xref: /openbmc/linux/arch/sparc/mm/srmmu.c (revision a1e58bbd)
1 /*
2  * srmmu.c:  SRMMU specific routines for memory management.
3  *
4  * Copyright (C) 1995 David S. Miller  (davem@caip.rutgers.edu)
5  * Copyright (C) 1995,2002 Pete Zaitcev (zaitcev@yahoo.com)
6  * Copyright (C) 1996 Eddie C. Dost    (ecd@skynet.be)
7  * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
8  * Copyright (C) 1999,2000 Anton Blanchard (anton@samba.org)
9  */
10 
11 #include <linux/kernel.h>
12 #include <linux/mm.h>
13 #include <linux/slab.h>
14 #include <linux/vmalloc.h>
15 #include <linux/pagemap.h>
16 #include <linux/init.h>
17 #include <linux/spinlock.h>
18 #include <linux/bootmem.h>
19 #include <linux/fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/kdebug.h>
22 
23 #include <asm/bitext.h>
24 #include <asm/page.h>
25 #include <asm/pgalloc.h>
26 #include <asm/pgtable.h>
27 #include <asm/io.h>
28 #include <asm/vaddrs.h>
29 #include <asm/traps.h>
30 #include <asm/smp.h>
31 #include <asm/mbus.h>
32 #include <asm/cache.h>
33 #include <asm/oplib.h>
34 #include <asm/sbus.h>
35 #include <asm/asi.h>
36 #include <asm/msi.h>
37 #include <asm/mmu_context.h>
38 #include <asm/io-unit.h>
39 #include <asm/cacheflush.h>
40 #include <asm/tlbflush.h>
41 
42 /* Now the cpu specific definitions. */
43 #include <asm/viking.h>
44 #include <asm/mxcc.h>
45 #include <asm/ross.h>
46 #include <asm/tsunami.h>
47 #include <asm/swift.h>
48 #include <asm/turbosparc.h>
49 
50 #include <asm/btfixup.h>
51 
52 enum mbus_module srmmu_modtype;
53 unsigned int hwbug_bitmask;
54 int vac_cache_size;
55 int vac_line_size;
56 
57 extern struct resource sparc_iomap;
58 
59 extern unsigned long last_valid_pfn;
60 
61 extern unsigned long page_kernel;
62 
63 pgd_t *srmmu_swapper_pg_dir;
64 
65 #ifdef CONFIG_SMP
66 #define FLUSH_BEGIN(mm)
67 #define FLUSH_END
68 #else
69 #define FLUSH_BEGIN(mm) if((mm)->context != NO_CONTEXT) {
70 #define FLUSH_END	}
71 #endif
72 
73 BTFIXUPDEF_CALL(void, flush_page_for_dma, unsigned long)
74 #define flush_page_for_dma(page) BTFIXUP_CALL(flush_page_for_dma)(page)
75 
76 int flush_page_for_dma_global = 1;
77 
78 #ifdef CONFIG_SMP
79 BTFIXUPDEF_CALL(void, local_flush_page_for_dma, unsigned long)
80 #define local_flush_page_for_dma(page) BTFIXUP_CALL(local_flush_page_for_dma)(page)
81 #endif
82 
83 char *srmmu_name;
84 
85 ctxd_t *srmmu_ctx_table_phys;
86 ctxd_t *srmmu_context_table;
87 
88 int viking_mxcc_present;
89 static DEFINE_SPINLOCK(srmmu_context_spinlock);
90 
91 int is_hypersparc;
92 
93 /*
94  * In general all page table modifications should use the V8 atomic
95  * swap instruction.  This insures the mmu and the cpu are in sync
96  * with respect to ref/mod bits in the page tables.
97  */
98 static inline unsigned long srmmu_swap(unsigned long *addr, unsigned long value)
99 {
100 	__asm__ __volatile__("swap [%2], %0" : "=&r" (value) : "0" (value), "r" (addr));
101 	return value;
102 }
103 
104 static inline void srmmu_set_pte(pte_t *ptep, pte_t pteval)
105 {
106 	srmmu_swap((unsigned long *)ptep, pte_val(pteval));
107 }
108 
109 /* The very generic SRMMU page table operations. */
110 static inline int srmmu_device_memory(unsigned long x)
111 {
112 	return ((x & 0xF0000000) != 0);
113 }
114 
115 int srmmu_cache_pagetables;
116 
117 /* these will be initialized in srmmu_nocache_calcsize() */
118 unsigned long srmmu_nocache_size;
119 unsigned long srmmu_nocache_end;
120 
121 /* 1 bit <=> 256 bytes of nocache <=> 64 PTEs */
122 #define SRMMU_NOCACHE_BITMAP_SHIFT (PAGE_SHIFT - 4)
123 
124 /* The context table is a nocache user with the biggest alignment needs. */
125 #define SRMMU_NOCACHE_ALIGN_MAX (sizeof(ctxd_t)*SRMMU_MAX_CONTEXTS)
126 
127 void *srmmu_nocache_pool;
128 void *srmmu_nocache_bitmap;
129 static struct bit_map srmmu_nocache_map;
130 
131 static unsigned long srmmu_pte_pfn(pte_t pte)
132 {
133 	if (srmmu_device_memory(pte_val(pte))) {
134 		/* Just return something that will cause
135 		 * pfn_valid() to return false.  This makes
136 		 * copy_one_pte() to just directly copy to
137 		 * PTE over.
138 		 */
139 		return ~0UL;
140 	}
141 	return (pte_val(pte) & SRMMU_PTE_PMASK) >> (PAGE_SHIFT-4);
142 }
143 
144 static struct page *srmmu_pmd_page(pmd_t pmd)
145 {
146 
147 	if (srmmu_device_memory(pmd_val(pmd)))
148 		BUG();
149 	return pfn_to_page((pmd_val(pmd) & SRMMU_PTD_PMASK) >> (PAGE_SHIFT-4));
150 }
151 
152 static inline unsigned long srmmu_pgd_page(pgd_t pgd)
153 { return srmmu_device_memory(pgd_val(pgd))?~0:(unsigned long)__nocache_va((pgd_val(pgd) & SRMMU_PTD_PMASK) << 4); }
154 
155 
156 static inline int srmmu_pte_none(pte_t pte)
157 { return !(pte_val(pte) & 0xFFFFFFF); }
158 
159 static inline int srmmu_pte_present(pte_t pte)
160 { return ((pte_val(pte) & SRMMU_ET_MASK) == SRMMU_ET_PTE); }
161 
162 static inline void srmmu_pte_clear(pte_t *ptep)
163 { srmmu_set_pte(ptep, __pte(0)); }
164 
165 static inline int srmmu_pmd_none(pmd_t pmd)
166 { return !(pmd_val(pmd) & 0xFFFFFFF); }
167 
168 static inline int srmmu_pmd_bad(pmd_t pmd)
169 { return (pmd_val(pmd) & SRMMU_ET_MASK) != SRMMU_ET_PTD; }
170 
171 static inline int srmmu_pmd_present(pmd_t pmd)
172 { return ((pmd_val(pmd) & SRMMU_ET_MASK) == SRMMU_ET_PTD); }
173 
174 static inline void srmmu_pmd_clear(pmd_t *pmdp) {
175 	int i;
176 	for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++)
177 		srmmu_set_pte((pte_t *)&pmdp->pmdv[i], __pte(0));
178 }
179 
180 static inline int srmmu_pgd_none(pgd_t pgd)
181 { return !(pgd_val(pgd) & 0xFFFFFFF); }
182 
183 static inline int srmmu_pgd_bad(pgd_t pgd)
184 { return (pgd_val(pgd) & SRMMU_ET_MASK) != SRMMU_ET_PTD; }
185 
186 static inline int srmmu_pgd_present(pgd_t pgd)
187 { return ((pgd_val(pgd) & SRMMU_ET_MASK) == SRMMU_ET_PTD); }
188 
189 static inline void srmmu_pgd_clear(pgd_t * pgdp)
190 { srmmu_set_pte((pte_t *)pgdp, __pte(0)); }
191 
192 static inline pte_t srmmu_pte_wrprotect(pte_t pte)
193 { return __pte(pte_val(pte) & ~SRMMU_WRITE);}
194 
195 static inline pte_t srmmu_pte_mkclean(pte_t pte)
196 { return __pte(pte_val(pte) & ~SRMMU_DIRTY);}
197 
198 static inline pte_t srmmu_pte_mkold(pte_t pte)
199 { return __pte(pte_val(pte) & ~SRMMU_REF);}
200 
201 static inline pte_t srmmu_pte_mkwrite(pte_t pte)
202 { return __pte(pte_val(pte) | SRMMU_WRITE);}
203 
204 static inline pte_t srmmu_pte_mkdirty(pte_t pte)
205 { return __pte(pte_val(pte) | SRMMU_DIRTY);}
206 
207 static inline pte_t srmmu_pte_mkyoung(pte_t pte)
208 { return __pte(pte_val(pte) | SRMMU_REF);}
209 
210 /*
211  * Conversion functions: convert a page and protection to a page entry,
212  * and a page entry and page directory to the page they refer to.
213  */
214 static pte_t srmmu_mk_pte(struct page *page, pgprot_t pgprot)
215 { return __pte((page_to_pfn(page) << (PAGE_SHIFT-4)) | pgprot_val(pgprot)); }
216 
217 static pte_t srmmu_mk_pte_phys(unsigned long page, pgprot_t pgprot)
218 { return __pte(((page) >> 4) | pgprot_val(pgprot)); }
219 
220 static pte_t srmmu_mk_pte_io(unsigned long page, pgprot_t pgprot, int space)
221 { return __pte(((page) >> 4) | (space << 28) | pgprot_val(pgprot)); }
222 
223 /* XXX should we hyper_flush_whole_icache here - Anton */
224 static inline void srmmu_ctxd_set(ctxd_t *ctxp, pgd_t *pgdp)
225 { srmmu_set_pte((pte_t *)ctxp, (SRMMU_ET_PTD | (__nocache_pa((unsigned long) pgdp) >> 4))); }
226 
227 static inline void srmmu_pgd_set(pgd_t * pgdp, pmd_t * pmdp)
228 { srmmu_set_pte((pte_t *)pgdp, (SRMMU_ET_PTD | (__nocache_pa((unsigned long) pmdp) >> 4))); }
229 
230 static void srmmu_pmd_set(pmd_t *pmdp, pte_t *ptep)
231 {
232 	unsigned long ptp;	/* Physical address, shifted right by 4 */
233 	int i;
234 
235 	ptp = __nocache_pa((unsigned long) ptep) >> 4;
236 	for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) {
237 		srmmu_set_pte((pte_t *)&pmdp->pmdv[i], SRMMU_ET_PTD | ptp);
238 		ptp += (SRMMU_REAL_PTRS_PER_PTE*sizeof(pte_t) >> 4);
239 	}
240 }
241 
242 static void srmmu_pmd_populate(pmd_t *pmdp, struct page *ptep)
243 {
244 	unsigned long ptp;	/* Physical address, shifted right by 4 */
245 	int i;
246 
247 	ptp = page_to_pfn(ptep) << (PAGE_SHIFT-4);	/* watch for overflow */
248 	for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) {
249 		srmmu_set_pte((pte_t *)&pmdp->pmdv[i], SRMMU_ET_PTD | ptp);
250 		ptp += (SRMMU_REAL_PTRS_PER_PTE*sizeof(pte_t) >> 4);
251 	}
252 }
253 
254 static inline pte_t srmmu_pte_modify(pte_t pte, pgprot_t newprot)
255 { return __pte((pte_val(pte) & SRMMU_CHG_MASK) | pgprot_val(newprot)); }
256 
257 /* to find an entry in a top-level page table... */
258 static inline pgd_t *srmmu_pgd_offset(struct mm_struct * mm, unsigned long address)
259 { return mm->pgd + (address >> SRMMU_PGDIR_SHIFT); }
260 
261 /* Find an entry in the second-level page table.. */
262 static inline pmd_t *srmmu_pmd_offset(pgd_t * dir, unsigned long address)
263 {
264 	return (pmd_t *) srmmu_pgd_page(*dir) +
265 	    ((address >> PMD_SHIFT) & (PTRS_PER_PMD - 1));
266 }
267 
268 /* Find an entry in the third-level page table.. */
269 static inline pte_t *srmmu_pte_offset(pmd_t * dir, unsigned long address)
270 {
271 	void *pte;
272 
273 	pte = __nocache_va((dir->pmdv[0] & SRMMU_PTD_PMASK) << 4);
274 	return (pte_t *) pte +
275 	    ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
276 }
277 
278 static unsigned long srmmu_swp_type(swp_entry_t entry)
279 {
280 	return (entry.val >> SRMMU_SWP_TYPE_SHIFT) & SRMMU_SWP_TYPE_MASK;
281 }
282 
283 static unsigned long srmmu_swp_offset(swp_entry_t entry)
284 {
285 	return (entry.val >> SRMMU_SWP_OFF_SHIFT) & SRMMU_SWP_OFF_MASK;
286 }
287 
288 static swp_entry_t srmmu_swp_entry(unsigned long type, unsigned long offset)
289 {
290 	return (swp_entry_t) {
291 		  (type & SRMMU_SWP_TYPE_MASK) << SRMMU_SWP_TYPE_SHIFT
292 		| (offset & SRMMU_SWP_OFF_MASK) << SRMMU_SWP_OFF_SHIFT };
293 }
294 
295 /*
296  * size: bytes to allocate in the nocache area.
297  * align: bytes, number to align at.
298  * Returns the virtual address of the allocated area.
299  */
300 static unsigned long __srmmu_get_nocache(int size, int align)
301 {
302 	int offset;
303 
304 	if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
305 		printk("Size 0x%x too small for nocache request\n", size);
306 		size = SRMMU_NOCACHE_BITMAP_SHIFT;
307 	}
308 	if (size & (SRMMU_NOCACHE_BITMAP_SHIFT-1)) {
309 		printk("Size 0x%x unaligned int nocache request\n", size);
310 		size += SRMMU_NOCACHE_BITMAP_SHIFT-1;
311 	}
312 	BUG_ON(align > SRMMU_NOCACHE_ALIGN_MAX);
313 
314 	offset = bit_map_string_get(&srmmu_nocache_map,
315 		       			size >> SRMMU_NOCACHE_BITMAP_SHIFT,
316 					align >> SRMMU_NOCACHE_BITMAP_SHIFT);
317 	if (offset == -1) {
318 		printk("srmmu: out of nocache %d: %d/%d\n",
319 		    size, (int) srmmu_nocache_size,
320 		    srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
321 		return 0;
322 	}
323 
324 	return (SRMMU_NOCACHE_VADDR + (offset << SRMMU_NOCACHE_BITMAP_SHIFT));
325 }
326 
327 unsigned inline long srmmu_get_nocache(int size, int align)
328 {
329 	unsigned long tmp;
330 
331 	tmp = __srmmu_get_nocache(size, align);
332 
333 	if (tmp)
334 		memset((void *)tmp, 0, size);
335 
336 	return tmp;
337 }
338 
339 void srmmu_free_nocache(unsigned long vaddr, int size)
340 {
341 	int offset;
342 
343 	if (vaddr < SRMMU_NOCACHE_VADDR) {
344 		printk("Vaddr %lx is smaller than nocache base 0x%lx\n",
345 		    vaddr, (unsigned long)SRMMU_NOCACHE_VADDR);
346 		BUG();
347 	}
348 	if (vaddr+size > srmmu_nocache_end) {
349 		printk("Vaddr %lx is bigger than nocache end 0x%lx\n",
350 		    vaddr, srmmu_nocache_end);
351 		BUG();
352 	}
353 	if (size & (size-1)) {
354 		printk("Size 0x%x is not a power of 2\n", size);
355 		BUG();
356 	}
357 	if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
358 		printk("Size 0x%x is too small\n", size);
359 		BUG();
360 	}
361 	if (vaddr & (size-1)) {
362 		printk("Vaddr %lx is not aligned to size 0x%x\n", vaddr, size);
363 		BUG();
364 	}
365 
366 	offset = (vaddr - SRMMU_NOCACHE_VADDR) >> SRMMU_NOCACHE_BITMAP_SHIFT;
367 	size = size >> SRMMU_NOCACHE_BITMAP_SHIFT;
368 
369 	bit_map_clear(&srmmu_nocache_map, offset, size);
370 }
371 
372 void srmmu_early_allocate_ptable_skeleton(unsigned long start, unsigned long end);
373 
374 extern unsigned long probe_memory(void);	/* in fault.c */
375 
376 /*
377  * Reserve nocache dynamically proportionally to the amount of
378  * system RAM. -- Tomas Szepe <szepe@pinerecords.com>, June 2002
379  */
380 void srmmu_nocache_calcsize(void)
381 {
382 	unsigned long sysmemavail = probe_memory() / 1024;
383 	int srmmu_nocache_npages;
384 
385 	srmmu_nocache_npages =
386 		sysmemavail / SRMMU_NOCACHE_ALCRATIO / 1024 * 256;
387 
388  /* P3 XXX The 4x overuse: corroborated by /proc/meminfo. */
389 	// if (srmmu_nocache_npages < 256) srmmu_nocache_npages = 256;
390 	if (srmmu_nocache_npages < SRMMU_MIN_NOCACHE_PAGES)
391 		srmmu_nocache_npages = SRMMU_MIN_NOCACHE_PAGES;
392 
393 	/* anything above 1280 blows up */
394 	if (srmmu_nocache_npages > SRMMU_MAX_NOCACHE_PAGES)
395 		srmmu_nocache_npages = SRMMU_MAX_NOCACHE_PAGES;
396 
397 	srmmu_nocache_size = srmmu_nocache_npages * PAGE_SIZE;
398 	srmmu_nocache_end = SRMMU_NOCACHE_VADDR + srmmu_nocache_size;
399 }
400 
401 void __init srmmu_nocache_init(void)
402 {
403 	unsigned int bitmap_bits;
404 	pgd_t *pgd;
405 	pmd_t *pmd;
406 	pte_t *pte;
407 	unsigned long paddr, vaddr;
408 	unsigned long pteval;
409 
410 	bitmap_bits = srmmu_nocache_size >> SRMMU_NOCACHE_BITMAP_SHIFT;
411 
412 	srmmu_nocache_pool = __alloc_bootmem(srmmu_nocache_size,
413 		SRMMU_NOCACHE_ALIGN_MAX, 0UL);
414 	memset(srmmu_nocache_pool, 0, srmmu_nocache_size);
415 
416 	srmmu_nocache_bitmap = __alloc_bootmem(bitmap_bits >> 3, SMP_CACHE_BYTES, 0UL);
417 	bit_map_init(&srmmu_nocache_map, srmmu_nocache_bitmap, bitmap_bits);
418 
419 	srmmu_swapper_pg_dir = (pgd_t *)__srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
420 	memset(__nocache_fix(srmmu_swapper_pg_dir), 0, SRMMU_PGD_TABLE_SIZE);
421 	init_mm.pgd = srmmu_swapper_pg_dir;
422 
423 	srmmu_early_allocate_ptable_skeleton(SRMMU_NOCACHE_VADDR, srmmu_nocache_end);
424 
425 	paddr = __pa((unsigned long)srmmu_nocache_pool);
426 	vaddr = SRMMU_NOCACHE_VADDR;
427 
428 	while (vaddr < srmmu_nocache_end) {
429 		pgd = pgd_offset_k(vaddr);
430 		pmd = srmmu_pmd_offset(__nocache_fix(pgd), vaddr);
431 		pte = srmmu_pte_offset(__nocache_fix(pmd), vaddr);
432 
433 		pteval = ((paddr >> 4) | SRMMU_ET_PTE | SRMMU_PRIV);
434 
435 		if (srmmu_cache_pagetables)
436 			pteval |= SRMMU_CACHE;
437 
438 		srmmu_set_pte(__nocache_fix(pte), __pte(pteval));
439 
440 		vaddr += PAGE_SIZE;
441 		paddr += PAGE_SIZE;
442 	}
443 
444 	flush_cache_all();
445 	flush_tlb_all();
446 }
447 
448 static inline pgd_t *srmmu_get_pgd_fast(void)
449 {
450 	pgd_t *pgd = NULL;
451 
452 	pgd = (pgd_t *)__srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
453 	if (pgd) {
454 		pgd_t *init = pgd_offset_k(0);
455 		memset(pgd, 0, USER_PTRS_PER_PGD * sizeof(pgd_t));
456 		memcpy(pgd + USER_PTRS_PER_PGD, init + USER_PTRS_PER_PGD,
457 						(PTRS_PER_PGD - USER_PTRS_PER_PGD) * sizeof(pgd_t));
458 	}
459 
460 	return pgd;
461 }
462 
463 static void srmmu_free_pgd_fast(pgd_t *pgd)
464 {
465 	srmmu_free_nocache((unsigned long)pgd, SRMMU_PGD_TABLE_SIZE);
466 }
467 
468 static pmd_t *srmmu_pmd_alloc_one(struct mm_struct *mm, unsigned long address)
469 {
470 	return (pmd_t *)srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
471 }
472 
473 static void srmmu_pmd_free(pmd_t * pmd)
474 {
475 	srmmu_free_nocache((unsigned long)pmd, SRMMU_PMD_TABLE_SIZE);
476 }
477 
478 /*
479  * Hardware needs alignment to 256 only, but we align to whole page size
480  * to reduce fragmentation problems due to the buddy principle.
481  * XXX Provide actual fragmentation statistics in /proc.
482  *
483  * Alignments up to the page size are the same for physical and virtual
484  * addresses of the nocache area.
485  */
486 static pte_t *
487 srmmu_pte_alloc_one_kernel(struct mm_struct *mm, unsigned long address)
488 {
489 	return (pte_t *)srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
490 }
491 
492 static pgtable_t
493 srmmu_pte_alloc_one(struct mm_struct *mm, unsigned long address)
494 {
495 	unsigned long pte;
496 	struct page *page;
497 
498 	if ((pte = (unsigned long)srmmu_pte_alloc_one_kernel(mm, address)) == 0)
499 		return NULL;
500 	page = pfn_to_page( __nocache_pa(pte) >> PAGE_SHIFT );
501 	pgtable_page_ctor(page);
502 	return page;
503 }
504 
505 static void srmmu_free_pte_fast(pte_t *pte)
506 {
507 	srmmu_free_nocache((unsigned long)pte, PTE_SIZE);
508 }
509 
510 static void srmmu_pte_free(pgtable_t pte)
511 {
512 	unsigned long p;
513 
514 	pgtable_page_dtor(pte);
515 	p = (unsigned long)page_address(pte);	/* Cached address (for test) */
516 	if (p == 0)
517 		BUG();
518 	p = page_to_pfn(pte) << PAGE_SHIFT;	/* Physical address */
519 	p = (unsigned long) __nocache_va(p);	/* Nocached virtual */
520 	srmmu_free_nocache(p, PTE_SIZE);
521 }
522 
523 /*
524  */
525 static inline void alloc_context(struct mm_struct *old_mm, struct mm_struct *mm)
526 {
527 	struct ctx_list *ctxp;
528 
529 	ctxp = ctx_free.next;
530 	if(ctxp != &ctx_free) {
531 		remove_from_ctx_list(ctxp);
532 		add_to_used_ctxlist(ctxp);
533 		mm->context = ctxp->ctx_number;
534 		ctxp->ctx_mm = mm;
535 		return;
536 	}
537 	ctxp = ctx_used.next;
538 	if(ctxp->ctx_mm == old_mm)
539 		ctxp = ctxp->next;
540 	if(ctxp == &ctx_used)
541 		panic("out of mmu contexts");
542 	flush_cache_mm(ctxp->ctx_mm);
543 	flush_tlb_mm(ctxp->ctx_mm);
544 	remove_from_ctx_list(ctxp);
545 	add_to_used_ctxlist(ctxp);
546 	ctxp->ctx_mm->context = NO_CONTEXT;
547 	ctxp->ctx_mm = mm;
548 	mm->context = ctxp->ctx_number;
549 }
550 
551 static inline void free_context(int context)
552 {
553 	struct ctx_list *ctx_old;
554 
555 	ctx_old = ctx_list_pool + context;
556 	remove_from_ctx_list(ctx_old);
557 	add_to_free_ctxlist(ctx_old);
558 }
559 
560 
561 static void srmmu_switch_mm(struct mm_struct *old_mm, struct mm_struct *mm,
562     struct task_struct *tsk, int cpu)
563 {
564 	if(mm->context == NO_CONTEXT) {
565 		spin_lock(&srmmu_context_spinlock);
566 		alloc_context(old_mm, mm);
567 		spin_unlock(&srmmu_context_spinlock);
568 		srmmu_ctxd_set(&srmmu_context_table[mm->context], mm->pgd);
569 	}
570 
571 	if (is_hypersparc)
572 		hyper_flush_whole_icache();
573 
574 	srmmu_set_context(mm->context);
575 }
576 
577 /* Low level IO area allocation on the SRMMU. */
578 static inline void srmmu_mapioaddr(unsigned long physaddr,
579     unsigned long virt_addr, int bus_type)
580 {
581 	pgd_t *pgdp;
582 	pmd_t *pmdp;
583 	pte_t *ptep;
584 	unsigned long tmp;
585 
586 	physaddr &= PAGE_MASK;
587 	pgdp = pgd_offset_k(virt_addr);
588 	pmdp = srmmu_pmd_offset(pgdp, virt_addr);
589 	ptep = srmmu_pte_offset(pmdp, virt_addr);
590 	tmp = (physaddr >> 4) | SRMMU_ET_PTE;
591 
592 	/*
593 	 * I need to test whether this is consistent over all
594 	 * sun4m's.  The bus_type represents the upper 4 bits of
595 	 * 36-bit physical address on the I/O space lines...
596 	 */
597 	tmp |= (bus_type << 28);
598 	tmp |= SRMMU_PRIV;
599 	__flush_page_to_ram(virt_addr);
600 	srmmu_set_pte(ptep, __pte(tmp));
601 }
602 
603 static void srmmu_mapiorange(unsigned int bus, unsigned long xpa,
604     unsigned long xva, unsigned int len)
605 {
606 	while (len != 0) {
607 		len -= PAGE_SIZE;
608 		srmmu_mapioaddr(xpa, xva, bus);
609 		xva += PAGE_SIZE;
610 		xpa += PAGE_SIZE;
611 	}
612 	flush_tlb_all();
613 }
614 
615 static inline void srmmu_unmapioaddr(unsigned long virt_addr)
616 {
617 	pgd_t *pgdp;
618 	pmd_t *pmdp;
619 	pte_t *ptep;
620 
621 	pgdp = pgd_offset_k(virt_addr);
622 	pmdp = srmmu_pmd_offset(pgdp, virt_addr);
623 	ptep = srmmu_pte_offset(pmdp, virt_addr);
624 
625 	/* No need to flush uncacheable page. */
626 	srmmu_pte_clear(ptep);
627 }
628 
629 static void srmmu_unmapiorange(unsigned long virt_addr, unsigned int len)
630 {
631 	while (len != 0) {
632 		len -= PAGE_SIZE;
633 		srmmu_unmapioaddr(virt_addr);
634 		virt_addr += PAGE_SIZE;
635 	}
636 	flush_tlb_all();
637 }
638 
639 /*
640  * On the SRMMU we do not have the problems with limited tlb entries
641  * for mapping kernel pages, so we just take things from the free page
642  * pool.  As a side effect we are putting a little too much pressure
643  * on the gfp() subsystem.  This setup also makes the logic of the
644  * iommu mapping code a lot easier as we can transparently handle
645  * mappings on the kernel stack without any special code as we did
646  * need on the sun4c.
647  */
648 struct thread_info *srmmu_alloc_thread_info(void)
649 {
650 	struct thread_info *ret;
651 
652 	ret = (struct thread_info *)__get_free_pages(GFP_KERNEL,
653 						     THREAD_INFO_ORDER);
654 #ifdef CONFIG_DEBUG_STACK_USAGE
655 	if (ret)
656 		memset(ret, 0, PAGE_SIZE << THREAD_INFO_ORDER);
657 #endif /* DEBUG_STACK_USAGE */
658 
659 	return ret;
660 }
661 
662 static void srmmu_free_thread_info(struct thread_info *ti)
663 {
664 	free_pages((unsigned long)ti, THREAD_INFO_ORDER);
665 }
666 
667 /* tsunami.S */
668 extern void tsunami_flush_cache_all(void);
669 extern void tsunami_flush_cache_mm(struct mm_struct *mm);
670 extern void tsunami_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
671 extern void tsunami_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
672 extern void tsunami_flush_page_to_ram(unsigned long page);
673 extern void tsunami_flush_page_for_dma(unsigned long page);
674 extern void tsunami_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
675 extern void tsunami_flush_tlb_all(void);
676 extern void tsunami_flush_tlb_mm(struct mm_struct *mm);
677 extern void tsunami_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
678 extern void tsunami_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
679 extern void tsunami_setup_blockops(void);
680 
681 /*
682  * Workaround, until we find what's going on with Swift. When low on memory,
683  * it sometimes loops in fault/handle_mm_fault incl. flush_tlb_page to find
684  * out it is already in page tables/ fault again on the same instruction.
685  * I really don't understand it, have checked it and contexts
686  * are right, flush_tlb_all is done as well, and it faults again...
687  * Strange. -jj
688  *
689  * The following code is a deadwood that may be necessary when
690  * we start to make precise page flushes again. --zaitcev
691  */
692 static void swift_update_mmu_cache(struct vm_area_struct * vma, unsigned long address, pte_t pte)
693 {
694 #if 0
695 	static unsigned long last;
696 	unsigned int val;
697 	/* unsigned int n; */
698 
699 	if (address == last) {
700 		val = srmmu_hwprobe(address);
701 		if (val != 0 && pte_val(pte) != val) {
702 			printk("swift_update_mmu_cache: "
703 			    "addr %lx put %08x probed %08x from %p\n",
704 			    address, pte_val(pte), val,
705 			    __builtin_return_address(0));
706 			srmmu_flush_whole_tlb();
707 		}
708 	}
709 	last = address;
710 #endif
711 }
712 
713 /* swift.S */
714 extern void swift_flush_cache_all(void);
715 extern void swift_flush_cache_mm(struct mm_struct *mm);
716 extern void swift_flush_cache_range(struct vm_area_struct *vma,
717 				    unsigned long start, unsigned long end);
718 extern void swift_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
719 extern void swift_flush_page_to_ram(unsigned long page);
720 extern void swift_flush_page_for_dma(unsigned long page);
721 extern void swift_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
722 extern void swift_flush_tlb_all(void);
723 extern void swift_flush_tlb_mm(struct mm_struct *mm);
724 extern void swift_flush_tlb_range(struct vm_area_struct *vma,
725 				  unsigned long start, unsigned long end);
726 extern void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
727 
728 #if 0  /* P3: deadwood to debug precise flushes on Swift. */
729 void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
730 {
731 	int cctx, ctx1;
732 
733 	page &= PAGE_MASK;
734 	if ((ctx1 = vma->vm_mm->context) != -1) {
735 		cctx = srmmu_get_context();
736 /* Is context # ever different from current context? P3 */
737 		if (cctx != ctx1) {
738 			printk("flush ctx %02x curr %02x\n", ctx1, cctx);
739 			srmmu_set_context(ctx1);
740 			swift_flush_page(page);
741 			__asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
742 					"r" (page), "i" (ASI_M_FLUSH_PROBE));
743 			srmmu_set_context(cctx);
744 		} else {
745 			 /* Rm. prot. bits from virt. c. */
746 			/* swift_flush_cache_all(); */
747 			/* swift_flush_cache_page(vma, page); */
748 			swift_flush_page(page);
749 
750 			__asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
751 				"r" (page), "i" (ASI_M_FLUSH_PROBE));
752 			/* same as above: srmmu_flush_tlb_page() */
753 		}
754 	}
755 }
756 #endif
757 
758 /*
759  * The following are all MBUS based SRMMU modules, and therefore could
760  * be found in a multiprocessor configuration.  On the whole, these
761  * chips seems to be much more touchy about DVMA and page tables
762  * with respect to cache coherency.
763  */
764 
765 /* Cypress flushes. */
766 static void cypress_flush_cache_all(void)
767 {
768 	volatile unsigned long cypress_sucks;
769 	unsigned long faddr, tagval;
770 
771 	flush_user_windows();
772 	for(faddr = 0; faddr < 0x10000; faddr += 0x20) {
773 		__asm__ __volatile__("lda [%1 + %2] %3, %0\n\t" :
774 				     "=r" (tagval) :
775 				     "r" (faddr), "r" (0x40000),
776 				     "i" (ASI_M_DATAC_TAG));
777 
778 		/* If modified and valid, kick it. */
779 		if((tagval & 0x60) == 0x60)
780 			cypress_sucks = *(unsigned long *)(0xf0020000 + faddr);
781 	}
782 }
783 
784 static void cypress_flush_cache_mm(struct mm_struct *mm)
785 {
786 	register unsigned long a, b, c, d, e, f, g;
787 	unsigned long flags, faddr;
788 	int octx;
789 
790 	FLUSH_BEGIN(mm)
791 	flush_user_windows();
792 	local_irq_save(flags);
793 	octx = srmmu_get_context();
794 	srmmu_set_context(mm->context);
795 	a = 0x20; b = 0x40; c = 0x60;
796 	d = 0x80; e = 0xa0; f = 0xc0; g = 0xe0;
797 
798 	faddr = (0x10000 - 0x100);
799 	goto inside;
800 	do {
801 		faddr -= 0x100;
802 	inside:
803 		__asm__ __volatile__("sta %%g0, [%0] %1\n\t"
804 				     "sta %%g0, [%0 + %2] %1\n\t"
805 				     "sta %%g0, [%0 + %3] %1\n\t"
806 				     "sta %%g0, [%0 + %4] %1\n\t"
807 				     "sta %%g0, [%0 + %5] %1\n\t"
808 				     "sta %%g0, [%0 + %6] %1\n\t"
809 				     "sta %%g0, [%0 + %7] %1\n\t"
810 				     "sta %%g0, [%0 + %8] %1\n\t" : :
811 				     "r" (faddr), "i" (ASI_M_FLUSH_CTX),
812 				     "r" (a), "r" (b), "r" (c), "r" (d),
813 				     "r" (e), "r" (f), "r" (g));
814 	} while(faddr);
815 	srmmu_set_context(octx);
816 	local_irq_restore(flags);
817 	FLUSH_END
818 }
819 
820 static void cypress_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
821 {
822 	struct mm_struct *mm = vma->vm_mm;
823 	register unsigned long a, b, c, d, e, f, g;
824 	unsigned long flags, faddr;
825 	int octx;
826 
827 	FLUSH_BEGIN(mm)
828 	flush_user_windows();
829 	local_irq_save(flags);
830 	octx = srmmu_get_context();
831 	srmmu_set_context(mm->context);
832 	a = 0x20; b = 0x40; c = 0x60;
833 	d = 0x80; e = 0xa0; f = 0xc0; g = 0xe0;
834 
835 	start &= SRMMU_REAL_PMD_MASK;
836 	while(start < end) {
837 		faddr = (start + (0x10000 - 0x100));
838 		goto inside;
839 		do {
840 			faddr -= 0x100;
841 		inside:
842 			__asm__ __volatile__("sta %%g0, [%0] %1\n\t"
843 					     "sta %%g0, [%0 + %2] %1\n\t"
844 					     "sta %%g0, [%0 + %3] %1\n\t"
845 					     "sta %%g0, [%0 + %4] %1\n\t"
846 					     "sta %%g0, [%0 + %5] %1\n\t"
847 					     "sta %%g0, [%0 + %6] %1\n\t"
848 					     "sta %%g0, [%0 + %7] %1\n\t"
849 					     "sta %%g0, [%0 + %8] %1\n\t" : :
850 					     "r" (faddr),
851 					     "i" (ASI_M_FLUSH_SEG),
852 					     "r" (a), "r" (b), "r" (c), "r" (d),
853 					     "r" (e), "r" (f), "r" (g));
854 		} while (faddr != start);
855 		start += SRMMU_REAL_PMD_SIZE;
856 	}
857 	srmmu_set_context(octx);
858 	local_irq_restore(flags);
859 	FLUSH_END
860 }
861 
862 static void cypress_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
863 {
864 	register unsigned long a, b, c, d, e, f, g;
865 	struct mm_struct *mm = vma->vm_mm;
866 	unsigned long flags, line;
867 	int octx;
868 
869 	FLUSH_BEGIN(mm)
870 	flush_user_windows();
871 	local_irq_save(flags);
872 	octx = srmmu_get_context();
873 	srmmu_set_context(mm->context);
874 	a = 0x20; b = 0x40; c = 0x60;
875 	d = 0x80; e = 0xa0; f = 0xc0; g = 0xe0;
876 
877 	page &= PAGE_MASK;
878 	line = (page + PAGE_SIZE) - 0x100;
879 	goto inside;
880 	do {
881 		line -= 0x100;
882 	inside:
883 			__asm__ __volatile__("sta %%g0, [%0] %1\n\t"
884 					     "sta %%g0, [%0 + %2] %1\n\t"
885 					     "sta %%g0, [%0 + %3] %1\n\t"
886 					     "sta %%g0, [%0 + %4] %1\n\t"
887 					     "sta %%g0, [%0 + %5] %1\n\t"
888 					     "sta %%g0, [%0 + %6] %1\n\t"
889 					     "sta %%g0, [%0 + %7] %1\n\t"
890 					     "sta %%g0, [%0 + %8] %1\n\t" : :
891 					     "r" (line),
892 					     "i" (ASI_M_FLUSH_PAGE),
893 					     "r" (a), "r" (b), "r" (c), "r" (d),
894 					     "r" (e), "r" (f), "r" (g));
895 	} while(line != page);
896 	srmmu_set_context(octx);
897 	local_irq_restore(flags);
898 	FLUSH_END
899 }
900 
901 /* Cypress is copy-back, at least that is how we configure it. */
902 static void cypress_flush_page_to_ram(unsigned long page)
903 {
904 	register unsigned long a, b, c, d, e, f, g;
905 	unsigned long line;
906 
907 	a = 0x20; b = 0x40; c = 0x60; d = 0x80; e = 0xa0; f = 0xc0; g = 0xe0;
908 	page &= PAGE_MASK;
909 	line = (page + PAGE_SIZE) - 0x100;
910 	goto inside;
911 	do {
912 		line -= 0x100;
913 	inside:
914 		__asm__ __volatile__("sta %%g0, [%0] %1\n\t"
915 				     "sta %%g0, [%0 + %2] %1\n\t"
916 				     "sta %%g0, [%0 + %3] %1\n\t"
917 				     "sta %%g0, [%0 + %4] %1\n\t"
918 				     "sta %%g0, [%0 + %5] %1\n\t"
919 				     "sta %%g0, [%0 + %6] %1\n\t"
920 				     "sta %%g0, [%0 + %7] %1\n\t"
921 				     "sta %%g0, [%0 + %8] %1\n\t" : :
922 				     "r" (line),
923 				     "i" (ASI_M_FLUSH_PAGE),
924 				     "r" (a), "r" (b), "r" (c), "r" (d),
925 				     "r" (e), "r" (f), "r" (g));
926 	} while(line != page);
927 }
928 
929 /* Cypress is also IO cache coherent. */
930 static void cypress_flush_page_for_dma(unsigned long page)
931 {
932 }
933 
934 /* Cypress has unified L2 VIPT, from which both instructions and data
935  * are stored.  It does not have an onboard icache of any sort, therefore
936  * no flush is necessary.
937  */
938 static void cypress_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
939 {
940 }
941 
942 static void cypress_flush_tlb_all(void)
943 {
944 	srmmu_flush_whole_tlb();
945 }
946 
947 static void cypress_flush_tlb_mm(struct mm_struct *mm)
948 {
949 	FLUSH_BEGIN(mm)
950 	__asm__ __volatile__(
951 	"lda	[%0] %3, %%g5\n\t"
952 	"sta	%2, [%0] %3\n\t"
953 	"sta	%%g0, [%1] %4\n\t"
954 	"sta	%%g5, [%0] %3\n"
955 	: /* no outputs */
956 	: "r" (SRMMU_CTX_REG), "r" (0x300), "r" (mm->context),
957 	  "i" (ASI_M_MMUREGS), "i" (ASI_M_FLUSH_PROBE)
958 	: "g5");
959 	FLUSH_END
960 }
961 
962 static void cypress_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
963 {
964 	struct mm_struct *mm = vma->vm_mm;
965 	unsigned long size;
966 
967 	FLUSH_BEGIN(mm)
968 	start &= SRMMU_PGDIR_MASK;
969 	size = SRMMU_PGDIR_ALIGN(end) - start;
970 	__asm__ __volatile__(
971 		"lda	[%0] %5, %%g5\n\t"
972 		"sta	%1, [%0] %5\n"
973 		"1:\n\t"
974 		"subcc	%3, %4, %3\n\t"
975 		"bne	1b\n\t"
976 		" sta	%%g0, [%2 + %3] %6\n\t"
977 		"sta	%%g5, [%0] %5\n"
978 	: /* no outputs */
979 	: "r" (SRMMU_CTX_REG), "r" (mm->context), "r" (start | 0x200),
980 	  "r" (size), "r" (SRMMU_PGDIR_SIZE), "i" (ASI_M_MMUREGS),
981 	  "i" (ASI_M_FLUSH_PROBE)
982 	: "g5", "cc");
983 	FLUSH_END
984 }
985 
986 static void cypress_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
987 {
988 	struct mm_struct *mm = vma->vm_mm;
989 
990 	FLUSH_BEGIN(mm)
991 	__asm__ __volatile__(
992 	"lda	[%0] %3, %%g5\n\t"
993 	"sta	%1, [%0] %3\n\t"
994 	"sta	%%g0, [%2] %4\n\t"
995 	"sta	%%g5, [%0] %3\n"
996 	: /* no outputs */
997 	: "r" (SRMMU_CTX_REG), "r" (mm->context), "r" (page & PAGE_MASK),
998 	  "i" (ASI_M_MMUREGS), "i" (ASI_M_FLUSH_PROBE)
999 	: "g5");
1000 	FLUSH_END
1001 }
1002 
1003 /* viking.S */
1004 extern void viking_flush_cache_all(void);
1005 extern void viking_flush_cache_mm(struct mm_struct *mm);
1006 extern void viking_flush_cache_range(struct vm_area_struct *vma, unsigned long start,
1007 				     unsigned long end);
1008 extern void viking_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
1009 extern void viking_flush_page_to_ram(unsigned long page);
1010 extern void viking_flush_page_for_dma(unsigned long page);
1011 extern void viking_flush_sig_insns(struct mm_struct *mm, unsigned long addr);
1012 extern void viking_flush_page(unsigned long page);
1013 extern void viking_mxcc_flush_page(unsigned long page);
1014 extern void viking_flush_tlb_all(void);
1015 extern void viking_flush_tlb_mm(struct mm_struct *mm);
1016 extern void viking_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
1017 				   unsigned long end);
1018 extern void viking_flush_tlb_page(struct vm_area_struct *vma,
1019 				  unsigned long page);
1020 extern void sun4dsmp_flush_tlb_all(void);
1021 extern void sun4dsmp_flush_tlb_mm(struct mm_struct *mm);
1022 extern void sun4dsmp_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
1023 				   unsigned long end);
1024 extern void sun4dsmp_flush_tlb_page(struct vm_area_struct *vma,
1025 				  unsigned long page);
1026 
1027 /* hypersparc.S */
1028 extern void hypersparc_flush_cache_all(void);
1029 extern void hypersparc_flush_cache_mm(struct mm_struct *mm);
1030 extern void hypersparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
1031 extern void hypersparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
1032 extern void hypersparc_flush_page_to_ram(unsigned long page);
1033 extern void hypersparc_flush_page_for_dma(unsigned long page);
1034 extern void hypersparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
1035 extern void hypersparc_flush_tlb_all(void);
1036 extern void hypersparc_flush_tlb_mm(struct mm_struct *mm);
1037 extern void hypersparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
1038 extern void hypersparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
1039 extern void hypersparc_setup_blockops(void);
1040 
1041 /*
1042  * NOTE: All of this startup code assumes the low 16mb (approx.) of
1043  *       kernel mappings are done with one single contiguous chunk of
1044  *       ram.  On small ram machines (classics mainly) we only get
1045  *       around 8mb mapped for us.
1046  */
1047 
1048 void __init early_pgtable_allocfail(char *type)
1049 {
1050 	prom_printf("inherit_prom_mappings: Cannot alloc kernel %s.\n", type);
1051 	prom_halt();
1052 }
1053 
1054 void __init srmmu_early_allocate_ptable_skeleton(unsigned long start, unsigned long end)
1055 {
1056 	pgd_t *pgdp;
1057 	pmd_t *pmdp;
1058 	pte_t *ptep;
1059 
1060 	while(start < end) {
1061 		pgdp = pgd_offset_k(start);
1062 		if(srmmu_pgd_none(*(pgd_t *)__nocache_fix(pgdp))) {
1063 			pmdp = (pmd_t *) __srmmu_get_nocache(
1064 			    SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
1065 			if (pmdp == NULL)
1066 				early_pgtable_allocfail("pmd");
1067 			memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
1068 			srmmu_pgd_set(__nocache_fix(pgdp), pmdp);
1069 		}
1070 		pmdp = srmmu_pmd_offset(__nocache_fix(pgdp), start);
1071 		if(srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
1072 			ptep = (pte_t *)__srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
1073 			if (ptep == NULL)
1074 				early_pgtable_allocfail("pte");
1075 			memset(__nocache_fix(ptep), 0, PTE_SIZE);
1076 			srmmu_pmd_set(__nocache_fix(pmdp), ptep);
1077 		}
1078 		if (start > (0xffffffffUL - PMD_SIZE))
1079 			break;
1080 		start = (start + PMD_SIZE) & PMD_MASK;
1081 	}
1082 }
1083 
1084 void __init srmmu_allocate_ptable_skeleton(unsigned long start, unsigned long end)
1085 {
1086 	pgd_t *pgdp;
1087 	pmd_t *pmdp;
1088 	pte_t *ptep;
1089 
1090 	while(start < end) {
1091 		pgdp = pgd_offset_k(start);
1092 		if(srmmu_pgd_none(*pgdp)) {
1093 			pmdp = (pmd_t *)__srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
1094 			if (pmdp == NULL)
1095 				early_pgtable_allocfail("pmd");
1096 			memset(pmdp, 0, SRMMU_PMD_TABLE_SIZE);
1097 			srmmu_pgd_set(pgdp, pmdp);
1098 		}
1099 		pmdp = srmmu_pmd_offset(pgdp, start);
1100 		if(srmmu_pmd_none(*pmdp)) {
1101 			ptep = (pte_t *) __srmmu_get_nocache(PTE_SIZE,
1102 							     PTE_SIZE);
1103 			if (ptep == NULL)
1104 				early_pgtable_allocfail("pte");
1105 			memset(ptep, 0, PTE_SIZE);
1106 			srmmu_pmd_set(pmdp, ptep);
1107 		}
1108 		if (start > (0xffffffffUL - PMD_SIZE))
1109 			break;
1110 		start = (start + PMD_SIZE) & PMD_MASK;
1111 	}
1112 }
1113 
1114 /*
1115  * This is much cleaner than poking around physical address space
1116  * looking at the prom's page table directly which is what most
1117  * other OS's do.  Yuck... this is much better.
1118  */
1119 void __init srmmu_inherit_prom_mappings(unsigned long start,unsigned long end)
1120 {
1121 	pgd_t *pgdp;
1122 	pmd_t *pmdp;
1123 	pte_t *ptep;
1124 	int what = 0; /* 0 = normal-pte, 1 = pmd-level pte, 2 = pgd-level pte */
1125 	unsigned long prompte;
1126 
1127 	while(start <= end) {
1128 		if (start == 0)
1129 			break; /* probably wrap around */
1130 		if(start == 0xfef00000)
1131 			start = KADB_DEBUGGER_BEGVM;
1132 		if(!(prompte = srmmu_hwprobe(start))) {
1133 			start += PAGE_SIZE;
1134 			continue;
1135 		}
1136 
1137 		/* A red snapper, see what it really is. */
1138 		what = 0;
1139 
1140 		if(!(start & ~(SRMMU_REAL_PMD_MASK))) {
1141 			if(srmmu_hwprobe((start-PAGE_SIZE) + SRMMU_REAL_PMD_SIZE) == prompte)
1142 				what = 1;
1143 		}
1144 
1145 		if(!(start & ~(SRMMU_PGDIR_MASK))) {
1146 			if(srmmu_hwprobe((start-PAGE_SIZE) + SRMMU_PGDIR_SIZE) ==
1147 			   prompte)
1148 				what = 2;
1149 		}
1150 
1151 		pgdp = pgd_offset_k(start);
1152 		if(what == 2) {
1153 			*(pgd_t *)__nocache_fix(pgdp) = __pgd(prompte);
1154 			start += SRMMU_PGDIR_SIZE;
1155 			continue;
1156 		}
1157 		if(srmmu_pgd_none(*(pgd_t *)__nocache_fix(pgdp))) {
1158 			pmdp = (pmd_t *)__srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
1159 			if (pmdp == NULL)
1160 				early_pgtable_allocfail("pmd");
1161 			memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
1162 			srmmu_pgd_set(__nocache_fix(pgdp), pmdp);
1163 		}
1164 		pmdp = srmmu_pmd_offset(__nocache_fix(pgdp), start);
1165 		if(srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
1166 			ptep = (pte_t *) __srmmu_get_nocache(PTE_SIZE,
1167 							     PTE_SIZE);
1168 			if (ptep == NULL)
1169 				early_pgtable_allocfail("pte");
1170 			memset(__nocache_fix(ptep), 0, PTE_SIZE);
1171 			srmmu_pmd_set(__nocache_fix(pmdp), ptep);
1172 		}
1173 		if(what == 1) {
1174 			/*
1175 			 * We bend the rule where all 16 PTPs in a pmd_t point
1176 			 * inside the same PTE page, and we leak a perfectly
1177 			 * good hardware PTE piece. Alternatives seem worse.
1178 			 */
1179 			unsigned int x;	/* Index of HW PMD in soft cluster */
1180 			x = (start >> PMD_SHIFT) & 15;
1181 			*(unsigned long *)__nocache_fix(&pmdp->pmdv[x]) = prompte;
1182 			start += SRMMU_REAL_PMD_SIZE;
1183 			continue;
1184 		}
1185 		ptep = srmmu_pte_offset(__nocache_fix(pmdp), start);
1186 		*(pte_t *)__nocache_fix(ptep) = __pte(prompte);
1187 		start += PAGE_SIZE;
1188 	}
1189 }
1190 
1191 #define KERNEL_PTE(page_shifted) ((page_shifted)|SRMMU_CACHE|SRMMU_PRIV|SRMMU_VALID)
1192 
1193 /* Create a third-level SRMMU 16MB page mapping. */
1194 static void __init do_large_mapping(unsigned long vaddr, unsigned long phys_base)
1195 {
1196 	pgd_t *pgdp = pgd_offset_k(vaddr);
1197 	unsigned long big_pte;
1198 
1199 	big_pte = KERNEL_PTE(phys_base >> 4);
1200 	*(pgd_t *)__nocache_fix(pgdp) = __pgd(big_pte);
1201 }
1202 
1203 /* Map sp_bank entry SP_ENTRY, starting at virtual address VBASE. */
1204 static unsigned long __init map_spbank(unsigned long vbase, int sp_entry)
1205 {
1206 	unsigned long pstart = (sp_banks[sp_entry].base_addr & SRMMU_PGDIR_MASK);
1207 	unsigned long vstart = (vbase & SRMMU_PGDIR_MASK);
1208 	unsigned long vend = SRMMU_PGDIR_ALIGN(vbase + sp_banks[sp_entry].num_bytes);
1209 	/* Map "low" memory only */
1210 	const unsigned long min_vaddr = PAGE_OFFSET;
1211 	const unsigned long max_vaddr = PAGE_OFFSET + SRMMU_MAXMEM;
1212 
1213 	if (vstart < min_vaddr || vstart >= max_vaddr)
1214 		return vstart;
1215 
1216 	if (vend > max_vaddr || vend < min_vaddr)
1217 		vend = max_vaddr;
1218 
1219 	while(vstart < vend) {
1220 		do_large_mapping(vstart, pstart);
1221 		vstart += SRMMU_PGDIR_SIZE; pstart += SRMMU_PGDIR_SIZE;
1222 	}
1223 	return vstart;
1224 }
1225 
1226 static inline void memprobe_error(char *msg)
1227 {
1228 	prom_printf(msg);
1229 	prom_printf("Halting now...\n");
1230 	prom_halt();
1231 }
1232 
1233 static inline void map_kernel(void)
1234 {
1235 	int i;
1236 
1237 	if (phys_base > 0) {
1238 		do_large_mapping(PAGE_OFFSET, phys_base);
1239 	}
1240 
1241 	for (i = 0; sp_banks[i].num_bytes != 0; i++) {
1242 		map_spbank((unsigned long)__va(sp_banks[i].base_addr), i);
1243 	}
1244 
1245 	BTFIXUPSET_SIMM13(user_ptrs_per_pgd, PAGE_OFFSET / SRMMU_PGDIR_SIZE);
1246 }
1247 
1248 /* Paging initialization on the Sparc Reference MMU. */
1249 extern void sparc_context_init(int);
1250 
1251 void (*poke_srmmu)(void) __initdata = NULL;
1252 
1253 extern unsigned long bootmem_init(unsigned long *pages_avail);
1254 
1255 void __init srmmu_paging_init(void)
1256 {
1257 	int i, cpunode;
1258 	char node_str[128];
1259 	pgd_t *pgd;
1260 	pmd_t *pmd;
1261 	pte_t *pte;
1262 	unsigned long pages_avail;
1263 
1264 	sparc_iomap.start = SUN4M_IOBASE_VADDR;	/* 16MB of IOSPACE on all sun4m's. */
1265 
1266 	if (sparc_cpu_model == sun4d)
1267 		num_contexts = 65536; /* We know it is Viking */
1268 	else {
1269 		/* Find the number of contexts on the srmmu. */
1270 		cpunode = prom_getchild(prom_root_node);
1271 		num_contexts = 0;
1272 		while(cpunode != 0) {
1273 			prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
1274 			if(!strcmp(node_str, "cpu")) {
1275 				num_contexts = prom_getintdefault(cpunode, "mmu-nctx", 0x8);
1276 				break;
1277 			}
1278 			cpunode = prom_getsibling(cpunode);
1279 		}
1280 	}
1281 
1282 	if(!num_contexts) {
1283 		prom_printf("Something wrong, can't find cpu node in paging_init.\n");
1284 		prom_halt();
1285 	}
1286 
1287 	pages_avail = 0;
1288 	last_valid_pfn = bootmem_init(&pages_avail);
1289 
1290 	srmmu_nocache_calcsize();
1291 	srmmu_nocache_init();
1292         srmmu_inherit_prom_mappings(0xfe400000,(LINUX_OPPROM_ENDVM-PAGE_SIZE));
1293 	map_kernel();
1294 
1295 	/* ctx table has to be physically aligned to its size */
1296 	srmmu_context_table = (ctxd_t *)__srmmu_get_nocache(num_contexts*sizeof(ctxd_t), num_contexts*sizeof(ctxd_t));
1297 	srmmu_ctx_table_phys = (ctxd_t *)__nocache_pa((unsigned long)srmmu_context_table);
1298 
1299 	for(i = 0; i < num_contexts; i++)
1300 		srmmu_ctxd_set((ctxd_t *)__nocache_fix(&srmmu_context_table[i]), srmmu_swapper_pg_dir);
1301 
1302 	flush_cache_all();
1303 	srmmu_set_ctable_ptr((unsigned long)srmmu_ctx_table_phys);
1304 #ifdef CONFIG_SMP
1305 	/* Stop from hanging here... */
1306 	local_flush_tlb_all();
1307 #else
1308 	flush_tlb_all();
1309 #endif
1310 	poke_srmmu();
1311 
1312 #ifdef CONFIG_SUN_IO
1313 	srmmu_allocate_ptable_skeleton(sparc_iomap.start, IOBASE_END);
1314 	srmmu_allocate_ptable_skeleton(DVMA_VADDR, DVMA_END);
1315 #endif
1316 
1317 	srmmu_allocate_ptable_skeleton(
1318 		__fix_to_virt(__end_of_fixed_addresses - 1), FIXADDR_TOP);
1319 	srmmu_allocate_ptable_skeleton(PKMAP_BASE, PKMAP_END);
1320 
1321 	pgd = pgd_offset_k(PKMAP_BASE);
1322 	pmd = srmmu_pmd_offset(pgd, PKMAP_BASE);
1323 	pte = srmmu_pte_offset(pmd, PKMAP_BASE);
1324 	pkmap_page_table = pte;
1325 
1326 	flush_cache_all();
1327 	flush_tlb_all();
1328 
1329 	sparc_context_init(num_contexts);
1330 
1331 	kmap_init();
1332 
1333 	{
1334 		unsigned long zones_size[MAX_NR_ZONES];
1335 		unsigned long zholes_size[MAX_NR_ZONES];
1336 		unsigned long npages;
1337 		int znum;
1338 
1339 		for (znum = 0; znum < MAX_NR_ZONES; znum++)
1340 			zones_size[znum] = zholes_size[znum] = 0;
1341 
1342 		npages = max_low_pfn - pfn_base;
1343 
1344 		zones_size[ZONE_DMA] = npages;
1345 		zholes_size[ZONE_DMA] = npages - pages_avail;
1346 
1347 		npages = highend_pfn - max_low_pfn;
1348 		zones_size[ZONE_HIGHMEM] = npages;
1349 		zholes_size[ZONE_HIGHMEM] = npages - calc_highpages();
1350 
1351 		free_area_init_node(0, &contig_page_data, zones_size,
1352 				    pfn_base, zholes_size);
1353 	}
1354 }
1355 
1356 static void srmmu_mmu_info(struct seq_file *m)
1357 {
1358 	seq_printf(m,
1359 		   "MMU type\t: %s\n"
1360 		   "contexts\t: %d\n"
1361 		   "nocache total\t: %ld\n"
1362 		   "nocache used\t: %d\n",
1363 		   srmmu_name,
1364 		   num_contexts,
1365 		   srmmu_nocache_size,
1366 		   srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
1367 }
1368 
1369 static void srmmu_update_mmu_cache(struct vm_area_struct * vma, unsigned long address, pte_t pte)
1370 {
1371 }
1372 
1373 static void srmmu_destroy_context(struct mm_struct *mm)
1374 {
1375 
1376 	if(mm->context != NO_CONTEXT) {
1377 		flush_cache_mm(mm);
1378 		srmmu_ctxd_set(&srmmu_context_table[mm->context], srmmu_swapper_pg_dir);
1379 		flush_tlb_mm(mm);
1380 		spin_lock(&srmmu_context_spinlock);
1381 		free_context(mm->context);
1382 		spin_unlock(&srmmu_context_spinlock);
1383 		mm->context = NO_CONTEXT;
1384 	}
1385 }
1386 
1387 /* Init various srmmu chip types. */
1388 static void __init srmmu_is_bad(void)
1389 {
1390 	prom_printf("Could not determine SRMMU chip type.\n");
1391 	prom_halt();
1392 }
1393 
1394 static void __init init_vac_layout(void)
1395 {
1396 	int nd, cache_lines;
1397 	char node_str[128];
1398 #ifdef CONFIG_SMP
1399 	int cpu = 0;
1400 	unsigned long max_size = 0;
1401 	unsigned long min_line_size = 0x10000000;
1402 #endif
1403 
1404 	nd = prom_getchild(prom_root_node);
1405 	while((nd = prom_getsibling(nd)) != 0) {
1406 		prom_getstring(nd, "device_type", node_str, sizeof(node_str));
1407 		if(!strcmp(node_str, "cpu")) {
1408 			vac_line_size = prom_getint(nd, "cache-line-size");
1409 			if (vac_line_size == -1) {
1410 				prom_printf("can't determine cache-line-size, "
1411 					    "halting.\n");
1412 				prom_halt();
1413 			}
1414 			cache_lines = prom_getint(nd, "cache-nlines");
1415 			if (cache_lines == -1) {
1416 				prom_printf("can't determine cache-nlines, halting.\n");
1417 				prom_halt();
1418 			}
1419 
1420 			vac_cache_size = cache_lines * vac_line_size;
1421 #ifdef CONFIG_SMP
1422 			if(vac_cache_size > max_size)
1423 				max_size = vac_cache_size;
1424 			if(vac_line_size < min_line_size)
1425 				min_line_size = vac_line_size;
1426 			//FIXME: cpus not contiguous!!
1427 			cpu++;
1428 			if (cpu >= NR_CPUS || !cpu_online(cpu))
1429 				break;
1430 #else
1431 			break;
1432 #endif
1433 		}
1434 	}
1435 	if(nd == 0) {
1436 		prom_printf("No CPU nodes found, halting.\n");
1437 		prom_halt();
1438 	}
1439 #ifdef CONFIG_SMP
1440 	vac_cache_size = max_size;
1441 	vac_line_size = min_line_size;
1442 #endif
1443 	printk("SRMMU: Using VAC size of %d bytes, line size %d bytes.\n",
1444 	       (int)vac_cache_size, (int)vac_line_size);
1445 }
1446 
1447 static void __init poke_hypersparc(void)
1448 {
1449 	volatile unsigned long clear;
1450 	unsigned long mreg = srmmu_get_mmureg();
1451 
1452 	hyper_flush_unconditional_combined();
1453 
1454 	mreg &= ~(HYPERSPARC_CWENABLE);
1455 	mreg |= (HYPERSPARC_CENABLE | HYPERSPARC_WBENABLE);
1456 	mreg |= (HYPERSPARC_CMODE);
1457 
1458 	srmmu_set_mmureg(mreg);
1459 
1460 #if 0 /* XXX I think this is bad news... -DaveM */
1461 	hyper_clear_all_tags();
1462 #endif
1463 
1464 	put_ross_icr(HYPERSPARC_ICCR_FTD | HYPERSPARC_ICCR_ICE);
1465 	hyper_flush_whole_icache();
1466 	clear = srmmu_get_faddr();
1467 	clear = srmmu_get_fstatus();
1468 }
1469 
1470 static void __init init_hypersparc(void)
1471 {
1472 	srmmu_name = "ROSS HyperSparc";
1473 	srmmu_modtype = HyperSparc;
1474 
1475 	init_vac_layout();
1476 
1477 	is_hypersparc = 1;
1478 
1479 	BTFIXUPSET_CALL(pte_clear, srmmu_pte_clear, BTFIXUPCALL_NORM);
1480 	BTFIXUPSET_CALL(pmd_clear, srmmu_pmd_clear, BTFIXUPCALL_NORM);
1481 	BTFIXUPSET_CALL(pgd_clear, srmmu_pgd_clear, BTFIXUPCALL_NORM);
1482 	BTFIXUPSET_CALL(flush_cache_all, hypersparc_flush_cache_all, BTFIXUPCALL_NORM);
1483 	BTFIXUPSET_CALL(flush_cache_mm, hypersparc_flush_cache_mm, BTFIXUPCALL_NORM);
1484 	BTFIXUPSET_CALL(flush_cache_range, hypersparc_flush_cache_range, BTFIXUPCALL_NORM);
1485 	BTFIXUPSET_CALL(flush_cache_page, hypersparc_flush_cache_page, BTFIXUPCALL_NORM);
1486 
1487 	BTFIXUPSET_CALL(flush_tlb_all, hypersparc_flush_tlb_all, BTFIXUPCALL_NORM);
1488 	BTFIXUPSET_CALL(flush_tlb_mm, hypersparc_flush_tlb_mm, BTFIXUPCALL_NORM);
1489 	BTFIXUPSET_CALL(flush_tlb_range, hypersparc_flush_tlb_range, BTFIXUPCALL_NORM);
1490 	BTFIXUPSET_CALL(flush_tlb_page, hypersparc_flush_tlb_page, BTFIXUPCALL_NORM);
1491 
1492 	BTFIXUPSET_CALL(__flush_page_to_ram, hypersparc_flush_page_to_ram, BTFIXUPCALL_NORM);
1493 	BTFIXUPSET_CALL(flush_sig_insns, hypersparc_flush_sig_insns, BTFIXUPCALL_NORM);
1494 	BTFIXUPSET_CALL(flush_page_for_dma, hypersparc_flush_page_for_dma, BTFIXUPCALL_NOP);
1495 
1496 
1497 	poke_srmmu = poke_hypersparc;
1498 
1499 	hypersparc_setup_blockops();
1500 }
1501 
1502 static void __init poke_cypress(void)
1503 {
1504 	unsigned long mreg = srmmu_get_mmureg();
1505 	unsigned long faddr, tagval;
1506 	volatile unsigned long cypress_sucks;
1507 	volatile unsigned long clear;
1508 
1509 	clear = srmmu_get_faddr();
1510 	clear = srmmu_get_fstatus();
1511 
1512 	if (!(mreg & CYPRESS_CENABLE)) {
1513 		for(faddr = 0x0; faddr < 0x10000; faddr += 20) {
1514 			__asm__ __volatile__("sta %%g0, [%0 + %1] %2\n\t"
1515 					     "sta %%g0, [%0] %2\n\t" : :
1516 					     "r" (faddr), "r" (0x40000),
1517 					     "i" (ASI_M_DATAC_TAG));
1518 		}
1519 	} else {
1520 		for(faddr = 0; faddr < 0x10000; faddr += 0x20) {
1521 			__asm__ __volatile__("lda [%1 + %2] %3, %0\n\t" :
1522 					     "=r" (tagval) :
1523 					     "r" (faddr), "r" (0x40000),
1524 					     "i" (ASI_M_DATAC_TAG));
1525 
1526 			/* If modified and valid, kick it. */
1527 			if((tagval & 0x60) == 0x60)
1528 				cypress_sucks = *(unsigned long *)
1529 							(0xf0020000 + faddr);
1530 		}
1531 	}
1532 
1533 	/* And one more, for our good neighbor, Mr. Broken Cypress. */
1534 	clear = srmmu_get_faddr();
1535 	clear = srmmu_get_fstatus();
1536 
1537 	mreg |= (CYPRESS_CENABLE | CYPRESS_CMODE);
1538 	srmmu_set_mmureg(mreg);
1539 }
1540 
1541 static void __init init_cypress_common(void)
1542 {
1543 	init_vac_layout();
1544 
1545 	BTFIXUPSET_CALL(pte_clear, srmmu_pte_clear, BTFIXUPCALL_NORM);
1546 	BTFIXUPSET_CALL(pmd_clear, srmmu_pmd_clear, BTFIXUPCALL_NORM);
1547 	BTFIXUPSET_CALL(pgd_clear, srmmu_pgd_clear, BTFIXUPCALL_NORM);
1548 	BTFIXUPSET_CALL(flush_cache_all, cypress_flush_cache_all, BTFIXUPCALL_NORM);
1549 	BTFIXUPSET_CALL(flush_cache_mm, cypress_flush_cache_mm, BTFIXUPCALL_NORM);
1550 	BTFIXUPSET_CALL(flush_cache_range, cypress_flush_cache_range, BTFIXUPCALL_NORM);
1551 	BTFIXUPSET_CALL(flush_cache_page, cypress_flush_cache_page, BTFIXUPCALL_NORM);
1552 
1553 	BTFIXUPSET_CALL(flush_tlb_all, cypress_flush_tlb_all, BTFIXUPCALL_NORM);
1554 	BTFIXUPSET_CALL(flush_tlb_mm, cypress_flush_tlb_mm, BTFIXUPCALL_NORM);
1555 	BTFIXUPSET_CALL(flush_tlb_page, cypress_flush_tlb_page, BTFIXUPCALL_NORM);
1556 	BTFIXUPSET_CALL(flush_tlb_range, cypress_flush_tlb_range, BTFIXUPCALL_NORM);
1557 
1558 
1559 	BTFIXUPSET_CALL(__flush_page_to_ram, cypress_flush_page_to_ram, BTFIXUPCALL_NORM);
1560 	BTFIXUPSET_CALL(flush_sig_insns, cypress_flush_sig_insns, BTFIXUPCALL_NOP);
1561 	BTFIXUPSET_CALL(flush_page_for_dma, cypress_flush_page_for_dma, BTFIXUPCALL_NOP);
1562 
1563 	poke_srmmu = poke_cypress;
1564 }
1565 
1566 static void __init init_cypress_604(void)
1567 {
1568 	srmmu_name = "ROSS Cypress-604(UP)";
1569 	srmmu_modtype = Cypress;
1570 	init_cypress_common();
1571 }
1572 
1573 static void __init init_cypress_605(unsigned long mrev)
1574 {
1575 	srmmu_name = "ROSS Cypress-605(MP)";
1576 	if(mrev == 0xe) {
1577 		srmmu_modtype = Cypress_vE;
1578 		hwbug_bitmask |= HWBUG_COPYBACK_BROKEN;
1579 	} else {
1580 		if(mrev == 0xd) {
1581 			srmmu_modtype = Cypress_vD;
1582 			hwbug_bitmask |= HWBUG_ASIFLUSH_BROKEN;
1583 		} else {
1584 			srmmu_modtype = Cypress;
1585 		}
1586 	}
1587 	init_cypress_common();
1588 }
1589 
1590 static void __init poke_swift(void)
1591 {
1592 	unsigned long mreg;
1593 
1594 	/* Clear any crap from the cache or else... */
1595 	swift_flush_cache_all();
1596 
1597 	/* Enable I & D caches */
1598 	mreg = srmmu_get_mmureg();
1599 	mreg |= (SWIFT_IE | SWIFT_DE);
1600 	/*
1601 	 * The Swift branch folding logic is completely broken.  At
1602 	 * trap time, if things are just right, if can mistakenly
1603 	 * think that a trap is coming from kernel mode when in fact
1604 	 * it is coming from user mode (it mis-executes the branch in
1605 	 * the trap code).  So you see things like crashme completely
1606 	 * hosing your machine which is completely unacceptable.  Turn
1607 	 * this shit off... nice job Fujitsu.
1608 	 */
1609 	mreg &= ~(SWIFT_BF);
1610 	srmmu_set_mmureg(mreg);
1611 }
1612 
1613 #define SWIFT_MASKID_ADDR  0x10003018
1614 static void __init init_swift(void)
1615 {
1616 	unsigned long swift_rev;
1617 
1618 	__asm__ __volatile__("lda [%1] %2, %0\n\t"
1619 			     "srl %0, 0x18, %0\n\t" :
1620 			     "=r" (swift_rev) :
1621 			     "r" (SWIFT_MASKID_ADDR), "i" (ASI_M_BYPASS));
1622 	srmmu_name = "Fujitsu Swift";
1623 	switch(swift_rev) {
1624 	case 0x11:
1625 	case 0x20:
1626 	case 0x23:
1627 	case 0x30:
1628 		srmmu_modtype = Swift_lots_o_bugs;
1629 		hwbug_bitmask |= (HWBUG_KERN_ACCBROKEN | HWBUG_KERN_CBITBROKEN);
1630 		/*
1631 		 * Gee george, I wonder why Sun is so hush hush about
1632 		 * this hardware bug... really braindamage stuff going
1633 		 * on here.  However I think we can find a way to avoid
1634 		 * all of the workaround overhead under Linux.  Basically,
1635 		 * any page fault can cause kernel pages to become user
1636 		 * accessible (the mmu gets confused and clears some of
1637 		 * the ACC bits in kernel ptes).  Aha, sounds pretty
1638 		 * horrible eh?  But wait, after extensive testing it appears
1639 		 * that if you use pgd_t level large kernel pte's (like the
1640 		 * 4MB pages on the Pentium) the bug does not get tripped
1641 		 * at all.  This avoids almost all of the major overhead.
1642 		 * Welcome to a world where your vendor tells you to,
1643 		 * "apply this kernel patch" instead of "sorry for the
1644 		 * broken hardware, send it back and we'll give you
1645 		 * properly functioning parts"
1646 		 */
1647 		break;
1648 	case 0x25:
1649 	case 0x31:
1650 		srmmu_modtype = Swift_bad_c;
1651 		hwbug_bitmask |= HWBUG_KERN_CBITBROKEN;
1652 		/*
1653 		 * You see Sun allude to this hardware bug but never
1654 		 * admit things directly, they'll say things like,
1655 		 * "the Swift chip cache problems" or similar.
1656 		 */
1657 		break;
1658 	default:
1659 		srmmu_modtype = Swift_ok;
1660 		break;
1661 	};
1662 
1663 	BTFIXUPSET_CALL(flush_cache_all, swift_flush_cache_all, BTFIXUPCALL_NORM);
1664 	BTFIXUPSET_CALL(flush_cache_mm, swift_flush_cache_mm, BTFIXUPCALL_NORM);
1665 	BTFIXUPSET_CALL(flush_cache_page, swift_flush_cache_page, BTFIXUPCALL_NORM);
1666 	BTFIXUPSET_CALL(flush_cache_range, swift_flush_cache_range, BTFIXUPCALL_NORM);
1667 
1668 
1669 	BTFIXUPSET_CALL(flush_tlb_all, swift_flush_tlb_all, BTFIXUPCALL_NORM);
1670 	BTFIXUPSET_CALL(flush_tlb_mm, swift_flush_tlb_mm, BTFIXUPCALL_NORM);
1671 	BTFIXUPSET_CALL(flush_tlb_page, swift_flush_tlb_page, BTFIXUPCALL_NORM);
1672 	BTFIXUPSET_CALL(flush_tlb_range, swift_flush_tlb_range, BTFIXUPCALL_NORM);
1673 
1674 	BTFIXUPSET_CALL(__flush_page_to_ram, swift_flush_page_to_ram, BTFIXUPCALL_NORM);
1675 	BTFIXUPSET_CALL(flush_sig_insns, swift_flush_sig_insns, BTFIXUPCALL_NORM);
1676 	BTFIXUPSET_CALL(flush_page_for_dma, swift_flush_page_for_dma, BTFIXUPCALL_NORM);
1677 
1678 	BTFIXUPSET_CALL(update_mmu_cache, swift_update_mmu_cache, BTFIXUPCALL_NORM);
1679 
1680 	flush_page_for_dma_global = 0;
1681 
1682 	/*
1683 	 * Are you now convinced that the Swift is one of the
1684 	 * biggest VLSI abortions of all time?  Bravo Fujitsu!
1685 	 * Fujitsu, the !#?!%$'d up processor people.  I bet if
1686 	 * you examined the microcode of the Swift you'd find
1687 	 * XXX's all over the place.
1688 	 */
1689 	poke_srmmu = poke_swift;
1690 }
1691 
1692 static void turbosparc_flush_cache_all(void)
1693 {
1694 	flush_user_windows();
1695 	turbosparc_idflash_clear();
1696 }
1697 
1698 static void turbosparc_flush_cache_mm(struct mm_struct *mm)
1699 {
1700 	FLUSH_BEGIN(mm)
1701 	flush_user_windows();
1702 	turbosparc_idflash_clear();
1703 	FLUSH_END
1704 }
1705 
1706 static void turbosparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1707 {
1708 	FLUSH_BEGIN(vma->vm_mm)
1709 	flush_user_windows();
1710 	turbosparc_idflash_clear();
1711 	FLUSH_END
1712 }
1713 
1714 static void turbosparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
1715 {
1716 	FLUSH_BEGIN(vma->vm_mm)
1717 	flush_user_windows();
1718 	if (vma->vm_flags & VM_EXEC)
1719 		turbosparc_flush_icache();
1720 	turbosparc_flush_dcache();
1721 	FLUSH_END
1722 }
1723 
1724 /* TurboSparc is copy-back, if we turn it on, but this does not work. */
1725 static void turbosparc_flush_page_to_ram(unsigned long page)
1726 {
1727 #ifdef TURBOSPARC_WRITEBACK
1728 	volatile unsigned long clear;
1729 
1730 	if (srmmu_hwprobe(page))
1731 		turbosparc_flush_page_cache(page);
1732 	clear = srmmu_get_fstatus();
1733 #endif
1734 }
1735 
1736 static void turbosparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
1737 {
1738 }
1739 
1740 static void turbosparc_flush_page_for_dma(unsigned long page)
1741 {
1742 	turbosparc_flush_dcache();
1743 }
1744 
1745 static void turbosparc_flush_tlb_all(void)
1746 {
1747 	srmmu_flush_whole_tlb();
1748 }
1749 
1750 static void turbosparc_flush_tlb_mm(struct mm_struct *mm)
1751 {
1752 	FLUSH_BEGIN(mm)
1753 	srmmu_flush_whole_tlb();
1754 	FLUSH_END
1755 }
1756 
1757 static void turbosparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1758 {
1759 	FLUSH_BEGIN(vma->vm_mm)
1760 	srmmu_flush_whole_tlb();
1761 	FLUSH_END
1762 }
1763 
1764 static void turbosparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
1765 {
1766 	FLUSH_BEGIN(vma->vm_mm)
1767 	srmmu_flush_whole_tlb();
1768 	FLUSH_END
1769 }
1770 
1771 
1772 static void __init poke_turbosparc(void)
1773 {
1774 	unsigned long mreg = srmmu_get_mmureg();
1775 	unsigned long ccreg;
1776 
1777 	/* Clear any crap from the cache or else... */
1778 	turbosparc_flush_cache_all();
1779 	mreg &= ~(TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE); /* Temporarily disable I & D caches */
1780 	mreg &= ~(TURBOSPARC_PCENABLE);		/* Don't check parity */
1781 	srmmu_set_mmureg(mreg);
1782 
1783 	ccreg = turbosparc_get_ccreg();
1784 
1785 #ifdef TURBOSPARC_WRITEBACK
1786 	ccreg |= (TURBOSPARC_SNENABLE);		/* Do DVMA snooping in Dcache */
1787 	ccreg &= ~(TURBOSPARC_uS2 | TURBOSPARC_WTENABLE);
1788 			/* Write-back D-cache, emulate VLSI
1789 			 * abortion number three, not number one */
1790 #else
1791 	/* For now let's play safe, optimize later */
1792 	ccreg |= (TURBOSPARC_SNENABLE | TURBOSPARC_WTENABLE);
1793 			/* Do DVMA snooping in Dcache, Write-thru D-cache */
1794 	ccreg &= ~(TURBOSPARC_uS2);
1795 			/* Emulate VLSI abortion number three, not number one */
1796 #endif
1797 
1798 	switch (ccreg & 7) {
1799 	case 0: /* No SE cache */
1800 	case 7: /* Test mode */
1801 		break;
1802 	default:
1803 		ccreg |= (TURBOSPARC_SCENABLE);
1804 	}
1805 	turbosparc_set_ccreg (ccreg);
1806 
1807 	mreg |= (TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE); /* I & D caches on */
1808 	mreg |= (TURBOSPARC_ICSNOOP);		/* Icache snooping on */
1809 	srmmu_set_mmureg(mreg);
1810 }
1811 
1812 static void __init init_turbosparc(void)
1813 {
1814 	srmmu_name = "Fujitsu TurboSparc";
1815 	srmmu_modtype = TurboSparc;
1816 
1817 	BTFIXUPSET_CALL(flush_cache_all, turbosparc_flush_cache_all, BTFIXUPCALL_NORM);
1818 	BTFIXUPSET_CALL(flush_cache_mm, turbosparc_flush_cache_mm, BTFIXUPCALL_NORM);
1819 	BTFIXUPSET_CALL(flush_cache_page, turbosparc_flush_cache_page, BTFIXUPCALL_NORM);
1820 	BTFIXUPSET_CALL(flush_cache_range, turbosparc_flush_cache_range, BTFIXUPCALL_NORM);
1821 
1822 	BTFIXUPSET_CALL(flush_tlb_all, turbosparc_flush_tlb_all, BTFIXUPCALL_NORM);
1823 	BTFIXUPSET_CALL(flush_tlb_mm, turbosparc_flush_tlb_mm, BTFIXUPCALL_NORM);
1824 	BTFIXUPSET_CALL(flush_tlb_page, turbosparc_flush_tlb_page, BTFIXUPCALL_NORM);
1825 	BTFIXUPSET_CALL(flush_tlb_range, turbosparc_flush_tlb_range, BTFIXUPCALL_NORM);
1826 
1827 	BTFIXUPSET_CALL(__flush_page_to_ram, turbosparc_flush_page_to_ram, BTFIXUPCALL_NORM);
1828 
1829 	BTFIXUPSET_CALL(flush_sig_insns, turbosparc_flush_sig_insns, BTFIXUPCALL_NOP);
1830 	BTFIXUPSET_CALL(flush_page_for_dma, turbosparc_flush_page_for_dma, BTFIXUPCALL_NORM);
1831 
1832 	poke_srmmu = poke_turbosparc;
1833 }
1834 
1835 static void __init poke_tsunami(void)
1836 {
1837 	unsigned long mreg = srmmu_get_mmureg();
1838 
1839 	tsunami_flush_icache();
1840 	tsunami_flush_dcache();
1841 	mreg &= ~TSUNAMI_ITD;
1842 	mreg |= (TSUNAMI_IENAB | TSUNAMI_DENAB);
1843 	srmmu_set_mmureg(mreg);
1844 }
1845 
1846 static void __init init_tsunami(void)
1847 {
1848 	/*
1849 	 * Tsunami's pretty sane, Sun and TI actually got it
1850 	 * somewhat right this time.  Fujitsu should have
1851 	 * taken some lessons from them.
1852 	 */
1853 
1854 	srmmu_name = "TI Tsunami";
1855 	srmmu_modtype = Tsunami;
1856 
1857 	BTFIXUPSET_CALL(flush_cache_all, tsunami_flush_cache_all, BTFIXUPCALL_NORM);
1858 	BTFIXUPSET_CALL(flush_cache_mm, tsunami_flush_cache_mm, BTFIXUPCALL_NORM);
1859 	BTFIXUPSET_CALL(flush_cache_page, tsunami_flush_cache_page, BTFIXUPCALL_NORM);
1860 	BTFIXUPSET_CALL(flush_cache_range, tsunami_flush_cache_range, BTFIXUPCALL_NORM);
1861 
1862 
1863 	BTFIXUPSET_CALL(flush_tlb_all, tsunami_flush_tlb_all, BTFIXUPCALL_NORM);
1864 	BTFIXUPSET_CALL(flush_tlb_mm, tsunami_flush_tlb_mm, BTFIXUPCALL_NORM);
1865 	BTFIXUPSET_CALL(flush_tlb_page, tsunami_flush_tlb_page, BTFIXUPCALL_NORM);
1866 	BTFIXUPSET_CALL(flush_tlb_range, tsunami_flush_tlb_range, BTFIXUPCALL_NORM);
1867 
1868 	BTFIXUPSET_CALL(__flush_page_to_ram, tsunami_flush_page_to_ram, BTFIXUPCALL_NOP);
1869 	BTFIXUPSET_CALL(flush_sig_insns, tsunami_flush_sig_insns, BTFIXUPCALL_NORM);
1870 	BTFIXUPSET_CALL(flush_page_for_dma, tsunami_flush_page_for_dma, BTFIXUPCALL_NORM);
1871 
1872 	poke_srmmu = poke_tsunami;
1873 
1874 	tsunami_setup_blockops();
1875 }
1876 
1877 static void __init poke_viking(void)
1878 {
1879 	unsigned long mreg = srmmu_get_mmureg();
1880 	static int smp_catch;
1881 
1882 	if(viking_mxcc_present) {
1883 		unsigned long mxcc_control = mxcc_get_creg();
1884 
1885 		mxcc_control |= (MXCC_CTL_ECE | MXCC_CTL_PRE | MXCC_CTL_MCE);
1886 		mxcc_control &= ~(MXCC_CTL_RRC);
1887 		mxcc_set_creg(mxcc_control);
1888 
1889 		/*
1890 		 * We don't need memory parity checks.
1891 		 * XXX This is a mess, have to dig out later. ecd.
1892 		viking_mxcc_turn_off_parity(&mreg, &mxcc_control);
1893 		 */
1894 
1895 		/* We do cache ptables on MXCC. */
1896 		mreg |= VIKING_TCENABLE;
1897 	} else {
1898 		unsigned long bpreg;
1899 
1900 		mreg &= ~(VIKING_TCENABLE);
1901 		if(smp_catch++) {
1902 			/* Must disable mixed-cmd mode here for other cpu's. */
1903 			bpreg = viking_get_bpreg();
1904 			bpreg &= ~(VIKING_ACTION_MIX);
1905 			viking_set_bpreg(bpreg);
1906 
1907 			/* Just in case PROM does something funny. */
1908 			msi_set_sync();
1909 		}
1910 	}
1911 
1912 	mreg |= VIKING_SPENABLE;
1913 	mreg |= (VIKING_ICENABLE | VIKING_DCENABLE);
1914 	mreg |= VIKING_SBENABLE;
1915 	mreg &= ~(VIKING_ACENABLE);
1916 	srmmu_set_mmureg(mreg);
1917 
1918 #ifdef CONFIG_SMP
1919 	/* Avoid unnecessary cross calls. */
1920 	BTFIXUPCOPY_CALL(flush_cache_all, local_flush_cache_all);
1921 	BTFIXUPCOPY_CALL(flush_cache_mm, local_flush_cache_mm);
1922 	BTFIXUPCOPY_CALL(flush_cache_range, local_flush_cache_range);
1923 	BTFIXUPCOPY_CALL(flush_cache_page, local_flush_cache_page);
1924 	BTFIXUPCOPY_CALL(__flush_page_to_ram, local_flush_page_to_ram);
1925 	BTFIXUPCOPY_CALL(flush_sig_insns, local_flush_sig_insns);
1926 	BTFIXUPCOPY_CALL(flush_page_for_dma, local_flush_page_for_dma);
1927 	btfixup();
1928 #endif
1929 }
1930 
1931 static void __init init_viking(void)
1932 {
1933 	unsigned long mreg = srmmu_get_mmureg();
1934 
1935 	/* Ahhh, the viking.  SRMMU VLSI abortion number two... */
1936 	if(mreg & VIKING_MMODE) {
1937 		srmmu_name = "TI Viking";
1938 		viking_mxcc_present = 0;
1939 		msi_set_sync();
1940 
1941 		BTFIXUPSET_CALL(pte_clear, srmmu_pte_clear, BTFIXUPCALL_NORM);
1942 		BTFIXUPSET_CALL(pmd_clear, srmmu_pmd_clear, BTFIXUPCALL_NORM);
1943 		BTFIXUPSET_CALL(pgd_clear, srmmu_pgd_clear, BTFIXUPCALL_NORM);
1944 
1945 		/*
1946 		 * We need this to make sure old viking takes no hits
1947 		 * on it's cache for dma snoops to workaround the
1948 		 * "load from non-cacheable memory" interrupt bug.
1949 		 * This is only necessary because of the new way in
1950 		 * which we use the IOMMU.
1951 		 */
1952 		BTFIXUPSET_CALL(flush_page_for_dma, viking_flush_page, BTFIXUPCALL_NORM);
1953 
1954 		flush_page_for_dma_global = 0;
1955 	} else {
1956 		srmmu_name = "TI Viking/MXCC";
1957 		viking_mxcc_present = 1;
1958 
1959 		srmmu_cache_pagetables = 1;
1960 
1961 		/* MXCC vikings lack the DMA snooping bug. */
1962 		BTFIXUPSET_CALL(flush_page_for_dma, viking_flush_page_for_dma, BTFIXUPCALL_NOP);
1963 	}
1964 
1965 	BTFIXUPSET_CALL(flush_cache_all, viking_flush_cache_all, BTFIXUPCALL_NORM);
1966 	BTFIXUPSET_CALL(flush_cache_mm, viking_flush_cache_mm, BTFIXUPCALL_NORM);
1967 	BTFIXUPSET_CALL(flush_cache_page, viking_flush_cache_page, BTFIXUPCALL_NORM);
1968 	BTFIXUPSET_CALL(flush_cache_range, viking_flush_cache_range, BTFIXUPCALL_NORM);
1969 
1970 #ifdef CONFIG_SMP
1971 	if (sparc_cpu_model == sun4d) {
1972 		BTFIXUPSET_CALL(flush_tlb_all, sun4dsmp_flush_tlb_all, BTFIXUPCALL_NORM);
1973 		BTFIXUPSET_CALL(flush_tlb_mm, sun4dsmp_flush_tlb_mm, BTFIXUPCALL_NORM);
1974 		BTFIXUPSET_CALL(flush_tlb_page, sun4dsmp_flush_tlb_page, BTFIXUPCALL_NORM);
1975 		BTFIXUPSET_CALL(flush_tlb_range, sun4dsmp_flush_tlb_range, BTFIXUPCALL_NORM);
1976 	} else
1977 #endif
1978 	{
1979 		BTFIXUPSET_CALL(flush_tlb_all, viking_flush_tlb_all, BTFIXUPCALL_NORM);
1980 		BTFIXUPSET_CALL(flush_tlb_mm, viking_flush_tlb_mm, BTFIXUPCALL_NORM);
1981 		BTFIXUPSET_CALL(flush_tlb_page, viking_flush_tlb_page, BTFIXUPCALL_NORM);
1982 		BTFIXUPSET_CALL(flush_tlb_range, viking_flush_tlb_range, BTFIXUPCALL_NORM);
1983 	}
1984 
1985 	BTFIXUPSET_CALL(__flush_page_to_ram, viking_flush_page_to_ram, BTFIXUPCALL_NOP);
1986 	BTFIXUPSET_CALL(flush_sig_insns, viking_flush_sig_insns, BTFIXUPCALL_NOP);
1987 
1988 	poke_srmmu = poke_viking;
1989 }
1990 
1991 /* Probe for the srmmu chip version. */
1992 static void __init get_srmmu_type(void)
1993 {
1994 	unsigned long mreg, psr;
1995 	unsigned long mod_typ, mod_rev, psr_typ, psr_vers;
1996 
1997 	srmmu_modtype = SRMMU_INVAL_MOD;
1998 	hwbug_bitmask = 0;
1999 
2000 	mreg = srmmu_get_mmureg(); psr = get_psr();
2001 	mod_typ = (mreg & 0xf0000000) >> 28;
2002 	mod_rev = (mreg & 0x0f000000) >> 24;
2003 	psr_typ = (psr >> 28) & 0xf;
2004 	psr_vers = (psr >> 24) & 0xf;
2005 
2006 	/* First, check for HyperSparc or Cypress. */
2007 	if(mod_typ == 1) {
2008 		switch(mod_rev) {
2009 		case 7:
2010 			/* UP or MP Hypersparc */
2011 			init_hypersparc();
2012 			break;
2013 		case 0:
2014 		case 2:
2015 			/* Uniprocessor Cypress */
2016 			init_cypress_604();
2017 			break;
2018 		case 10:
2019 		case 11:
2020 		case 12:
2021 			/* _REALLY OLD_ Cypress MP chips... */
2022 		case 13:
2023 		case 14:
2024 		case 15:
2025 			/* MP Cypress mmu/cache-controller */
2026 			init_cypress_605(mod_rev);
2027 			break;
2028 		default:
2029 			/* Some other Cypress revision, assume a 605. */
2030 			init_cypress_605(mod_rev);
2031 			break;
2032 		};
2033 		return;
2034 	}
2035 
2036 	/*
2037 	 * Now Fujitsu TurboSparc. It might happen that it is
2038 	 * in Swift emulation mode, so we will check later...
2039 	 */
2040 	if (psr_typ == 0 && psr_vers == 5) {
2041 		init_turbosparc();
2042 		return;
2043 	}
2044 
2045 	/* Next check for Fujitsu Swift. */
2046 	if(psr_typ == 0 && psr_vers == 4) {
2047 		int cpunode;
2048 		char node_str[128];
2049 
2050 		/* Look if it is not a TurboSparc emulating Swift... */
2051 		cpunode = prom_getchild(prom_root_node);
2052 		while((cpunode = prom_getsibling(cpunode)) != 0) {
2053 			prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
2054 			if(!strcmp(node_str, "cpu")) {
2055 				if (!prom_getintdefault(cpunode, "psr-implementation", 1) &&
2056 				    prom_getintdefault(cpunode, "psr-version", 1) == 5) {
2057 					init_turbosparc();
2058 					return;
2059 				}
2060 				break;
2061 			}
2062 		}
2063 
2064 		init_swift();
2065 		return;
2066 	}
2067 
2068 	/* Now the Viking family of srmmu. */
2069 	if(psr_typ == 4 &&
2070 	   ((psr_vers == 0) ||
2071 	    ((psr_vers == 1) && (mod_typ == 0) && (mod_rev == 0)))) {
2072 		init_viking();
2073 		return;
2074 	}
2075 
2076 	/* Finally the Tsunami. */
2077 	if(psr_typ == 4 && psr_vers == 1 && (mod_typ || mod_rev)) {
2078 		init_tsunami();
2079 		return;
2080 	}
2081 
2082 	/* Oh well */
2083 	srmmu_is_bad();
2084 }
2085 
2086 /* don't laugh, static pagetables */
2087 static void srmmu_check_pgt_cache(int low, int high)
2088 {
2089 }
2090 
2091 extern unsigned long spwin_mmu_patchme, fwin_mmu_patchme,
2092 	tsetup_mmu_patchme, rtrap_mmu_patchme;
2093 
2094 extern unsigned long spwin_srmmu_stackchk, srmmu_fwin_stackchk,
2095 	tsetup_srmmu_stackchk, srmmu_rett_stackchk;
2096 
2097 extern unsigned long srmmu_fault;
2098 
2099 #define PATCH_BRANCH(insn, dest) do { \
2100 		iaddr = &(insn); \
2101 		daddr = &(dest); \
2102 		*iaddr = SPARC_BRANCH((unsigned long) daddr, (unsigned long) iaddr); \
2103 	} while(0)
2104 
2105 static void __init patch_window_trap_handlers(void)
2106 {
2107 	unsigned long *iaddr, *daddr;
2108 
2109 	PATCH_BRANCH(spwin_mmu_patchme, spwin_srmmu_stackchk);
2110 	PATCH_BRANCH(fwin_mmu_patchme, srmmu_fwin_stackchk);
2111 	PATCH_BRANCH(tsetup_mmu_patchme, tsetup_srmmu_stackchk);
2112 	PATCH_BRANCH(rtrap_mmu_patchme, srmmu_rett_stackchk);
2113 	PATCH_BRANCH(sparc_ttable[SP_TRAP_TFLT].inst_three, srmmu_fault);
2114 	PATCH_BRANCH(sparc_ttable[SP_TRAP_DFLT].inst_three, srmmu_fault);
2115 	PATCH_BRANCH(sparc_ttable[SP_TRAP_DACC].inst_three, srmmu_fault);
2116 }
2117 
2118 #ifdef CONFIG_SMP
2119 /* Local cross-calls. */
2120 static void smp_flush_page_for_dma(unsigned long page)
2121 {
2122 	xc1((smpfunc_t) BTFIXUP_CALL(local_flush_page_for_dma), page);
2123 	local_flush_page_for_dma(page);
2124 }
2125 
2126 #endif
2127 
2128 static pte_t srmmu_pgoff_to_pte(unsigned long pgoff)
2129 {
2130 	return __pte((pgoff << SRMMU_PTE_FILE_SHIFT) | SRMMU_FILE);
2131 }
2132 
2133 static unsigned long srmmu_pte_to_pgoff(pte_t pte)
2134 {
2135 	return pte_val(pte) >> SRMMU_PTE_FILE_SHIFT;
2136 }
2137 
2138 static pgprot_t srmmu_pgprot_noncached(pgprot_t prot)
2139 {
2140 	prot &= ~__pgprot(SRMMU_CACHE);
2141 
2142 	return prot;
2143 }
2144 
2145 /* Load up routines and constants for sun4m and sun4d mmu */
2146 void __init ld_mmu_srmmu(void)
2147 {
2148 	extern void ld_mmu_iommu(void);
2149 	extern void ld_mmu_iounit(void);
2150 	extern void ___xchg32_sun4md(void);
2151 
2152 	BTFIXUPSET_SIMM13(pgdir_shift, SRMMU_PGDIR_SHIFT);
2153 	BTFIXUPSET_SETHI(pgdir_size, SRMMU_PGDIR_SIZE);
2154 	BTFIXUPSET_SETHI(pgdir_mask, SRMMU_PGDIR_MASK);
2155 
2156 	BTFIXUPSET_SIMM13(ptrs_per_pmd, SRMMU_PTRS_PER_PMD);
2157 	BTFIXUPSET_SIMM13(ptrs_per_pgd, SRMMU_PTRS_PER_PGD);
2158 
2159 	BTFIXUPSET_INT(page_none, pgprot_val(SRMMU_PAGE_NONE));
2160 	PAGE_SHARED = pgprot_val(SRMMU_PAGE_SHARED);
2161 	BTFIXUPSET_INT(page_copy, pgprot_val(SRMMU_PAGE_COPY));
2162 	BTFIXUPSET_INT(page_readonly, pgprot_val(SRMMU_PAGE_RDONLY));
2163 	BTFIXUPSET_INT(page_kernel, pgprot_val(SRMMU_PAGE_KERNEL));
2164 	page_kernel = pgprot_val(SRMMU_PAGE_KERNEL);
2165 
2166 	/* Functions */
2167 	BTFIXUPSET_CALL(pgprot_noncached, srmmu_pgprot_noncached, BTFIXUPCALL_NORM);
2168 #ifndef CONFIG_SMP
2169 	BTFIXUPSET_CALL(___xchg32, ___xchg32_sun4md, BTFIXUPCALL_SWAPG1G2);
2170 #endif
2171 	BTFIXUPSET_CALL(do_check_pgt_cache, srmmu_check_pgt_cache, BTFIXUPCALL_NOP);
2172 
2173 	BTFIXUPSET_CALL(set_pte, srmmu_set_pte, BTFIXUPCALL_SWAPO0O1);
2174 	BTFIXUPSET_CALL(switch_mm, srmmu_switch_mm, BTFIXUPCALL_NORM);
2175 
2176 	BTFIXUPSET_CALL(pte_pfn, srmmu_pte_pfn, BTFIXUPCALL_NORM);
2177 	BTFIXUPSET_CALL(pmd_page, srmmu_pmd_page, BTFIXUPCALL_NORM);
2178 	BTFIXUPSET_CALL(pgd_page_vaddr, srmmu_pgd_page, BTFIXUPCALL_NORM);
2179 
2180 	BTFIXUPSET_SETHI(none_mask, 0xF0000000);
2181 
2182 	BTFIXUPSET_CALL(pte_present, srmmu_pte_present, BTFIXUPCALL_NORM);
2183 	BTFIXUPSET_CALL(pte_clear, srmmu_pte_clear, BTFIXUPCALL_SWAPO0G0);
2184 
2185 	BTFIXUPSET_CALL(pmd_bad, srmmu_pmd_bad, BTFIXUPCALL_NORM);
2186 	BTFIXUPSET_CALL(pmd_present, srmmu_pmd_present, BTFIXUPCALL_NORM);
2187 	BTFIXUPSET_CALL(pmd_clear, srmmu_pmd_clear, BTFIXUPCALL_SWAPO0G0);
2188 
2189 	BTFIXUPSET_CALL(pgd_none, srmmu_pgd_none, BTFIXUPCALL_NORM);
2190 	BTFIXUPSET_CALL(pgd_bad, srmmu_pgd_bad, BTFIXUPCALL_NORM);
2191 	BTFIXUPSET_CALL(pgd_present, srmmu_pgd_present, BTFIXUPCALL_NORM);
2192 	BTFIXUPSET_CALL(pgd_clear, srmmu_pgd_clear, BTFIXUPCALL_SWAPO0G0);
2193 
2194 	BTFIXUPSET_CALL(mk_pte, srmmu_mk_pte, BTFIXUPCALL_NORM);
2195 	BTFIXUPSET_CALL(mk_pte_phys, srmmu_mk_pte_phys, BTFIXUPCALL_NORM);
2196 	BTFIXUPSET_CALL(mk_pte_io, srmmu_mk_pte_io, BTFIXUPCALL_NORM);
2197 	BTFIXUPSET_CALL(pgd_set, srmmu_pgd_set, BTFIXUPCALL_NORM);
2198 	BTFIXUPSET_CALL(pmd_set, srmmu_pmd_set, BTFIXUPCALL_NORM);
2199 	BTFIXUPSET_CALL(pmd_populate, srmmu_pmd_populate, BTFIXUPCALL_NORM);
2200 
2201 	BTFIXUPSET_INT(pte_modify_mask, SRMMU_CHG_MASK);
2202 	BTFIXUPSET_CALL(pmd_offset, srmmu_pmd_offset, BTFIXUPCALL_NORM);
2203 	BTFIXUPSET_CALL(pte_offset_kernel, srmmu_pte_offset, BTFIXUPCALL_NORM);
2204 
2205 	BTFIXUPSET_CALL(free_pte_fast, srmmu_free_pte_fast, BTFIXUPCALL_NORM);
2206 	BTFIXUPSET_CALL(pte_free, srmmu_pte_free, BTFIXUPCALL_NORM);
2207 	BTFIXUPSET_CALL(pte_alloc_one_kernel, srmmu_pte_alloc_one_kernel, BTFIXUPCALL_NORM);
2208 	BTFIXUPSET_CALL(pte_alloc_one, srmmu_pte_alloc_one, BTFIXUPCALL_NORM);
2209 	BTFIXUPSET_CALL(free_pmd_fast, srmmu_pmd_free, BTFIXUPCALL_NORM);
2210 	BTFIXUPSET_CALL(pmd_alloc_one, srmmu_pmd_alloc_one, BTFIXUPCALL_NORM);
2211 	BTFIXUPSET_CALL(free_pgd_fast, srmmu_free_pgd_fast, BTFIXUPCALL_NORM);
2212 	BTFIXUPSET_CALL(get_pgd_fast, srmmu_get_pgd_fast, BTFIXUPCALL_NORM);
2213 
2214 	BTFIXUPSET_HALF(pte_writei, SRMMU_WRITE);
2215 	BTFIXUPSET_HALF(pte_dirtyi, SRMMU_DIRTY);
2216 	BTFIXUPSET_HALF(pte_youngi, SRMMU_REF);
2217 	BTFIXUPSET_HALF(pte_filei, SRMMU_FILE);
2218 	BTFIXUPSET_HALF(pte_wrprotecti, SRMMU_WRITE);
2219 	BTFIXUPSET_HALF(pte_mkcleani, SRMMU_DIRTY);
2220 	BTFIXUPSET_HALF(pte_mkoldi, SRMMU_REF);
2221 	BTFIXUPSET_CALL(pte_mkwrite, srmmu_pte_mkwrite, BTFIXUPCALL_ORINT(SRMMU_WRITE));
2222 	BTFIXUPSET_CALL(pte_mkdirty, srmmu_pte_mkdirty, BTFIXUPCALL_ORINT(SRMMU_DIRTY));
2223 	BTFIXUPSET_CALL(pte_mkyoung, srmmu_pte_mkyoung, BTFIXUPCALL_ORINT(SRMMU_REF));
2224 	BTFIXUPSET_CALL(update_mmu_cache, srmmu_update_mmu_cache, BTFIXUPCALL_NOP);
2225 	BTFIXUPSET_CALL(destroy_context, srmmu_destroy_context, BTFIXUPCALL_NORM);
2226 
2227 	BTFIXUPSET_CALL(sparc_mapiorange, srmmu_mapiorange, BTFIXUPCALL_NORM);
2228 	BTFIXUPSET_CALL(sparc_unmapiorange, srmmu_unmapiorange, BTFIXUPCALL_NORM);
2229 
2230 	BTFIXUPSET_CALL(__swp_type, srmmu_swp_type, BTFIXUPCALL_NORM);
2231 	BTFIXUPSET_CALL(__swp_offset, srmmu_swp_offset, BTFIXUPCALL_NORM);
2232 	BTFIXUPSET_CALL(__swp_entry, srmmu_swp_entry, BTFIXUPCALL_NORM);
2233 
2234 	BTFIXUPSET_CALL(mmu_info, srmmu_mmu_info, BTFIXUPCALL_NORM);
2235 
2236 	BTFIXUPSET_CALL(alloc_thread_info, srmmu_alloc_thread_info, BTFIXUPCALL_NORM);
2237 	BTFIXUPSET_CALL(free_thread_info, srmmu_free_thread_info, BTFIXUPCALL_NORM);
2238 
2239 	BTFIXUPSET_CALL(pte_to_pgoff, srmmu_pte_to_pgoff, BTFIXUPCALL_NORM);
2240 	BTFIXUPSET_CALL(pgoff_to_pte, srmmu_pgoff_to_pte, BTFIXUPCALL_NORM);
2241 
2242 	get_srmmu_type();
2243 	patch_window_trap_handlers();
2244 
2245 #ifdef CONFIG_SMP
2246 	/* El switcheroo... */
2247 
2248 	BTFIXUPCOPY_CALL(local_flush_cache_all, flush_cache_all);
2249 	BTFIXUPCOPY_CALL(local_flush_cache_mm, flush_cache_mm);
2250 	BTFIXUPCOPY_CALL(local_flush_cache_range, flush_cache_range);
2251 	BTFIXUPCOPY_CALL(local_flush_cache_page, flush_cache_page);
2252 	BTFIXUPCOPY_CALL(local_flush_tlb_all, flush_tlb_all);
2253 	BTFIXUPCOPY_CALL(local_flush_tlb_mm, flush_tlb_mm);
2254 	BTFIXUPCOPY_CALL(local_flush_tlb_range, flush_tlb_range);
2255 	BTFIXUPCOPY_CALL(local_flush_tlb_page, flush_tlb_page);
2256 	BTFIXUPCOPY_CALL(local_flush_page_to_ram, __flush_page_to_ram);
2257 	BTFIXUPCOPY_CALL(local_flush_sig_insns, flush_sig_insns);
2258 	BTFIXUPCOPY_CALL(local_flush_page_for_dma, flush_page_for_dma);
2259 
2260 	BTFIXUPSET_CALL(flush_cache_all, smp_flush_cache_all, BTFIXUPCALL_NORM);
2261 	BTFIXUPSET_CALL(flush_cache_mm, smp_flush_cache_mm, BTFIXUPCALL_NORM);
2262 	BTFIXUPSET_CALL(flush_cache_range, smp_flush_cache_range, BTFIXUPCALL_NORM);
2263 	BTFIXUPSET_CALL(flush_cache_page, smp_flush_cache_page, BTFIXUPCALL_NORM);
2264 	if (sparc_cpu_model != sun4d) {
2265 		BTFIXUPSET_CALL(flush_tlb_all, smp_flush_tlb_all, BTFIXUPCALL_NORM);
2266 		BTFIXUPSET_CALL(flush_tlb_mm, smp_flush_tlb_mm, BTFIXUPCALL_NORM);
2267 		BTFIXUPSET_CALL(flush_tlb_range, smp_flush_tlb_range, BTFIXUPCALL_NORM);
2268 		BTFIXUPSET_CALL(flush_tlb_page, smp_flush_tlb_page, BTFIXUPCALL_NORM);
2269 	}
2270 	BTFIXUPSET_CALL(__flush_page_to_ram, smp_flush_page_to_ram, BTFIXUPCALL_NORM);
2271 	BTFIXUPSET_CALL(flush_sig_insns, smp_flush_sig_insns, BTFIXUPCALL_NORM);
2272 	BTFIXUPSET_CALL(flush_page_for_dma, smp_flush_page_for_dma, BTFIXUPCALL_NORM);
2273 #endif
2274 
2275 	if (sparc_cpu_model == sun4d)
2276 		ld_mmu_iounit();
2277 	else
2278 		ld_mmu_iommu();
2279 #ifdef CONFIG_SMP
2280 	if (sparc_cpu_model == sun4d)
2281 		sun4d_init_smp();
2282 	else
2283 		sun4m_init_smp();
2284 #endif
2285 }
2286