart < min_vaddr || vstart >= max_vaddr) 1214 return vstart; 1215 1216 if (vend > max_vaddr || vend < min_vaddr) 1217 vend = max_vaddr; 1218 1219 while(vstart < vend) { 1220 do_large_mapping(vstart, pstart); 1221 vstart += SRMMU_PGDIR_SIZE; pstart += SRMMU_PGDIR_SIZE; 1222 } 1223 return vstart; 1224 } 1225 1226 static inline void memprobe_error(char *msg) 1227 { 1228 prom_printf(msg); 1229 prom_printf("Halting now...\n"); 1230 prom_halt(); 1231 } 1232 1233 static inline void map_kernel(void) 1234 { 1235 int i; 1236 1237 if (phys_base > 0) { 1238 do_large_mapping(PAGE_OFFSET, phys_base); 1239 } 1240 1241 for (i = 0; sp_banks[i].num_bytes != 0; i++) { 1242 map_spbank((unsigned long)__va(sp_banks[i].base_addr), i); 1243 } 1244 1245 BTFIXUPSET_SIMM13(user_ptrs_per_pgd, PAGE_OFFSET / SRMMU_PGDIR_SIZE); 1246 } 1247 1248 /* Paging initialization on the Sparc Reference MMU. */ 1249 extern void sparc_context_init(int); 1250 1251 void (*poke_srmmu)(void) __initdata = NULL; 1252 1253 extern unsigned long bootmem_init(unsigned long *pages_avail); 1254 1255 void __init srmmu_paging_init(void) 1256 { 1257 int i, cpunode; 1258 char node_str[128]; 1259 pgd_t *pgd; 1260 pmd_t *pmd; 1261 pte_t *pte; 1262 unsigned long pages_avail; 1263 1264 sparc_iomap.start = SUN4M_IOBASE_VADDR; /* 16MB of IOSPACE on all sun4m's. */ 1265 1266 if (sparc_cpu_model == sun4d) 1267 num_contexts = 65536; /* We know it is Viking */ 1268 else { 1269 /* Find the number of contexts on the srmmu. */ 1270 cpunode = prom_getchild(prom_root_node); 1271 num_contexts = 0; 1272 while(cpunode != 0) { 1273 prom_getstring(cpunode, "device_type", node_str, sizeof(node_str)); 1274 if(!strcmp(node_str, "cpu")) { 1275 num_contexts = prom_getintdefault(cpunode, "mmu-nctx", 0x8); 1276 break; 1277 } 1278 cpunode = prom_getsibling(cpunode); 1279 } 1280 } 1281 1282 if(!num_contexts) { 1283 prom_printf("Something wrong, can't find cpu node in paging_init.\n"); 1284 prom_halt(); 1285 } 1286 1287 pages_avail = 0; 1288 last_valid_pfn = bootmem_init(&pages_avail); 1289 1290 srmmu_nocache_calcsize(); 1291 srmmu_nocache_init(); 1292 srmmu_inherit_prom_mappings(0xfe400000,(LINUX_OPPROM_ENDVM-PAGE_SIZE)); 1293 map_kernel(); 1294 1295 /* ctx table has to be physically aligned to its size */ 1296 srmmu_context_table = (ctxd_t *)__srmmu_get_nocache(num_contexts*sizeof(ctxd_t), num_contexts*sizeof(ctxd_t)); 1297 srmmu_ctx_table_phys = (ctxd_t *)__nocache_pa((unsigned long)srmmu_context_table); 1298 1299 for(i = 0; i < num_contexts; i++) 1300 srmmu_ctxd_set((ctxd_t *)__nocache_fix(&srmmu_context_table[i]), srmmu_swapper_pg_dir); 1301 1302 flush_cache_all(); 1303 srmmu_set_ctable_ptr((unsigned long)srmmu_ctx_table_phys); 1304 #ifdef CONFIG_SMP 1305 /* Stop from hanging here... */ 1306 local_flush_tlb_all(); 1307 #else 1308 flush_tlb_all(); 1309 #endif 1310 poke_srmmu(); 1311 1312 #ifdef CONFIG_SUN_IO 1313 srmmu_allocate_ptable_skeleton(sparc_iomap.start, IOBASE_END); 1314 srmmu_allocate_ptable_skeleton(DVMA_VADDR, DVMA_END); 1315 #endif 1316 1317 srmmu_allocate_ptable_skeleton( 1318 __fix_to_virt(__end_of_fixed_addresses - 1), FIXADDR_TOP); 1319 srmmu_allocate_ptable_skeleton(PKMAP_BASE, PKMAP_END); 1320 1321 pgd = pgd_offset_k(PKMAP_BASE); 1322 pmd = srmmu_pmd_offset(pgd, PKMAP_BASE); 1323 pte = srmmu_pte_offset(pmd, PKMAP_BASE); 1324 pkmap_page_table = pte; 1325 1326 flush_cache_all(); 1327 flush_tlb_all(); 1328 1329 sparc_context_init(num_contexts); 1330 1331 kmap_init(); 1332 1333 { 1334 unsigned long zones_size[MAX_NR_ZONES]; 1335 unsigned long zholes_size[MAX_NR_ZONES]; 1336 unsigned long npages; 1337 int znum; 1338 1339 for (znum = 0; znum < MAX_NR_ZONES; znum++) 1340 zones_size[znum] = zholes_size[znum] = 0; 1341 1342 npages = max_low_pfn - pfn_base; 1343 1344 zones_size[ZONE_DMA] = npages; 1345 zholes_size[ZONE_DMA] = npages - pages_avail; 1346 1347 npages = highend_pfn - max_low_pfn; 1348 zones_size[ZONE_HIGHMEM] = npages; 1349 zholes_size[ZONE_HIGHMEM] = npages - calc_highpages(); 1350 1351 free_area_init_node(0, &contig_page_data, zones_size, 1352 pfn_base, zholes_size); 1353 } 1354 } 1355 1356 static void srmmu_mmu_info(struct seq_file *m) 1357 { 1358 seq_printf(m, 1359 "MMU type\t: %s\n" 1360 "contexts\t: %d\n" 1361 "nocache total\t: %ld\n" 1362 "nocache used\t: %d\n", 1363 srmmu_name, 1364 num_contexts, 1365 srmmu_nocache_size, 1366 srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT); 1367 } 1368 1369 static void srmmu_update_mmu_cache(struct vm_area_struct * vma, unsigned long address, pte_t pte) 1370 { 1371 } 1372 1373 static void srmmu_destroy_context(struct mm_struct *mm) 1374 { 1375 1376 if(mm->context != NO_CONTEXT) { 1377 flush_cache_mm(mm); 1378 srmmu_ctxd_set(&srmmu_context_table[mm->context], srmmu_swapper_pg_dir); 1379 flush_tlb_mm(mm); 1380 spin_lock(&srmmu_context_spinlock); 1381 free_context(mm->context); 1382 spin_unlock(&srmmu_context_spinlock); 1383 mm->context = NO_CONTEXT; 1384 } 1385 } 1386 1387 /* Init various srmmu chip types. */ 1388 static void __init srmmu_is_bad(void) 1389 { 1390 prom_printf("Could not determine SRMMU chip type.\n"); 1391 prom_halt(); 1392 } 1393 1394 static void __init init_vac_layout(void) 1395 { 1396 int nd, cache_lines; 1397 char node_str[128]; 1398 #ifdef CONFIG_SMP 1399 int cpu = 0; 1400 unsigned long max_size = 0; 1401 unsigned long min_line_size = 0x10000000; 1402 #endif 1403 1404 nd = prom_getchild(prom_root_node); 1405 while((nd = prom_getsibling(nd)) != 0) { 1406 prom_getstring(nd, "device_type", node_str, sizeof(node_str)); 1407 if(!strcmp(node_str, "cpu")) { 1408 vac_line_size = prom_getint(nd, "cache-line-size"); 1409 if (vac_line_size == -1) { 1410 prom_printf("can't determine cache-line-size, " 1411 "halting.\n"); 1412 prom_halt(); 1413 } 1414 cache_lines = prom_getint(nd, "cache-nlines"); 1415 if (cache_lines == -1) { 1416 prom_printf("can't determine cache-nlines, halting.\n"); 1417 prom_halt(); 1418 } 1419 1420 vac_cache_size = cache_lines * vac_line_size; 1421 #ifdef CONFIG_SMP 1422 if(vac_cache_size > max_size) 1423 max_size = vac_cache_size; 1424 if(vac_line_size < min_line_size) 1425 min_line_size = vac_line_size; 1426 //FIXME: cpus not contiguous!! 1427 cpu++; 1428 if (cpu >= NR_CPUS || !cpu_online(cpu)) 1429 break; 1430 #else 1431 break; 1432 #endif 1433 } 1434 } 1435 if(nd == 0) { 1436 prom_printf("No CPU nodes found, halting.\n"); 1437 prom_halt(); 1438 } 1439 #ifdef CONFIG_SMP 1440 vac_cache_size = max_size; 1441 vac_line_size = min_line_size; 1442 #endif 1443 printk("SRMMU: Using VAC size of %d bytes, line size %d bytes.\n", 1444 (int)vac_cache_size, (int)vac_line_size); 1445 } 1446 1447 static void __init poke_hypersparc(void) 1448 { 1449 volatile unsigned long clear; 1450 unsigned long mreg = srmmu_get_mmureg(); 1451 1452 hyper_flush_unconditional_combined(); 1453 1454 mreg &= ~(HYPERSPARC_CWENABLE); 1455 mreg |= (HYPERSPARC_CENABLE | HYPERSPARC_WBENABLE); 1456 mreg |= (HYPERSPARC_CMODE); 1457 1458 srmmu_set_mmureg(mreg); 1459 1460 #if 0 /* XXX I think this is bad news... -DaveM */ 1461 hyper_clear_all_tags(); 1462 #endif 1463 1464 put_ross_icr(HYPERSPARC_ICCR_FTD | HYPERSPARC_ICCR_ICE); 1465 hyper_flush_whole_icache(); 1466 clear = srmmu_get_faddr(); 1467 clear = srmmu_get_fstatus(); 1468 } 1469 1470 static void __init init_hypersparc(void) 1471 { 1472 srmmu_name = "ROSS HyperSparc"; 1473 srmmu_modtype = HyperSparc; 1474 1475 init_vac_layout(); 1476 1477 is_hypersparc = 1; 1478 1479 BTFIXUPSET_CALL(pte_clear, srmmu_pte_clear, BTFIXUPCALL_NORM); 1480 BTFIXUPSET_CALL(pmd_clear, srmmu_pmd_clear, BTFIXUPCALL_NORM); 1481 BTFIXUPSET_CALL(pgd_clear, srmmu_pgd_clear, BTFIXUPCALL_NORM); 1482 BTFIXUPSET_CALL(flush_cache_all, hypersparc_flush_cache_all, BTFIXUPCALL_NORM); 1483 BTFIXUPSET_CALL(flush_cache_mm, hypersparc_flush_cache_mm, BTFIXUPCALL_NORM); 1484 BTFIXUPSET_CALL(flush_cache_range, hypersparc_flush_cache_range, BTFIXUPCALL_NORM); 1485 BTFIXUPSET_CALL(flush_cache_page, hypersparc_flush_cache_page, BTFIXUPCALL_NORM); 1486 1487 BTFIXUPSET_CALL(flush_tlb_all, hypersparc_flush_tlb_all, BTFIXUPCALL_NORM); 1488 BTFIXUPSET_CALL(flush_tlb_mm, hypersparc_flush_tlb_mm, BTFIXUPCALL_NORM); 1489 BTFIXUPSET_CALL(flush_tlb_range, hypersparc_flush_tlb_range, BTFIXUPCALL_NORM); 1490 BTFIXUPSET_CALL(flush_tlb_page, hypersparc_flush_tlb_page, BTFIXUPCALL_NORM); 1491 1492 BTFIXUPSET_CALL(__flush_page_to_ram, hypersparc_flush_page_to_ram, BTFIXUPCALL_NORM); 1493 BTFIXUPSET_CALL(flush_sig_insns, hypersparc_flush_sig_insns, BTFIXUPCALL_NORM); 1494 BTFIXUPSET_CALL(flush_page_for_dma, hypersparc_flush_page_for_dma, BTFIXUPCALL_NOP); 1495 1496 1497 poke_srmmu = poke_hypersparc; 1498 1499 hypersparc_setup_blockops(); 1500 } 1501 1502 static void __init poke_cypress(void) 1503 { 1504 unsigned long mreg = srmmu_get_mmureg(); 1505 unsigned long faddr, tagval; 1506 volatile unsigned long cypress_sucks; 1507 volatile unsigned long clear; 1508 1509 clear = srmmu_get_faddr(); 1510 clear = srmmu_get_fstatus(); 1511 1512 if (!(mreg & CYPRESS_CENABLE)) { 1513 for(faddr = 0x0; faddr < 0x10000; faddr += 20) { 1514 __asm__ __volatile__("sta %%g0, [%0 + %1] %2\n\t" 1515 "sta %%g0, [%0] %2\n\t" : : 1516 "r" (faddr), "r" (0x40000), 1517 "i" (ASI_M_DATAC_TAG)); 1518 } 1519 } else { 1520 for(faddr = 0; faddr < 0x10000; faddr += 0x20) { 1521 __asm__ __volatile__("lda [%1 + %2] %3, %0\n\t" : 1522 "=r" (tagval) : 1523 "r" (faddr), "r" (0x40000), 1524 "i" (ASI_M_DATAC_TAG)); 1525 1526 /* If modified and valid, kick it. */ 1527 if((tagval & 0x60) == 0x60) 1528 cypress_sucks = *(unsigned long *) 1529 (0xf0020000 + faddr); 1530 } 1531 } 1532 1533 /* And one more, for our good neighbor, Mr. Broken Cypress. */ 1534 clear = srmmu_get_faddr(); 1535 clear = srmmu_get_fstatus(); 1536 1537 mreg |= (CYPRESS_CENABLE | CYPRESS_CMODE); 1538 srmmu_set_mmureg(mreg); 1539 } 1540 1541 static void __init init_cypress_common(void) 1542 { 1543 init_vac_layout(); 1544 1545 BTFIXUPSET_CALL(pte_clear, srmmu_pte_clear, BTFIXUPCALL_NORM); 1546 BTFIXUPSET_CALL(pmd_clear, srmmu_pmd_clear, BTFIXUPCALL_NORM); 1547 BTFIXUPSET_CALL(pgd_clear, srmmu_pgd_clear, BTFIXUPCALL_NORM); 1548 BTFIXUPSET_CALL(flush_cache_all, cypress_flush_cache_all, BTFIXUPCALL_NORM); 1549 BTFIXUPSET_CALL(flush_cache_mm, cypress_flush_cache_mm, BTFIXUPCALL_NORM); 1550 BTFIXUPSET_CALL(flush_cache_range, cypress_flush_cache_range, BTFIXUPCALL_NORM); 1551 BTFIXUPSET_CALL(flush_cache_page, cypress_flush_cache_page, BTFIXUPCALL_NORM); 1552 1553 BTFIXUPSET_CALL(flush_tlb_all, cypress_flush_tlb_all, BTFIXUPCALL_NORM); 1554 BTFIXUPSET_CALL(flush_tlb_mm, cypress_flush_tlb_mm, BTFIXUPCALL_NORM); 1555 BTFIXUPSET_CALL(flush_tlb_page, cypress_flush_tlb_page, BTFIXUPCALL_NORM); 1556 BTFIXUPSET_CALL(flush_tlb_range, cypress_flush_tlb_range, BTFIXUPCALL_NORM); 1557 1558 1559 BTFIXUPSET_CALL(__flush_page_to_ram, cypress_flush_page_to_ram, BTFIXUPCALL_NORM); 1560 BTFIXUPSET_CALL(flush_sig_insns, cypress_flush_sig_insns, BTFIXUPCALL_NOP); 1561 BTFIXUPSET_CALL(flush_page_for_dma, cypress_flush_page_for_dma, BTFIXUPCALL_NOP); 1562 1563 poke_srmmu = poke_cypress; 1564 } 1565 1566 static void __init init_cypress_604(void) 1567 { 1568 srmmu_name = "ROSS Cypress-604(UP)"; 1569 srmmu_modtype = Cypress; 1570 init_cypress_common(); 1571 } 1572 1573 static void __init init_cypress_605(unsigned long mrev) 1574 { 1575 srmmu_name = "ROSS Cypress-605(MP)"; 1576 if(mrev == 0xe) { 1577 srmmu_modtype = Cypress_vE; 1578 hwbug_bitmask |= HWBUG_COPYBACK_BROKEN; 1579 } else { 1580 if(mrev == 0xd) { 1581 srmmu_modtype = Cypress_vD; 1582 hwbug_bitmask |= HWBUG_ASIFLUSH_BROKEN; 1583 } else { 1584 srmmu_modtype = Cypress; 1585 } 1586 } 1587 init_cypress_common(); 1588 } 1589 1590 static void __init poke_swift(void) 1591 { 1592 unsigned long mreg; 1593 1594 /* Clear any crap from the cache or else... */ 1595 swift_flush_cache_all(); 1596 1597 /* Enable I & D caches */ 1598 mreg = srmmu_get_mmureg(); 1599 mreg |= (SWIFT_IE | SWIFT_DE); 1600 /* 1601 * The Swift branch folding logic is completely broken. At 1602 * trap time, if things are just right, if can mistakenly 1603 * think that a trap is coming from kernel mode when in fact 1604 * it is coming from user mode (it mis-executes the branch in 1605 * the trap code). So you see things like crashme completely 1606 * hosing your machine which is completely unacceptable. Turn 1607 * this shit off... nice job Fujitsu. 1608 */ 1609 mreg &= ~(SWIFT_BF); 1610 srmmu_set_mmureg(mreg); 1611 } 1612 1613 #define SWIFT_MASKID_ADDR 0x10003018 1614 static void __init init_swift(void) 1615 { 1616 unsigned long swift_rev; 1617 1618 __asm__ __volatile__("lda [%1] %2, %0\n\t" 1619 "srl %0, 0x18, %0\n\t" : 1620 "=r" (swift_rev) : 1621 "r" (SWIFT_MASKID_ADDR), "i" (ASI_M_BYPASS)); 1622 srmmu_name = "Fujitsu Swift"; 1623 switch(swift_rev) { 1624 case 0x11: 1625 case 0x20: 1626 case 0x23: 1627 case 0x30: 1628 srmmu_modtype = Swift_lots_o_bugs; 1629 hwbug_bitmask |= (HWBUG_KERN_ACCBROKEN | HWBUG_KERN_CBITBROKEN); 1630 /* 1631 * Gee george, I wonder why Sun is so hush hush about 1632 * this hardware bug... really braindamage stuff going 1633 * on here. However I think we can find a way to avoid 1634 * all of the workaround overhead under Linux. Basically, 1635 * any page fault can cause kernel pages to become user 1636 * accessible (the mmu gets confused and clears some of 1637 * the ACC bits in kernel ptes). Aha, sounds pretty 1638 * horrible eh? But wait, after extensive testing it appears 1639 * that if you use pgd_t level large kernel pte's (like the 1640 * 4MB pages on the Pentium) the bug does not get tripped 1641 * at all. This avoids almost all of the major overhead. 1642 * Welcome to a world where your vendor tells you to, 1643 * "apply this kernel patch" instead of "sorry for the 1644 * broken hardware, send it back and we'll give you 1645 * properly functioning parts" 1646 */ 1647 break; 1648 case 0x25: 1649 case 0x31: 1650 srmmu_modtype = Swift_bad_c; 1651 hwbug_bitmask |= HWBUG_KERN_CBITBROKEN; 1652 /* 1653 * You see Sun allude to this hardware bug but never 1654 * admit things directly, they'll say things like, 1655 * "the Swift chip cache problems" or similar. 1656 */ 1657 break; 1658 default: 1659 srmmu_modtype = Swift_ok; 1660 break; 1661 }; 1662 1663 BTFIXUPSET_CALL(flush_cache_all, swift_flush_cache_all, BTFIXUPCALL_NORM); 1664 BTFIXUPSET_CALL(flush_cache_mm, swift_flush_cache_mm, BTFIXUPCALL_NORM); 1665 BTFIXUPSET_CALL(flush_cache_page, swift_flush_cache_page, BTFIXUPCALL_NORM); 1666 BTFIXUPSET_CALL(flush_cache_range, swift_flush_cache_range, BTFIXUPCALL_NORM); 1667 1668 1669 BTFIXUPSET_CALL(flush_tlb_all, swift_flush_tlb_all, BTFIXUPCALL_NORM); 1670 BTFIXUPSET_CALL(flush_tlb_mm, swift_flush_tlb_mm, BTFIXUPCALL_NORM); 1671 BTFIXUPSET_CALL(flush_tlb_page, swift_flush_tlb_page, BTFIXUPCALL_NORM); 1672 BTFIXUPSET_CALL(flush_tlb_range, swift_flush_tlb_range, BTFIXUPCALL_NORM); 1673 1674 BTFIXUPSET_CALL(__flush_page_to_ram, swift_flush_page_to_ram, BTFIXUPCALL_NORM); 1675 BTFIXUPSET_CALL(flush_sig_insns, swift_flush_sig_insns, BTFIXUPCALL_NORM); 1676 BTFIXUPSET_CALL(flush_page_for_dma, swift_flush_page_for_dma, BTFIXUPCALL_NORM); 1677 1678 BTFIXUPSET_CALL(update_mmu_cache, swift_update_mmu_cache, BTFIXUPCALL_NORM); 1679 1680 flush_page_for_dma_global = 0; 1681 1682 /* 1683 * Are you now convinced that the Swift is one of the 1684 * biggest VLSI abortions of all time? Bravo Fujitsu! 1685 * Fujitsu, the !#?!%$'d up processor people. I bet if 1686 * you examined the microcode of the Swift you'd find 1687 * XXX's all over the place. 1688 */ 1689 poke_srmmu = poke_swift; 1690 } 1691 1692 static void turbosparc_flush_cache_all(void) 1693 { 1694 flush_user_windows(); 1695 turbosparc_idflash_clear(); 1696 } 1697 1698 static void turbosparc_flush_cache_mm(struct mm_struct *mm) 1699 { 1700 FLUSH_BEGIN(mm) 1701 flush_user_windows(); 1702 turbosparc_idflash_clear(); 1703 FLUSH_END 1704 } 1705 1706 static void turbosparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end) 1707 { 1708 FLUSH_BEGIN(vma->vm_mm) 1709 flush_user_windows(); 1710 turbosparc_idflash_clear(); 1711 FLUSH_END 1712 } 1713 1714 static void turbosparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page) 1715 { 1716 FLUSH_BEGIN(vma->vm_mm) 1717 flush_user_windows(); 1718 if (vma->vm_flags & VM_EXEC) 1719 turbosparc_flush_icache(); 1720 turbosparc_flush_dcache(); 1721 FLUSH_END 1722 } 1723 1724 /* TurboSparc is copy-back, if we turn it on, but this does not work. */ 1725 static void turbosparc_flush_page_to_ram(unsigned long page) 1726 { 1727 #ifdef TURBOSPARC_WRITEBACK 1728 volatile unsigned long clear; 1729 1730 if (srmmu_hwprobe(page)) 1731 turbosparc_flush_page_cache(page); 1732 clear = srmmu_get_fstatus(); 1733 #endif 1734 } 1735 1736 static void turbosparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr) 1737 { 1738 } 1739 1740 static void turbosparc_flush_page_for_dma(unsigned long page) 1741 { 1742 turbosparc_flush_dcache(); 1743 } 1744 1745 static void turbosparc_flush_tlb_all(void) 1746 { 1747 srmmu_flush_whole_tlb(); 1748 } 1749 1750 static void turbosparc_flush_tlb_mm(struct mm_struct *mm) 1751 { 1752 FLUSH_BEGIN(mm) 1753 srmmu_flush_whole_tlb(); 1754 FLUSH_END 1755 } 1756 1757 static void turbosparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end) 1758 { 1759 FLUSH_BEGIN(vma->vm_mm) 1760 srmmu_flush_whole_tlb(); 1761 FLUSH_END 1762 } 1763 1764 static void turbosparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page) 1765 { 1766 FLUSH_BEGIN(vma->vm_mm) 1767 srmmu_flush_whole_tlb(); 1768 FLUSH_END 1769 } 1770 1771 1772 static void __init poke_turbosparc(void) 1773 { 1774 unsigned long mreg = srmmu_get_mmureg(); 1775 unsigned long ccreg; 1776 1777 /* Clear any crap from the cache or else... */ 1778 turbosparc_flush_cache_all(); 1779 mreg &= ~(TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE); /* Temporarily disable I & D caches */ 1780 mreg &= ~(TURBOSPARC_PCENABLE); /* Don't check parity */ 1781 srmmu_set_mmureg(mreg); 1782 1783 ccreg = turbosparc_get_ccreg(); 1784 1785 #ifdef TURBOSPARC_WRITEBACK 1786 ccreg |= (TURBOSPARC_SNENABLE); /* Do DVMA snooping in Dcache */ 1787 ccreg &= ~(TURBOSPARC_uS2 | TURBOSPARC_WTENABLE); 1788 /* Write-back D-cache, emulate VLSI 1789 * abortion number three, not number one */ 1790 #else 1791 /* For now let's play safe, optimize later */ 1792 ccreg |= (TURBOSPARC_SNENABLE | TURBOSPARC_WTENABLE); 1793 /* Do DVMA snooping in Dcache, Write-thru D-cache */ 1794 ccreg &= ~(TURBOSPARC_uS2); 1795 /* Emulate VLSI abortion number three, not number one */ 1796 #endif 1797 1798 switch (ccreg & 7) { 1799 case 0: /* No SE cache */ 1800 case 7: /* Test mode */ 1801 break; 1802 default: 1803 ccreg |= (TURBOSPARC_SCENABLE); 1804 } 1805 turbosparc_set_ccreg (ccreg); 1806 1807 mreg |= (TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE); /* I & D caches on */ 1808 mreg |= (TURBOSPARC_ICSNOOP); /* Icache snooping on */ 1809 srmmu_set_mmureg(mreg); 1810 } 1811 1812 static void __init init_turbosparc(void) 1813 { 1814 srmmu_name = "Fujitsu TurboSparc"; 1815 srmmu_modtype = TurboSparc; 1816 1817 BTFIXUPSET_CALL(flush_cache_all, turbosparc_flush_cache_all, BTFIXUPCALL_NORM); 1818 BTFIXUPSET_CALL(flush_cache_mm, turbosparc_flush_cache_mm, BTFIXUPCALL_NORM); 1819 BTFIXUPSET_CALL(flush_cache_page, turbosparc_flush_cache_page, BTFIXUPCALL_NORM); 1820 BTFIXUPSET_CALL(flush_cache_range, turbosparc_flush_cache_range, BTFIXUPCALL_NORM); 1821 1822 BTFIXUPSET_CALL(flush_tlb_all, turbosparc_flush_tlb_all, BTFIXUPCALL_NORM); 1823 BTFIXUPSET_CALL(flush_tlb_mm, turbosparc_flush_tlb_mm, BTFIXUPCALL_NORM); 1824 BTFIXUPSET_CALL(flush_tlb_page, turbosparc_flush_tlb_page, BTFIXUPCALL_NORM); 1825 BTFIXUPSET_CALL(flush_tlb_range, turbosparc_flush_tlb_range, BTFIXUPCALL_NORM); 1826 1827 BTFIXUPSET_CALL(__flush_page_to_ram, turbosparc_flush_page_to_ram, BTFIXUPCALL_NORM); 1828 1829 BTFIXUPSET_CALL(flush_sig_insns, turbosparc_flush_sig_insns, BTFIXUPCALL_NOP); 1830 BTFIXUPSET_CALL(flush_page_for_dma, turbosparc_flush_page_for_dma, BTFIXUPCALL_NORM); 1831 1832 poke_srmmu = poke_turbosparc; 1833 } 1834 1835 static void __init poke_tsunami(void) 1836 { 1837 unsigned long mreg = srmmu_get_mmureg(); 1838 1839 tsunami_flush_icache(); 1840 tsunami_flush_dcache(); 1841 mreg &= ~TSUNAMI_ITD; 1842 mreg |= (TSUNAMI_IENAB | TSUNAMI_DENAB); 1843 srmmu_set_mmureg(mreg); 1844 } 1845 1846 static void __init init_tsunami(void) 1847 { 1848 /* 1849 * Tsunami's pretty sane, Sun and TI actually got it 1850 * somewhat right this time. Fujitsu should have 1851 * taken some lessons from them. 1852 */ 1853 1854 srmmu_name = "TI Tsunami"; 1855 srmmu_modtype = Tsunami; 1856 1857 BTFIXUPSET_CALL(flush_cache_all, tsunami_flush_cache_all, BTFIXUPCALL_NORM); 1858 BTFIXUPSET_CALL(flush_cache_mm, tsunami_flush_cache_mm, BTFIXUPCALL_NORM); 1859 BTFIXUPSET_CALL(flush_cache_page, tsunami_flush_cache_page, BTFIXUPCALL_NORM); 1860 BTFIXUPSET_CALL(flush_cache_range, tsunami_flush_cache_range, BTFIXUPCALL_NORM); 1861 1862 1863 BTFIXUPSET_CALL(flush_tlb_all, tsunami_flush_tlb_all, BTFIXUPCALL_NORM); 1864 BTFIXUPSET_CALL(flush_tlb_mm, tsunami_flush_tlb_mm, BTFIXUPCALL_NORM); 1865 BTFIXUPSET_CALL(flush_tlb_page, tsunami_flush_tlb_page, BTFIXUPCALL_NORM); 1866 BTFIXUPSET_CALL(flush_tlb_range, tsunami_flush_tlb_range, BTFIXUPCALL_NORM); 1867 1868 BTFIXUPSET_CALL(__flush_page_to_ram, tsunami_flush_page_to_ram, BTFIXUPCALL_NOP); 1869 BTFIXUPSET_CALL(flush_sig_insns, tsunami_flush_sig_insns, BTFIXUPCALL_NORM); 1870 BTFIXUPSET_CALL(flush_page_for_dma, tsunami_flush_page_for_dma, BTFIXUPCALL_NORM); 1871 1872 poke_srmmu = poke_tsunami; 1873 1874 tsunami_setup_blockops(); 1875 } 1876 1877 static void __init poke_viking(void) 1878 { 1879 unsigned long mreg = srmmu_get_mmureg(); 1880 static int smp_catch; 1881 1882 if(viking_mxcc_present) { 1883 unsigned long mxcc_control = mxcc_get_creg(); 1884 1885 mxcc_control |= (MXCC_CTL_ECE | MXCC_CTL_PRE | MXCC_CTL_MCE); 1886 mxcc_control &= ~(MXCC_CTL_RRC); 1887 mxcc_set_creg(mxcc_control); 1888 1889 /* 1890 * We don't need memory parity checks. 1891 * XXX This is a mess, have to dig out later. ecd. 1892 viking_mxcc_turn_off_parity(&mreg, &mxcc_control); 1893 */ 1894 1895 /* We do cache ptables on MXCC. */ 1896 mreg |= VIKING_TCENABLE; 1897 } else { 1898 unsigned long bpreg; 1899 1900 mreg &= ~(VIKING_TCENABLE); 1901 if(smp_catch++) { 1902 /* Must disable mixed-cmd mode here for other cpu's. */ 1903 bpreg = viking_get_bpreg(); 1904 bpreg &= ~(VIKING_ACTION_MIX); 1905 viking_set_bpreg(bpreg); 1906 1907 /* Just in case PROM does something funny. */ 1908 msi_set_sync(); 1909 } 1910 } 1911 1912 mreg |= VIKING_SPENABLE; 1913 mreg |= (VIKING_ICENABLE | VIKING_DCENABLE); 1914 mreg |= VIKING_SBENABLE; 1915 mreg &= ~(VIKING_ACENABLE); 1916 srmmu_set_mmureg(mreg); 1917 1918 #ifdef CONFIG_SMP 1919 /* Avoid unnecessary cross calls. */ 1920 BTFIXUPCOPY_CALL(flush_cache_all, local_flush_cache_all); 1921 BTFIXUPCOPY_CALL(flush_cache_mm, local_flush_cache_mm); 1922 BTFIXUPCOPY_CALL(flush_cache_range, local_flush_cache_range); 1923 BTFIXUPCOPY_CALL(flush_cache_page, local_flush_cache_page); 1924 BTFIXUPCOPY_CALL(__flush_page_to_ram, local_flush_page_to_ram); 1925 BTFIXUPCOPY_CALL(flush_sig_insns, local_flush_sig_insns); 1926 BTFIXUPCOPY_CALL(flush_page_for_dma, local_flush_page_for_dma); 1927 btfixup(); 1928 #endif 1929 } 1930 1931 static void __init init_viking(void) 1932 { 1933 unsigned long mreg = srmmu_get_mmureg(); 1934 1935 /* Ahhh, the viking. SRMMU VLSI abortion number two... */ 1936 if(mreg & VIKING_MMODE) { 1937 srmmu_name = "TI Viking"; 1938 viking_mxcc_present = 0; 1939 msi_set_sync(); 1940 1941 BTFIXUPSET_CALL(pte_clear, srmmu_pte_clear, BTFIXUPCALL_NORM); 1942 BTFIXUPSET_CALL(pmd_clear, srmmu_pmd_clear, BTFIXUPCALL_NORM); 1943 BTFIXUPSET_CALL(pgd_clear, srmmu_pgd_clear, BTFIXUPCALL_NORM); 1944 1945 /* 1946 * We need this to make sure old viking takes no hits 1947 * on it's cache for dma snoops to workaround the 1948 * "load from non-cacheable memory" interrupt bug. 1949 * This is only necessary because of the new way in 1950 * which we use the IOMMU. 1951 */ 1952 BTFIXUPSET_CALL(flush_page_for_dma, viking_flush_page, BTFIXUPCALL_NORM); 1953 1954 flush_page_for_dma_global = 0; 1955 } else { 1956 srmmu_name = "TI Viking/MXCC"; 1957 viking_mxcc_present = 1; 1958 1959 srmmu_cache_pagetables = 1; 1960 1961 /* MXCC vikings lack the DMA snooping bug. */ 1962 BTFIXUPSET_CALL(flush_page_for_dma, viking_flush_page_for_dma, BTFIXUPCALL_NOP); 1963 } 1964 1965 BTFIXUPSET_CALL(flush_cache_all, viking_flush_cache_all, BTFIXUPCALL_NORM); 1966 BTFIXUPSET_CALL(flush_cache_mm, viking_flush_cache_mm, BTFIXUPCALL_NORM); 1967 BTFIXUPSET_CALL(flush_cache_page, viking_flush_cache_page, BTFIXUPCALL_NORM); 1968 BTFIXUPSET_CALL(flush_cache_range, viking_flush_cache_range, BTFIXUPCALL_NORM); 1969 1970 #ifdef CONFIG_SMP 1971 if (sparc_cpu_model == sun4d) { 1972 BTFIXUPSET_CALL(flush_tlb_all, sun4dsmp_flush_tlb_all, BTFIXUPCALL_NORM); 1973 BTFIXUPSET_CALL(flush_tlb_mm, sun4dsmp_flush_tlb_mm, BTFIXUPCALL_NORM); 1974 BTFIXUPSET_CALL(flush_tlb_page, sun4dsmp_flush_tlb_page, BTFIXUPCALL_NORM); 1975 BTFIXUPSET_CALL(flush_tlb_range, sun4dsmp_flush_tlb_range, BTFIXUPCALL_NORM); 1976 } else 1977 #endif 1978 { 1979 BTFIXUPSET_CALL(flush_tlb_all, viking_flush_tlb_all, BTFIXUPCALL_NORM); 1980 BTFIXUPSET_CALL(flush_tlb_mm, viking_flush_tlb_mm, BTFIXUPCALL_NORM); 1981 BTFIXUPSET_CALL(flush_tlb_page, viking_flush_tlb_page, BTFIXUPCALL_NORM); 1982 BTFIXUPSET_CALL(flush_tlb_range, viking_flush_tlb_range, BTFIXUPCALL_NORM); 1983 } 1984 1985 BTFIXUPSET_CALL(__flush_page_to_ram, viking_flush_page_to_ram, BTFIXUPCALL_NOP); 1986 BTFIXUPSET_CALL(flush_sig_insns, viking_flush_sig_insns, BTFIXUPCALL_NOP); 1987 1988 poke_srmmu = poke_viking; 1989 } 1990 1991 /* Probe for the srmmu chip version. */ 1992 static void __init get_srmmu_type(void) 1993 { 1994 unsigned long mreg, psr; 1995 unsigned long mod_typ, mod_rev, psr_typ, psr_vers; 1996 1997 srmmu_modtype = SRMMU_INVAL_MOD; 1998 hwbug_bitmask = 0; 1999 2000 mreg = srmmu_get_mmureg(); psr = get_psr(); 2001 mod_typ = (mreg & 0xf0000000) >> 28; 2002 mod_rev = (mreg & 0x0f000000) >> 24; 2003 psr_typ = (psr >> 28) & 0xf; 2004 psr_vers = (psr >> 24) & 0xf; 2005 2006 /* First, check for HyperSparc or Cypress. */ 2007 if(mod_typ == 1) { 2008 switch(mod_rev) { 2009 case 7: 2010 /* UP or MP Hypersparc */ 2011 init_hypersparc(); 2012 break; 2013 case 0: 2014 case 2: 2015 /* Uniprocessor Cypress */ 2016 init_cypress_604(); 2017 break; 2018 case 10: 2019 case 11: 2020 case 12: 2021 /* _REALLY OLD_ Cypress MP chips... */ 2022 case 13: 2023 case 14: 2024 case 15: 2025 /* MP Cypress mmu/cache-controller */ 2026 init_cypress_605(mod_rev); 2027 break; 2028 default: 2029 /* Some other Cypress revision, assume a 605. */ 2030 init_cypress_605(mod_rev); 2031 break; 2032 }; 2033 return; 2034 } 2035 2036 /* 2037 * Now Fujitsu TurboSparc. It might happen that it is 2038 * in Swift emulation mode, so we will check later... 2039 */ 2040 if (psr_typ == 0 && psr_vers == 5) { 2041 init_turbosparc(); 2042 return; 2043 } 2044 2045 /* Next check for Fujitsu Swift. */ 2046 if(psr_typ == 0 && psr_vers == 4) { 2047 int cpunode; 2048 char node_str[128]; 2049 2050 /* Look if it is not a TurboSparc emulating Swift... */ 2051 cpunode = prom_getchild(prom_root_node); 2052 while((cpunode = prom_getsibling(cpunode)) != 0) { 2053 prom_getstring(cpunode, "device_type", node_str, sizeof(node_str)); 2054 if(!strcmp(node_str, "cpu")) { 2055 if (!prom_getintdefault(cpunode, "psr-implementation", 1) && 2056 prom_getintdefault(cpunode, "psr-version", 1) == 5) { 2057 init_turbosparc(); 2058 return; 2059 } 2060 break; 2061 } 2062 } 2063 2064 init_swift(); 2065 return; 2066 } 2067 2068 /* Now the Viking family of srmmu. */ 2069 if(psr_typ == 4 && 2070 ((psr_vers == 0) || 2071 ((psr_vers == 1) && (mod_typ == 0) && (mod_rev == 0)))) { 2072 init_viking(); 2073 return; 2074 } 2075 2076 /* Finally the Tsunami. */ 2077 if(psr_typ == 4 && psr_vers == 1 && (mod_typ || mod_rev)) { 2078 init_tsunami(); 2079 return; 2080 } 2081 2082 /* Oh well */ 2083 srmmu_is_bad(); 2084 } 2085 2086 /* don't laugh, static pagetables */ 2087 static void srmmu_check_pgt_cache(int low, int high) 2088 { 2089 } 2090 2091 extern unsigned long spwin_mmu_patchme, fwin_mmu_patchme, 2092 tsetup_mmu_patchme, rtrap_mmu_patchme; 2093 2094 extern unsigned long spwin_srmmu_stackchk, srmmu_fwin_stackchk, 2095 tsetup_srmmu_stackchk, srmmu_rett_stackchk; 2096 2097 extern unsigned long srmmu_fault; 2098 2099 #define PATCH_BRANCH(insn, dest) do { \ 2100 iaddr = &(insn); \ 2101 daddr = &(dest); \ 2102 *iaddr = SPARC_BRANCH((unsigned long) daddr, (unsigned long) iaddr); \ 2103 } while(0) 2104 2105 static void __init patch_window_trap_handlers(void) 2106 { 2107 unsigned long *iaddr, *daddr; 2108 2109 PATCH_BRANCH(spwin_mmu_patchme, spwin_srmmu_stackchk); 2110 PATCH_BRANCH(fwin_mmu_patchme, srmmu_fwin_stackchk); 2111 PATCH_BRANCH(tsetup_mmu_patchme, tsetup_srmmu_stackchk); 2112 PATCH_BRANCH(rtrap_mmu_patchme, srmmu_rett_stackchk); 2113 PATCH_BRANCH(sparc_ttable[SP_TRAP_TFLT].inst_three, srmmu_fault); 2114 PATCH_BRANCH(sparc_ttable[SP_TRAP_DFLT].inst_three, srmmu_fault); 2115 PATCH_BRANCH(sparc_ttable[SP_TRAP_DACC].inst_three, srmmu_fault); 2116 } 2117 2118 #ifdef CONFIG_SMP 2119 /* Local cross-calls. */ 2120 static void smp_flush_page_for_dma(unsigned long page) 2121 { 2122 xc1((smpfunc_t) BTFIXUP_CALL(local_flush_page_for_dma), page); 2123 local_flush_page_for_dma(page); 2124 } 2125 2126 #endif 2127 2128 static pte_t srmmu_pgoff_to_pte(unsigned long pgoff) 2129 { 2130 return __pte((pgoff << SRMMU_PTE_FILE_SHIFT) | SRMMU_FILE); 2131 } 2132 2133 static unsigned long srmmu_pte_to_pgoff(pte_t pte) 2134 { 2135 return pte_val(pte) >> SRMMU_PTE_FILE_SHIFT; 2136 } 2137 2138 static pgprot_t srmmu_pgprot_noncached(pgprot_t prot) 2139 { 2140 prot &= ~__pgprot(SRMMU_CACHE); 2141 2142 return prot; 2143 } 2144 2145 /* Load up routines and constants for sun4m and sun4d mmu */ 2146 void __init ld_mmu_srmmu(void) 2147 { 2148 extern void ld_mmu_iommu(void); 2149 extern void ld_mmu_iounit(void); 2150 extern void ___xchg32_sun4md(void); 2151 2152 BTFIXUPSET_SIMM13(pgdir_shift, SRMMU_PGDIR_SHIFT); 2153 BTFIXUPSET_SETHI(pgdir_size, SRMMU_PGDIR_SIZE); 2154 BTFIXUPSET_SETHI(pgdir_mask, SRMMU_PGDIR_MASK); 2155 2156 BTFIXUPSET_SIMM13(ptrs_per_pmd, SRMMU_PTRS_PER_PMD); 2157 BTFIXUPSET_SIMM13(ptrs_per_pgd, SRMMU_PTRS_PER_PGD); 2158 2159 BTFIXUPSET_INT(page_none, pgprot_val(SRMMU_PAGE_NONE)); 2160 PAGE_SHARED = pgprot_val(SRMMU_PAGE_SHARED); 2161 BTFIXUPSET_INT(page_copy, pgprot_val(SRMMU_PAGE_COPY)); 2162 BTFIXUPSET_INT(page_readonly, pgprot_val(SRMMU_PAGE_RDONLY)); 2163 BTFIXUPSET_INT(page_kernel, pgprot_val(SRMMU_PAGE_KERNEL)); 2164 page_kernel = pgprot_val(SRMMU_PAGE_KERNEL); 2165 2166 /* Functions */ 2167 BTFIXUPSET_CALL(pgprot_noncached, srmmu_pgprot_noncached, BTFIXUPCALL_NORM); 2168 #ifndef CONFIG_SMP 2169 BTFIXUPSET_CALL(___xchg32, ___xchg32_sun4md, BTFIXUPCALL_SWAPG1G2); 2170 #endif 2171 BTFIXUPSET_CALL(do_check_pgt_cache, srmmu_check_pgt_cache, BTFIXUPCALL_NOP); 2172 2173 BTFIXUPSET_CALL(set_pte, srmmu_set_pte, BTFIXUPCALL_SWAPO0O1); 2174 BTFIXUPSET_CALL(switch_mm, srmmu_switch_mm, BTFIXUPCALL_NORM); 2175 2176 BTFIXUPSET_CALL(pte_pfn, srmmu_pte_pfn, BTFIXUPCALL_NORM); 2177 BTFIXUPSET_CALL(pmd_page, srmmu_pmd_page, BTFIXUPCALL_NORM); 2178 BTFIXUPSET_CALL(pgd_page_vaddr, srmmu_pgd_page, BTFIXUPCALL_NORM); 2179 2180 BTFIXUPSET_SETHI(none_mask, 0xF0000000); 2181 2182 BTFIXUPSET_CALL(pte_present, srmmu_pte_present, BTFIXUPCALL_NORM); 2183 BTFIXUPSET_CALL(pte_clear, srmmu_pte_clear, BTFIXUPCALL_SWAPO0G0); 2184 2185 BTFIXUPSET_CALL(pmd_bad, srmmu_pmd_bad, BTFIXUPCALL_NORM); 2186 BTFIXUPSET_CALL(pmd_present, srmmu_pmd_present, BTFIXUPCALL_NORM); 2187 BTFIXUPSET_CALL(pmd_clear, srmmu_pmd_clear, BTFIXUPCALL_SWAPO0G0); 2188 2189 BTFIXUPSET_CALL(pgd_none, srmmu_pgd_none, BTFIXUPCALL_NORM); 2190 BTFIXUPSET_CALL(pgd_bad, srmmu_pgd_bad, BTFIXUPCALL_NORM); 2191 BTFIXUPSET_CALL(pgd_present, srmmu_pgd_present, BTFIXUPCALL_NORM); 2192 BTFIXUPSET_CALL(pgd_clear, srmmu_pgd_clear, BTFIXUPCALL_SWAPO0G0); 2193 2194 BTFIXUPSET_CALL(mk_pte, srmmu_mk_pte, BTFIXUPCALL_NORM); 2195 BTFIXUPSET_CALL(mk_pte_phys, srmmu_mk_pte_phys, BTFIXUPCALL_NORM); 2196 BTFIXUPSET_CALL(mk_pte_io, srmmu_mk_pte_io, BTFIXUPCALL_NORM); 2197 BTFIXUPSET_CALL(pgd_set, srmmu_pgd_set, BTFIXUPCALL_NORM); 2198 BTFIXUPSET_CALL(pmd_set, srmmu_pmd_set, BTFIXUPCALL_NORM); 2199 BTFIXUPSET_CALL(pmd_populate, srmmu_pmd_populate, BTFIXUPCALL_NORM); 2200 2201 BTFIXUPSET_INT(pte_modify_mask, SRMMU_CHG_MASK); 2202 BTFIXUPSET_CALL(pmd_offset, srmmu_pmd_offset, BTFIXUPCALL_NORM); 2203 BTFIXUPSET_CALL(pte_offset_kernel, srmmu_pte_offset, BTFIXUPCALL_NORM); 2204 2205 BTFIXUPSET_CALL(free_pte_fast, srmmu_free_pte_fast, BTFIXUPCALL_NORM); 2206 BTFIXUPSET_CALL(pte_free, srmmu_pte_free, BTFIXUPCALL_NORM); 2207 BTFIXUPSET_CALL(pte_alloc_one_kernel, srmmu_pte_alloc_one_kernel, BTFIXUPCALL_NORM); 2208 BTFIXUPSET_CALL(pte_alloc_one, srmmu_pte_alloc_one, BTFIXUPCALL_NORM); 2209 BTFIXUPSET_CALL(free_pmd_fast, srmmu_pmd_free, BTFIXUPCALL_NORM); 2210 BTFIXUPSET_CALL(pmd_alloc_one, srmmu_pmd_alloc_one, BTFIXUPCALL_NORM); 2211 BTFIXUPSET_CALL(free_pgd_fast, srmmu_free_pgd_fast, BTFIXUPCALL_NORM); 2212 BTFIXUPSET_CALL(get_pgd_fast, srmmu_get_pgd_fast, BTFIXUPCALL_NORM); 2213 2214 BTFIXUPSET_HALF(pte_writei, SRMMU_WRITE); 2215 BTFIXUPSET_HALF(pte_dirtyi, SRMMU_DIRTY); 2216 BTFIXUPSET_HALF(pte_youngi, SRMMU_REF); 2217 BTFIXUPSET_HALF(pte_filei, SRMMU_FILE); 2218 BTFIXUPSET_HALF(pte_wrprotecti, SRMMU_WRITE); 2219 BTFIXUPSET_HALF(pte_mkcleani, SRMMU_DIRTY); 2220 BTFIXUPSET_HALF(pte_mkoldi, SRMMU_REF); 2221 BTFIXUPSET_CALL(pte_mkwrite, srmmu_pte_mkwrite, BTFIXUPCALL_ORINT(SRMMU_WRITE)); 2222 BTFIXUPSET_CALL(pte_mkdirty, srmmu_pte_mkdirty, BTFIXUPCALL_ORINT(SRMMU_DIRTY)); 2223 BTFIXUPSET_CALL(pte_mkyoung, srmmu_pte_mkyoung, BTFIXUPCALL_ORINT(SRMMU_REF)); 2224 BTFIXUPSET_CALL(update_mmu_cache, srmmu_update_mmu_cache, BTFIXUPCALL_NOP); 2225 BTFIXUPSET_CALL(destroy_context, srmmu_destroy_context, BTFIXUPCALL_NORM); 2226 2227 BTFIXUPSET_CALL(sparc_mapiorange, srmmu_mapiorange, BTFIXUPCALL_NORM); 2228 BTFIXUPSET_CALL(sparc_unmapiorange, srmmu_unmapiorange, BTFIXUPCALL_NORM); 2229 2230 BTFIXUPSET_CALL(__swp_type, srmmu_swp_type, BTFIXUPCALL_NORM); 2231 BTFIXUPSET_CALL(__swp_offset, srmmu_swp_offset, BTFIXUPCALL_NORM); 2232 BTFIXUPSET_CALL(__swp_entry, srmmu_swp_entry, BTFIXUPCALL_NORM); 2233 2234 BTFIXUPSET_CALL(mmu_info, srmmu_mmu_info, BTFIXUPCALL_NORM); 2235 2236 BTFIXUPSET_CALL(alloc_thread_info, srmmu_alloc_thread_info, BTFIXUPCALL_NORM); 2237 BTFIXUPSET_CALL(free_thread_info, srmmu_free_thread_info, BTFIXUPCALL_NORM); 2238 2239 BTFIXUPSET_CALL(pte_to_pgoff, srmmu_pte_to_pgoff, BTFIXUPCALL_NORM); 2240 BTFIXUPSET_CALL(pgoff_to_pte, srmmu_pgoff_to_pte, BTFIXUPCALL_NORM); 2241 2242 get_srmmu_type(); 2243 patch_window_trap_handlers(); 2244 2245 #ifdef CONFIG_SMP 2246 /* El switcheroo... */ 2247 2248 BTFIXUPCOPY_CALL(local_flush_cache_all, flush_cache_all); 2249 BTFIXUPCOPY_CALL(local_flush_cache_mm, flush_cache_mm); 2250 BTFIXUPCOPY_CALL(local_flush_cache_range, flush_cache_range); 2251 BTFIXUPCOPY_CALL(local_flush_cache_page, flush_cache_page); 2252 BTFIXUPCOPY_CALL(local_flush_tlb_all, flush_tlb_all); 2253 BTFIXUPCOPY_CALL(local_flush_tlb_mm, flush_tlb_mm); 2254 BTFIXUPCOPY_CALL(local_flush_tlb_range, flush_tlb_range); 2255 BTFIXUPCOPY_CALL(local_flush_tlb_page, flush_tlb_page); 2256 BTFIXUPCOPY_CALL(local_flush_page_to_ram, __flush_page_to_ram); 2257 BTFIXUPCOPY_CALL(local_flush_sig_insns, flush_sig_insns); 2258 BTFIXUPCOPY_CALL(local_flush_page_for_dma, flush_page_for_dma); 2259 2260 BTFIXUPSET_CALL(flush_cache_all, smp_flush_cache_all, BTFIXUPCALL_NORM); 2261 BTFIXUPSET_CALL(flush_cache_mm, smp_flush_cache_mm, BTFIXUPCALL_NORM); 2262 BTFIXUPSET_CALL(flush_cache_range, smp_flush_cache_range, BTFIXUPCALL_NORM); 2263 BTFIXUPSET_CALL(flush_cache_page, smp_flush_cache_page, BTFIXUPCALL_NORM); 2264 if (sparc_cpu_model != sun4d) { 2265 BTFIXUPSET_CALL(flush_tlb_all, smp_flush_tlb_all, BTFIXUPCALL_NORM); 2266 BTFIXUPSET_CALL(flush_tlb_mm, smp_flush_tlb_mm, BTFIXUPCALL_NORM); 2267 BTFIXUPSET_CALL(flush_tlb_range, smp_flush_tlb_range, BTFIXUPCALL_NORM); 2268 BTFIXUPSET_CALL(flush_tlb_page, smp_flush_tlb_page, BTFIXUPCALL_NORM); 2269 } 2270 BTFIXUPSET_CALL(__flush_page_to_ram, smp_flush_page_to_ram, BTFIXUPCALL_NORM); 2271 BTFIXUPSET_CALL(flush_sig_insns, smp_flush_sig_insns, BTFIXUPCALL_NORM); 2272 BTFIXUPSET_CALL(flush_page_for_dma, smp_flush_page_for_dma, BTFIXUPCALL_NORM); 2273 #endif 2274 2275 if (sparc_cpu_model == sun4d) 2276 ld_mmu_iounit(); 2277 else 2278 ld_mmu_iommu(); 2279 #ifdef CONFIG_SMP 2280 if (sparc_cpu_model == sun4d) 2281 sun4d_init_smp(); 2282 else 2283 sun4m_init_smp(); 2284 #endif 2285 } 2286