xref: /openbmc/linux/arch/sparc/mm/srmmu.c (revision 6cc23ed2)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * srmmu.c:  SRMMU specific routines for memory management.
4  *
5  * Copyright (C) 1995 David S. Miller  (davem@caip.rutgers.edu)
6  * Copyright (C) 1995,2002 Pete Zaitcev (zaitcev@yahoo.com)
7  * Copyright (C) 1996 Eddie C. Dost    (ecd@skynet.be)
8  * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
9  * Copyright (C) 1999,2000 Anton Blanchard (anton@samba.org)
10  */
11 
12 #include <linux/seq_file.h>
13 #include <linux/spinlock.h>
14 #include <linux/memblock.h>
15 #include <linux/pagemap.h>
16 #include <linux/vmalloc.h>
17 #include <linux/kdebug.h>
18 #include <linux/export.h>
19 #include <linux/kernel.h>
20 #include <linux/init.h>
21 #include <linux/log2.h>
22 #include <linux/gfp.h>
23 #include <linux/fs.h>
24 #include <linux/mm.h>
25 
26 #include <asm/mmu_context.h>
27 #include <asm/cacheflush.h>
28 #include <asm/tlbflush.h>
29 #include <asm/io-unit.h>
30 #include <asm/pgalloc.h>
31 #include <asm/pgtable.h>
32 #include <asm/bitext.h>
33 #include <asm/vaddrs.h>
34 #include <asm/cache.h>
35 #include <asm/traps.h>
36 #include <asm/oplib.h>
37 #include <asm/mbus.h>
38 #include <asm/page.h>
39 #include <asm/asi.h>
40 #include <asm/smp.h>
41 #include <asm/io.h>
42 
43 /* Now the cpu specific definitions. */
44 #include <asm/turbosparc.h>
45 #include <asm/tsunami.h>
46 #include <asm/viking.h>
47 #include <asm/swift.h>
48 #include <asm/leon.h>
49 #include <asm/mxcc.h>
50 #include <asm/ross.h>
51 
52 #include "mm_32.h"
53 
54 enum mbus_module srmmu_modtype;
55 static unsigned int hwbug_bitmask;
56 int vac_cache_size;
57 EXPORT_SYMBOL(vac_cache_size);
58 int vac_line_size;
59 
60 extern struct resource sparc_iomap;
61 
62 extern unsigned long last_valid_pfn;
63 
64 static pgd_t *srmmu_swapper_pg_dir;
65 
66 const struct sparc32_cachetlb_ops *sparc32_cachetlb_ops;
67 EXPORT_SYMBOL(sparc32_cachetlb_ops);
68 
69 #ifdef CONFIG_SMP
70 const struct sparc32_cachetlb_ops *local_ops;
71 
72 #define FLUSH_BEGIN(mm)
73 #define FLUSH_END
74 #else
75 #define FLUSH_BEGIN(mm) if ((mm)->context != NO_CONTEXT) {
76 #define FLUSH_END	}
77 #endif
78 
79 int flush_page_for_dma_global = 1;
80 
81 char *srmmu_name;
82 
83 ctxd_t *srmmu_ctx_table_phys;
84 static ctxd_t *srmmu_context_table;
85 
86 int viking_mxcc_present;
87 static DEFINE_SPINLOCK(srmmu_context_spinlock);
88 
89 static int is_hypersparc;
90 
91 static int srmmu_cache_pagetables;
92 
93 /* these will be initialized in srmmu_nocache_calcsize() */
94 static unsigned long srmmu_nocache_size;
95 static unsigned long srmmu_nocache_end;
96 
97 /* 1 bit <=> 256 bytes of nocache <=> 64 PTEs */
98 #define SRMMU_NOCACHE_BITMAP_SHIFT (PAGE_SHIFT - 4)
99 
100 /* The context table is a nocache user with the biggest alignment needs. */
101 #define SRMMU_NOCACHE_ALIGN_MAX (sizeof(ctxd_t)*SRMMU_MAX_CONTEXTS)
102 
103 void *srmmu_nocache_pool;
104 static struct bit_map srmmu_nocache_map;
105 
106 static inline int srmmu_pmd_none(pmd_t pmd)
107 { return !(pmd_val(pmd) & 0xFFFFFFF); }
108 
109 /* XXX should we hyper_flush_whole_icache here - Anton */
110 static inline void srmmu_ctxd_set(ctxd_t *ctxp, pgd_t *pgdp)
111 {
112 	pte_t pte;
113 
114 	pte = __pte((SRMMU_ET_PTD | (__nocache_pa(pgdp) >> 4)));
115 	set_pte((pte_t *)ctxp, pte);
116 }
117 
118 /*
119  * Locations of MSI Registers.
120  */
121 #define MSI_MBUS_ARBEN	0xe0001008	/* MBus Arbiter Enable register */
122 
123 /*
124  * Useful bits in the MSI Registers.
125  */
126 #define MSI_ASYNC_MODE  0x80000000	/* Operate the MSI asynchronously */
127 
128 static void msi_set_sync(void)
129 {
130 	__asm__ __volatile__ ("lda [%0] %1, %%g3\n\t"
131 			      "andn %%g3, %2, %%g3\n\t"
132 			      "sta %%g3, [%0] %1\n\t" : :
133 			      "r" (MSI_MBUS_ARBEN),
134 			      "i" (ASI_M_CTL), "r" (MSI_ASYNC_MODE) : "g3");
135 }
136 
137 void pmd_set(pmd_t *pmdp, pte_t *ptep)
138 {
139 	unsigned long ptp;	/* Physical address, shifted right by 4 */
140 	int i;
141 
142 	ptp = __nocache_pa(ptep) >> 4;
143 	for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) {
144 		set_pte((pte_t *)&pmdp->pmdv[i], __pte(SRMMU_ET_PTD | ptp));
145 		ptp += (SRMMU_REAL_PTRS_PER_PTE * sizeof(pte_t) >> 4);
146 	}
147 }
148 
149 void pmd_populate(struct mm_struct *mm, pmd_t *pmdp, struct page *ptep)
150 {
151 	unsigned long ptp;	/* Physical address, shifted right by 4 */
152 	int i;
153 
154 	ptp = page_to_pfn(ptep) << (PAGE_SHIFT-4);	/* watch for overflow */
155 	for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) {
156 		set_pte((pte_t *)&pmdp->pmdv[i], __pte(SRMMU_ET_PTD | ptp));
157 		ptp += (SRMMU_REAL_PTRS_PER_PTE * sizeof(pte_t) >> 4);
158 	}
159 }
160 
161 /* Find an entry in the third-level page table.. */
162 pte_t *pte_offset_kernel(pmd_t *dir, unsigned long address)
163 {
164 	void *pte;
165 
166 	pte = __nocache_va((dir->pmdv[0] & SRMMU_PTD_PMASK) << 4);
167 	return (pte_t *) pte +
168 	    ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
169 }
170 
171 /*
172  * size: bytes to allocate in the nocache area.
173  * align: bytes, number to align at.
174  * Returns the virtual address of the allocated area.
175  */
176 static void *__srmmu_get_nocache(int size, int align)
177 {
178 	int offset;
179 	unsigned long addr;
180 
181 	if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
182 		printk(KERN_ERR "Size 0x%x too small for nocache request\n",
183 		       size);
184 		size = SRMMU_NOCACHE_BITMAP_SHIFT;
185 	}
186 	if (size & (SRMMU_NOCACHE_BITMAP_SHIFT - 1)) {
187 		printk(KERN_ERR "Size 0x%x unaligned int nocache request\n",
188 		       size);
189 		size += SRMMU_NOCACHE_BITMAP_SHIFT - 1;
190 	}
191 	BUG_ON(align > SRMMU_NOCACHE_ALIGN_MAX);
192 
193 	offset = bit_map_string_get(&srmmu_nocache_map,
194 				    size >> SRMMU_NOCACHE_BITMAP_SHIFT,
195 				    align >> SRMMU_NOCACHE_BITMAP_SHIFT);
196 	if (offset == -1) {
197 		printk(KERN_ERR "srmmu: out of nocache %d: %d/%d\n",
198 		       size, (int) srmmu_nocache_size,
199 		       srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
200 		return NULL;
201 	}
202 
203 	addr = SRMMU_NOCACHE_VADDR + (offset << SRMMU_NOCACHE_BITMAP_SHIFT);
204 	return (void *)addr;
205 }
206 
207 void *srmmu_get_nocache(int size, int align)
208 {
209 	void *tmp;
210 
211 	tmp = __srmmu_get_nocache(size, align);
212 
213 	if (tmp)
214 		memset(tmp, 0, size);
215 
216 	return tmp;
217 }
218 
219 void srmmu_free_nocache(void *addr, int size)
220 {
221 	unsigned long vaddr;
222 	int offset;
223 
224 	vaddr = (unsigned long)addr;
225 	if (vaddr < SRMMU_NOCACHE_VADDR) {
226 		printk("Vaddr %lx is smaller than nocache base 0x%lx\n",
227 		    vaddr, (unsigned long)SRMMU_NOCACHE_VADDR);
228 		BUG();
229 	}
230 	if (vaddr + size > srmmu_nocache_end) {
231 		printk("Vaddr %lx is bigger than nocache end 0x%lx\n",
232 		    vaddr, srmmu_nocache_end);
233 		BUG();
234 	}
235 	if (!is_power_of_2(size)) {
236 		printk("Size 0x%x is not a power of 2\n", size);
237 		BUG();
238 	}
239 	if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
240 		printk("Size 0x%x is too small\n", size);
241 		BUG();
242 	}
243 	if (vaddr & (size - 1)) {
244 		printk("Vaddr %lx is not aligned to size 0x%x\n", vaddr, size);
245 		BUG();
246 	}
247 
248 	offset = (vaddr - SRMMU_NOCACHE_VADDR) >> SRMMU_NOCACHE_BITMAP_SHIFT;
249 	size = size >> SRMMU_NOCACHE_BITMAP_SHIFT;
250 
251 	bit_map_clear(&srmmu_nocache_map, offset, size);
252 }
253 
254 static void srmmu_early_allocate_ptable_skeleton(unsigned long start,
255 						 unsigned long end);
256 
257 /* Return how much physical memory we have.  */
258 static unsigned long __init probe_memory(void)
259 {
260 	unsigned long total = 0;
261 	int i;
262 
263 	for (i = 0; sp_banks[i].num_bytes; i++)
264 		total += sp_banks[i].num_bytes;
265 
266 	return total;
267 }
268 
269 /*
270  * Reserve nocache dynamically proportionally to the amount of
271  * system RAM. -- Tomas Szepe <szepe@pinerecords.com>, June 2002
272  */
273 static void __init srmmu_nocache_calcsize(void)
274 {
275 	unsigned long sysmemavail = probe_memory() / 1024;
276 	int srmmu_nocache_npages;
277 
278 	srmmu_nocache_npages =
279 		sysmemavail / SRMMU_NOCACHE_ALCRATIO / 1024 * 256;
280 
281  /* P3 XXX The 4x overuse: corroborated by /proc/meminfo. */
282 	// if (srmmu_nocache_npages < 256) srmmu_nocache_npages = 256;
283 	if (srmmu_nocache_npages < SRMMU_MIN_NOCACHE_PAGES)
284 		srmmu_nocache_npages = SRMMU_MIN_NOCACHE_PAGES;
285 
286 	/* anything above 1280 blows up */
287 	if (srmmu_nocache_npages > SRMMU_MAX_NOCACHE_PAGES)
288 		srmmu_nocache_npages = SRMMU_MAX_NOCACHE_PAGES;
289 
290 	srmmu_nocache_size = srmmu_nocache_npages * PAGE_SIZE;
291 	srmmu_nocache_end = SRMMU_NOCACHE_VADDR + srmmu_nocache_size;
292 }
293 
294 static void __init srmmu_nocache_init(void)
295 {
296 	void *srmmu_nocache_bitmap;
297 	unsigned int bitmap_bits;
298 	pgd_t *pgd;
299 	pmd_t *pmd;
300 	pte_t *pte;
301 	unsigned long paddr, vaddr;
302 	unsigned long pteval;
303 
304 	bitmap_bits = srmmu_nocache_size >> SRMMU_NOCACHE_BITMAP_SHIFT;
305 
306 	srmmu_nocache_pool = memblock_alloc(srmmu_nocache_size,
307 					    SRMMU_NOCACHE_ALIGN_MAX);
308 	if (!srmmu_nocache_pool)
309 		panic("%s: Failed to allocate %lu bytes align=0x%x\n",
310 		      __func__, srmmu_nocache_size, SRMMU_NOCACHE_ALIGN_MAX);
311 	memset(srmmu_nocache_pool, 0, srmmu_nocache_size);
312 
313 	srmmu_nocache_bitmap =
314 		memblock_alloc(BITS_TO_LONGS(bitmap_bits) * sizeof(long),
315 			       SMP_CACHE_BYTES);
316 	if (!srmmu_nocache_bitmap)
317 		panic("%s: Failed to allocate %zu bytes\n", __func__,
318 		      BITS_TO_LONGS(bitmap_bits) * sizeof(long));
319 	bit_map_init(&srmmu_nocache_map, srmmu_nocache_bitmap, bitmap_bits);
320 
321 	srmmu_swapper_pg_dir = __srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
322 	memset(__nocache_fix(srmmu_swapper_pg_dir), 0, SRMMU_PGD_TABLE_SIZE);
323 	init_mm.pgd = srmmu_swapper_pg_dir;
324 
325 	srmmu_early_allocate_ptable_skeleton(SRMMU_NOCACHE_VADDR, srmmu_nocache_end);
326 
327 	paddr = __pa((unsigned long)srmmu_nocache_pool);
328 	vaddr = SRMMU_NOCACHE_VADDR;
329 
330 	while (vaddr < srmmu_nocache_end) {
331 		pgd = pgd_offset_k(vaddr);
332 		pmd = pmd_offset(__nocache_fix(pgd), vaddr);
333 		pte = pte_offset_kernel(__nocache_fix(pmd), vaddr);
334 
335 		pteval = ((paddr >> 4) | SRMMU_ET_PTE | SRMMU_PRIV);
336 
337 		if (srmmu_cache_pagetables)
338 			pteval |= SRMMU_CACHE;
339 
340 		set_pte(__nocache_fix(pte), __pte(pteval));
341 
342 		vaddr += PAGE_SIZE;
343 		paddr += PAGE_SIZE;
344 	}
345 
346 	flush_cache_all();
347 	flush_tlb_all();
348 }
349 
350 pgd_t *get_pgd_fast(void)
351 {
352 	pgd_t *pgd = NULL;
353 
354 	pgd = __srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
355 	if (pgd) {
356 		pgd_t *init = pgd_offset_k(0);
357 		memset(pgd, 0, USER_PTRS_PER_PGD * sizeof(pgd_t));
358 		memcpy(pgd + USER_PTRS_PER_PGD, init + USER_PTRS_PER_PGD,
359 						(PTRS_PER_PGD - USER_PTRS_PER_PGD) * sizeof(pgd_t));
360 	}
361 
362 	return pgd;
363 }
364 
365 /*
366  * Hardware needs alignment to 256 only, but we align to whole page size
367  * to reduce fragmentation problems due to the buddy principle.
368  * XXX Provide actual fragmentation statistics in /proc.
369  *
370  * Alignments up to the page size are the same for physical and virtual
371  * addresses of the nocache area.
372  */
373 pgtable_t pte_alloc_one(struct mm_struct *mm)
374 {
375 	unsigned long pte;
376 	struct page *page;
377 
378 	if ((pte = (unsigned long)pte_alloc_one_kernel(mm)) == 0)
379 		return NULL;
380 	page = pfn_to_page(__nocache_pa(pte) >> PAGE_SHIFT);
381 	if (!pgtable_pte_page_ctor(page)) {
382 		__free_page(page);
383 		return NULL;
384 	}
385 	return page;
386 }
387 
388 void pte_free(struct mm_struct *mm, pgtable_t pte)
389 {
390 	unsigned long p;
391 
392 	pgtable_pte_page_dtor(pte);
393 	p = (unsigned long)page_address(pte);	/* Cached address (for test) */
394 	if (p == 0)
395 		BUG();
396 	p = page_to_pfn(pte) << PAGE_SHIFT;	/* Physical address */
397 
398 	/* free non cached virtual address*/
399 	srmmu_free_nocache(__nocache_va(p), PTE_SIZE);
400 }
401 
402 /* context handling - a dynamically sized pool is used */
403 #define NO_CONTEXT	-1
404 
405 struct ctx_list {
406 	struct ctx_list *next;
407 	struct ctx_list *prev;
408 	unsigned int ctx_number;
409 	struct mm_struct *ctx_mm;
410 };
411 
412 static struct ctx_list *ctx_list_pool;
413 static struct ctx_list ctx_free;
414 static struct ctx_list ctx_used;
415 
416 /* At boot time we determine the number of contexts */
417 static int num_contexts;
418 
419 static inline void remove_from_ctx_list(struct ctx_list *entry)
420 {
421 	entry->next->prev = entry->prev;
422 	entry->prev->next = entry->next;
423 }
424 
425 static inline void add_to_ctx_list(struct ctx_list *head, struct ctx_list *entry)
426 {
427 	entry->next = head;
428 	(entry->prev = head->prev)->next = entry;
429 	head->prev = entry;
430 }
431 #define add_to_free_ctxlist(entry) add_to_ctx_list(&ctx_free, entry)
432 #define add_to_used_ctxlist(entry) add_to_ctx_list(&ctx_used, entry)
433 
434 
435 static inline void alloc_context(struct mm_struct *old_mm, struct mm_struct *mm)
436 {
437 	struct ctx_list *ctxp;
438 
439 	ctxp = ctx_free.next;
440 	if (ctxp != &ctx_free) {
441 		remove_from_ctx_list(ctxp);
442 		add_to_used_ctxlist(ctxp);
443 		mm->context = ctxp->ctx_number;
444 		ctxp->ctx_mm = mm;
445 		return;
446 	}
447 	ctxp = ctx_used.next;
448 	if (ctxp->ctx_mm == old_mm)
449 		ctxp = ctxp->next;
450 	if (ctxp == &ctx_used)
451 		panic("out of mmu contexts");
452 	flush_cache_mm(ctxp->ctx_mm);
453 	flush_tlb_mm(ctxp->ctx_mm);
454 	remove_from_ctx_list(ctxp);
455 	add_to_used_ctxlist(ctxp);
456 	ctxp->ctx_mm->context = NO_CONTEXT;
457 	ctxp->ctx_mm = mm;
458 	mm->context = ctxp->ctx_number;
459 }
460 
461 static inline void free_context(int context)
462 {
463 	struct ctx_list *ctx_old;
464 
465 	ctx_old = ctx_list_pool + context;
466 	remove_from_ctx_list(ctx_old);
467 	add_to_free_ctxlist(ctx_old);
468 }
469 
470 static void __init sparc_context_init(int numctx)
471 {
472 	int ctx;
473 	unsigned long size;
474 
475 	size = numctx * sizeof(struct ctx_list);
476 	ctx_list_pool = memblock_alloc(size, SMP_CACHE_BYTES);
477 	if (!ctx_list_pool)
478 		panic("%s: Failed to allocate %lu bytes\n", __func__, size);
479 
480 	for (ctx = 0; ctx < numctx; ctx++) {
481 		struct ctx_list *clist;
482 
483 		clist = (ctx_list_pool + ctx);
484 		clist->ctx_number = ctx;
485 		clist->ctx_mm = NULL;
486 	}
487 	ctx_free.next = ctx_free.prev = &ctx_free;
488 	ctx_used.next = ctx_used.prev = &ctx_used;
489 	for (ctx = 0; ctx < numctx; ctx++)
490 		add_to_free_ctxlist(ctx_list_pool + ctx);
491 }
492 
493 void switch_mm(struct mm_struct *old_mm, struct mm_struct *mm,
494 	       struct task_struct *tsk)
495 {
496 	unsigned long flags;
497 
498 	if (mm->context == NO_CONTEXT) {
499 		spin_lock_irqsave(&srmmu_context_spinlock, flags);
500 		alloc_context(old_mm, mm);
501 		spin_unlock_irqrestore(&srmmu_context_spinlock, flags);
502 		srmmu_ctxd_set(&srmmu_context_table[mm->context], mm->pgd);
503 	}
504 
505 	if (sparc_cpu_model == sparc_leon)
506 		leon_switch_mm();
507 
508 	if (is_hypersparc)
509 		hyper_flush_whole_icache();
510 
511 	srmmu_set_context(mm->context);
512 }
513 
514 /* Low level IO area allocation on the SRMMU. */
515 static inline void srmmu_mapioaddr(unsigned long physaddr,
516 				   unsigned long virt_addr, int bus_type)
517 {
518 	pgd_t *pgdp;
519 	pmd_t *pmdp;
520 	pte_t *ptep;
521 	unsigned long tmp;
522 
523 	physaddr &= PAGE_MASK;
524 	pgdp = pgd_offset_k(virt_addr);
525 	pmdp = pmd_offset(pgdp, virt_addr);
526 	ptep = pte_offset_kernel(pmdp, virt_addr);
527 	tmp = (physaddr >> 4) | SRMMU_ET_PTE;
528 
529 	/* I need to test whether this is consistent over all
530 	 * sun4m's.  The bus_type represents the upper 4 bits of
531 	 * 36-bit physical address on the I/O space lines...
532 	 */
533 	tmp |= (bus_type << 28);
534 	tmp |= SRMMU_PRIV;
535 	__flush_page_to_ram(virt_addr);
536 	set_pte(ptep, __pte(tmp));
537 }
538 
539 void srmmu_mapiorange(unsigned int bus, unsigned long xpa,
540 		      unsigned long xva, unsigned int len)
541 {
542 	while (len != 0) {
543 		len -= PAGE_SIZE;
544 		srmmu_mapioaddr(xpa, xva, bus);
545 		xva += PAGE_SIZE;
546 		xpa += PAGE_SIZE;
547 	}
548 	flush_tlb_all();
549 }
550 
551 static inline void srmmu_unmapioaddr(unsigned long virt_addr)
552 {
553 	pgd_t *pgdp;
554 	pmd_t *pmdp;
555 	pte_t *ptep;
556 
557 	pgdp = pgd_offset_k(virt_addr);
558 	pmdp = pmd_offset(pgdp, virt_addr);
559 	ptep = pte_offset_kernel(pmdp, virt_addr);
560 
561 	/* No need to flush uncacheable page. */
562 	__pte_clear(ptep);
563 }
564 
565 void srmmu_unmapiorange(unsigned long virt_addr, unsigned int len)
566 {
567 	while (len != 0) {
568 		len -= PAGE_SIZE;
569 		srmmu_unmapioaddr(virt_addr);
570 		virt_addr += PAGE_SIZE;
571 	}
572 	flush_tlb_all();
573 }
574 
575 /* tsunami.S */
576 extern void tsunami_flush_cache_all(void);
577 extern void tsunami_flush_cache_mm(struct mm_struct *mm);
578 extern void tsunami_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
579 extern void tsunami_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
580 extern void tsunami_flush_page_to_ram(unsigned long page);
581 extern void tsunami_flush_page_for_dma(unsigned long page);
582 extern void tsunami_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
583 extern void tsunami_flush_tlb_all(void);
584 extern void tsunami_flush_tlb_mm(struct mm_struct *mm);
585 extern void tsunami_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
586 extern void tsunami_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
587 extern void tsunami_setup_blockops(void);
588 
589 /* swift.S */
590 extern void swift_flush_cache_all(void);
591 extern void swift_flush_cache_mm(struct mm_struct *mm);
592 extern void swift_flush_cache_range(struct vm_area_struct *vma,
593 				    unsigned long start, unsigned long end);
594 extern void swift_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
595 extern void swift_flush_page_to_ram(unsigned long page);
596 extern void swift_flush_page_for_dma(unsigned long page);
597 extern void swift_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
598 extern void swift_flush_tlb_all(void);
599 extern void swift_flush_tlb_mm(struct mm_struct *mm);
600 extern void swift_flush_tlb_range(struct vm_area_struct *vma,
601 				  unsigned long start, unsigned long end);
602 extern void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
603 
604 #if 0  /* P3: deadwood to debug precise flushes on Swift. */
605 void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
606 {
607 	int cctx, ctx1;
608 
609 	page &= PAGE_MASK;
610 	if ((ctx1 = vma->vm_mm->context) != -1) {
611 		cctx = srmmu_get_context();
612 /* Is context # ever different from current context? P3 */
613 		if (cctx != ctx1) {
614 			printk("flush ctx %02x curr %02x\n", ctx1, cctx);
615 			srmmu_set_context(ctx1);
616 			swift_flush_page(page);
617 			__asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
618 					"r" (page), "i" (ASI_M_FLUSH_PROBE));
619 			srmmu_set_context(cctx);
620 		} else {
621 			 /* Rm. prot. bits from virt. c. */
622 			/* swift_flush_cache_all(); */
623 			/* swift_flush_cache_page(vma, page); */
624 			swift_flush_page(page);
625 
626 			__asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
627 				"r" (page), "i" (ASI_M_FLUSH_PROBE));
628 			/* same as above: srmmu_flush_tlb_page() */
629 		}
630 	}
631 }
632 #endif
633 
634 /*
635  * The following are all MBUS based SRMMU modules, and therefore could
636  * be found in a multiprocessor configuration.  On the whole, these
637  * chips seems to be much more touchy about DVMA and page tables
638  * with respect to cache coherency.
639  */
640 
641 /* viking.S */
642 extern void viking_flush_cache_all(void);
643 extern void viking_flush_cache_mm(struct mm_struct *mm);
644 extern void viking_flush_cache_range(struct vm_area_struct *vma, unsigned long start,
645 				     unsigned long end);
646 extern void viking_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
647 extern void viking_flush_page_to_ram(unsigned long page);
648 extern void viking_flush_page_for_dma(unsigned long page);
649 extern void viking_flush_sig_insns(struct mm_struct *mm, unsigned long addr);
650 extern void viking_flush_page(unsigned long page);
651 extern void viking_mxcc_flush_page(unsigned long page);
652 extern void viking_flush_tlb_all(void);
653 extern void viking_flush_tlb_mm(struct mm_struct *mm);
654 extern void viking_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
655 				   unsigned long end);
656 extern void viking_flush_tlb_page(struct vm_area_struct *vma,
657 				  unsigned long page);
658 extern void sun4dsmp_flush_tlb_all(void);
659 extern void sun4dsmp_flush_tlb_mm(struct mm_struct *mm);
660 extern void sun4dsmp_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
661 				   unsigned long end);
662 extern void sun4dsmp_flush_tlb_page(struct vm_area_struct *vma,
663 				  unsigned long page);
664 
665 /* hypersparc.S */
666 extern void hypersparc_flush_cache_all(void);
667 extern void hypersparc_flush_cache_mm(struct mm_struct *mm);
668 extern void hypersparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
669 extern void hypersparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
670 extern void hypersparc_flush_page_to_ram(unsigned long page);
671 extern void hypersparc_flush_page_for_dma(unsigned long page);
672 extern void hypersparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
673 extern void hypersparc_flush_tlb_all(void);
674 extern void hypersparc_flush_tlb_mm(struct mm_struct *mm);
675 extern void hypersparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
676 extern void hypersparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
677 extern void hypersparc_setup_blockops(void);
678 
679 /*
680  * NOTE: All of this startup code assumes the low 16mb (approx.) of
681  *       kernel mappings are done with one single contiguous chunk of
682  *       ram.  On small ram machines (classics mainly) we only get
683  *       around 8mb mapped for us.
684  */
685 
686 static void __init early_pgtable_allocfail(char *type)
687 {
688 	prom_printf("inherit_prom_mappings: Cannot alloc kernel %s.\n", type);
689 	prom_halt();
690 }
691 
692 static void __init srmmu_early_allocate_ptable_skeleton(unsigned long start,
693 							unsigned long end)
694 {
695 	pgd_t *pgdp;
696 	pmd_t *pmdp;
697 	pte_t *ptep;
698 
699 	while (start < end) {
700 		pgdp = pgd_offset_k(start);
701 		if (pgd_none(*(pgd_t *)__nocache_fix(pgdp))) {
702 			pmdp = __srmmu_get_nocache(
703 			    SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
704 			if (pmdp == NULL)
705 				early_pgtable_allocfail("pmd");
706 			memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
707 			pgd_set(__nocache_fix(pgdp), pmdp);
708 		}
709 		pmdp = pmd_offset(__nocache_fix(pgdp), start);
710 		if (srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
711 			ptep = __srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
712 			if (ptep == NULL)
713 				early_pgtable_allocfail("pte");
714 			memset(__nocache_fix(ptep), 0, PTE_SIZE);
715 			pmd_set(__nocache_fix(pmdp), ptep);
716 		}
717 		if (start > (0xffffffffUL - PMD_SIZE))
718 			break;
719 		start = (start + PMD_SIZE) & PMD_MASK;
720 	}
721 }
722 
723 static void __init srmmu_allocate_ptable_skeleton(unsigned long start,
724 						  unsigned long end)
725 {
726 	pgd_t *pgdp;
727 	pmd_t *pmdp;
728 	pte_t *ptep;
729 
730 	while (start < end) {
731 		pgdp = pgd_offset_k(start);
732 		if (pgd_none(*pgdp)) {
733 			pmdp = __srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
734 			if (pmdp == NULL)
735 				early_pgtable_allocfail("pmd");
736 			memset(pmdp, 0, SRMMU_PMD_TABLE_SIZE);
737 			pgd_set(pgdp, pmdp);
738 		}
739 		pmdp = pmd_offset(pgdp, start);
740 		if (srmmu_pmd_none(*pmdp)) {
741 			ptep = __srmmu_get_nocache(PTE_SIZE,
742 							     PTE_SIZE);
743 			if (ptep == NULL)
744 				early_pgtable_allocfail("pte");
745 			memset(ptep, 0, PTE_SIZE);
746 			pmd_set(pmdp, ptep);
747 		}
748 		if (start > (0xffffffffUL - PMD_SIZE))
749 			break;
750 		start = (start + PMD_SIZE) & PMD_MASK;
751 	}
752 }
753 
754 /* These flush types are not available on all chips... */
755 static inline unsigned long srmmu_probe(unsigned long vaddr)
756 {
757 	unsigned long retval;
758 
759 	if (sparc_cpu_model != sparc_leon) {
760 
761 		vaddr &= PAGE_MASK;
762 		__asm__ __volatile__("lda [%1] %2, %0\n\t" :
763 				     "=r" (retval) :
764 				     "r" (vaddr | 0x400), "i" (ASI_M_FLUSH_PROBE));
765 	} else {
766 		retval = leon_swprobe(vaddr, NULL);
767 	}
768 	return retval;
769 }
770 
771 /*
772  * This is much cleaner than poking around physical address space
773  * looking at the prom's page table directly which is what most
774  * other OS's do.  Yuck... this is much better.
775  */
776 static void __init srmmu_inherit_prom_mappings(unsigned long start,
777 					       unsigned long end)
778 {
779 	unsigned long probed;
780 	unsigned long addr;
781 	pgd_t *pgdp;
782 	pmd_t *pmdp;
783 	pte_t *ptep;
784 	int what; /* 0 = normal-pte, 1 = pmd-level pte, 2 = pgd-level pte */
785 
786 	while (start <= end) {
787 		if (start == 0)
788 			break; /* probably wrap around */
789 		if (start == 0xfef00000)
790 			start = KADB_DEBUGGER_BEGVM;
791 		probed = srmmu_probe(start);
792 		if (!probed) {
793 			/* continue probing until we find an entry */
794 			start += PAGE_SIZE;
795 			continue;
796 		}
797 
798 		/* A red snapper, see what it really is. */
799 		what = 0;
800 		addr = start - PAGE_SIZE;
801 
802 		if (!(start & ~(SRMMU_REAL_PMD_MASK))) {
803 			if (srmmu_probe(addr + SRMMU_REAL_PMD_SIZE) == probed)
804 				what = 1;
805 		}
806 
807 		if (!(start & ~(SRMMU_PGDIR_MASK))) {
808 			if (srmmu_probe(addr + SRMMU_PGDIR_SIZE) == probed)
809 				what = 2;
810 		}
811 
812 		pgdp = pgd_offset_k(start);
813 		if (what == 2) {
814 			*(pgd_t *)__nocache_fix(pgdp) = __pgd(probed);
815 			start += SRMMU_PGDIR_SIZE;
816 			continue;
817 		}
818 		if (pgd_none(*(pgd_t *)__nocache_fix(pgdp))) {
819 			pmdp = __srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE,
820 						   SRMMU_PMD_TABLE_SIZE);
821 			if (pmdp == NULL)
822 				early_pgtable_allocfail("pmd");
823 			memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
824 			pgd_set(__nocache_fix(pgdp), pmdp);
825 		}
826 		pmdp = pmd_offset(__nocache_fix(pgdp), start);
827 		if (srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
828 			ptep = __srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
829 			if (ptep == NULL)
830 				early_pgtable_allocfail("pte");
831 			memset(__nocache_fix(ptep), 0, PTE_SIZE);
832 			pmd_set(__nocache_fix(pmdp), ptep);
833 		}
834 		if (what == 1) {
835 			/* We bend the rule where all 16 PTPs in a pmd_t point
836 			 * inside the same PTE page, and we leak a perfectly
837 			 * good hardware PTE piece. Alternatives seem worse.
838 			 */
839 			unsigned int x;	/* Index of HW PMD in soft cluster */
840 			unsigned long *val;
841 			x = (start >> PMD_SHIFT) & 15;
842 			val = &pmdp->pmdv[x];
843 			*(unsigned long *)__nocache_fix(val) = probed;
844 			start += SRMMU_REAL_PMD_SIZE;
845 			continue;
846 		}
847 		ptep = pte_offset_kernel(__nocache_fix(pmdp), start);
848 		*(pte_t *)__nocache_fix(ptep) = __pte(probed);
849 		start += PAGE_SIZE;
850 	}
851 }
852 
853 #define KERNEL_PTE(page_shifted) ((page_shifted)|SRMMU_CACHE|SRMMU_PRIV|SRMMU_VALID)
854 
855 /* Create a third-level SRMMU 16MB page mapping. */
856 static void __init do_large_mapping(unsigned long vaddr, unsigned long phys_base)
857 {
858 	pgd_t *pgdp = pgd_offset_k(vaddr);
859 	unsigned long big_pte;
860 
861 	big_pte = KERNEL_PTE(phys_base >> 4);
862 	*(pgd_t *)__nocache_fix(pgdp) = __pgd(big_pte);
863 }
864 
865 /* Map sp_bank entry SP_ENTRY, starting at virtual address VBASE. */
866 static unsigned long __init map_spbank(unsigned long vbase, int sp_entry)
867 {
868 	unsigned long pstart = (sp_banks[sp_entry].base_addr & SRMMU_PGDIR_MASK);
869 	unsigned long vstart = (vbase & SRMMU_PGDIR_MASK);
870 	unsigned long vend = SRMMU_PGDIR_ALIGN(vbase + sp_banks[sp_entry].num_bytes);
871 	/* Map "low" memory only */
872 	const unsigned long min_vaddr = PAGE_OFFSET;
873 	const unsigned long max_vaddr = PAGE_OFFSET + SRMMU_MAXMEM;
874 
875 	if (vstart < min_vaddr || vstart >= max_vaddr)
876 		return vstart;
877 
878 	if (vend > max_vaddr || vend < min_vaddr)
879 		vend = max_vaddr;
880 
881 	while (vstart < vend) {
882 		do_large_mapping(vstart, pstart);
883 		vstart += SRMMU_PGDIR_SIZE; pstart += SRMMU_PGDIR_SIZE;
884 	}
885 	return vstart;
886 }
887 
888 static void __init map_kernel(void)
889 {
890 	int i;
891 
892 	if (phys_base > 0) {
893 		do_large_mapping(PAGE_OFFSET, phys_base);
894 	}
895 
896 	for (i = 0; sp_banks[i].num_bytes != 0; i++) {
897 		map_spbank((unsigned long)__va(sp_banks[i].base_addr), i);
898 	}
899 }
900 
901 void (*poke_srmmu)(void) = NULL;
902 
903 void __init srmmu_paging_init(void)
904 {
905 	int i;
906 	phandle cpunode;
907 	char node_str[128];
908 	pgd_t *pgd;
909 	pmd_t *pmd;
910 	pte_t *pte;
911 	unsigned long pages_avail;
912 
913 	init_mm.context = (unsigned long) NO_CONTEXT;
914 	sparc_iomap.start = SUN4M_IOBASE_VADDR;	/* 16MB of IOSPACE on all sun4m's. */
915 
916 	if (sparc_cpu_model == sun4d)
917 		num_contexts = 65536; /* We know it is Viking */
918 	else {
919 		/* Find the number of contexts on the srmmu. */
920 		cpunode = prom_getchild(prom_root_node);
921 		num_contexts = 0;
922 		while (cpunode != 0) {
923 			prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
924 			if (!strcmp(node_str, "cpu")) {
925 				num_contexts = prom_getintdefault(cpunode, "mmu-nctx", 0x8);
926 				break;
927 			}
928 			cpunode = prom_getsibling(cpunode);
929 		}
930 	}
931 
932 	if (!num_contexts) {
933 		prom_printf("Something wrong, can't find cpu node in paging_init.\n");
934 		prom_halt();
935 	}
936 
937 	pages_avail = 0;
938 	last_valid_pfn = bootmem_init(&pages_avail);
939 
940 	srmmu_nocache_calcsize();
941 	srmmu_nocache_init();
942 	srmmu_inherit_prom_mappings(0xfe400000, (LINUX_OPPROM_ENDVM - PAGE_SIZE));
943 	map_kernel();
944 
945 	/* ctx table has to be physically aligned to its size */
946 	srmmu_context_table = __srmmu_get_nocache(num_contexts * sizeof(ctxd_t), num_contexts * sizeof(ctxd_t));
947 	srmmu_ctx_table_phys = (ctxd_t *)__nocache_pa(srmmu_context_table);
948 
949 	for (i = 0; i < num_contexts; i++)
950 		srmmu_ctxd_set((ctxd_t *)__nocache_fix(&srmmu_context_table[i]), srmmu_swapper_pg_dir);
951 
952 	flush_cache_all();
953 	srmmu_set_ctable_ptr((unsigned long)srmmu_ctx_table_phys);
954 #ifdef CONFIG_SMP
955 	/* Stop from hanging here... */
956 	local_ops->tlb_all();
957 #else
958 	flush_tlb_all();
959 #endif
960 	poke_srmmu();
961 
962 	srmmu_allocate_ptable_skeleton(sparc_iomap.start, IOBASE_END);
963 	srmmu_allocate_ptable_skeleton(DVMA_VADDR, DVMA_END);
964 
965 	srmmu_allocate_ptable_skeleton(
966 		__fix_to_virt(__end_of_fixed_addresses - 1), FIXADDR_TOP);
967 	srmmu_allocate_ptable_skeleton(PKMAP_BASE, PKMAP_END);
968 
969 	pgd = pgd_offset_k(PKMAP_BASE);
970 	pmd = pmd_offset(pgd, PKMAP_BASE);
971 	pte = pte_offset_kernel(pmd, PKMAP_BASE);
972 	pkmap_page_table = pte;
973 
974 	flush_cache_all();
975 	flush_tlb_all();
976 
977 	sparc_context_init(num_contexts);
978 
979 	kmap_init();
980 
981 	{
982 		unsigned long zones_size[MAX_NR_ZONES];
983 		unsigned long zholes_size[MAX_NR_ZONES];
984 		unsigned long npages;
985 		int znum;
986 
987 		for (znum = 0; znum < MAX_NR_ZONES; znum++)
988 			zones_size[znum] = zholes_size[znum] = 0;
989 
990 		npages = max_low_pfn - pfn_base;
991 
992 		zones_size[ZONE_DMA] = npages;
993 		zholes_size[ZONE_DMA] = npages - pages_avail;
994 
995 		npages = highend_pfn - max_low_pfn;
996 		zones_size[ZONE_HIGHMEM] = npages;
997 		zholes_size[ZONE_HIGHMEM] = npages - calc_highpages();
998 
999 		free_area_init_node(0, zones_size, pfn_base, zholes_size);
1000 	}
1001 }
1002 
1003 void mmu_info(struct seq_file *m)
1004 {
1005 	seq_printf(m,
1006 		   "MMU type\t: %s\n"
1007 		   "contexts\t: %d\n"
1008 		   "nocache total\t: %ld\n"
1009 		   "nocache used\t: %d\n",
1010 		   srmmu_name,
1011 		   num_contexts,
1012 		   srmmu_nocache_size,
1013 		   srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
1014 }
1015 
1016 int init_new_context(struct task_struct *tsk, struct mm_struct *mm)
1017 {
1018 	mm->context = NO_CONTEXT;
1019 	return 0;
1020 }
1021 
1022 void destroy_context(struct mm_struct *mm)
1023 {
1024 	unsigned long flags;
1025 
1026 	if (mm->context != NO_CONTEXT) {
1027 		flush_cache_mm(mm);
1028 		srmmu_ctxd_set(&srmmu_context_table[mm->context], srmmu_swapper_pg_dir);
1029 		flush_tlb_mm(mm);
1030 		spin_lock_irqsave(&srmmu_context_spinlock, flags);
1031 		free_context(mm->context);
1032 		spin_unlock_irqrestore(&srmmu_context_spinlock, flags);
1033 		mm->context = NO_CONTEXT;
1034 	}
1035 }
1036 
1037 /* Init various srmmu chip types. */
1038 static void __init srmmu_is_bad(void)
1039 {
1040 	prom_printf("Could not determine SRMMU chip type.\n");
1041 	prom_halt();
1042 }
1043 
1044 static void __init init_vac_layout(void)
1045 {
1046 	phandle nd;
1047 	int cache_lines;
1048 	char node_str[128];
1049 #ifdef CONFIG_SMP
1050 	int cpu = 0;
1051 	unsigned long max_size = 0;
1052 	unsigned long min_line_size = 0x10000000;
1053 #endif
1054 
1055 	nd = prom_getchild(prom_root_node);
1056 	while ((nd = prom_getsibling(nd)) != 0) {
1057 		prom_getstring(nd, "device_type", node_str, sizeof(node_str));
1058 		if (!strcmp(node_str, "cpu")) {
1059 			vac_line_size = prom_getint(nd, "cache-line-size");
1060 			if (vac_line_size == -1) {
1061 				prom_printf("can't determine cache-line-size, halting.\n");
1062 				prom_halt();
1063 			}
1064 			cache_lines = prom_getint(nd, "cache-nlines");
1065 			if (cache_lines == -1) {
1066 				prom_printf("can't determine cache-nlines, halting.\n");
1067 				prom_halt();
1068 			}
1069 
1070 			vac_cache_size = cache_lines * vac_line_size;
1071 #ifdef CONFIG_SMP
1072 			if (vac_cache_size > max_size)
1073 				max_size = vac_cache_size;
1074 			if (vac_line_size < min_line_size)
1075 				min_line_size = vac_line_size;
1076 			//FIXME: cpus not contiguous!!
1077 			cpu++;
1078 			if (cpu >= nr_cpu_ids || !cpu_online(cpu))
1079 				break;
1080 #else
1081 			break;
1082 #endif
1083 		}
1084 	}
1085 	if (nd == 0) {
1086 		prom_printf("No CPU nodes found, halting.\n");
1087 		prom_halt();
1088 	}
1089 #ifdef CONFIG_SMP
1090 	vac_cache_size = max_size;
1091 	vac_line_size = min_line_size;
1092 #endif
1093 	printk("SRMMU: Using VAC size of %d bytes, line size %d bytes.\n",
1094 	       (int)vac_cache_size, (int)vac_line_size);
1095 }
1096 
1097 static void poke_hypersparc(void)
1098 {
1099 	volatile unsigned long clear;
1100 	unsigned long mreg = srmmu_get_mmureg();
1101 
1102 	hyper_flush_unconditional_combined();
1103 
1104 	mreg &= ~(HYPERSPARC_CWENABLE);
1105 	mreg |= (HYPERSPARC_CENABLE | HYPERSPARC_WBENABLE);
1106 	mreg |= (HYPERSPARC_CMODE);
1107 
1108 	srmmu_set_mmureg(mreg);
1109 
1110 #if 0 /* XXX I think this is bad news... -DaveM */
1111 	hyper_clear_all_tags();
1112 #endif
1113 
1114 	put_ross_icr(HYPERSPARC_ICCR_FTD | HYPERSPARC_ICCR_ICE);
1115 	hyper_flush_whole_icache();
1116 	clear = srmmu_get_faddr();
1117 	clear = srmmu_get_fstatus();
1118 }
1119 
1120 static const struct sparc32_cachetlb_ops hypersparc_ops = {
1121 	.cache_all	= hypersparc_flush_cache_all,
1122 	.cache_mm	= hypersparc_flush_cache_mm,
1123 	.cache_page	= hypersparc_flush_cache_page,
1124 	.cache_range	= hypersparc_flush_cache_range,
1125 	.tlb_all	= hypersparc_flush_tlb_all,
1126 	.tlb_mm		= hypersparc_flush_tlb_mm,
1127 	.tlb_page	= hypersparc_flush_tlb_page,
1128 	.tlb_range	= hypersparc_flush_tlb_range,
1129 	.page_to_ram	= hypersparc_flush_page_to_ram,
1130 	.sig_insns	= hypersparc_flush_sig_insns,
1131 	.page_for_dma	= hypersparc_flush_page_for_dma,
1132 };
1133 
1134 static void __init init_hypersparc(void)
1135 {
1136 	srmmu_name = "ROSS HyperSparc";
1137 	srmmu_modtype = HyperSparc;
1138 
1139 	init_vac_layout();
1140 
1141 	is_hypersparc = 1;
1142 	sparc32_cachetlb_ops = &hypersparc_ops;
1143 
1144 	poke_srmmu = poke_hypersparc;
1145 
1146 	hypersparc_setup_blockops();
1147 }
1148 
1149 static void poke_swift(void)
1150 {
1151 	unsigned long mreg;
1152 
1153 	/* Clear any crap from the cache or else... */
1154 	swift_flush_cache_all();
1155 
1156 	/* Enable I & D caches */
1157 	mreg = srmmu_get_mmureg();
1158 	mreg |= (SWIFT_IE | SWIFT_DE);
1159 	/*
1160 	 * The Swift branch folding logic is completely broken.  At
1161 	 * trap time, if things are just right, if can mistakenly
1162 	 * think that a trap is coming from kernel mode when in fact
1163 	 * it is coming from user mode (it mis-executes the branch in
1164 	 * the trap code).  So you see things like crashme completely
1165 	 * hosing your machine which is completely unacceptable.  Turn
1166 	 * this shit off... nice job Fujitsu.
1167 	 */
1168 	mreg &= ~(SWIFT_BF);
1169 	srmmu_set_mmureg(mreg);
1170 }
1171 
1172 static const struct sparc32_cachetlb_ops swift_ops = {
1173 	.cache_all	= swift_flush_cache_all,
1174 	.cache_mm	= swift_flush_cache_mm,
1175 	.cache_page	= swift_flush_cache_page,
1176 	.cache_range	= swift_flush_cache_range,
1177 	.tlb_all	= swift_flush_tlb_all,
1178 	.tlb_mm		= swift_flush_tlb_mm,
1179 	.tlb_page	= swift_flush_tlb_page,
1180 	.tlb_range	= swift_flush_tlb_range,
1181 	.page_to_ram	= swift_flush_page_to_ram,
1182 	.sig_insns	= swift_flush_sig_insns,
1183 	.page_for_dma	= swift_flush_page_for_dma,
1184 };
1185 
1186 #define SWIFT_MASKID_ADDR  0x10003018
1187 static void __init init_swift(void)
1188 {
1189 	unsigned long swift_rev;
1190 
1191 	__asm__ __volatile__("lda [%1] %2, %0\n\t"
1192 			     "srl %0, 0x18, %0\n\t" :
1193 			     "=r" (swift_rev) :
1194 			     "r" (SWIFT_MASKID_ADDR), "i" (ASI_M_BYPASS));
1195 	srmmu_name = "Fujitsu Swift";
1196 	switch (swift_rev) {
1197 	case 0x11:
1198 	case 0x20:
1199 	case 0x23:
1200 	case 0x30:
1201 		srmmu_modtype = Swift_lots_o_bugs;
1202 		hwbug_bitmask |= (HWBUG_KERN_ACCBROKEN | HWBUG_KERN_CBITBROKEN);
1203 		/*
1204 		 * Gee george, I wonder why Sun is so hush hush about
1205 		 * this hardware bug... really braindamage stuff going
1206 		 * on here.  However I think we can find a way to avoid
1207 		 * all of the workaround overhead under Linux.  Basically,
1208 		 * any page fault can cause kernel pages to become user
1209 		 * accessible (the mmu gets confused and clears some of
1210 		 * the ACC bits in kernel ptes).  Aha, sounds pretty
1211 		 * horrible eh?  But wait, after extensive testing it appears
1212 		 * that if you use pgd_t level large kernel pte's (like the
1213 		 * 4MB pages on the Pentium) the bug does not get tripped
1214 		 * at all.  This avoids almost all of the major overhead.
1215 		 * Welcome to a world where your vendor tells you to,
1216 		 * "apply this kernel patch" instead of "sorry for the
1217 		 * broken hardware, send it back and we'll give you
1218 		 * properly functioning parts"
1219 		 */
1220 		break;
1221 	case 0x25:
1222 	case 0x31:
1223 		srmmu_modtype = Swift_bad_c;
1224 		hwbug_bitmask |= HWBUG_KERN_CBITBROKEN;
1225 		/*
1226 		 * You see Sun allude to this hardware bug but never
1227 		 * admit things directly, they'll say things like,
1228 		 * "the Swift chip cache problems" or similar.
1229 		 */
1230 		break;
1231 	default:
1232 		srmmu_modtype = Swift_ok;
1233 		break;
1234 	}
1235 
1236 	sparc32_cachetlb_ops = &swift_ops;
1237 	flush_page_for_dma_global = 0;
1238 
1239 	/*
1240 	 * Are you now convinced that the Swift is one of the
1241 	 * biggest VLSI abortions of all time?  Bravo Fujitsu!
1242 	 * Fujitsu, the !#?!%$'d up processor people.  I bet if
1243 	 * you examined the microcode of the Swift you'd find
1244 	 * XXX's all over the place.
1245 	 */
1246 	poke_srmmu = poke_swift;
1247 }
1248 
1249 static void turbosparc_flush_cache_all(void)
1250 {
1251 	flush_user_windows();
1252 	turbosparc_idflash_clear();
1253 }
1254 
1255 static void turbosparc_flush_cache_mm(struct mm_struct *mm)
1256 {
1257 	FLUSH_BEGIN(mm)
1258 	flush_user_windows();
1259 	turbosparc_idflash_clear();
1260 	FLUSH_END
1261 }
1262 
1263 static void turbosparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1264 {
1265 	FLUSH_BEGIN(vma->vm_mm)
1266 	flush_user_windows();
1267 	turbosparc_idflash_clear();
1268 	FLUSH_END
1269 }
1270 
1271 static void turbosparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
1272 {
1273 	FLUSH_BEGIN(vma->vm_mm)
1274 	flush_user_windows();
1275 	if (vma->vm_flags & VM_EXEC)
1276 		turbosparc_flush_icache();
1277 	turbosparc_flush_dcache();
1278 	FLUSH_END
1279 }
1280 
1281 /* TurboSparc is copy-back, if we turn it on, but this does not work. */
1282 static void turbosparc_flush_page_to_ram(unsigned long page)
1283 {
1284 #ifdef TURBOSPARC_WRITEBACK
1285 	volatile unsigned long clear;
1286 
1287 	if (srmmu_probe(page))
1288 		turbosparc_flush_page_cache(page);
1289 	clear = srmmu_get_fstatus();
1290 #endif
1291 }
1292 
1293 static void turbosparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
1294 {
1295 }
1296 
1297 static void turbosparc_flush_page_for_dma(unsigned long page)
1298 {
1299 	turbosparc_flush_dcache();
1300 }
1301 
1302 static void turbosparc_flush_tlb_all(void)
1303 {
1304 	srmmu_flush_whole_tlb();
1305 }
1306 
1307 static void turbosparc_flush_tlb_mm(struct mm_struct *mm)
1308 {
1309 	FLUSH_BEGIN(mm)
1310 	srmmu_flush_whole_tlb();
1311 	FLUSH_END
1312 }
1313 
1314 static void turbosparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1315 {
1316 	FLUSH_BEGIN(vma->vm_mm)
1317 	srmmu_flush_whole_tlb();
1318 	FLUSH_END
1319 }
1320 
1321 static void turbosparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
1322 {
1323 	FLUSH_BEGIN(vma->vm_mm)
1324 	srmmu_flush_whole_tlb();
1325 	FLUSH_END
1326 }
1327 
1328 
1329 static void poke_turbosparc(void)
1330 {
1331 	unsigned long mreg = srmmu_get_mmureg();
1332 	unsigned long ccreg;
1333 
1334 	/* Clear any crap from the cache or else... */
1335 	turbosparc_flush_cache_all();
1336 	/* Temporarily disable I & D caches */
1337 	mreg &= ~(TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE);
1338 	mreg &= ~(TURBOSPARC_PCENABLE);		/* Don't check parity */
1339 	srmmu_set_mmureg(mreg);
1340 
1341 	ccreg = turbosparc_get_ccreg();
1342 
1343 #ifdef TURBOSPARC_WRITEBACK
1344 	ccreg |= (TURBOSPARC_SNENABLE);		/* Do DVMA snooping in Dcache */
1345 	ccreg &= ~(TURBOSPARC_uS2 | TURBOSPARC_WTENABLE);
1346 			/* Write-back D-cache, emulate VLSI
1347 			 * abortion number three, not number one */
1348 #else
1349 	/* For now let's play safe, optimize later */
1350 	ccreg |= (TURBOSPARC_SNENABLE | TURBOSPARC_WTENABLE);
1351 			/* Do DVMA snooping in Dcache, Write-thru D-cache */
1352 	ccreg &= ~(TURBOSPARC_uS2);
1353 			/* Emulate VLSI abortion number three, not number one */
1354 #endif
1355 
1356 	switch (ccreg & 7) {
1357 	case 0: /* No SE cache */
1358 	case 7: /* Test mode */
1359 		break;
1360 	default:
1361 		ccreg |= (TURBOSPARC_SCENABLE);
1362 	}
1363 	turbosparc_set_ccreg(ccreg);
1364 
1365 	mreg |= (TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE); /* I & D caches on */
1366 	mreg |= (TURBOSPARC_ICSNOOP);		/* Icache snooping on */
1367 	srmmu_set_mmureg(mreg);
1368 }
1369 
1370 static const struct sparc32_cachetlb_ops turbosparc_ops = {
1371 	.cache_all	= turbosparc_flush_cache_all,
1372 	.cache_mm	= turbosparc_flush_cache_mm,
1373 	.cache_page	= turbosparc_flush_cache_page,
1374 	.cache_range	= turbosparc_flush_cache_range,
1375 	.tlb_all	= turbosparc_flush_tlb_all,
1376 	.tlb_mm		= turbosparc_flush_tlb_mm,
1377 	.tlb_page	= turbosparc_flush_tlb_page,
1378 	.tlb_range	= turbosparc_flush_tlb_range,
1379 	.page_to_ram	= turbosparc_flush_page_to_ram,
1380 	.sig_insns	= turbosparc_flush_sig_insns,
1381 	.page_for_dma	= turbosparc_flush_page_for_dma,
1382 };
1383 
1384 static void __init init_turbosparc(void)
1385 {
1386 	srmmu_name = "Fujitsu TurboSparc";
1387 	srmmu_modtype = TurboSparc;
1388 	sparc32_cachetlb_ops = &turbosparc_ops;
1389 	poke_srmmu = poke_turbosparc;
1390 }
1391 
1392 static void poke_tsunami(void)
1393 {
1394 	unsigned long mreg = srmmu_get_mmureg();
1395 
1396 	tsunami_flush_icache();
1397 	tsunami_flush_dcache();
1398 	mreg &= ~TSUNAMI_ITD;
1399 	mreg |= (TSUNAMI_IENAB | TSUNAMI_DENAB);
1400 	srmmu_set_mmureg(mreg);
1401 }
1402 
1403 static const struct sparc32_cachetlb_ops tsunami_ops = {
1404 	.cache_all	= tsunami_flush_cache_all,
1405 	.cache_mm	= tsunami_flush_cache_mm,
1406 	.cache_page	= tsunami_flush_cache_page,
1407 	.cache_range	= tsunami_flush_cache_range,
1408 	.tlb_all	= tsunami_flush_tlb_all,
1409 	.tlb_mm		= tsunami_flush_tlb_mm,
1410 	.tlb_page	= tsunami_flush_tlb_page,
1411 	.tlb_range	= tsunami_flush_tlb_range,
1412 	.page_to_ram	= tsunami_flush_page_to_ram,
1413 	.sig_insns	= tsunami_flush_sig_insns,
1414 	.page_for_dma	= tsunami_flush_page_for_dma,
1415 };
1416 
1417 static void __init init_tsunami(void)
1418 {
1419 	/*
1420 	 * Tsunami's pretty sane, Sun and TI actually got it
1421 	 * somewhat right this time.  Fujitsu should have
1422 	 * taken some lessons from them.
1423 	 */
1424 
1425 	srmmu_name = "TI Tsunami";
1426 	srmmu_modtype = Tsunami;
1427 	sparc32_cachetlb_ops = &tsunami_ops;
1428 	poke_srmmu = poke_tsunami;
1429 
1430 	tsunami_setup_blockops();
1431 }
1432 
1433 static void poke_viking(void)
1434 {
1435 	unsigned long mreg = srmmu_get_mmureg();
1436 	static int smp_catch;
1437 
1438 	if (viking_mxcc_present) {
1439 		unsigned long mxcc_control = mxcc_get_creg();
1440 
1441 		mxcc_control |= (MXCC_CTL_ECE | MXCC_CTL_PRE | MXCC_CTL_MCE);
1442 		mxcc_control &= ~(MXCC_CTL_RRC);
1443 		mxcc_set_creg(mxcc_control);
1444 
1445 		/*
1446 		 * We don't need memory parity checks.
1447 		 * XXX This is a mess, have to dig out later. ecd.
1448 		viking_mxcc_turn_off_parity(&mreg, &mxcc_control);
1449 		 */
1450 
1451 		/* We do cache ptables on MXCC. */
1452 		mreg |= VIKING_TCENABLE;
1453 	} else {
1454 		unsigned long bpreg;
1455 
1456 		mreg &= ~(VIKING_TCENABLE);
1457 		if (smp_catch++) {
1458 			/* Must disable mixed-cmd mode here for other cpu's. */
1459 			bpreg = viking_get_bpreg();
1460 			bpreg &= ~(VIKING_ACTION_MIX);
1461 			viking_set_bpreg(bpreg);
1462 
1463 			/* Just in case PROM does something funny. */
1464 			msi_set_sync();
1465 		}
1466 	}
1467 
1468 	mreg |= VIKING_SPENABLE;
1469 	mreg |= (VIKING_ICENABLE | VIKING_DCENABLE);
1470 	mreg |= VIKING_SBENABLE;
1471 	mreg &= ~(VIKING_ACENABLE);
1472 	srmmu_set_mmureg(mreg);
1473 }
1474 
1475 static struct sparc32_cachetlb_ops viking_ops __ro_after_init = {
1476 	.cache_all	= viking_flush_cache_all,
1477 	.cache_mm	= viking_flush_cache_mm,
1478 	.cache_page	= viking_flush_cache_page,
1479 	.cache_range	= viking_flush_cache_range,
1480 	.tlb_all	= viking_flush_tlb_all,
1481 	.tlb_mm		= viking_flush_tlb_mm,
1482 	.tlb_page	= viking_flush_tlb_page,
1483 	.tlb_range	= viking_flush_tlb_range,
1484 	.page_to_ram	= viking_flush_page_to_ram,
1485 	.sig_insns	= viking_flush_sig_insns,
1486 	.page_for_dma	= viking_flush_page_for_dma,
1487 };
1488 
1489 #ifdef CONFIG_SMP
1490 /* On sun4d the cpu broadcasts local TLB flushes, so we can just
1491  * perform the local TLB flush and all the other cpus will see it.
1492  * But, unfortunately, there is a bug in the sun4d XBUS backplane
1493  * that requires that we add some synchronization to these flushes.
1494  *
1495  * The bug is that the fifo which keeps track of all the pending TLB
1496  * broadcasts in the system is an entry or two too small, so if we
1497  * have too many going at once we'll overflow that fifo and lose a TLB
1498  * flush resulting in corruption.
1499  *
1500  * Our workaround is to take a global spinlock around the TLB flushes,
1501  * which guarentees we won't ever have too many pending.  It's a big
1502  * hammer, but a semaphore like system to make sure we only have N TLB
1503  * flushes going at once will require SMP locking anyways so there's
1504  * no real value in trying any harder than this.
1505  */
1506 static struct sparc32_cachetlb_ops viking_sun4d_smp_ops __ro_after_init = {
1507 	.cache_all	= viking_flush_cache_all,
1508 	.cache_mm	= viking_flush_cache_mm,
1509 	.cache_page	= viking_flush_cache_page,
1510 	.cache_range	= viking_flush_cache_range,
1511 	.tlb_all	= sun4dsmp_flush_tlb_all,
1512 	.tlb_mm		= sun4dsmp_flush_tlb_mm,
1513 	.tlb_page	= sun4dsmp_flush_tlb_page,
1514 	.tlb_range	= sun4dsmp_flush_tlb_range,
1515 	.page_to_ram	= viking_flush_page_to_ram,
1516 	.sig_insns	= viking_flush_sig_insns,
1517 	.page_for_dma	= viking_flush_page_for_dma,
1518 };
1519 #endif
1520 
1521 static void __init init_viking(void)
1522 {
1523 	unsigned long mreg = srmmu_get_mmureg();
1524 
1525 	/* Ahhh, the viking.  SRMMU VLSI abortion number two... */
1526 	if (mreg & VIKING_MMODE) {
1527 		srmmu_name = "TI Viking";
1528 		viking_mxcc_present = 0;
1529 		msi_set_sync();
1530 
1531 		/*
1532 		 * We need this to make sure old viking takes no hits
1533 		 * on it's cache for dma snoops to workaround the
1534 		 * "load from non-cacheable memory" interrupt bug.
1535 		 * This is only necessary because of the new way in
1536 		 * which we use the IOMMU.
1537 		 */
1538 		viking_ops.page_for_dma = viking_flush_page;
1539 #ifdef CONFIG_SMP
1540 		viking_sun4d_smp_ops.page_for_dma = viking_flush_page;
1541 #endif
1542 		flush_page_for_dma_global = 0;
1543 	} else {
1544 		srmmu_name = "TI Viking/MXCC";
1545 		viking_mxcc_present = 1;
1546 		srmmu_cache_pagetables = 1;
1547 	}
1548 
1549 	sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1550 		&viking_ops;
1551 #ifdef CONFIG_SMP
1552 	if (sparc_cpu_model == sun4d)
1553 		sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1554 			&viking_sun4d_smp_ops;
1555 #endif
1556 
1557 	poke_srmmu = poke_viking;
1558 }
1559 
1560 /* Probe for the srmmu chip version. */
1561 static void __init get_srmmu_type(void)
1562 {
1563 	unsigned long mreg, psr;
1564 	unsigned long mod_typ, mod_rev, psr_typ, psr_vers;
1565 
1566 	srmmu_modtype = SRMMU_INVAL_MOD;
1567 	hwbug_bitmask = 0;
1568 
1569 	mreg = srmmu_get_mmureg(); psr = get_psr();
1570 	mod_typ = (mreg & 0xf0000000) >> 28;
1571 	mod_rev = (mreg & 0x0f000000) >> 24;
1572 	psr_typ = (psr >> 28) & 0xf;
1573 	psr_vers = (psr >> 24) & 0xf;
1574 
1575 	/* First, check for sparc-leon. */
1576 	if (sparc_cpu_model == sparc_leon) {
1577 		init_leon();
1578 		return;
1579 	}
1580 
1581 	/* Second, check for HyperSparc or Cypress. */
1582 	if (mod_typ == 1) {
1583 		switch (mod_rev) {
1584 		case 7:
1585 			/* UP or MP Hypersparc */
1586 			init_hypersparc();
1587 			break;
1588 		case 0:
1589 		case 2:
1590 		case 10:
1591 		case 11:
1592 		case 12:
1593 		case 13:
1594 		case 14:
1595 		case 15:
1596 		default:
1597 			prom_printf("Sparc-Linux Cypress support does not longer exit.\n");
1598 			prom_halt();
1599 			break;
1600 		}
1601 		return;
1602 	}
1603 
1604 	/* Now Fujitsu TurboSparc. It might happen that it is
1605 	 * in Swift emulation mode, so we will check later...
1606 	 */
1607 	if (psr_typ == 0 && psr_vers == 5) {
1608 		init_turbosparc();
1609 		return;
1610 	}
1611 
1612 	/* Next check for Fujitsu Swift. */
1613 	if (psr_typ == 0 && psr_vers == 4) {
1614 		phandle cpunode;
1615 		char node_str[128];
1616 
1617 		/* Look if it is not a TurboSparc emulating Swift... */
1618 		cpunode = prom_getchild(prom_root_node);
1619 		while ((cpunode = prom_getsibling(cpunode)) != 0) {
1620 			prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
1621 			if (!strcmp(node_str, "cpu")) {
1622 				if (!prom_getintdefault(cpunode, "psr-implementation", 1) &&
1623 				    prom_getintdefault(cpunode, "psr-version", 1) == 5) {
1624 					init_turbosparc();
1625 					return;
1626 				}
1627 				break;
1628 			}
1629 		}
1630 
1631 		init_swift();
1632 		return;
1633 	}
1634 
1635 	/* Now the Viking family of srmmu. */
1636 	if (psr_typ == 4 &&
1637 	   ((psr_vers == 0) ||
1638 	    ((psr_vers == 1) && (mod_typ == 0) && (mod_rev == 0)))) {
1639 		init_viking();
1640 		return;
1641 	}
1642 
1643 	/* Finally the Tsunami. */
1644 	if (psr_typ == 4 && psr_vers == 1 && (mod_typ || mod_rev)) {
1645 		init_tsunami();
1646 		return;
1647 	}
1648 
1649 	/* Oh well */
1650 	srmmu_is_bad();
1651 }
1652 
1653 #ifdef CONFIG_SMP
1654 /* Local cross-calls. */
1655 static void smp_flush_page_for_dma(unsigned long page)
1656 {
1657 	xc1((smpfunc_t) local_ops->page_for_dma, page);
1658 	local_ops->page_for_dma(page);
1659 }
1660 
1661 static void smp_flush_cache_all(void)
1662 {
1663 	xc0((smpfunc_t) local_ops->cache_all);
1664 	local_ops->cache_all();
1665 }
1666 
1667 static void smp_flush_tlb_all(void)
1668 {
1669 	xc0((smpfunc_t) local_ops->tlb_all);
1670 	local_ops->tlb_all();
1671 }
1672 
1673 static void smp_flush_cache_mm(struct mm_struct *mm)
1674 {
1675 	if (mm->context != NO_CONTEXT) {
1676 		cpumask_t cpu_mask;
1677 		cpumask_copy(&cpu_mask, mm_cpumask(mm));
1678 		cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1679 		if (!cpumask_empty(&cpu_mask))
1680 			xc1((smpfunc_t) local_ops->cache_mm, (unsigned long) mm);
1681 		local_ops->cache_mm(mm);
1682 	}
1683 }
1684 
1685 static void smp_flush_tlb_mm(struct mm_struct *mm)
1686 {
1687 	if (mm->context != NO_CONTEXT) {
1688 		cpumask_t cpu_mask;
1689 		cpumask_copy(&cpu_mask, mm_cpumask(mm));
1690 		cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1691 		if (!cpumask_empty(&cpu_mask)) {
1692 			xc1((smpfunc_t) local_ops->tlb_mm, (unsigned long) mm);
1693 			if (atomic_read(&mm->mm_users) == 1 && current->active_mm == mm)
1694 				cpumask_copy(mm_cpumask(mm),
1695 					     cpumask_of(smp_processor_id()));
1696 		}
1697 		local_ops->tlb_mm(mm);
1698 	}
1699 }
1700 
1701 static void smp_flush_cache_range(struct vm_area_struct *vma,
1702 				  unsigned long start,
1703 				  unsigned long end)
1704 {
1705 	struct mm_struct *mm = vma->vm_mm;
1706 
1707 	if (mm->context != NO_CONTEXT) {
1708 		cpumask_t cpu_mask;
1709 		cpumask_copy(&cpu_mask, mm_cpumask(mm));
1710 		cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1711 		if (!cpumask_empty(&cpu_mask))
1712 			xc3((smpfunc_t) local_ops->cache_range,
1713 			    (unsigned long) vma, start, end);
1714 		local_ops->cache_range(vma, start, end);
1715 	}
1716 }
1717 
1718 static void smp_flush_tlb_range(struct vm_area_struct *vma,
1719 				unsigned long start,
1720 				unsigned long end)
1721 {
1722 	struct mm_struct *mm = vma->vm_mm;
1723 
1724 	if (mm->context != NO_CONTEXT) {
1725 		cpumask_t cpu_mask;
1726 		cpumask_copy(&cpu_mask, mm_cpumask(mm));
1727 		cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1728 		if (!cpumask_empty(&cpu_mask))
1729 			xc3((smpfunc_t) local_ops->tlb_range,
1730 			    (unsigned long) vma, start, end);
1731 		local_ops->tlb_range(vma, start, end);
1732 	}
1733 }
1734 
1735 static void smp_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
1736 {
1737 	struct mm_struct *mm = vma->vm_mm;
1738 
1739 	if (mm->context != NO_CONTEXT) {
1740 		cpumask_t cpu_mask;
1741 		cpumask_copy(&cpu_mask, mm_cpumask(mm));
1742 		cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1743 		if (!cpumask_empty(&cpu_mask))
1744 			xc2((smpfunc_t) local_ops->cache_page,
1745 			    (unsigned long) vma, page);
1746 		local_ops->cache_page(vma, page);
1747 	}
1748 }
1749 
1750 static void smp_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
1751 {
1752 	struct mm_struct *mm = vma->vm_mm;
1753 
1754 	if (mm->context != NO_CONTEXT) {
1755 		cpumask_t cpu_mask;
1756 		cpumask_copy(&cpu_mask, mm_cpumask(mm));
1757 		cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1758 		if (!cpumask_empty(&cpu_mask))
1759 			xc2((smpfunc_t) local_ops->tlb_page,
1760 			    (unsigned long) vma, page);
1761 		local_ops->tlb_page(vma, page);
1762 	}
1763 }
1764 
1765 static void smp_flush_page_to_ram(unsigned long page)
1766 {
1767 	/* Current theory is that those who call this are the one's
1768 	 * who have just dirtied their cache with the pages contents
1769 	 * in kernel space, therefore we only run this on local cpu.
1770 	 *
1771 	 * XXX This experiment failed, research further... -DaveM
1772 	 */
1773 #if 1
1774 	xc1((smpfunc_t) local_ops->page_to_ram, page);
1775 #endif
1776 	local_ops->page_to_ram(page);
1777 }
1778 
1779 static void smp_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
1780 {
1781 	cpumask_t cpu_mask;
1782 	cpumask_copy(&cpu_mask, mm_cpumask(mm));
1783 	cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1784 	if (!cpumask_empty(&cpu_mask))
1785 		xc2((smpfunc_t) local_ops->sig_insns,
1786 		    (unsigned long) mm, insn_addr);
1787 	local_ops->sig_insns(mm, insn_addr);
1788 }
1789 
1790 static struct sparc32_cachetlb_ops smp_cachetlb_ops __ro_after_init = {
1791 	.cache_all	= smp_flush_cache_all,
1792 	.cache_mm	= smp_flush_cache_mm,
1793 	.cache_page	= smp_flush_cache_page,
1794 	.cache_range	= smp_flush_cache_range,
1795 	.tlb_all	= smp_flush_tlb_all,
1796 	.tlb_mm		= smp_flush_tlb_mm,
1797 	.tlb_page	= smp_flush_tlb_page,
1798 	.tlb_range	= smp_flush_tlb_range,
1799 	.page_to_ram	= smp_flush_page_to_ram,
1800 	.sig_insns	= smp_flush_sig_insns,
1801 	.page_for_dma	= smp_flush_page_for_dma,
1802 };
1803 #endif
1804 
1805 /* Load up routines and constants for sun4m and sun4d mmu */
1806 void __init load_mmu(void)
1807 {
1808 	/* Functions */
1809 	get_srmmu_type();
1810 
1811 #ifdef CONFIG_SMP
1812 	/* El switcheroo... */
1813 	local_ops = sparc32_cachetlb_ops;
1814 
1815 	if (sparc_cpu_model == sun4d || sparc_cpu_model == sparc_leon) {
1816 		smp_cachetlb_ops.tlb_all = local_ops->tlb_all;
1817 		smp_cachetlb_ops.tlb_mm = local_ops->tlb_mm;
1818 		smp_cachetlb_ops.tlb_range = local_ops->tlb_range;
1819 		smp_cachetlb_ops.tlb_page = local_ops->tlb_page;
1820 	}
1821 
1822 	if (poke_srmmu == poke_viking) {
1823 		/* Avoid unnecessary cross calls. */
1824 		smp_cachetlb_ops.cache_all = local_ops->cache_all;
1825 		smp_cachetlb_ops.cache_mm = local_ops->cache_mm;
1826 		smp_cachetlb_ops.cache_range = local_ops->cache_range;
1827 		smp_cachetlb_ops.cache_page = local_ops->cache_page;
1828 
1829 		smp_cachetlb_ops.page_to_ram = local_ops->page_to_ram;
1830 		smp_cachetlb_ops.sig_insns = local_ops->sig_insns;
1831 		smp_cachetlb_ops.page_for_dma = local_ops->page_for_dma;
1832 	}
1833 
1834 	/* It really is const after this point. */
1835 	sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1836 		&smp_cachetlb_ops;
1837 #endif
1838 
1839 	if (sparc_cpu_model == sun4d)
1840 		ld_mmu_iounit();
1841 	else
1842 		ld_mmu_iommu();
1843 #ifdef CONFIG_SMP
1844 	if (sparc_cpu_model == sun4d)
1845 		sun4d_init_smp();
1846 	else if (sparc_cpu_model == sparc_leon)
1847 		leon_init_smp();
1848 	else
1849 		sun4m_init_smp();
1850 #endif
1851 }
1852