xref: /openbmc/linux/arch/sparc/mm/srmmu.c (revision 861e10be)
1 /*
2  * srmmu.c:  SRMMU specific routines for memory management.
3  *
4  * Copyright (C) 1995 David S. Miller  (davem@caip.rutgers.edu)
5  * Copyright (C) 1995,2002 Pete Zaitcev (zaitcev@yahoo.com)
6  * Copyright (C) 1996 Eddie C. Dost    (ecd@skynet.be)
7  * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
8  * Copyright (C) 1999,2000 Anton Blanchard (anton@samba.org)
9  */
10 
11 #include <linux/seq_file.h>
12 #include <linux/spinlock.h>
13 #include <linux/bootmem.h>
14 #include <linux/pagemap.h>
15 #include <linux/vmalloc.h>
16 #include <linux/kdebug.h>
17 #include <linux/kernel.h>
18 #include <linux/init.h>
19 #include <linux/log2.h>
20 #include <linux/gfp.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 
24 #include <asm/mmu_context.h>
25 #include <asm/cacheflush.h>
26 #include <asm/tlbflush.h>
27 #include <asm/io-unit.h>
28 #include <asm/pgalloc.h>
29 #include <asm/pgtable.h>
30 #include <asm/bitext.h>
31 #include <asm/vaddrs.h>
32 #include <asm/cache.h>
33 #include <asm/traps.h>
34 #include <asm/oplib.h>
35 #include <asm/mbus.h>
36 #include <asm/page.h>
37 #include <asm/asi.h>
38 #include <asm/msi.h>
39 #include <asm/smp.h>
40 #include <asm/io.h>
41 
42 /* Now the cpu specific definitions. */
43 #include <asm/turbosparc.h>
44 #include <asm/tsunami.h>
45 #include <asm/viking.h>
46 #include <asm/swift.h>
47 #include <asm/leon.h>
48 #include <asm/mxcc.h>
49 #include <asm/ross.h>
50 
51 #include "srmmu.h"
52 
53 enum mbus_module srmmu_modtype;
54 static unsigned int hwbug_bitmask;
55 int vac_cache_size;
56 int vac_line_size;
57 
58 extern struct resource sparc_iomap;
59 
60 extern unsigned long last_valid_pfn;
61 
62 static pgd_t *srmmu_swapper_pg_dir;
63 
64 const struct sparc32_cachetlb_ops *sparc32_cachetlb_ops;
65 
66 #ifdef CONFIG_SMP
67 const struct sparc32_cachetlb_ops *local_ops;
68 
69 #define FLUSH_BEGIN(mm)
70 #define FLUSH_END
71 #else
72 #define FLUSH_BEGIN(mm) if ((mm)->context != NO_CONTEXT) {
73 #define FLUSH_END	}
74 #endif
75 
76 int flush_page_for_dma_global = 1;
77 
78 char *srmmu_name;
79 
80 ctxd_t *srmmu_ctx_table_phys;
81 static ctxd_t *srmmu_context_table;
82 
83 int viking_mxcc_present;
84 static DEFINE_SPINLOCK(srmmu_context_spinlock);
85 
86 static int is_hypersparc;
87 
88 static int srmmu_cache_pagetables;
89 
90 /* these will be initialized in srmmu_nocache_calcsize() */
91 static unsigned long srmmu_nocache_size;
92 static unsigned long srmmu_nocache_end;
93 
94 /* 1 bit <=> 256 bytes of nocache <=> 64 PTEs */
95 #define SRMMU_NOCACHE_BITMAP_SHIFT (PAGE_SHIFT - 4)
96 
97 /* The context table is a nocache user with the biggest alignment needs. */
98 #define SRMMU_NOCACHE_ALIGN_MAX (sizeof(ctxd_t)*SRMMU_MAX_CONTEXTS)
99 
100 void *srmmu_nocache_pool;
101 void *srmmu_nocache_bitmap;
102 static struct bit_map srmmu_nocache_map;
103 
104 static inline int srmmu_pmd_none(pmd_t pmd)
105 { return !(pmd_val(pmd) & 0xFFFFFFF); }
106 
107 /* XXX should we hyper_flush_whole_icache here - Anton */
108 static inline void srmmu_ctxd_set(ctxd_t *ctxp, pgd_t *pgdp)
109 { set_pte((pte_t *)ctxp, (SRMMU_ET_PTD | (__nocache_pa((unsigned long) pgdp) >> 4))); }
110 
111 void pmd_set(pmd_t *pmdp, pte_t *ptep)
112 {
113 	unsigned long ptp;	/* Physical address, shifted right by 4 */
114 	int i;
115 
116 	ptp = __nocache_pa((unsigned long) ptep) >> 4;
117 	for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) {
118 		set_pte((pte_t *)&pmdp->pmdv[i], SRMMU_ET_PTD | ptp);
119 		ptp += (SRMMU_REAL_PTRS_PER_PTE*sizeof(pte_t) >> 4);
120 	}
121 }
122 
123 void pmd_populate(struct mm_struct *mm, pmd_t *pmdp, struct page *ptep)
124 {
125 	unsigned long ptp;	/* Physical address, shifted right by 4 */
126 	int i;
127 
128 	ptp = page_to_pfn(ptep) << (PAGE_SHIFT-4);	/* watch for overflow */
129 	for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) {
130 		set_pte((pte_t *)&pmdp->pmdv[i], SRMMU_ET_PTD | ptp);
131 		ptp += (SRMMU_REAL_PTRS_PER_PTE*sizeof(pte_t) >> 4);
132 	}
133 }
134 
135 /* Find an entry in the third-level page table.. */
136 pte_t *pte_offset_kernel(pmd_t *dir, unsigned long address)
137 {
138 	void *pte;
139 
140 	pte = __nocache_va((dir->pmdv[0] & SRMMU_PTD_PMASK) << 4);
141 	return (pte_t *) pte +
142 	    ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
143 }
144 
145 /*
146  * size: bytes to allocate in the nocache area.
147  * align: bytes, number to align at.
148  * Returns the virtual address of the allocated area.
149  */
150 static void *__srmmu_get_nocache(int size, int align)
151 {
152 	int offset;
153 	unsigned long addr;
154 
155 	if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
156 		printk(KERN_ERR "Size 0x%x too small for nocache request\n",
157 		       size);
158 		size = SRMMU_NOCACHE_BITMAP_SHIFT;
159 	}
160 	if (size & (SRMMU_NOCACHE_BITMAP_SHIFT - 1)) {
161 		printk(KERN_ERR "Size 0x%x unaligned int nocache request\n",
162 		       size);
163 		size += SRMMU_NOCACHE_BITMAP_SHIFT - 1;
164 	}
165 	BUG_ON(align > SRMMU_NOCACHE_ALIGN_MAX);
166 
167 	offset = bit_map_string_get(&srmmu_nocache_map,
168 				    size >> SRMMU_NOCACHE_BITMAP_SHIFT,
169 				    align >> SRMMU_NOCACHE_BITMAP_SHIFT);
170 	if (offset == -1) {
171 		printk(KERN_ERR "srmmu: out of nocache %d: %d/%d\n",
172 		       size, (int) srmmu_nocache_size,
173 		       srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
174 		return 0;
175 	}
176 
177 	addr = SRMMU_NOCACHE_VADDR + (offset << SRMMU_NOCACHE_BITMAP_SHIFT);
178 	return (void *)addr;
179 }
180 
181 void *srmmu_get_nocache(int size, int align)
182 {
183 	void *tmp;
184 
185 	tmp = __srmmu_get_nocache(size, align);
186 
187 	if (tmp)
188 		memset(tmp, 0, size);
189 
190 	return tmp;
191 }
192 
193 void srmmu_free_nocache(void *addr, int size)
194 {
195 	unsigned long vaddr;
196 	int offset;
197 
198 	vaddr = (unsigned long)addr;
199 	if (vaddr < SRMMU_NOCACHE_VADDR) {
200 		printk("Vaddr %lx is smaller than nocache base 0x%lx\n",
201 		    vaddr, (unsigned long)SRMMU_NOCACHE_VADDR);
202 		BUG();
203 	}
204 	if (vaddr + size > srmmu_nocache_end) {
205 		printk("Vaddr %lx is bigger than nocache end 0x%lx\n",
206 		    vaddr, srmmu_nocache_end);
207 		BUG();
208 	}
209 	if (!is_power_of_2(size)) {
210 		printk("Size 0x%x is not a power of 2\n", size);
211 		BUG();
212 	}
213 	if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
214 		printk("Size 0x%x is too small\n", size);
215 		BUG();
216 	}
217 	if (vaddr & (size - 1)) {
218 		printk("Vaddr %lx is not aligned to size 0x%x\n", vaddr, size);
219 		BUG();
220 	}
221 
222 	offset = (vaddr - SRMMU_NOCACHE_VADDR) >> SRMMU_NOCACHE_BITMAP_SHIFT;
223 	size = size >> SRMMU_NOCACHE_BITMAP_SHIFT;
224 
225 	bit_map_clear(&srmmu_nocache_map, offset, size);
226 }
227 
228 static void srmmu_early_allocate_ptable_skeleton(unsigned long start,
229 						 unsigned long end);
230 
231 /* Return how much physical memory we have.  */
232 static unsigned long __init probe_memory(void)
233 {
234 	unsigned long total = 0;
235 	int i;
236 
237 	for (i = 0; sp_banks[i].num_bytes; i++)
238 		total += sp_banks[i].num_bytes;
239 
240 	return total;
241 }
242 
243 /*
244  * Reserve nocache dynamically proportionally to the amount of
245  * system RAM. -- Tomas Szepe <szepe@pinerecords.com>, June 2002
246  */
247 static void __init srmmu_nocache_calcsize(void)
248 {
249 	unsigned long sysmemavail = probe_memory() / 1024;
250 	int srmmu_nocache_npages;
251 
252 	srmmu_nocache_npages =
253 		sysmemavail / SRMMU_NOCACHE_ALCRATIO / 1024 * 256;
254 
255  /* P3 XXX The 4x overuse: corroborated by /proc/meminfo. */
256 	// if (srmmu_nocache_npages < 256) srmmu_nocache_npages = 256;
257 	if (srmmu_nocache_npages < SRMMU_MIN_NOCACHE_PAGES)
258 		srmmu_nocache_npages = SRMMU_MIN_NOCACHE_PAGES;
259 
260 	/* anything above 1280 blows up */
261 	if (srmmu_nocache_npages > SRMMU_MAX_NOCACHE_PAGES)
262 		srmmu_nocache_npages = SRMMU_MAX_NOCACHE_PAGES;
263 
264 	srmmu_nocache_size = srmmu_nocache_npages * PAGE_SIZE;
265 	srmmu_nocache_end = SRMMU_NOCACHE_VADDR + srmmu_nocache_size;
266 }
267 
268 static void __init srmmu_nocache_init(void)
269 {
270 	unsigned int bitmap_bits;
271 	pgd_t *pgd;
272 	pmd_t *pmd;
273 	pte_t *pte;
274 	unsigned long paddr, vaddr;
275 	unsigned long pteval;
276 
277 	bitmap_bits = srmmu_nocache_size >> SRMMU_NOCACHE_BITMAP_SHIFT;
278 
279 	srmmu_nocache_pool = __alloc_bootmem(srmmu_nocache_size,
280 		SRMMU_NOCACHE_ALIGN_MAX, 0UL);
281 	memset(srmmu_nocache_pool, 0, srmmu_nocache_size);
282 
283 	srmmu_nocache_bitmap = __alloc_bootmem(bitmap_bits >> 3, SMP_CACHE_BYTES, 0UL);
284 	bit_map_init(&srmmu_nocache_map, srmmu_nocache_bitmap, bitmap_bits);
285 
286 	srmmu_swapper_pg_dir = __srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
287 	memset(__nocache_fix(srmmu_swapper_pg_dir), 0, SRMMU_PGD_TABLE_SIZE);
288 	init_mm.pgd = srmmu_swapper_pg_dir;
289 
290 	srmmu_early_allocate_ptable_skeleton(SRMMU_NOCACHE_VADDR, srmmu_nocache_end);
291 
292 	paddr = __pa((unsigned long)srmmu_nocache_pool);
293 	vaddr = SRMMU_NOCACHE_VADDR;
294 
295 	while (vaddr < srmmu_nocache_end) {
296 		pgd = pgd_offset_k(vaddr);
297 		pmd = pmd_offset(__nocache_fix(pgd), vaddr);
298 		pte = pte_offset_kernel(__nocache_fix(pmd), vaddr);
299 
300 		pteval = ((paddr >> 4) | SRMMU_ET_PTE | SRMMU_PRIV);
301 
302 		if (srmmu_cache_pagetables)
303 			pteval |= SRMMU_CACHE;
304 
305 		set_pte(__nocache_fix(pte), __pte(pteval));
306 
307 		vaddr += PAGE_SIZE;
308 		paddr += PAGE_SIZE;
309 	}
310 
311 	flush_cache_all();
312 	flush_tlb_all();
313 }
314 
315 pgd_t *get_pgd_fast(void)
316 {
317 	pgd_t *pgd = NULL;
318 
319 	pgd = __srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
320 	if (pgd) {
321 		pgd_t *init = pgd_offset_k(0);
322 		memset(pgd, 0, USER_PTRS_PER_PGD * sizeof(pgd_t));
323 		memcpy(pgd + USER_PTRS_PER_PGD, init + USER_PTRS_PER_PGD,
324 						(PTRS_PER_PGD - USER_PTRS_PER_PGD) * sizeof(pgd_t));
325 	}
326 
327 	return pgd;
328 }
329 
330 /*
331  * Hardware needs alignment to 256 only, but we align to whole page size
332  * to reduce fragmentation problems due to the buddy principle.
333  * XXX Provide actual fragmentation statistics in /proc.
334  *
335  * Alignments up to the page size are the same for physical and virtual
336  * addresses of the nocache area.
337  */
338 pgtable_t pte_alloc_one(struct mm_struct *mm, unsigned long address)
339 {
340 	unsigned long pte;
341 	struct page *page;
342 
343 	if ((pte = (unsigned long)pte_alloc_one_kernel(mm, address)) == 0)
344 		return NULL;
345 	page = pfn_to_page(__nocache_pa(pte) >> PAGE_SHIFT);
346 	pgtable_page_ctor(page);
347 	return page;
348 }
349 
350 void pte_free(struct mm_struct *mm, pgtable_t pte)
351 {
352 	unsigned long p;
353 
354 	pgtable_page_dtor(pte);
355 	p = (unsigned long)page_address(pte);	/* Cached address (for test) */
356 	if (p == 0)
357 		BUG();
358 	p = page_to_pfn(pte) << PAGE_SHIFT;	/* Physical address */
359 
360 	/* free non cached virtual address*/
361 	srmmu_free_nocache(__nocache_va(p), PTE_SIZE);
362 }
363 
364 /* context handling - a dynamically sized pool is used */
365 #define NO_CONTEXT	-1
366 
367 struct ctx_list {
368 	struct ctx_list *next;
369 	struct ctx_list *prev;
370 	unsigned int ctx_number;
371 	struct mm_struct *ctx_mm;
372 };
373 
374 static struct ctx_list *ctx_list_pool;
375 static struct ctx_list ctx_free;
376 static struct ctx_list ctx_used;
377 
378 /* At boot time we determine the number of contexts */
379 static int num_contexts;
380 
381 static inline void remove_from_ctx_list(struct ctx_list *entry)
382 {
383 	entry->next->prev = entry->prev;
384 	entry->prev->next = entry->next;
385 }
386 
387 static inline void add_to_ctx_list(struct ctx_list *head, struct ctx_list *entry)
388 {
389 	entry->next = head;
390 	(entry->prev = head->prev)->next = entry;
391 	head->prev = entry;
392 }
393 #define add_to_free_ctxlist(entry) add_to_ctx_list(&ctx_free, entry)
394 #define add_to_used_ctxlist(entry) add_to_ctx_list(&ctx_used, entry)
395 
396 
397 static inline void alloc_context(struct mm_struct *old_mm, struct mm_struct *mm)
398 {
399 	struct ctx_list *ctxp;
400 
401 	ctxp = ctx_free.next;
402 	if (ctxp != &ctx_free) {
403 		remove_from_ctx_list(ctxp);
404 		add_to_used_ctxlist(ctxp);
405 		mm->context = ctxp->ctx_number;
406 		ctxp->ctx_mm = mm;
407 		return;
408 	}
409 	ctxp = ctx_used.next;
410 	if (ctxp->ctx_mm == old_mm)
411 		ctxp = ctxp->next;
412 	if (ctxp == &ctx_used)
413 		panic("out of mmu contexts");
414 	flush_cache_mm(ctxp->ctx_mm);
415 	flush_tlb_mm(ctxp->ctx_mm);
416 	remove_from_ctx_list(ctxp);
417 	add_to_used_ctxlist(ctxp);
418 	ctxp->ctx_mm->context = NO_CONTEXT;
419 	ctxp->ctx_mm = mm;
420 	mm->context = ctxp->ctx_number;
421 }
422 
423 static inline void free_context(int context)
424 {
425 	struct ctx_list *ctx_old;
426 
427 	ctx_old = ctx_list_pool + context;
428 	remove_from_ctx_list(ctx_old);
429 	add_to_free_ctxlist(ctx_old);
430 }
431 
432 static void __init sparc_context_init(int numctx)
433 {
434 	int ctx;
435 	unsigned long size;
436 
437 	size = numctx * sizeof(struct ctx_list);
438 	ctx_list_pool = __alloc_bootmem(size, SMP_CACHE_BYTES, 0UL);
439 
440 	for (ctx = 0; ctx < numctx; ctx++) {
441 		struct ctx_list *clist;
442 
443 		clist = (ctx_list_pool + ctx);
444 		clist->ctx_number = ctx;
445 		clist->ctx_mm = NULL;
446 	}
447 	ctx_free.next = ctx_free.prev = &ctx_free;
448 	ctx_used.next = ctx_used.prev = &ctx_used;
449 	for (ctx = 0; ctx < numctx; ctx++)
450 		add_to_free_ctxlist(ctx_list_pool + ctx);
451 }
452 
453 void switch_mm(struct mm_struct *old_mm, struct mm_struct *mm,
454 	       struct task_struct *tsk)
455 {
456 	if (mm->context == NO_CONTEXT) {
457 		spin_lock(&srmmu_context_spinlock);
458 		alloc_context(old_mm, mm);
459 		spin_unlock(&srmmu_context_spinlock);
460 		srmmu_ctxd_set(&srmmu_context_table[mm->context], mm->pgd);
461 	}
462 
463 	if (sparc_cpu_model == sparc_leon)
464 		leon_switch_mm();
465 
466 	if (is_hypersparc)
467 		hyper_flush_whole_icache();
468 
469 	srmmu_set_context(mm->context);
470 }
471 
472 /* Low level IO area allocation on the SRMMU. */
473 static inline void srmmu_mapioaddr(unsigned long physaddr,
474 				   unsigned long virt_addr, int bus_type)
475 {
476 	pgd_t *pgdp;
477 	pmd_t *pmdp;
478 	pte_t *ptep;
479 	unsigned long tmp;
480 
481 	physaddr &= PAGE_MASK;
482 	pgdp = pgd_offset_k(virt_addr);
483 	pmdp = pmd_offset(pgdp, virt_addr);
484 	ptep = pte_offset_kernel(pmdp, virt_addr);
485 	tmp = (physaddr >> 4) | SRMMU_ET_PTE;
486 
487 	/* I need to test whether this is consistent over all
488 	 * sun4m's.  The bus_type represents the upper 4 bits of
489 	 * 36-bit physical address on the I/O space lines...
490 	 */
491 	tmp |= (bus_type << 28);
492 	tmp |= SRMMU_PRIV;
493 	__flush_page_to_ram(virt_addr);
494 	set_pte(ptep, __pte(tmp));
495 }
496 
497 void srmmu_mapiorange(unsigned int bus, unsigned long xpa,
498 		      unsigned long xva, unsigned int len)
499 {
500 	while (len != 0) {
501 		len -= PAGE_SIZE;
502 		srmmu_mapioaddr(xpa, xva, bus);
503 		xva += PAGE_SIZE;
504 		xpa += PAGE_SIZE;
505 	}
506 	flush_tlb_all();
507 }
508 
509 static inline void srmmu_unmapioaddr(unsigned long virt_addr)
510 {
511 	pgd_t *pgdp;
512 	pmd_t *pmdp;
513 	pte_t *ptep;
514 
515 	pgdp = pgd_offset_k(virt_addr);
516 	pmdp = pmd_offset(pgdp, virt_addr);
517 	ptep = pte_offset_kernel(pmdp, virt_addr);
518 
519 	/* No need to flush uncacheable page. */
520 	__pte_clear(ptep);
521 }
522 
523 void srmmu_unmapiorange(unsigned long virt_addr, unsigned int len)
524 {
525 	while (len != 0) {
526 		len -= PAGE_SIZE;
527 		srmmu_unmapioaddr(virt_addr);
528 		virt_addr += PAGE_SIZE;
529 	}
530 	flush_tlb_all();
531 }
532 
533 /* tsunami.S */
534 extern void tsunami_flush_cache_all(void);
535 extern void tsunami_flush_cache_mm(struct mm_struct *mm);
536 extern void tsunami_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
537 extern void tsunami_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
538 extern void tsunami_flush_page_to_ram(unsigned long page);
539 extern void tsunami_flush_page_for_dma(unsigned long page);
540 extern void tsunami_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
541 extern void tsunami_flush_tlb_all(void);
542 extern void tsunami_flush_tlb_mm(struct mm_struct *mm);
543 extern void tsunami_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
544 extern void tsunami_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
545 extern void tsunami_setup_blockops(void);
546 
547 /* swift.S */
548 extern void swift_flush_cache_all(void);
549 extern void swift_flush_cache_mm(struct mm_struct *mm);
550 extern void swift_flush_cache_range(struct vm_area_struct *vma,
551 				    unsigned long start, unsigned long end);
552 extern void swift_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
553 extern void swift_flush_page_to_ram(unsigned long page);
554 extern void swift_flush_page_for_dma(unsigned long page);
555 extern void swift_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
556 extern void swift_flush_tlb_all(void);
557 extern void swift_flush_tlb_mm(struct mm_struct *mm);
558 extern void swift_flush_tlb_range(struct vm_area_struct *vma,
559 				  unsigned long start, unsigned long end);
560 extern void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
561 
562 #if 0  /* P3: deadwood to debug precise flushes on Swift. */
563 void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
564 {
565 	int cctx, ctx1;
566 
567 	page &= PAGE_MASK;
568 	if ((ctx1 = vma->vm_mm->context) != -1) {
569 		cctx = srmmu_get_context();
570 /* Is context # ever different from current context? P3 */
571 		if (cctx != ctx1) {
572 			printk("flush ctx %02x curr %02x\n", ctx1, cctx);
573 			srmmu_set_context(ctx1);
574 			swift_flush_page(page);
575 			__asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
576 					"r" (page), "i" (ASI_M_FLUSH_PROBE));
577 			srmmu_set_context(cctx);
578 		} else {
579 			 /* Rm. prot. bits from virt. c. */
580 			/* swift_flush_cache_all(); */
581 			/* swift_flush_cache_page(vma, page); */
582 			swift_flush_page(page);
583 
584 			__asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
585 				"r" (page), "i" (ASI_M_FLUSH_PROBE));
586 			/* same as above: srmmu_flush_tlb_page() */
587 		}
588 	}
589 }
590 #endif
591 
592 /*
593  * The following are all MBUS based SRMMU modules, and therefore could
594  * be found in a multiprocessor configuration.  On the whole, these
595  * chips seems to be much more touchy about DVMA and page tables
596  * with respect to cache coherency.
597  */
598 
599 /* viking.S */
600 extern void viking_flush_cache_all(void);
601 extern void viking_flush_cache_mm(struct mm_struct *mm);
602 extern void viking_flush_cache_range(struct vm_area_struct *vma, unsigned long start,
603 				     unsigned long end);
604 extern void viking_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
605 extern void viking_flush_page_to_ram(unsigned long page);
606 extern void viking_flush_page_for_dma(unsigned long page);
607 extern void viking_flush_sig_insns(struct mm_struct *mm, unsigned long addr);
608 extern void viking_flush_page(unsigned long page);
609 extern void viking_mxcc_flush_page(unsigned long page);
610 extern void viking_flush_tlb_all(void);
611 extern void viking_flush_tlb_mm(struct mm_struct *mm);
612 extern void viking_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
613 				   unsigned long end);
614 extern void viking_flush_tlb_page(struct vm_area_struct *vma,
615 				  unsigned long page);
616 extern void sun4dsmp_flush_tlb_all(void);
617 extern void sun4dsmp_flush_tlb_mm(struct mm_struct *mm);
618 extern void sun4dsmp_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
619 				   unsigned long end);
620 extern void sun4dsmp_flush_tlb_page(struct vm_area_struct *vma,
621 				  unsigned long page);
622 
623 /* hypersparc.S */
624 extern void hypersparc_flush_cache_all(void);
625 extern void hypersparc_flush_cache_mm(struct mm_struct *mm);
626 extern void hypersparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
627 extern void hypersparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
628 extern void hypersparc_flush_page_to_ram(unsigned long page);
629 extern void hypersparc_flush_page_for_dma(unsigned long page);
630 extern void hypersparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
631 extern void hypersparc_flush_tlb_all(void);
632 extern void hypersparc_flush_tlb_mm(struct mm_struct *mm);
633 extern void hypersparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
634 extern void hypersparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
635 extern void hypersparc_setup_blockops(void);
636 
637 /*
638  * NOTE: All of this startup code assumes the low 16mb (approx.) of
639  *       kernel mappings are done with one single contiguous chunk of
640  *       ram.  On small ram machines (classics mainly) we only get
641  *       around 8mb mapped for us.
642  */
643 
644 static void __init early_pgtable_allocfail(char *type)
645 {
646 	prom_printf("inherit_prom_mappings: Cannot alloc kernel %s.\n", type);
647 	prom_halt();
648 }
649 
650 static void __init srmmu_early_allocate_ptable_skeleton(unsigned long start,
651 							unsigned long end)
652 {
653 	pgd_t *pgdp;
654 	pmd_t *pmdp;
655 	pte_t *ptep;
656 
657 	while (start < end) {
658 		pgdp = pgd_offset_k(start);
659 		if (pgd_none(*(pgd_t *)__nocache_fix(pgdp))) {
660 			pmdp = __srmmu_get_nocache(
661 			    SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
662 			if (pmdp == NULL)
663 				early_pgtable_allocfail("pmd");
664 			memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
665 			pgd_set(__nocache_fix(pgdp), pmdp);
666 		}
667 		pmdp = pmd_offset(__nocache_fix(pgdp), start);
668 		if (srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
669 			ptep = __srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
670 			if (ptep == NULL)
671 				early_pgtable_allocfail("pte");
672 			memset(__nocache_fix(ptep), 0, PTE_SIZE);
673 			pmd_set(__nocache_fix(pmdp), ptep);
674 		}
675 		if (start > (0xffffffffUL - PMD_SIZE))
676 			break;
677 		start = (start + PMD_SIZE) & PMD_MASK;
678 	}
679 }
680 
681 static void __init srmmu_allocate_ptable_skeleton(unsigned long start,
682 						  unsigned long end)
683 {
684 	pgd_t *pgdp;
685 	pmd_t *pmdp;
686 	pte_t *ptep;
687 
688 	while (start < end) {
689 		pgdp = pgd_offset_k(start);
690 		if (pgd_none(*pgdp)) {
691 			pmdp = __srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
692 			if (pmdp == NULL)
693 				early_pgtable_allocfail("pmd");
694 			memset(pmdp, 0, SRMMU_PMD_TABLE_SIZE);
695 			pgd_set(pgdp, pmdp);
696 		}
697 		pmdp = pmd_offset(pgdp, start);
698 		if (srmmu_pmd_none(*pmdp)) {
699 			ptep = __srmmu_get_nocache(PTE_SIZE,
700 							     PTE_SIZE);
701 			if (ptep == NULL)
702 				early_pgtable_allocfail("pte");
703 			memset(ptep, 0, PTE_SIZE);
704 			pmd_set(pmdp, ptep);
705 		}
706 		if (start > (0xffffffffUL - PMD_SIZE))
707 			break;
708 		start = (start + PMD_SIZE) & PMD_MASK;
709 	}
710 }
711 
712 /* These flush types are not available on all chips... */
713 static inline unsigned long srmmu_probe(unsigned long vaddr)
714 {
715 	unsigned long retval;
716 
717 	if (sparc_cpu_model != sparc_leon) {
718 
719 		vaddr &= PAGE_MASK;
720 		__asm__ __volatile__("lda [%1] %2, %0\n\t" :
721 				     "=r" (retval) :
722 				     "r" (vaddr | 0x400), "i" (ASI_M_FLUSH_PROBE));
723 	} else {
724 		retval = leon_swprobe(vaddr, 0);
725 	}
726 	return retval;
727 }
728 
729 /*
730  * This is much cleaner than poking around physical address space
731  * looking at the prom's page table directly which is what most
732  * other OS's do.  Yuck... this is much better.
733  */
734 static void __init srmmu_inherit_prom_mappings(unsigned long start,
735 					       unsigned long end)
736 {
737 	unsigned long probed;
738 	unsigned long addr;
739 	pgd_t *pgdp;
740 	pmd_t *pmdp;
741 	pte_t *ptep;
742 	int what; /* 0 = normal-pte, 1 = pmd-level pte, 2 = pgd-level pte */
743 
744 	while (start <= end) {
745 		if (start == 0)
746 			break; /* probably wrap around */
747 		if (start == 0xfef00000)
748 			start = KADB_DEBUGGER_BEGVM;
749 		probed = srmmu_probe(start);
750 		if (!probed) {
751 			/* continue probing until we find an entry */
752 			start += PAGE_SIZE;
753 			continue;
754 		}
755 
756 		/* A red snapper, see what it really is. */
757 		what = 0;
758 		addr = start - PAGE_SIZE;
759 
760 		if (!(start & ~(SRMMU_REAL_PMD_MASK))) {
761 			if (srmmu_probe(addr + SRMMU_REAL_PMD_SIZE) == probed)
762 				what = 1;
763 		}
764 
765 		if (!(start & ~(SRMMU_PGDIR_MASK))) {
766 			if (srmmu_probe(addr + SRMMU_PGDIR_SIZE) == probed)
767 				what = 2;
768 		}
769 
770 		pgdp = pgd_offset_k(start);
771 		if (what == 2) {
772 			*(pgd_t *)__nocache_fix(pgdp) = __pgd(probed);
773 			start += SRMMU_PGDIR_SIZE;
774 			continue;
775 		}
776 		if (pgd_none(*(pgd_t *)__nocache_fix(pgdp))) {
777 			pmdp = __srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE,
778 						   SRMMU_PMD_TABLE_SIZE);
779 			if (pmdp == NULL)
780 				early_pgtable_allocfail("pmd");
781 			memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
782 			pgd_set(__nocache_fix(pgdp), pmdp);
783 		}
784 		pmdp = pmd_offset(__nocache_fix(pgdp), start);
785 		if (srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
786 			ptep = __srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
787 			if (ptep == NULL)
788 				early_pgtable_allocfail("pte");
789 			memset(__nocache_fix(ptep), 0, PTE_SIZE);
790 			pmd_set(__nocache_fix(pmdp), ptep);
791 		}
792 		if (what == 1) {
793 			/* We bend the rule where all 16 PTPs in a pmd_t point
794 			 * inside the same PTE page, and we leak a perfectly
795 			 * good hardware PTE piece. Alternatives seem worse.
796 			 */
797 			unsigned int x;	/* Index of HW PMD in soft cluster */
798 			unsigned long *val;
799 			x = (start >> PMD_SHIFT) & 15;
800 			val = &pmdp->pmdv[x];
801 			*(unsigned long *)__nocache_fix(val) = probed;
802 			start += SRMMU_REAL_PMD_SIZE;
803 			continue;
804 		}
805 		ptep = pte_offset_kernel(__nocache_fix(pmdp), start);
806 		*(pte_t *)__nocache_fix(ptep) = __pte(probed);
807 		start += PAGE_SIZE;
808 	}
809 }
810 
811 #define KERNEL_PTE(page_shifted) ((page_shifted)|SRMMU_CACHE|SRMMU_PRIV|SRMMU_VALID)
812 
813 /* Create a third-level SRMMU 16MB page mapping. */
814 static void __init do_large_mapping(unsigned long vaddr, unsigned long phys_base)
815 {
816 	pgd_t *pgdp = pgd_offset_k(vaddr);
817 	unsigned long big_pte;
818 
819 	big_pte = KERNEL_PTE(phys_base >> 4);
820 	*(pgd_t *)__nocache_fix(pgdp) = __pgd(big_pte);
821 }
822 
823 /* Map sp_bank entry SP_ENTRY, starting at virtual address VBASE. */
824 static unsigned long __init map_spbank(unsigned long vbase, int sp_entry)
825 {
826 	unsigned long pstart = (sp_banks[sp_entry].base_addr & SRMMU_PGDIR_MASK);
827 	unsigned long vstart = (vbase & SRMMU_PGDIR_MASK);
828 	unsigned long vend = SRMMU_PGDIR_ALIGN(vbase + sp_banks[sp_entry].num_bytes);
829 	/* Map "low" memory only */
830 	const unsigned long min_vaddr = PAGE_OFFSET;
831 	const unsigned long max_vaddr = PAGE_OFFSET + SRMMU_MAXMEM;
832 
833 	if (vstart < min_vaddr || vstart >= max_vaddr)
834 		return vstart;
835 
836 	if (vend > max_vaddr || vend < min_vaddr)
837 		vend = max_vaddr;
838 
839 	while (vstart < vend) {
840 		do_large_mapping(vstart, pstart);
841 		vstart += SRMMU_PGDIR_SIZE; pstart += SRMMU_PGDIR_SIZE;
842 	}
843 	return vstart;
844 }
845 
846 static void __init map_kernel(void)
847 {
848 	int i;
849 
850 	if (phys_base > 0) {
851 		do_large_mapping(PAGE_OFFSET, phys_base);
852 	}
853 
854 	for (i = 0; sp_banks[i].num_bytes != 0; i++) {
855 		map_spbank((unsigned long)__va(sp_banks[i].base_addr), i);
856 	}
857 }
858 
859 void (*poke_srmmu)(void) __cpuinitdata = NULL;
860 
861 extern unsigned long bootmem_init(unsigned long *pages_avail);
862 
863 void __init srmmu_paging_init(void)
864 {
865 	int i;
866 	phandle cpunode;
867 	char node_str[128];
868 	pgd_t *pgd;
869 	pmd_t *pmd;
870 	pte_t *pte;
871 	unsigned long pages_avail;
872 
873 	init_mm.context = (unsigned long) NO_CONTEXT;
874 	sparc_iomap.start = SUN4M_IOBASE_VADDR;	/* 16MB of IOSPACE on all sun4m's. */
875 
876 	if (sparc_cpu_model == sun4d)
877 		num_contexts = 65536; /* We know it is Viking */
878 	else {
879 		/* Find the number of contexts on the srmmu. */
880 		cpunode = prom_getchild(prom_root_node);
881 		num_contexts = 0;
882 		while (cpunode != 0) {
883 			prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
884 			if (!strcmp(node_str, "cpu")) {
885 				num_contexts = prom_getintdefault(cpunode, "mmu-nctx", 0x8);
886 				break;
887 			}
888 			cpunode = prom_getsibling(cpunode);
889 		}
890 	}
891 
892 	if (!num_contexts) {
893 		prom_printf("Something wrong, can't find cpu node in paging_init.\n");
894 		prom_halt();
895 	}
896 
897 	pages_avail = 0;
898 	last_valid_pfn = bootmem_init(&pages_avail);
899 
900 	srmmu_nocache_calcsize();
901 	srmmu_nocache_init();
902 	srmmu_inherit_prom_mappings(0xfe400000, (LINUX_OPPROM_ENDVM - PAGE_SIZE));
903 	map_kernel();
904 
905 	/* ctx table has to be physically aligned to its size */
906 	srmmu_context_table = __srmmu_get_nocache(num_contexts * sizeof(ctxd_t), num_contexts * sizeof(ctxd_t));
907 	srmmu_ctx_table_phys = (ctxd_t *)__nocache_pa((unsigned long)srmmu_context_table);
908 
909 	for (i = 0; i < num_contexts; i++)
910 		srmmu_ctxd_set((ctxd_t *)__nocache_fix(&srmmu_context_table[i]), srmmu_swapper_pg_dir);
911 
912 	flush_cache_all();
913 	srmmu_set_ctable_ptr((unsigned long)srmmu_ctx_table_phys);
914 #ifdef CONFIG_SMP
915 	/* Stop from hanging here... */
916 	local_ops->tlb_all();
917 #else
918 	flush_tlb_all();
919 #endif
920 	poke_srmmu();
921 
922 	srmmu_allocate_ptable_skeleton(sparc_iomap.start, IOBASE_END);
923 	srmmu_allocate_ptable_skeleton(DVMA_VADDR, DVMA_END);
924 
925 	srmmu_allocate_ptable_skeleton(
926 		__fix_to_virt(__end_of_fixed_addresses - 1), FIXADDR_TOP);
927 	srmmu_allocate_ptable_skeleton(PKMAP_BASE, PKMAP_END);
928 
929 	pgd = pgd_offset_k(PKMAP_BASE);
930 	pmd = pmd_offset(pgd, PKMAP_BASE);
931 	pte = pte_offset_kernel(pmd, PKMAP_BASE);
932 	pkmap_page_table = pte;
933 
934 	flush_cache_all();
935 	flush_tlb_all();
936 
937 	sparc_context_init(num_contexts);
938 
939 	kmap_init();
940 
941 	{
942 		unsigned long zones_size[MAX_NR_ZONES];
943 		unsigned long zholes_size[MAX_NR_ZONES];
944 		unsigned long npages;
945 		int znum;
946 
947 		for (znum = 0; znum < MAX_NR_ZONES; znum++)
948 			zones_size[znum] = zholes_size[znum] = 0;
949 
950 		npages = max_low_pfn - pfn_base;
951 
952 		zones_size[ZONE_DMA] = npages;
953 		zholes_size[ZONE_DMA] = npages - pages_avail;
954 
955 		npages = highend_pfn - max_low_pfn;
956 		zones_size[ZONE_HIGHMEM] = npages;
957 		zholes_size[ZONE_HIGHMEM] = npages - calc_highpages();
958 
959 		free_area_init_node(0, zones_size, pfn_base, zholes_size);
960 	}
961 }
962 
963 void mmu_info(struct seq_file *m)
964 {
965 	seq_printf(m,
966 		   "MMU type\t: %s\n"
967 		   "contexts\t: %d\n"
968 		   "nocache total\t: %ld\n"
969 		   "nocache used\t: %d\n",
970 		   srmmu_name,
971 		   num_contexts,
972 		   srmmu_nocache_size,
973 		   srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
974 }
975 
976 int init_new_context(struct task_struct *tsk, struct mm_struct *mm)
977 {
978 	mm->context = NO_CONTEXT;
979 	return 0;
980 }
981 
982 void destroy_context(struct mm_struct *mm)
983 {
984 
985 	if (mm->context != NO_CONTEXT) {
986 		flush_cache_mm(mm);
987 		srmmu_ctxd_set(&srmmu_context_table[mm->context], srmmu_swapper_pg_dir);
988 		flush_tlb_mm(mm);
989 		spin_lock(&srmmu_context_spinlock);
990 		free_context(mm->context);
991 		spin_unlock(&srmmu_context_spinlock);
992 		mm->context = NO_CONTEXT;
993 	}
994 }
995 
996 /* Init various srmmu chip types. */
997 static void __init srmmu_is_bad(void)
998 {
999 	prom_printf("Could not determine SRMMU chip type.\n");
1000 	prom_halt();
1001 }
1002 
1003 static void __init init_vac_layout(void)
1004 {
1005 	phandle nd;
1006 	int cache_lines;
1007 	char node_str[128];
1008 #ifdef CONFIG_SMP
1009 	int cpu = 0;
1010 	unsigned long max_size = 0;
1011 	unsigned long min_line_size = 0x10000000;
1012 #endif
1013 
1014 	nd = prom_getchild(prom_root_node);
1015 	while ((nd = prom_getsibling(nd)) != 0) {
1016 		prom_getstring(nd, "device_type", node_str, sizeof(node_str));
1017 		if (!strcmp(node_str, "cpu")) {
1018 			vac_line_size = prom_getint(nd, "cache-line-size");
1019 			if (vac_line_size == -1) {
1020 				prom_printf("can't determine cache-line-size, halting.\n");
1021 				prom_halt();
1022 			}
1023 			cache_lines = prom_getint(nd, "cache-nlines");
1024 			if (cache_lines == -1) {
1025 				prom_printf("can't determine cache-nlines, halting.\n");
1026 				prom_halt();
1027 			}
1028 
1029 			vac_cache_size = cache_lines * vac_line_size;
1030 #ifdef CONFIG_SMP
1031 			if (vac_cache_size > max_size)
1032 				max_size = vac_cache_size;
1033 			if (vac_line_size < min_line_size)
1034 				min_line_size = vac_line_size;
1035 			//FIXME: cpus not contiguous!!
1036 			cpu++;
1037 			if (cpu >= nr_cpu_ids || !cpu_online(cpu))
1038 				break;
1039 #else
1040 			break;
1041 #endif
1042 		}
1043 	}
1044 	if (nd == 0) {
1045 		prom_printf("No CPU nodes found, halting.\n");
1046 		prom_halt();
1047 	}
1048 #ifdef CONFIG_SMP
1049 	vac_cache_size = max_size;
1050 	vac_line_size = min_line_size;
1051 #endif
1052 	printk("SRMMU: Using VAC size of %d bytes, line size %d bytes.\n",
1053 	       (int)vac_cache_size, (int)vac_line_size);
1054 }
1055 
1056 static void __cpuinit poke_hypersparc(void)
1057 {
1058 	volatile unsigned long clear;
1059 	unsigned long mreg = srmmu_get_mmureg();
1060 
1061 	hyper_flush_unconditional_combined();
1062 
1063 	mreg &= ~(HYPERSPARC_CWENABLE);
1064 	mreg |= (HYPERSPARC_CENABLE | HYPERSPARC_WBENABLE);
1065 	mreg |= (HYPERSPARC_CMODE);
1066 
1067 	srmmu_set_mmureg(mreg);
1068 
1069 #if 0 /* XXX I think this is bad news... -DaveM */
1070 	hyper_clear_all_tags();
1071 #endif
1072 
1073 	put_ross_icr(HYPERSPARC_ICCR_FTD | HYPERSPARC_ICCR_ICE);
1074 	hyper_flush_whole_icache();
1075 	clear = srmmu_get_faddr();
1076 	clear = srmmu_get_fstatus();
1077 }
1078 
1079 static const struct sparc32_cachetlb_ops hypersparc_ops = {
1080 	.cache_all	= hypersparc_flush_cache_all,
1081 	.cache_mm	= hypersparc_flush_cache_mm,
1082 	.cache_page	= hypersparc_flush_cache_page,
1083 	.cache_range	= hypersparc_flush_cache_range,
1084 	.tlb_all	= hypersparc_flush_tlb_all,
1085 	.tlb_mm		= hypersparc_flush_tlb_mm,
1086 	.tlb_page	= hypersparc_flush_tlb_page,
1087 	.tlb_range	= hypersparc_flush_tlb_range,
1088 	.page_to_ram	= hypersparc_flush_page_to_ram,
1089 	.sig_insns	= hypersparc_flush_sig_insns,
1090 	.page_for_dma	= hypersparc_flush_page_for_dma,
1091 };
1092 
1093 static void __init init_hypersparc(void)
1094 {
1095 	srmmu_name = "ROSS HyperSparc";
1096 	srmmu_modtype = HyperSparc;
1097 
1098 	init_vac_layout();
1099 
1100 	is_hypersparc = 1;
1101 	sparc32_cachetlb_ops = &hypersparc_ops;
1102 
1103 	poke_srmmu = poke_hypersparc;
1104 
1105 	hypersparc_setup_blockops();
1106 }
1107 
1108 static void __cpuinit poke_swift(void)
1109 {
1110 	unsigned long mreg;
1111 
1112 	/* Clear any crap from the cache or else... */
1113 	swift_flush_cache_all();
1114 
1115 	/* Enable I & D caches */
1116 	mreg = srmmu_get_mmureg();
1117 	mreg |= (SWIFT_IE | SWIFT_DE);
1118 	/*
1119 	 * The Swift branch folding logic is completely broken.  At
1120 	 * trap time, if things are just right, if can mistakenly
1121 	 * think that a trap is coming from kernel mode when in fact
1122 	 * it is coming from user mode (it mis-executes the branch in
1123 	 * the trap code).  So you see things like crashme completely
1124 	 * hosing your machine which is completely unacceptable.  Turn
1125 	 * this shit off... nice job Fujitsu.
1126 	 */
1127 	mreg &= ~(SWIFT_BF);
1128 	srmmu_set_mmureg(mreg);
1129 }
1130 
1131 static const struct sparc32_cachetlb_ops swift_ops = {
1132 	.cache_all	= swift_flush_cache_all,
1133 	.cache_mm	= swift_flush_cache_mm,
1134 	.cache_page	= swift_flush_cache_page,
1135 	.cache_range	= swift_flush_cache_range,
1136 	.tlb_all	= swift_flush_tlb_all,
1137 	.tlb_mm		= swift_flush_tlb_mm,
1138 	.tlb_page	= swift_flush_tlb_page,
1139 	.tlb_range	= swift_flush_tlb_range,
1140 	.page_to_ram	= swift_flush_page_to_ram,
1141 	.sig_insns	= swift_flush_sig_insns,
1142 	.page_for_dma	= swift_flush_page_for_dma,
1143 };
1144 
1145 #define SWIFT_MASKID_ADDR  0x10003018
1146 static void __init init_swift(void)
1147 {
1148 	unsigned long swift_rev;
1149 
1150 	__asm__ __volatile__("lda [%1] %2, %0\n\t"
1151 			     "srl %0, 0x18, %0\n\t" :
1152 			     "=r" (swift_rev) :
1153 			     "r" (SWIFT_MASKID_ADDR), "i" (ASI_M_BYPASS));
1154 	srmmu_name = "Fujitsu Swift";
1155 	switch (swift_rev) {
1156 	case 0x11:
1157 	case 0x20:
1158 	case 0x23:
1159 	case 0x30:
1160 		srmmu_modtype = Swift_lots_o_bugs;
1161 		hwbug_bitmask |= (HWBUG_KERN_ACCBROKEN | HWBUG_KERN_CBITBROKEN);
1162 		/*
1163 		 * Gee george, I wonder why Sun is so hush hush about
1164 		 * this hardware bug... really braindamage stuff going
1165 		 * on here.  However I think we can find a way to avoid
1166 		 * all of the workaround overhead under Linux.  Basically,
1167 		 * any page fault can cause kernel pages to become user
1168 		 * accessible (the mmu gets confused and clears some of
1169 		 * the ACC bits in kernel ptes).  Aha, sounds pretty
1170 		 * horrible eh?  But wait, after extensive testing it appears
1171 		 * that if you use pgd_t level large kernel pte's (like the
1172 		 * 4MB pages on the Pentium) the bug does not get tripped
1173 		 * at all.  This avoids almost all of the major overhead.
1174 		 * Welcome to a world where your vendor tells you to,
1175 		 * "apply this kernel patch" instead of "sorry for the
1176 		 * broken hardware, send it back and we'll give you
1177 		 * properly functioning parts"
1178 		 */
1179 		break;
1180 	case 0x25:
1181 	case 0x31:
1182 		srmmu_modtype = Swift_bad_c;
1183 		hwbug_bitmask |= HWBUG_KERN_CBITBROKEN;
1184 		/*
1185 		 * You see Sun allude to this hardware bug but never
1186 		 * admit things directly, they'll say things like,
1187 		 * "the Swift chip cache problems" or similar.
1188 		 */
1189 		break;
1190 	default:
1191 		srmmu_modtype = Swift_ok;
1192 		break;
1193 	}
1194 
1195 	sparc32_cachetlb_ops = &swift_ops;
1196 	flush_page_for_dma_global = 0;
1197 
1198 	/*
1199 	 * Are you now convinced that the Swift is one of the
1200 	 * biggest VLSI abortions of all time?  Bravo Fujitsu!
1201 	 * Fujitsu, the !#?!%$'d up processor people.  I bet if
1202 	 * you examined the microcode of the Swift you'd find
1203 	 * XXX's all over the place.
1204 	 */
1205 	poke_srmmu = poke_swift;
1206 }
1207 
1208 static void turbosparc_flush_cache_all(void)
1209 {
1210 	flush_user_windows();
1211 	turbosparc_idflash_clear();
1212 }
1213 
1214 static void turbosparc_flush_cache_mm(struct mm_struct *mm)
1215 {
1216 	FLUSH_BEGIN(mm)
1217 	flush_user_windows();
1218 	turbosparc_idflash_clear();
1219 	FLUSH_END
1220 }
1221 
1222 static void turbosparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1223 {
1224 	FLUSH_BEGIN(vma->vm_mm)
1225 	flush_user_windows();
1226 	turbosparc_idflash_clear();
1227 	FLUSH_END
1228 }
1229 
1230 static void turbosparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
1231 {
1232 	FLUSH_BEGIN(vma->vm_mm)
1233 	flush_user_windows();
1234 	if (vma->vm_flags & VM_EXEC)
1235 		turbosparc_flush_icache();
1236 	turbosparc_flush_dcache();
1237 	FLUSH_END
1238 }
1239 
1240 /* TurboSparc is copy-back, if we turn it on, but this does not work. */
1241 static void turbosparc_flush_page_to_ram(unsigned long page)
1242 {
1243 #ifdef TURBOSPARC_WRITEBACK
1244 	volatile unsigned long clear;
1245 
1246 	if (srmmu_probe(page))
1247 		turbosparc_flush_page_cache(page);
1248 	clear = srmmu_get_fstatus();
1249 #endif
1250 }
1251 
1252 static void turbosparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
1253 {
1254 }
1255 
1256 static void turbosparc_flush_page_for_dma(unsigned long page)
1257 {
1258 	turbosparc_flush_dcache();
1259 }
1260 
1261 static void turbosparc_flush_tlb_all(void)
1262 {
1263 	srmmu_flush_whole_tlb();
1264 }
1265 
1266 static void turbosparc_flush_tlb_mm(struct mm_struct *mm)
1267 {
1268 	FLUSH_BEGIN(mm)
1269 	srmmu_flush_whole_tlb();
1270 	FLUSH_END
1271 }
1272 
1273 static void turbosparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1274 {
1275 	FLUSH_BEGIN(vma->vm_mm)
1276 	srmmu_flush_whole_tlb();
1277 	FLUSH_END
1278 }
1279 
1280 static void turbosparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
1281 {
1282 	FLUSH_BEGIN(vma->vm_mm)
1283 	srmmu_flush_whole_tlb();
1284 	FLUSH_END
1285 }
1286 
1287 
1288 static void __cpuinit poke_turbosparc(void)
1289 {
1290 	unsigned long mreg = srmmu_get_mmureg();
1291 	unsigned long ccreg;
1292 
1293 	/* Clear any crap from the cache or else... */
1294 	turbosparc_flush_cache_all();
1295 	/* Temporarily disable I & D caches */
1296 	mreg &= ~(TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE);
1297 	mreg &= ~(TURBOSPARC_PCENABLE);		/* Don't check parity */
1298 	srmmu_set_mmureg(mreg);
1299 
1300 	ccreg = turbosparc_get_ccreg();
1301 
1302 #ifdef TURBOSPARC_WRITEBACK
1303 	ccreg |= (TURBOSPARC_SNENABLE);		/* Do DVMA snooping in Dcache */
1304 	ccreg &= ~(TURBOSPARC_uS2 | TURBOSPARC_WTENABLE);
1305 			/* Write-back D-cache, emulate VLSI
1306 			 * abortion number three, not number one */
1307 #else
1308 	/* For now let's play safe, optimize later */
1309 	ccreg |= (TURBOSPARC_SNENABLE | TURBOSPARC_WTENABLE);
1310 			/* Do DVMA snooping in Dcache, Write-thru D-cache */
1311 	ccreg &= ~(TURBOSPARC_uS2);
1312 			/* Emulate VLSI abortion number three, not number one */
1313 #endif
1314 
1315 	switch (ccreg & 7) {
1316 	case 0: /* No SE cache */
1317 	case 7: /* Test mode */
1318 		break;
1319 	default:
1320 		ccreg |= (TURBOSPARC_SCENABLE);
1321 	}
1322 	turbosparc_set_ccreg(ccreg);
1323 
1324 	mreg |= (TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE); /* I & D caches on */
1325 	mreg |= (TURBOSPARC_ICSNOOP);		/* Icache snooping on */
1326 	srmmu_set_mmureg(mreg);
1327 }
1328 
1329 static const struct sparc32_cachetlb_ops turbosparc_ops = {
1330 	.cache_all	= turbosparc_flush_cache_all,
1331 	.cache_mm	= turbosparc_flush_cache_mm,
1332 	.cache_page	= turbosparc_flush_cache_page,
1333 	.cache_range	= turbosparc_flush_cache_range,
1334 	.tlb_all	= turbosparc_flush_tlb_all,
1335 	.tlb_mm		= turbosparc_flush_tlb_mm,
1336 	.tlb_page	= turbosparc_flush_tlb_page,
1337 	.tlb_range	= turbosparc_flush_tlb_range,
1338 	.page_to_ram	= turbosparc_flush_page_to_ram,
1339 	.sig_insns	= turbosparc_flush_sig_insns,
1340 	.page_for_dma	= turbosparc_flush_page_for_dma,
1341 };
1342 
1343 static void __init init_turbosparc(void)
1344 {
1345 	srmmu_name = "Fujitsu TurboSparc";
1346 	srmmu_modtype = TurboSparc;
1347 	sparc32_cachetlb_ops = &turbosparc_ops;
1348 	poke_srmmu = poke_turbosparc;
1349 }
1350 
1351 static void __cpuinit poke_tsunami(void)
1352 {
1353 	unsigned long mreg = srmmu_get_mmureg();
1354 
1355 	tsunami_flush_icache();
1356 	tsunami_flush_dcache();
1357 	mreg &= ~TSUNAMI_ITD;
1358 	mreg |= (TSUNAMI_IENAB | TSUNAMI_DENAB);
1359 	srmmu_set_mmureg(mreg);
1360 }
1361 
1362 static const struct sparc32_cachetlb_ops tsunami_ops = {
1363 	.cache_all	= tsunami_flush_cache_all,
1364 	.cache_mm	= tsunami_flush_cache_mm,
1365 	.cache_page	= tsunami_flush_cache_page,
1366 	.cache_range	= tsunami_flush_cache_range,
1367 	.tlb_all	= tsunami_flush_tlb_all,
1368 	.tlb_mm		= tsunami_flush_tlb_mm,
1369 	.tlb_page	= tsunami_flush_tlb_page,
1370 	.tlb_range	= tsunami_flush_tlb_range,
1371 	.page_to_ram	= tsunami_flush_page_to_ram,
1372 	.sig_insns	= tsunami_flush_sig_insns,
1373 	.page_for_dma	= tsunami_flush_page_for_dma,
1374 };
1375 
1376 static void __init init_tsunami(void)
1377 {
1378 	/*
1379 	 * Tsunami's pretty sane, Sun and TI actually got it
1380 	 * somewhat right this time.  Fujitsu should have
1381 	 * taken some lessons from them.
1382 	 */
1383 
1384 	srmmu_name = "TI Tsunami";
1385 	srmmu_modtype = Tsunami;
1386 	sparc32_cachetlb_ops = &tsunami_ops;
1387 	poke_srmmu = poke_tsunami;
1388 
1389 	tsunami_setup_blockops();
1390 }
1391 
1392 static void __cpuinit poke_viking(void)
1393 {
1394 	unsigned long mreg = srmmu_get_mmureg();
1395 	static int smp_catch;
1396 
1397 	if (viking_mxcc_present) {
1398 		unsigned long mxcc_control = mxcc_get_creg();
1399 
1400 		mxcc_control |= (MXCC_CTL_ECE | MXCC_CTL_PRE | MXCC_CTL_MCE);
1401 		mxcc_control &= ~(MXCC_CTL_RRC);
1402 		mxcc_set_creg(mxcc_control);
1403 
1404 		/*
1405 		 * We don't need memory parity checks.
1406 		 * XXX This is a mess, have to dig out later. ecd.
1407 		viking_mxcc_turn_off_parity(&mreg, &mxcc_control);
1408 		 */
1409 
1410 		/* We do cache ptables on MXCC. */
1411 		mreg |= VIKING_TCENABLE;
1412 	} else {
1413 		unsigned long bpreg;
1414 
1415 		mreg &= ~(VIKING_TCENABLE);
1416 		if (smp_catch++) {
1417 			/* Must disable mixed-cmd mode here for other cpu's. */
1418 			bpreg = viking_get_bpreg();
1419 			bpreg &= ~(VIKING_ACTION_MIX);
1420 			viking_set_bpreg(bpreg);
1421 
1422 			/* Just in case PROM does something funny. */
1423 			msi_set_sync();
1424 		}
1425 	}
1426 
1427 	mreg |= VIKING_SPENABLE;
1428 	mreg |= (VIKING_ICENABLE | VIKING_DCENABLE);
1429 	mreg |= VIKING_SBENABLE;
1430 	mreg &= ~(VIKING_ACENABLE);
1431 	srmmu_set_mmureg(mreg);
1432 }
1433 
1434 static struct sparc32_cachetlb_ops viking_ops = {
1435 	.cache_all	= viking_flush_cache_all,
1436 	.cache_mm	= viking_flush_cache_mm,
1437 	.cache_page	= viking_flush_cache_page,
1438 	.cache_range	= viking_flush_cache_range,
1439 	.tlb_all	= viking_flush_tlb_all,
1440 	.tlb_mm		= viking_flush_tlb_mm,
1441 	.tlb_page	= viking_flush_tlb_page,
1442 	.tlb_range	= viking_flush_tlb_range,
1443 	.page_to_ram	= viking_flush_page_to_ram,
1444 	.sig_insns	= viking_flush_sig_insns,
1445 	.page_for_dma	= viking_flush_page_for_dma,
1446 };
1447 
1448 #ifdef CONFIG_SMP
1449 /* On sun4d the cpu broadcasts local TLB flushes, so we can just
1450  * perform the local TLB flush and all the other cpus will see it.
1451  * But, unfortunately, there is a bug in the sun4d XBUS backplane
1452  * that requires that we add some synchronization to these flushes.
1453  *
1454  * The bug is that the fifo which keeps track of all the pending TLB
1455  * broadcasts in the system is an entry or two too small, so if we
1456  * have too many going at once we'll overflow that fifo and lose a TLB
1457  * flush resulting in corruption.
1458  *
1459  * Our workaround is to take a global spinlock around the TLB flushes,
1460  * which guarentees we won't ever have too many pending.  It's a big
1461  * hammer, but a semaphore like system to make sure we only have N TLB
1462  * flushes going at once will require SMP locking anyways so there's
1463  * no real value in trying any harder than this.
1464  */
1465 static struct sparc32_cachetlb_ops viking_sun4d_smp_ops = {
1466 	.cache_all	= viking_flush_cache_all,
1467 	.cache_mm	= viking_flush_cache_mm,
1468 	.cache_page	= viking_flush_cache_page,
1469 	.cache_range	= viking_flush_cache_range,
1470 	.tlb_all	= sun4dsmp_flush_tlb_all,
1471 	.tlb_mm		= sun4dsmp_flush_tlb_mm,
1472 	.tlb_page	= sun4dsmp_flush_tlb_page,
1473 	.tlb_range	= sun4dsmp_flush_tlb_range,
1474 	.page_to_ram	= viking_flush_page_to_ram,
1475 	.sig_insns	= viking_flush_sig_insns,
1476 	.page_for_dma	= viking_flush_page_for_dma,
1477 };
1478 #endif
1479 
1480 static void __init init_viking(void)
1481 {
1482 	unsigned long mreg = srmmu_get_mmureg();
1483 
1484 	/* Ahhh, the viking.  SRMMU VLSI abortion number two... */
1485 	if (mreg & VIKING_MMODE) {
1486 		srmmu_name = "TI Viking";
1487 		viking_mxcc_present = 0;
1488 		msi_set_sync();
1489 
1490 		/*
1491 		 * We need this to make sure old viking takes no hits
1492 		 * on it's cache for dma snoops to workaround the
1493 		 * "load from non-cacheable memory" interrupt bug.
1494 		 * This is only necessary because of the new way in
1495 		 * which we use the IOMMU.
1496 		 */
1497 		viking_ops.page_for_dma = viking_flush_page;
1498 #ifdef CONFIG_SMP
1499 		viking_sun4d_smp_ops.page_for_dma = viking_flush_page;
1500 #endif
1501 		flush_page_for_dma_global = 0;
1502 	} else {
1503 		srmmu_name = "TI Viking/MXCC";
1504 		viking_mxcc_present = 1;
1505 		srmmu_cache_pagetables = 1;
1506 	}
1507 
1508 	sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1509 		&viking_ops;
1510 #ifdef CONFIG_SMP
1511 	if (sparc_cpu_model == sun4d)
1512 		sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1513 			&viking_sun4d_smp_ops;
1514 #endif
1515 
1516 	poke_srmmu = poke_viking;
1517 }
1518 
1519 /* Probe for the srmmu chip version. */
1520 static void __init get_srmmu_type(void)
1521 {
1522 	unsigned long mreg, psr;
1523 	unsigned long mod_typ, mod_rev, psr_typ, psr_vers;
1524 
1525 	srmmu_modtype = SRMMU_INVAL_MOD;
1526 	hwbug_bitmask = 0;
1527 
1528 	mreg = srmmu_get_mmureg(); psr = get_psr();
1529 	mod_typ = (mreg & 0xf0000000) >> 28;
1530 	mod_rev = (mreg & 0x0f000000) >> 24;
1531 	psr_typ = (psr >> 28) & 0xf;
1532 	psr_vers = (psr >> 24) & 0xf;
1533 
1534 	/* First, check for sparc-leon. */
1535 	if (sparc_cpu_model == sparc_leon) {
1536 		init_leon();
1537 		return;
1538 	}
1539 
1540 	/* Second, check for HyperSparc or Cypress. */
1541 	if (mod_typ == 1) {
1542 		switch (mod_rev) {
1543 		case 7:
1544 			/* UP or MP Hypersparc */
1545 			init_hypersparc();
1546 			break;
1547 		case 0:
1548 		case 2:
1549 		case 10:
1550 		case 11:
1551 		case 12:
1552 		case 13:
1553 		case 14:
1554 		case 15:
1555 		default:
1556 			prom_printf("Sparc-Linux Cypress support does not longer exit.\n");
1557 			prom_halt();
1558 			break;
1559 		}
1560 		return;
1561 	}
1562 
1563 	/* Now Fujitsu TurboSparc. It might happen that it is
1564 	 * in Swift emulation mode, so we will check later...
1565 	 */
1566 	if (psr_typ == 0 && psr_vers == 5) {
1567 		init_turbosparc();
1568 		return;
1569 	}
1570 
1571 	/* Next check for Fujitsu Swift. */
1572 	if (psr_typ == 0 && psr_vers == 4) {
1573 		phandle cpunode;
1574 		char node_str[128];
1575 
1576 		/* Look if it is not a TurboSparc emulating Swift... */
1577 		cpunode = prom_getchild(prom_root_node);
1578 		while ((cpunode = prom_getsibling(cpunode)) != 0) {
1579 			prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
1580 			if (!strcmp(node_str, "cpu")) {
1581 				if (!prom_getintdefault(cpunode, "psr-implementation", 1) &&
1582 				    prom_getintdefault(cpunode, "psr-version", 1) == 5) {
1583 					init_turbosparc();
1584 					return;
1585 				}
1586 				break;
1587 			}
1588 		}
1589 
1590 		init_swift();
1591 		return;
1592 	}
1593 
1594 	/* Now the Viking family of srmmu. */
1595 	if (psr_typ == 4 &&
1596 	   ((psr_vers == 0) ||
1597 	    ((psr_vers == 1) && (mod_typ == 0) && (mod_rev == 0)))) {
1598 		init_viking();
1599 		return;
1600 	}
1601 
1602 	/* Finally the Tsunami. */
1603 	if (psr_typ == 4 && psr_vers == 1 && (mod_typ || mod_rev)) {
1604 		init_tsunami();
1605 		return;
1606 	}
1607 
1608 	/* Oh well */
1609 	srmmu_is_bad();
1610 }
1611 
1612 #ifdef CONFIG_SMP
1613 /* Local cross-calls. */
1614 static void smp_flush_page_for_dma(unsigned long page)
1615 {
1616 	xc1((smpfunc_t) local_ops->page_for_dma, page);
1617 	local_ops->page_for_dma(page);
1618 }
1619 
1620 static void smp_flush_cache_all(void)
1621 {
1622 	xc0((smpfunc_t) local_ops->cache_all);
1623 	local_ops->cache_all();
1624 }
1625 
1626 static void smp_flush_tlb_all(void)
1627 {
1628 	xc0((smpfunc_t) local_ops->tlb_all);
1629 	local_ops->tlb_all();
1630 }
1631 
1632 static void smp_flush_cache_mm(struct mm_struct *mm)
1633 {
1634 	if (mm->context != NO_CONTEXT) {
1635 		cpumask_t cpu_mask;
1636 		cpumask_copy(&cpu_mask, mm_cpumask(mm));
1637 		cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1638 		if (!cpumask_empty(&cpu_mask))
1639 			xc1((smpfunc_t) local_ops->cache_mm, (unsigned long) mm);
1640 		local_ops->cache_mm(mm);
1641 	}
1642 }
1643 
1644 static void smp_flush_tlb_mm(struct mm_struct *mm)
1645 {
1646 	if (mm->context != NO_CONTEXT) {
1647 		cpumask_t cpu_mask;
1648 		cpumask_copy(&cpu_mask, mm_cpumask(mm));
1649 		cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1650 		if (!cpumask_empty(&cpu_mask)) {
1651 			xc1((smpfunc_t) local_ops->tlb_mm, (unsigned long) mm);
1652 			if (atomic_read(&mm->mm_users) == 1 && current->active_mm == mm)
1653 				cpumask_copy(mm_cpumask(mm),
1654 					     cpumask_of(smp_processor_id()));
1655 		}
1656 		local_ops->tlb_mm(mm);
1657 	}
1658 }
1659 
1660 static void smp_flush_cache_range(struct vm_area_struct *vma,
1661 				  unsigned long start,
1662 				  unsigned long end)
1663 {
1664 	struct mm_struct *mm = vma->vm_mm;
1665 
1666 	if (mm->context != NO_CONTEXT) {
1667 		cpumask_t cpu_mask;
1668 		cpumask_copy(&cpu_mask, mm_cpumask(mm));
1669 		cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1670 		if (!cpumask_empty(&cpu_mask))
1671 			xc3((smpfunc_t) local_ops->cache_range,
1672 			    (unsigned long) vma, start, end);
1673 		local_ops->cache_range(vma, start, end);
1674 	}
1675 }
1676 
1677 static void smp_flush_tlb_range(struct vm_area_struct *vma,
1678 				unsigned long start,
1679 				unsigned long end)
1680 {
1681 	struct mm_struct *mm = vma->vm_mm;
1682 
1683 	if (mm->context != NO_CONTEXT) {
1684 		cpumask_t cpu_mask;
1685 		cpumask_copy(&cpu_mask, mm_cpumask(mm));
1686 		cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1687 		if (!cpumask_empty(&cpu_mask))
1688 			xc3((smpfunc_t) local_ops->tlb_range,
1689 			    (unsigned long) vma, start, end);
1690 		local_ops->tlb_range(vma, start, end);
1691 	}
1692 }
1693 
1694 static void smp_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
1695 {
1696 	struct mm_struct *mm = vma->vm_mm;
1697 
1698 	if (mm->context != NO_CONTEXT) {
1699 		cpumask_t cpu_mask;
1700 		cpumask_copy(&cpu_mask, mm_cpumask(mm));
1701 		cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1702 		if (!cpumask_empty(&cpu_mask))
1703 			xc2((smpfunc_t) local_ops->cache_page,
1704 			    (unsigned long) vma, page);
1705 		local_ops->cache_page(vma, page);
1706 	}
1707 }
1708 
1709 static void smp_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
1710 {
1711 	struct mm_struct *mm = vma->vm_mm;
1712 
1713 	if (mm->context != NO_CONTEXT) {
1714 		cpumask_t cpu_mask;
1715 		cpumask_copy(&cpu_mask, mm_cpumask(mm));
1716 		cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1717 		if (!cpumask_empty(&cpu_mask))
1718 			xc2((smpfunc_t) local_ops->tlb_page,
1719 			    (unsigned long) vma, page);
1720 		local_ops->tlb_page(vma, page);
1721 	}
1722 }
1723 
1724 static void smp_flush_page_to_ram(unsigned long page)
1725 {
1726 	/* Current theory is that those who call this are the one's
1727 	 * who have just dirtied their cache with the pages contents
1728 	 * in kernel space, therefore we only run this on local cpu.
1729 	 *
1730 	 * XXX This experiment failed, research further... -DaveM
1731 	 */
1732 #if 1
1733 	xc1((smpfunc_t) local_ops->page_to_ram, page);
1734 #endif
1735 	local_ops->page_to_ram(page);
1736 }
1737 
1738 static void smp_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
1739 {
1740 	cpumask_t cpu_mask;
1741 	cpumask_copy(&cpu_mask, mm_cpumask(mm));
1742 	cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1743 	if (!cpumask_empty(&cpu_mask))
1744 		xc2((smpfunc_t) local_ops->sig_insns,
1745 		    (unsigned long) mm, insn_addr);
1746 	local_ops->sig_insns(mm, insn_addr);
1747 }
1748 
1749 static struct sparc32_cachetlb_ops smp_cachetlb_ops = {
1750 	.cache_all	= smp_flush_cache_all,
1751 	.cache_mm	= smp_flush_cache_mm,
1752 	.cache_page	= smp_flush_cache_page,
1753 	.cache_range	= smp_flush_cache_range,
1754 	.tlb_all	= smp_flush_tlb_all,
1755 	.tlb_mm		= smp_flush_tlb_mm,
1756 	.tlb_page	= smp_flush_tlb_page,
1757 	.tlb_range	= smp_flush_tlb_range,
1758 	.page_to_ram	= smp_flush_page_to_ram,
1759 	.sig_insns	= smp_flush_sig_insns,
1760 	.page_for_dma	= smp_flush_page_for_dma,
1761 };
1762 #endif
1763 
1764 /* Load up routines and constants for sun4m and sun4d mmu */
1765 void __init load_mmu(void)
1766 {
1767 	extern void ld_mmu_iommu(void);
1768 	extern void ld_mmu_iounit(void);
1769 
1770 	/* Functions */
1771 	get_srmmu_type();
1772 
1773 #ifdef CONFIG_SMP
1774 	/* El switcheroo... */
1775 	local_ops = sparc32_cachetlb_ops;
1776 
1777 	if (sparc_cpu_model == sun4d || sparc_cpu_model == sparc_leon) {
1778 		smp_cachetlb_ops.tlb_all = local_ops->tlb_all;
1779 		smp_cachetlb_ops.tlb_mm = local_ops->tlb_mm;
1780 		smp_cachetlb_ops.tlb_range = local_ops->tlb_range;
1781 		smp_cachetlb_ops.tlb_page = local_ops->tlb_page;
1782 	}
1783 
1784 	if (poke_srmmu == poke_viking) {
1785 		/* Avoid unnecessary cross calls. */
1786 		smp_cachetlb_ops.cache_all = local_ops->cache_all;
1787 		smp_cachetlb_ops.cache_mm = local_ops->cache_mm;
1788 		smp_cachetlb_ops.cache_range = local_ops->cache_range;
1789 		smp_cachetlb_ops.cache_page = local_ops->cache_page;
1790 
1791 		smp_cachetlb_ops.page_to_ram = local_ops->page_to_ram;
1792 		smp_cachetlb_ops.sig_insns = local_ops->sig_insns;
1793 		smp_cachetlb_ops.page_for_dma = local_ops->page_for_dma;
1794 	}
1795 
1796 	/* It really is const after this point. */
1797 	sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1798 		&smp_cachetlb_ops;
1799 #endif
1800 
1801 	if (sparc_cpu_model == sun4d)
1802 		ld_mmu_iounit();
1803 	else
1804 		ld_mmu_iommu();
1805 #ifdef CONFIG_SMP
1806 	if (sparc_cpu_model == sun4d)
1807 		sun4d_init_smp();
1808 	else if (sparc_cpu_model == sparc_leon)
1809 		leon_init_smp();
1810 	else
1811 		sun4m_init_smp();
1812 #endif
1813 }
1814