xref: /openbmc/linux/arch/sparc/mm/srmmu.c (revision 643d1f7f)
1 /*
2  * srmmu.c:  SRMMU specific routines for memory management.
3  *
4  * Copyright (C) 1995 David S. Miller  (davem@caip.rutgers.edu)
5  * Copyright (C) 1995,2002 Pete Zaitcev (zaitcev@yahoo.com)
6  * Copyright (C) 1996 Eddie C. Dost    (ecd@skynet.be)
7  * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
8  * Copyright (C) 1999,2000 Anton Blanchard (anton@samba.org)
9  */
10 
11 #include <linux/kernel.h>
12 #include <linux/mm.h>
13 #include <linux/slab.h>
14 #include <linux/vmalloc.h>
15 #include <linux/pagemap.h>
16 #include <linux/init.h>
17 #include <linux/spinlock.h>
18 #include <linux/bootmem.h>
19 #include <linux/fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/kdebug.h>
22 
23 #include <asm/bitext.h>
24 #include <asm/page.h>
25 #include <asm/pgalloc.h>
26 #include <asm/pgtable.h>
27 #include <asm/io.h>
28 #include <asm/vaddrs.h>
29 #include <asm/traps.h>
30 #include <asm/smp.h>
31 #include <asm/mbus.h>
32 #include <asm/cache.h>
33 #include <asm/oplib.h>
34 #include <asm/sbus.h>
35 #include <asm/asi.h>
36 #include <asm/msi.h>
37 #include <asm/a.out.h>
38 #include <asm/mmu_context.h>
39 #include <asm/io-unit.h>
40 #include <asm/cacheflush.h>
41 #include <asm/tlbflush.h>
42 
43 /* Now the cpu specific definitions. */
44 #include <asm/viking.h>
45 #include <asm/mxcc.h>
46 #include <asm/ross.h>
47 #include <asm/tsunami.h>
48 #include <asm/swift.h>
49 #include <asm/turbosparc.h>
50 
51 #include <asm/btfixup.h>
52 
53 enum mbus_module srmmu_modtype;
54 unsigned int hwbug_bitmask;
55 int vac_cache_size;
56 int vac_line_size;
57 
58 extern struct resource sparc_iomap;
59 
60 extern unsigned long last_valid_pfn;
61 
62 extern unsigned long page_kernel;
63 
64 pgd_t *srmmu_swapper_pg_dir;
65 
66 #ifdef CONFIG_SMP
67 #define FLUSH_BEGIN(mm)
68 #define FLUSH_END
69 #else
70 #define FLUSH_BEGIN(mm) if((mm)->context != NO_CONTEXT) {
71 #define FLUSH_END	}
72 #endif
73 
74 BTFIXUPDEF_CALL(void, flush_page_for_dma, unsigned long)
75 #define flush_page_for_dma(page) BTFIXUP_CALL(flush_page_for_dma)(page)
76 
77 int flush_page_for_dma_global = 1;
78 
79 #ifdef CONFIG_SMP
80 BTFIXUPDEF_CALL(void, local_flush_page_for_dma, unsigned long)
81 #define local_flush_page_for_dma(page) BTFIXUP_CALL(local_flush_page_for_dma)(page)
82 #endif
83 
84 char *srmmu_name;
85 
86 ctxd_t *srmmu_ctx_table_phys;
87 ctxd_t *srmmu_context_table;
88 
89 int viking_mxcc_present;
90 static DEFINE_SPINLOCK(srmmu_context_spinlock);
91 
92 int is_hypersparc;
93 
94 /*
95  * In general all page table modifications should use the V8 atomic
96  * swap instruction.  This insures the mmu and the cpu are in sync
97  * with respect to ref/mod bits in the page tables.
98  */
99 static inline unsigned long srmmu_swap(unsigned long *addr, unsigned long value)
100 {
101 	__asm__ __volatile__("swap [%2], %0" : "=&r" (value) : "0" (value), "r" (addr));
102 	return value;
103 }
104 
105 static inline void srmmu_set_pte(pte_t *ptep, pte_t pteval)
106 {
107 	srmmu_swap((unsigned long *)ptep, pte_val(pteval));
108 }
109 
110 /* The very generic SRMMU page table operations. */
111 static inline int srmmu_device_memory(unsigned long x)
112 {
113 	return ((x & 0xF0000000) != 0);
114 }
115 
116 int srmmu_cache_pagetables;
117 
118 /* these will be initialized in srmmu_nocache_calcsize() */
119 unsigned long srmmu_nocache_size;
120 unsigned long srmmu_nocache_end;
121 
122 /* 1 bit <=> 256 bytes of nocache <=> 64 PTEs */
123 #define SRMMU_NOCACHE_BITMAP_SHIFT (PAGE_SHIFT - 4)
124 
125 /* The context table is a nocache user with the biggest alignment needs. */
126 #define SRMMU_NOCACHE_ALIGN_MAX (sizeof(ctxd_t)*SRMMU_MAX_CONTEXTS)
127 
128 void *srmmu_nocache_pool;
129 void *srmmu_nocache_bitmap;
130 static struct bit_map srmmu_nocache_map;
131 
132 static unsigned long srmmu_pte_pfn(pte_t pte)
133 {
134 	if (srmmu_device_memory(pte_val(pte))) {
135 		/* Just return something that will cause
136 		 * pfn_valid() to return false.  This makes
137 		 * copy_one_pte() to just directly copy to
138 		 * PTE over.
139 		 */
140 		return ~0UL;
141 	}
142 	return (pte_val(pte) & SRMMU_PTE_PMASK) >> (PAGE_SHIFT-4);
143 }
144 
145 static struct page *srmmu_pmd_page(pmd_t pmd)
146 {
147 
148 	if (srmmu_device_memory(pmd_val(pmd)))
149 		BUG();
150 	return pfn_to_page((pmd_val(pmd) & SRMMU_PTD_PMASK) >> (PAGE_SHIFT-4));
151 }
152 
153 static inline unsigned long srmmu_pgd_page(pgd_t pgd)
154 { return srmmu_device_memory(pgd_val(pgd))?~0:(unsigned long)__nocache_va((pgd_val(pgd) & SRMMU_PTD_PMASK) << 4); }
155 
156 
157 static inline int srmmu_pte_none(pte_t pte)
158 { return !(pte_val(pte) & 0xFFFFFFF); }
159 
160 static inline int srmmu_pte_present(pte_t pte)
161 { return ((pte_val(pte) & SRMMU_ET_MASK) == SRMMU_ET_PTE); }
162 
163 static inline void srmmu_pte_clear(pte_t *ptep)
164 { srmmu_set_pte(ptep, __pte(0)); }
165 
166 static inline int srmmu_pmd_none(pmd_t pmd)
167 { return !(pmd_val(pmd) & 0xFFFFFFF); }
168 
169 static inline int srmmu_pmd_bad(pmd_t pmd)
170 { return (pmd_val(pmd) & SRMMU_ET_MASK) != SRMMU_ET_PTD; }
171 
172 static inline int srmmu_pmd_present(pmd_t pmd)
173 { return ((pmd_val(pmd) & SRMMU_ET_MASK) == SRMMU_ET_PTD); }
174 
175 static inline void srmmu_pmd_clear(pmd_t *pmdp) {
176 	int i;
177 	for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++)
178 		srmmu_set_pte((pte_t *)&pmdp->pmdv[i], __pte(0));
179 }
180 
181 static inline int srmmu_pgd_none(pgd_t pgd)
182 { return !(pgd_val(pgd) & 0xFFFFFFF); }
183 
184 static inline int srmmu_pgd_bad(pgd_t pgd)
185 { return (pgd_val(pgd) & SRMMU_ET_MASK) != SRMMU_ET_PTD; }
186 
187 static inline int srmmu_pgd_present(pgd_t pgd)
188 { return ((pgd_val(pgd) & SRMMU_ET_MASK) == SRMMU_ET_PTD); }
189 
190 static inline void srmmu_pgd_clear(pgd_t * pgdp)
191 { srmmu_set_pte((pte_t *)pgdp, __pte(0)); }
192 
193 static inline pte_t srmmu_pte_wrprotect(pte_t pte)
194 { return __pte(pte_val(pte) & ~SRMMU_WRITE);}
195 
196 static inline pte_t srmmu_pte_mkclean(pte_t pte)
197 { return __pte(pte_val(pte) & ~SRMMU_DIRTY);}
198 
199 static inline pte_t srmmu_pte_mkold(pte_t pte)
200 { return __pte(pte_val(pte) & ~SRMMU_REF);}
201 
202 static inline pte_t srmmu_pte_mkwrite(pte_t pte)
203 { return __pte(pte_val(pte) | SRMMU_WRITE);}
204 
205 static inline pte_t srmmu_pte_mkdirty(pte_t pte)
206 { return __pte(pte_val(pte) | SRMMU_DIRTY);}
207 
208 static inline pte_t srmmu_pte_mkyoung(pte_t pte)
209 { return __pte(pte_val(pte) | SRMMU_REF);}
210 
211 /*
212  * Conversion functions: convert a page and protection to a page entry,
213  * and a page entry and page directory to the page they refer to.
214  */
215 static pte_t srmmu_mk_pte(struct page *page, pgprot_t pgprot)
216 { return __pte((page_to_pfn(page) << (PAGE_SHIFT-4)) | pgprot_val(pgprot)); }
217 
218 static pte_t srmmu_mk_pte_phys(unsigned long page, pgprot_t pgprot)
219 { return __pte(((page) >> 4) | pgprot_val(pgprot)); }
220 
221 static pte_t srmmu_mk_pte_io(unsigned long page, pgprot_t pgprot, int space)
222 { return __pte(((page) >> 4) | (space << 28) | pgprot_val(pgprot)); }
223 
224 /* XXX should we hyper_flush_whole_icache here - Anton */
225 static inline void srmmu_ctxd_set(ctxd_t *ctxp, pgd_t *pgdp)
226 { srmmu_set_pte((pte_t *)ctxp, (SRMMU_ET_PTD | (__nocache_pa((unsigned long) pgdp) >> 4))); }
227 
228 static inline void srmmu_pgd_set(pgd_t * pgdp, pmd_t * pmdp)
229 { srmmu_set_pte((pte_t *)pgdp, (SRMMU_ET_PTD | (__nocache_pa((unsigned long) pmdp) >> 4))); }
230 
231 static void srmmu_pmd_set(pmd_t *pmdp, pte_t *ptep)
232 {
233 	unsigned long ptp;	/* Physical address, shifted right by 4 */
234 	int i;
235 
236 	ptp = __nocache_pa((unsigned long) ptep) >> 4;
237 	for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) {
238 		srmmu_set_pte((pte_t *)&pmdp->pmdv[i], SRMMU_ET_PTD | ptp);
239 		ptp += (SRMMU_REAL_PTRS_PER_PTE*sizeof(pte_t) >> 4);
240 	}
241 }
242 
243 static void srmmu_pmd_populate(pmd_t *pmdp, struct page *ptep)
244 {
245 	unsigned long ptp;	/* Physical address, shifted right by 4 */
246 	int i;
247 
248 	ptp = page_to_pfn(ptep) << (PAGE_SHIFT-4);	/* watch for overflow */
249 	for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) {
250 		srmmu_set_pte((pte_t *)&pmdp->pmdv[i], SRMMU_ET_PTD | ptp);
251 		ptp += (SRMMU_REAL_PTRS_PER_PTE*sizeof(pte_t) >> 4);
252 	}
253 }
254 
255 static inline pte_t srmmu_pte_modify(pte_t pte, pgprot_t newprot)
256 { return __pte((pte_val(pte) & SRMMU_CHG_MASK) | pgprot_val(newprot)); }
257 
258 /* to find an entry in a top-level page table... */
259 static inline pgd_t *srmmu_pgd_offset(struct mm_struct * mm, unsigned long address)
260 { return mm->pgd + (address >> SRMMU_PGDIR_SHIFT); }
261 
262 /* Find an entry in the second-level page table.. */
263 static inline pmd_t *srmmu_pmd_offset(pgd_t * dir, unsigned long address)
264 {
265 	return (pmd_t *) srmmu_pgd_page(*dir) +
266 	    ((address >> PMD_SHIFT) & (PTRS_PER_PMD - 1));
267 }
268 
269 /* Find an entry in the third-level page table.. */
270 static inline pte_t *srmmu_pte_offset(pmd_t * dir, unsigned long address)
271 {
272 	void *pte;
273 
274 	pte = __nocache_va((dir->pmdv[0] & SRMMU_PTD_PMASK) << 4);
275 	return (pte_t *) pte +
276 	    ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
277 }
278 
279 static unsigned long srmmu_swp_type(swp_entry_t entry)
280 {
281 	return (entry.val >> SRMMU_SWP_TYPE_SHIFT) & SRMMU_SWP_TYPE_MASK;
282 }
283 
284 static unsigned long srmmu_swp_offset(swp_entry_t entry)
285 {
286 	return (entry.val >> SRMMU_SWP_OFF_SHIFT) & SRMMU_SWP_OFF_MASK;
287 }
288 
289 static swp_entry_t srmmu_swp_entry(unsigned long type, unsigned long offset)
290 {
291 	return (swp_entry_t) {
292 		  (type & SRMMU_SWP_TYPE_MASK) << SRMMU_SWP_TYPE_SHIFT
293 		| (offset & SRMMU_SWP_OFF_MASK) << SRMMU_SWP_OFF_SHIFT };
294 }
295 
296 /*
297  * size: bytes to allocate in the nocache area.
298  * align: bytes, number to align at.
299  * Returns the virtual address of the allocated area.
300  */
301 static unsigned long __srmmu_get_nocache(int size, int align)
302 {
303 	int offset;
304 
305 	if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
306 		printk("Size 0x%x too small for nocache request\n", size);
307 		size = SRMMU_NOCACHE_BITMAP_SHIFT;
308 	}
309 	if (size & (SRMMU_NOCACHE_BITMAP_SHIFT-1)) {
310 		printk("Size 0x%x unaligned int nocache request\n", size);
311 		size += SRMMU_NOCACHE_BITMAP_SHIFT-1;
312 	}
313 	BUG_ON(align > SRMMU_NOCACHE_ALIGN_MAX);
314 
315 	offset = bit_map_string_get(&srmmu_nocache_map,
316 		       			size >> SRMMU_NOCACHE_BITMAP_SHIFT,
317 					align >> SRMMU_NOCACHE_BITMAP_SHIFT);
318 	if (offset == -1) {
319 		printk("srmmu: out of nocache %d: %d/%d\n",
320 		    size, (int) srmmu_nocache_size,
321 		    srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
322 		return 0;
323 	}
324 
325 	return (SRMMU_NOCACHE_VADDR + (offset << SRMMU_NOCACHE_BITMAP_SHIFT));
326 }
327 
328 unsigned inline long srmmu_get_nocache(int size, int align)
329 {
330 	unsigned long tmp;
331 
332 	tmp = __srmmu_get_nocache(size, align);
333 
334 	if (tmp)
335 		memset((void *)tmp, 0, size);
336 
337 	return tmp;
338 }
339 
340 void srmmu_free_nocache(unsigned long vaddr, int size)
341 {
342 	int offset;
343 
344 	if (vaddr < SRMMU_NOCACHE_VADDR) {
345 		printk("Vaddr %lx is smaller than nocache base 0x%lx\n",
346 		    vaddr, (unsigned long)SRMMU_NOCACHE_VADDR);
347 		BUG();
348 	}
349 	if (vaddr+size > srmmu_nocache_end) {
350 		printk("Vaddr %lx is bigger than nocache end 0x%lx\n",
351 		    vaddr, srmmu_nocache_end);
352 		BUG();
353 	}
354 	if (size & (size-1)) {
355 		printk("Size 0x%x is not a power of 2\n", size);
356 		BUG();
357 	}
358 	if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
359 		printk("Size 0x%x is too small\n", size);
360 		BUG();
361 	}
362 	if (vaddr & (size-1)) {
363 		printk("Vaddr %lx is not aligned to size 0x%x\n", vaddr, size);
364 		BUG();
365 	}
366 
367 	offset = (vaddr - SRMMU_NOCACHE_VADDR) >> SRMMU_NOCACHE_BITMAP_SHIFT;
368 	size = size >> SRMMU_NOCACHE_BITMAP_SHIFT;
369 
370 	bit_map_clear(&srmmu_nocache_map, offset, size);
371 }
372 
373 void srmmu_early_allocate_ptable_skeleton(unsigned long start, unsigned long end);
374 
375 extern unsigned long probe_memory(void);	/* in fault.c */
376 
377 /*
378  * Reserve nocache dynamically proportionally to the amount of
379  * system RAM. -- Tomas Szepe <szepe@pinerecords.com>, June 2002
380  */
381 void srmmu_nocache_calcsize(void)
382 {
383 	unsigned long sysmemavail = probe_memory() / 1024;
384 	int srmmu_nocache_npages;
385 
386 	srmmu_nocache_npages =
387 		sysmemavail / SRMMU_NOCACHE_ALCRATIO / 1024 * 256;
388 
389  /* P3 XXX The 4x overuse: corroborated by /proc/meminfo. */
390 	// if (srmmu_nocache_npages < 256) srmmu_nocache_npages = 256;
391 	if (srmmu_nocache_npages < SRMMU_MIN_NOCACHE_PAGES)
392 		srmmu_nocache_npages = SRMMU_MIN_NOCACHE_PAGES;
393 
394 	/* anything above 1280 blows up */
395 	if (srmmu_nocache_npages > SRMMU_MAX_NOCACHE_PAGES)
396 		srmmu_nocache_npages = SRMMU_MAX_NOCACHE_PAGES;
397 
398 	srmmu_nocache_size = srmmu_nocache_npages * PAGE_SIZE;
399 	srmmu_nocache_end = SRMMU_NOCACHE_VADDR + srmmu_nocache_size;
400 }
401 
402 void __init srmmu_nocache_init(void)
403 {
404 	unsigned int bitmap_bits;
405 	pgd_t *pgd;
406 	pmd_t *pmd;
407 	pte_t *pte;
408 	unsigned long paddr, vaddr;
409 	unsigned long pteval;
410 
411 	bitmap_bits = srmmu_nocache_size >> SRMMU_NOCACHE_BITMAP_SHIFT;
412 
413 	srmmu_nocache_pool = __alloc_bootmem(srmmu_nocache_size,
414 		SRMMU_NOCACHE_ALIGN_MAX, 0UL);
415 	memset(srmmu_nocache_pool, 0, srmmu_nocache_size);
416 
417 	srmmu_nocache_bitmap = __alloc_bootmem(bitmap_bits >> 3, SMP_CACHE_BYTES, 0UL);
418 	bit_map_init(&srmmu_nocache_map, srmmu_nocache_bitmap, bitmap_bits);
419 
420 	srmmu_swapper_pg_dir = (pgd_t *)__srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
421 	memset(__nocache_fix(srmmu_swapper_pg_dir), 0, SRMMU_PGD_TABLE_SIZE);
422 	init_mm.pgd = srmmu_swapper_pg_dir;
423 
424 	srmmu_early_allocate_ptable_skeleton(SRMMU_NOCACHE_VADDR, srmmu_nocache_end);
425 
426 	paddr = __pa((unsigned long)srmmu_nocache_pool);
427 	vaddr = SRMMU_NOCACHE_VADDR;
428 
429 	while (vaddr < srmmu_nocache_end) {
430 		pgd = pgd_offset_k(vaddr);
431 		pmd = srmmu_pmd_offset(__nocache_fix(pgd), vaddr);
432 		pte = srmmu_pte_offset(__nocache_fix(pmd), vaddr);
433 
434 		pteval = ((paddr >> 4) | SRMMU_ET_PTE | SRMMU_PRIV);
435 
436 		if (srmmu_cache_pagetables)
437 			pteval |= SRMMU_CACHE;
438 
439 		srmmu_set_pte(__nocache_fix(pte), __pte(pteval));
440 
441 		vaddr += PAGE_SIZE;
442 		paddr += PAGE_SIZE;
443 	}
444 
445 	flush_cache_all();
446 	flush_tlb_all();
447 }
448 
449 static inline pgd_t *srmmu_get_pgd_fast(void)
450 {
451 	pgd_t *pgd = NULL;
452 
453 	pgd = (pgd_t *)__srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
454 	if (pgd) {
455 		pgd_t *init = pgd_offset_k(0);
456 		memset(pgd, 0, USER_PTRS_PER_PGD * sizeof(pgd_t));
457 		memcpy(pgd + USER_PTRS_PER_PGD, init + USER_PTRS_PER_PGD,
458 						(PTRS_PER_PGD - USER_PTRS_PER_PGD) * sizeof(pgd_t));
459 	}
460 
461 	return pgd;
462 }
463 
464 static void srmmu_free_pgd_fast(pgd_t *pgd)
465 {
466 	srmmu_free_nocache((unsigned long)pgd, SRMMU_PGD_TABLE_SIZE);
467 }
468 
469 static pmd_t *srmmu_pmd_alloc_one(struct mm_struct *mm, unsigned long address)
470 {
471 	return (pmd_t *)srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
472 }
473 
474 static void srmmu_pmd_free(pmd_t * pmd)
475 {
476 	srmmu_free_nocache((unsigned long)pmd, SRMMU_PMD_TABLE_SIZE);
477 }
478 
479 /*
480  * Hardware needs alignment to 256 only, but we align to whole page size
481  * to reduce fragmentation problems due to the buddy principle.
482  * XXX Provide actual fragmentation statistics in /proc.
483  *
484  * Alignments up to the page size are the same for physical and virtual
485  * addresses of the nocache area.
486  */
487 static pte_t *
488 srmmu_pte_alloc_one_kernel(struct mm_struct *mm, unsigned long address)
489 {
490 	return (pte_t *)srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
491 }
492 
493 static struct page *
494 srmmu_pte_alloc_one(struct mm_struct *mm, unsigned long address)
495 {
496 	unsigned long pte;
497 
498 	if ((pte = (unsigned long)srmmu_pte_alloc_one_kernel(mm, address)) == 0)
499 		return NULL;
500 	return pfn_to_page( __nocache_pa(pte) >> PAGE_SHIFT );
501 }
502 
503 static void srmmu_free_pte_fast(pte_t *pte)
504 {
505 	srmmu_free_nocache((unsigned long)pte, PTE_SIZE);
506 }
507 
508 static void srmmu_pte_free(struct page *pte)
509 {
510 	unsigned long p;
511 
512 	p = (unsigned long)page_address(pte);	/* Cached address (for test) */
513 	if (p == 0)
514 		BUG();
515 	p = page_to_pfn(pte) << PAGE_SHIFT;	/* Physical address */
516 	p = (unsigned long) __nocache_va(p);	/* Nocached virtual */
517 	srmmu_free_nocache(p, PTE_SIZE);
518 }
519 
520 /*
521  */
522 static inline void alloc_context(struct mm_struct *old_mm, struct mm_struct *mm)
523 {
524 	struct ctx_list *ctxp;
525 
526 	ctxp = ctx_free.next;
527 	if(ctxp != &ctx_free) {
528 		remove_from_ctx_list(ctxp);
529 		add_to_used_ctxlist(ctxp);
530 		mm->context = ctxp->ctx_number;
531 		ctxp->ctx_mm = mm;
532 		return;
533 	}
534 	ctxp = ctx_used.next;
535 	if(ctxp->ctx_mm == old_mm)
536 		ctxp = ctxp->next;
537 	if(ctxp == &ctx_used)
538 		panic("out of mmu contexts");
539 	flush_cache_mm(ctxp->ctx_mm);
540 	flush_tlb_mm(ctxp->ctx_mm);
541 	remove_from_ctx_list(ctxp);
542 	add_to_used_ctxlist(ctxp);
543 	ctxp->ctx_mm->context = NO_CONTEXT;
544 	ctxp->ctx_mm = mm;
545 	mm->context = ctxp->ctx_number;
546 }
547 
548 static inline void free_context(int context)
549 {
550 	struct ctx_list *ctx_old;
551 
552 	ctx_old = ctx_list_pool + context;
553 	remove_from_ctx_list(ctx_old);
554 	add_to_free_ctxlist(ctx_old);
555 }
556 
557 
558 static void srmmu_switch_mm(struct mm_struct *old_mm, struct mm_struct *mm,
559     struct task_struct *tsk, int cpu)
560 {
561 	if(mm->context == NO_CONTEXT) {
562 		spin_lock(&srmmu_context_spinlock);
563 		alloc_context(old_mm, mm);
564 		spin_unlock(&srmmu_context_spinlock);
565 		srmmu_ctxd_set(&srmmu_context_table[mm->context], mm->pgd);
566 	}
567 
568 	if (is_hypersparc)
569 		hyper_flush_whole_icache();
570 
571 	srmmu_set_context(mm->context);
572 }
573 
574 /* Low level IO area allocation on the SRMMU. */
575 static inline void srmmu_mapioaddr(unsigned long physaddr,
576     unsigned long virt_addr, int bus_type)
577 {
578 	pgd_t *pgdp;
579 	pmd_t *pmdp;
580 	pte_t *ptep;
581 	unsigned long tmp;
582 
583 	physaddr &= PAGE_MASK;
584 	pgdp = pgd_offset_k(virt_addr);
585 	pmdp = srmmu_pmd_offset(pgdp, virt_addr);
586 	ptep = srmmu_pte_offset(pmdp, virt_addr);
587 	tmp = (physaddr >> 4) | SRMMU_ET_PTE;
588 
589 	/*
590 	 * I need to test whether this is consistent over all
591 	 * sun4m's.  The bus_type represents the upper 4 bits of
592 	 * 36-bit physical address on the I/O space lines...
593 	 */
594 	tmp |= (bus_type << 28);
595 	tmp |= SRMMU_PRIV;
596 	__flush_page_to_ram(virt_addr);
597 	srmmu_set_pte(ptep, __pte(tmp));
598 }
599 
600 static void srmmu_mapiorange(unsigned int bus, unsigned long xpa,
601     unsigned long xva, unsigned int len)
602 {
603 	while (len != 0) {
604 		len -= PAGE_SIZE;
605 		srmmu_mapioaddr(xpa, xva, bus);
606 		xva += PAGE_SIZE;
607 		xpa += PAGE_SIZE;
608 	}
609 	flush_tlb_all();
610 }
611 
612 static inline void srmmu_unmapioaddr(unsigned long virt_addr)
613 {
614 	pgd_t *pgdp;
615 	pmd_t *pmdp;
616 	pte_t *ptep;
617 
618 	pgdp = pgd_offset_k(virt_addr);
619 	pmdp = srmmu_pmd_offset(pgdp, virt_addr);
620 	ptep = srmmu_pte_offset(pmdp, virt_addr);
621 
622 	/* No need to flush uncacheable page. */
623 	srmmu_pte_clear(ptep);
624 }
625 
626 static void srmmu_unmapiorange(unsigned long virt_addr, unsigned int len)
627 {
628 	while (len != 0) {
629 		len -= PAGE_SIZE;
630 		srmmu_unmapioaddr(virt_addr);
631 		virt_addr += PAGE_SIZE;
632 	}
633 	flush_tlb_all();
634 }
635 
636 /*
637  * On the SRMMU we do not have the problems with limited tlb entries
638  * for mapping kernel pages, so we just take things from the free page
639  * pool.  As a side effect we are putting a little too much pressure
640  * on the gfp() subsystem.  This setup also makes the logic of the
641  * iommu mapping code a lot easier as we can transparently handle
642  * mappings on the kernel stack without any special code as we did
643  * need on the sun4c.
644  */
645 struct thread_info *srmmu_alloc_thread_info(void)
646 {
647 	struct thread_info *ret;
648 
649 	ret = (struct thread_info *)__get_free_pages(GFP_KERNEL,
650 						     THREAD_INFO_ORDER);
651 #ifdef CONFIG_DEBUG_STACK_USAGE
652 	if (ret)
653 		memset(ret, 0, PAGE_SIZE << THREAD_INFO_ORDER);
654 #endif /* DEBUG_STACK_USAGE */
655 
656 	return ret;
657 }
658 
659 static void srmmu_free_thread_info(struct thread_info *ti)
660 {
661 	free_pages((unsigned long)ti, THREAD_INFO_ORDER);
662 }
663 
664 /* tsunami.S */
665 extern void tsunami_flush_cache_all(void);
666 extern void tsunami_flush_cache_mm(struct mm_struct *mm);
667 extern void tsunami_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
668 extern void tsunami_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
669 extern void tsunami_flush_page_to_ram(unsigned long page);
670 extern void tsunami_flush_page_for_dma(unsigned long page);
671 extern void tsunami_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
672 extern void tsunami_flush_tlb_all(void);
673 extern void tsunami_flush_tlb_mm(struct mm_struct *mm);
674 extern void tsunami_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
675 extern void tsunami_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
676 extern void tsunami_setup_blockops(void);
677 
678 /*
679  * Workaround, until we find what's going on with Swift. When low on memory,
680  * it sometimes loops in fault/handle_mm_fault incl. flush_tlb_page to find
681  * out it is already in page tables/ fault again on the same instruction.
682  * I really don't understand it, have checked it and contexts
683  * are right, flush_tlb_all is done as well, and it faults again...
684  * Strange. -jj
685  *
686  * The following code is a deadwood that may be necessary when
687  * we start to make precise page flushes again. --zaitcev
688  */
689 static void swift_update_mmu_cache(struct vm_area_struct * vma, unsigned long address, pte_t pte)
690 {
691 #if 0
692 	static unsigned long last;
693 	unsigned int val;
694 	/* unsigned int n; */
695 
696 	if (address == last) {
697 		val = srmmu_hwprobe(address);
698 		if (val != 0 && pte_val(pte) != val) {
699 			printk("swift_update_mmu_cache: "
700 			    "addr %lx put %08x probed %08x from %p\n",
701 			    address, pte_val(pte), val,
702 			    __builtin_return_address(0));
703 			srmmu_flush_whole_tlb();
704 		}
705 	}
706 	last = address;
707 #endif
708 }
709 
710 /* swift.S */
711 extern void swift_flush_cache_all(void);
712 extern void swift_flush_cache_mm(struct mm_struct *mm);
713 extern void swift_flush_cache_range(struct vm_area_struct *vma,
714 				    unsigned long start, unsigned long end);
715 extern void swift_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
716 extern void swift_flush_page_to_ram(unsigned long page);
717 extern void swift_flush_page_for_dma(unsigned long page);
718 extern void swift_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
719 extern void swift_flush_tlb_all(void);
720 extern void swift_flush_tlb_mm(struct mm_struct *mm);
721 extern void swift_flush_tlb_range(struct vm_area_struct *vma,
722 				  unsigned long start, unsigned long end);
723 extern void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
724 
725 #if 0  /* P3: deadwood to debug precise flushes on Swift. */
726 void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
727 {
728 	int cctx, ctx1;
729 
730 	page &= PAGE_MASK;
731 	if ((ctx1 = vma->vm_mm->context) != -1) {
732 		cctx = srmmu_get_context();
733 /* Is context # ever different from current context? P3 */
734 		if (cctx != ctx1) {
735 			printk("flush ctx %02x curr %02x\n", ctx1, cctx);
736 			srmmu_set_context(ctx1);
737 			swift_flush_page(page);
738 			__asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
739 					"r" (page), "i" (ASI_M_FLUSH_PROBE));
740 			srmmu_set_context(cctx);
741 		} else {
742 			 /* Rm. prot. bits from virt. c. */
743 			/* swift_flush_cache_all(); */
744 			/* swift_flush_cache_page(vma, page); */
745 			swift_flush_page(page);
746 
747 			__asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
748 				"r" (page), "i" (ASI_M_FLUSH_PROBE));
749 			/* same as above: srmmu_flush_tlb_page() */
750 		}
751 	}
752 }
753 #endif
754 
755 /*
756  * The following are all MBUS based SRMMU modules, and therefore could
757  * be found in a multiprocessor configuration.  On the whole, these
758  * chips seems to be much more touchy about DVMA and page tables
759  * with respect to cache coherency.
760  */
761 
762 /* Cypress flushes. */
763 static void cypress_flush_cache_all(void)
764 {
765 	volatile unsigned long cypress_sucks;
766 	unsigned long faddr, tagval;
767 
768 	flush_user_windows();
769 	for(faddr = 0; faddr < 0x10000; faddr += 0x20) {
770 		__asm__ __volatile__("lda [%1 + %2] %3, %0\n\t" :
771 				     "=r" (tagval) :
772 				     "r" (faddr), "r" (0x40000),
773 				     "i" (ASI_M_DATAC_TAG));
774 
775 		/* If modified and valid, kick it. */
776 		if((tagval & 0x60) == 0x60)
777 			cypress_sucks = *(unsigned long *)(0xf0020000 + faddr);
778 	}
779 }
780 
781 static void cypress_flush_cache_mm(struct mm_struct *mm)
782 {
783 	register unsigned long a, b, c, d, e, f, g;
784 	unsigned long flags, faddr;
785 	int octx;
786 
787 	FLUSH_BEGIN(mm)
788 	flush_user_windows();
789 	local_irq_save(flags);
790 	octx = srmmu_get_context();
791 	srmmu_set_context(mm->context);
792 	a = 0x20; b = 0x40; c = 0x60;
793 	d = 0x80; e = 0xa0; f = 0xc0; g = 0xe0;
794 
795 	faddr = (0x10000 - 0x100);
796 	goto inside;
797 	do {
798 		faddr -= 0x100;
799 	inside:
800 		__asm__ __volatile__("sta %%g0, [%0] %1\n\t"
801 				     "sta %%g0, [%0 + %2] %1\n\t"
802 				     "sta %%g0, [%0 + %3] %1\n\t"
803 				     "sta %%g0, [%0 + %4] %1\n\t"
804 				     "sta %%g0, [%0 + %5] %1\n\t"
805 				     "sta %%g0, [%0 + %6] %1\n\t"
806 				     "sta %%g0, [%0 + %7] %1\n\t"
807 				     "sta %%g0, [%0 + %8] %1\n\t" : :
808 				     "r" (faddr), "i" (ASI_M_FLUSH_CTX),
809 				     "r" (a), "r" (b), "r" (c), "r" (d),
810 				     "r" (e), "r" (f), "r" (g));
811 	} while(faddr);
812 	srmmu_set_context(octx);
813 	local_irq_restore(flags);
814 	FLUSH_END
815 }
816 
817 static void cypress_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
818 {
819 	struct mm_struct *mm = vma->vm_mm;
820 	register unsigned long a, b, c, d, e, f, g;
821 	unsigned long flags, faddr;
822 	int octx;
823 
824 	FLUSH_BEGIN(mm)
825 	flush_user_windows();
826 	local_irq_save(flags);
827 	octx = srmmu_get_context();
828 	srmmu_set_context(mm->context);
829 	a = 0x20; b = 0x40; c = 0x60;
830 	d = 0x80; e = 0xa0; f = 0xc0; g = 0xe0;
831 
832 	start &= SRMMU_REAL_PMD_MASK;
833 	while(start < end) {
834 		faddr = (start + (0x10000 - 0x100));
835 		goto inside;
836 		do {
837 			faddr -= 0x100;
838 		inside:
839 			__asm__ __volatile__("sta %%g0, [%0] %1\n\t"
840 					     "sta %%g0, [%0 + %2] %1\n\t"
841 					     "sta %%g0, [%0 + %3] %1\n\t"
842 					     "sta %%g0, [%0 + %4] %1\n\t"
843 					     "sta %%g0, [%0 + %5] %1\n\t"
844 					     "sta %%g0, [%0 + %6] %1\n\t"
845 					     "sta %%g0, [%0 + %7] %1\n\t"
846 					     "sta %%g0, [%0 + %8] %1\n\t" : :
847 					     "r" (faddr),
848 					     "i" (ASI_M_FLUSH_SEG),
849 					     "r" (a), "r" (b), "r" (c), "r" (d),
850 					     "r" (e), "r" (f), "r" (g));
851 		} while (faddr != start);
852 		start += SRMMU_REAL_PMD_SIZE;
853 	}
854 	srmmu_set_context(octx);
855 	local_irq_restore(flags);
856 	FLUSH_END
857 }
858 
859 static void cypress_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
860 {
861 	register unsigned long a, b, c, d, e, f, g;
862 	struct mm_struct *mm = vma->vm_mm;
863 	unsigned long flags, line;
864 	int octx;
865 
866 	FLUSH_BEGIN(mm)
867 	flush_user_windows();
868 	local_irq_save(flags);
869 	octx = srmmu_get_context();
870 	srmmu_set_context(mm->context);
871 	a = 0x20; b = 0x40; c = 0x60;
872 	d = 0x80; e = 0xa0; f = 0xc0; g = 0xe0;
873 
874 	page &= PAGE_MASK;
875 	line = (page + PAGE_SIZE) - 0x100;
876 	goto inside;
877 	do {
878 		line -= 0x100;
879 	inside:
880 			__asm__ __volatile__("sta %%g0, [%0] %1\n\t"
881 					     "sta %%g0, [%0 + %2] %1\n\t"
882 					     "sta %%g0, [%0 + %3] %1\n\t"
883 					     "sta %%g0, [%0 + %4] %1\n\t"
884 					     "sta %%g0, [%0 + %5] %1\n\t"
885 					     "sta %%g0, [%0 + %6] %1\n\t"
886 					     "sta %%g0, [%0 + %7] %1\n\t"
887 					     "sta %%g0, [%0 + %8] %1\n\t" : :
888 					     "r" (line),
889 					     "i" (ASI_M_FLUSH_PAGE),
890 					     "r" (a), "r" (b), "r" (c), "r" (d),
891 					     "r" (e), "r" (f), "r" (g));
892 	} while(line != page);
893 	srmmu_set_context(octx);
894 	local_irq_restore(flags);
895 	FLUSH_END
896 }
897 
898 /* Cypress is copy-back, at least that is how we configure it. */
899 static void cypress_flush_page_to_ram(unsigned long page)
900 {
901 	register unsigned long a, b, c, d, e, f, g;
902 	unsigned long line;
903 
904 	a = 0x20; b = 0x40; c = 0x60; d = 0x80; e = 0xa0; f = 0xc0; g = 0xe0;
905 	page &= PAGE_MASK;
906 	line = (page + PAGE_SIZE) - 0x100;
907 	goto inside;
908 	do {
909 		line -= 0x100;
910 	inside:
911 		__asm__ __volatile__("sta %%g0, [%0] %1\n\t"
912 				     "sta %%g0, [%0 + %2] %1\n\t"
913 				     "sta %%g0, [%0 + %3] %1\n\t"
914 				     "sta %%g0, [%0 + %4] %1\n\t"
915 				     "sta %%g0, [%0 + %5] %1\n\t"
916 				     "sta %%g0, [%0 + %6] %1\n\t"
917 				     "sta %%g0, [%0 + %7] %1\n\t"
918 				     "sta %%g0, [%0 + %8] %1\n\t" : :
919 				     "r" (line),
920 				     "i" (ASI_M_FLUSH_PAGE),
921 				     "r" (a), "r" (b), "r" (c), "r" (d),
922 				     "r" (e), "r" (f), "r" (g));
923 	} while(line != page);
924 }
925 
926 /* Cypress is also IO cache coherent. */
927 static void cypress_flush_page_for_dma(unsigned long page)
928 {
929 }
930 
931 /* Cypress has unified L2 VIPT, from which both instructions and data
932  * are stored.  It does not have an onboard icache of any sort, therefore
933  * no flush is necessary.
934  */
935 static void cypress_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
936 {
937 }
938 
939 static void cypress_flush_tlb_all(void)
940 {
941 	srmmu_flush_whole_tlb();
942 }
943 
944 static void cypress_flush_tlb_mm(struct mm_struct *mm)
945 {
946 	FLUSH_BEGIN(mm)
947 	__asm__ __volatile__(
948 	"lda	[%0] %3, %%g5\n\t"
949 	"sta	%2, [%0] %3\n\t"
950 	"sta	%%g0, [%1] %4\n\t"
951 	"sta	%%g5, [%0] %3\n"
952 	: /* no outputs */
953 	: "r" (SRMMU_CTX_REG), "r" (0x300), "r" (mm->context),
954 	  "i" (ASI_M_MMUREGS), "i" (ASI_M_FLUSH_PROBE)
955 	: "g5");
956 	FLUSH_END
957 }
958 
959 static void cypress_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
960 {
961 	struct mm_struct *mm = vma->vm_mm;
962 	unsigned long size;
963 
964 	FLUSH_BEGIN(mm)
965 	start &= SRMMU_PGDIR_MASK;
966 	size = SRMMU_PGDIR_ALIGN(end) - start;
967 	__asm__ __volatile__(
968 		"lda	[%0] %5, %%g5\n\t"
969 		"sta	%1, [%0] %5\n"
970 		"1:\n\t"
971 		"subcc	%3, %4, %3\n\t"
972 		"bne	1b\n\t"
973 		" sta	%%g0, [%2 + %3] %6\n\t"
974 		"sta	%%g5, [%0] %5\n"
975 	: /* no outputs */
976 	: "r" (SRMMU_CTX_REG), "r" (mm->context), "r" (start | 0x200),
977 	  "r" (size), "r" (SRMMU_PGDIR_SIZE), "i" (ASI_M_MMUREGS),
978 	  "i" (ASI_M_FLUSH_PROBE)
979 	: "g5", "cc");
980 	FLUSH_END
981 }
982 
983 static void cypress_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
984 {
985 	struct mm_struct *mm = vma->vm_mm;
986 
987 	FLUSH_BEGIN(mm)
988 	__asm__ __volatile__(
989 	"lda	[%0] %3, %%g5\n\t"
990 	"sta	%1, [%0] %3\n\t"
991 	"sta	%%g0, [%2] %4\n\t"
992 	"sta	%%g5, [%0] %3\n"
993 	: /* no outputs */
994 	: "r" (SRMMU_CTX_REG), "r" (mm->context), "r" (page & PAGE_MASK),
995 	  "i" (ASI_M_MMUREGS), "i" (ASI_M_FLUSH_PROBE)
996 	: "g5");
997 	FLUSH_END
998 }
999 
1000 /* viking.S */
1001 extern void viking_flush_cache_all(void);
1002 extern void viking_flush_cache_mm(struct mm_struct *mm);
1003 extern void viking_flush_cache_range(struct vm_area_struct *vma, unsigned long start,
1004 				     unsigned long end);
1005 extern void viking_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
1006 extern void viking_flush_page_to_ram(unsigned long page);
1007 extern void viking_flush_page_for_dma(unsigned long page);
1008 extern void viking_flush_sig_insns(struct mm_struct *mm, unsigned long addr);
1009 extern void viking_flush_page(unsigned long page);
1010 extern void viking_mxcc_flush_page(unsigned long page);
1011 extern void viking_flush_tlb_all(void);
1012 extern void viking_flush_tlb_mm(struct mm_struct *mm);
1013 extern void viking_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
1014 				   unsigned long end);
1015 extern void viking_flush_tlb_page(struct vm_area_struct *vma,
1016 				  unsigned long page);
1017 extern void sun4dsmp_flush_tlb_all(void);
1018 extern void sun4dsmp_flush_tlb_mm(struct mm_struct *mm);
1019 extern void sun4dsmp_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
1020 				   unsigned long end);
1021 extern void sun4dsmp_flush_tlb_page(struct vm_area_struct *vma,
1022 				  unsigned long page);
1023 
1024 /* hypersparc.S */
1025 extern void hypersparc_flush_cache_all(void);
1026 extern void hypersparc_flush_cache_mm(struct mm_struct *mm);
1027 extern void hypersparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
1028 extern void hypersparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
1029 extern void hypersparc_flush_page_to_ram(unsigned long page);
1030 extern void hypersparc_flush_page_for_dma(unsigned long page);
1031 extern void hypersparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
1032 extern void hypersparc_flush_tlb_all(void);
1033 extern void hypersparc_flush_tlb_mm(struct mm_struct *mm);
1034 extern void hypersparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
1035 extern void hypersparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
1036 extern void hypersparc_setup_blockops(void);
1037 
1038 /*
1039  * NOTE: All of this startup code assumes the low 16mb (approx.) of
1040  *       kernel mappings are done with one single contiguous chunk of
1041  *       ram.  On small ram machines (classics mainly) we only get
1042  *       around 8mb mapped for us.
1043  */
1044 
1045 void __init early_pgtable_allocfail(char *type)
1046 {
1047 	prom_printf("inherit_prom_mappings: Cannot alloc kernel %s.\n", type);
1048 	prom_halt();
1049 }
1050 
1051 void __init srmmu_early_allocate_ptable_skeleton(unsigned long start, unsigned long end)
1052 {
1053 	pgd_t *pgdp;
1054 	pmd_t *pmdp;
1055 	pte_t *ptep;
1056 
1057 	while(start < end) {
1058 		pgdp = pgd_offset_k(start);
1059 		if(srmmu_pgd_none(*(pgd_t *)__nocache_fix(pgdp))) {
1060 			pmdp = (pmd_t *) __srmmu_get_nocache(
1061 			    SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
1062 			if (pmdp == NULL)
1063 				early_pgtable_allocfail("pmd");
1064 			memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
1065 			srmmu_pgd_set(__nocache_fix(pgdp), pmdp);
1066 		}
1067 		pmdp = srmmu_pmd_offset(__nocache_fix(pgdp), start);
1068 		if(srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
1069 			ptep = (pte_t *)__srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
1070 			if (ptep == NULL)
1071 				early_pgtable_allocfail("pte");
1072 			memset(__nocache_fix(ptep), 0, PTE_SIZE);
1073 			srmmu_pmd_set(__nocache_fix(pmdp), ptep);
1074 		}
1075 		if (start > (0xffffffffUL - PMD_SIZE))
1076 			break;
1077 		start = (start + PMD_SIZE) & PMD_MASK;
1078 	}
1079 }
1080 
1081 void __init srmmu_allocate_ptable_skeleton(unsigned long start, unsigned long end)
1082 {
1083 	pgd_t *pgdp;
1084 	pmd_t *pmdp;
1085 	pte_t *ptep;
1086 
1087 	while(start < end) {
1088 		pgdp = pgd_offset_k(start);
1089 		if(srmmu_pgd_none(*pgdp)) {
1090 			pmdp = (pmd_t *)__srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
1091 			if (pmdp == NULL)
1092 				early_pgtable_allocfail("pmd");
1093 			memset(pmdp, 0, SRMMU_PMD_TABLE_SIZE);
1094 			srmmu_pgd_set(pgdp, pmdp);
1095 		}
1096 		pmdp = srmmu_pmd_offset(pgdp, start);
1097 		if(srmmu_pmd_none(*pmdp)) {
1098 			ptep = (pte_t *) __srmmu_get_nocache(PTE_SIZE,
1099 							     PTE_SIZE);
1100 			if (ptep == NULL)
1101 				early_pgtable_allocfail("pte");
1102 			memset(ptep, 0, PTE_SIZE);
1103 			srmmu_pmd_set(pmdp, ptep);
1104 		}
1105 		if (start > (0xffffffffUL - PMD_SIZE))
1106 			break;
1107 		start = (start + PMD_SIZE) & PMD_MASK;
1108 	}
1109 }
1110 
1111 /*
1112  * This is much cleaner than poking around physical address space
1113  * looking at the prom's page table directly which is what most
1114  * other OS's do.  Yuck... this is much better.
1115  */
1116 void __init srmmu_inherit_prom_mappings(unsigned long start,unsigned long end)
1117 {
1118 	pgd_t *pgdp;
1119 	pmd_t *pmdp;
1120 	pte_t *ptep;
1121 	int what = 0; /* 0 = normal-pte, 1 = pmd-level pte, 2 = pgd-level pte */
1122 	unsigned long prompte;
1123 
1124 	while(start <= end) {
1125 		if (start == 0)
1126 			break; /* probably wrap around */
1127 		if(start == 0xfef00000)
1128 			start = KADB_DEBUGGER_BEGVM;
1129 		if(!(prompte = srmmu_hwprobe(start))) {
1130 			start += PAGE_SIZE;
1131 			continue;
1132 		}
1133 
1134 		/* A red snapper, see what it really is. */
1135 		what = 0;
1136 
1137 		if(!(start & ~(SRMMU_REAL_PMD_MASK))) {
1138 			if(srmmu_hwprobe((start-PAGE_SIZE) + SRMMU_REAL_PMD_SIZE) == prompte)
1139 				what = 1;
1140 		}
1141 
1142 		if(!(start & ~(SRMMU_PGDIR_MASK))) {
1143 			if(srmmu_hwprobe((start-PAGE_SIZE) + SRMMU_PGDIR_SIZE) ==
1144 			   prompte)
1145 				what = 2;
1146 		}
1147 
1148 		pgdp = pgd_offset_k(start);
1149 		if(what == 2) {
1150 			*(pgd_t *)__nocache_fix(pgdp) = __pgd(prompte);
1151 			start += SRMMU_PGDIR_SIZE;
1152 			continue;
1153 		}
1154 		if(srmmu_pgd_none(*(pgd_t *)__nocache_fix(pgdp))) {
1155 			pmdp = (pmd_t *)__srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
1156 			if (pmdp == NULL)
1157 				early_pgtable_allocfail("pmd");
1158 			memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
1159 			srmmu_pgd_set(__nocache_fix(pgdp), pmdp);
1160 		}
1161 		pmdp = srmmu_pmd_offset(__nocache_fix(pgdp), start);
1162 		if(srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
1163 			ptep = (pte_t *) __srmmu_get_nocache(PTE_SIZE,
1164 							     PTE_SIZE);
1165 			if (ptep == NULL)
1166 				early_pgtable_allocfail("pte");
1167 			memset(__nocache_fix(ptep), 0, PTE_SIZE);
1168 			srmmu_pmd_set(__nocache_fix(pmdp), ptep);
1169 		}
1170 		if(what == 1) {
1171 			/*
1172 			 * We bend the rule where all 16 PTPs in a pmd_t point
1173 			 * inside the same PTE page, and we leak a perfectly
1174 			 * good hardware PTE piece. Alternatives seem worse.
1175 			 */
1176 			unsigned int x;	/* Index of HW PMD in soft cluster */
1177 			x = (start >> PMD_SHIFT) & 15;
1178 			*(unsigned long *)__nocache_fix(&pmdp->pmdv[x]) = prompte;
1179 			start += SRMMU_REAL_PMD_SIZE;
1180 			continue;
1181 		}
1182 		ptep = srmmu_pte_offset(__nocache_fix(pmdp), start);
1183 		*(pte_t *)__nocache_fix(ptep) = __pte(prompte);
1184 		start += PAGE_SIZE;
1185 	}
1186 }
1187 
1188 #define KERNEL_PTE(page_shifted) ((page_shifted)|SRMMU_CACHE|SRMMU_PRIV|SRMMU_VALID)
1189 
1190 /* Create a third-level SRMMU 16MB page mapping. */
1191 static void __init do_large_mapping(unsigned long vaddr, unsigned long phys_base)
1192 {
1193 	pgd_t *pgdp = pgd_offset_k(vaddr);
1194 	unsigned long big_pte;
1195 
1196 	big_pte = KERNEL_PTE(phys_base >> 4);
1197 	*(pgd_t *)__nocache_fix(pgdp) = __pgd(big_pte);
1198 }
1199 
1200 /* Map sp_bank entry SP_ENTRY, starting at virtual address VBASE. */
1201 static unsigned long __init map_spbank(unsigned long vbase, int sp_entry)
1202 {
1203 	unsigned long pstart = (sp_banks[sp_entry].base_addr & SRMMU_PGDIR_MASK);
1204 	unsigned long vstart = (vbase & SRMMU_PGDIR_MASK);
1205 	unsigned long vend = SRMMU_PGDIR_ALIGN(vbase + sp_banks[sp_entry].num_bytes);
1206 	/* Map "low" memory only */
1207 	const unsigned long min_vaddr = PAGE_OFFSET;
1208 	const unsigned long max_vaddr = PAGE_OFFSET + SRMMU_MAXMEM;
1209 
1210 	if (vstart < min_vaddr || vstart >= max_vaddr)
1211 		return vstart;
1212 
1213 	if (vend > max_vaddr || vend < min_vaddr)
1214 		vend = max_vaddr;
1215 
1216 	while(vstart < vend) {
1217 		do_large_mapping(vstart, pstart);
1218 		vstart += SRMMU_PGDIR_SIZE; pstart += SRMMU_PGDIR_SIZE;
1219 	}
1220 	return vstart;
1221 }
1222 
1223 static inline void memprobe_error(char *msg)
1224 {
1225 	prom_printf(msg);
1226 	prom_printf("Halting now...\n");
1227 	prom_halt();
1228 }
1229 
1230 static inline void map_kernel(void)
1231 {
1232 	int i;
1233 
1234 	if (phys_base > 0) {
1235 		do_large_mapping(PAGE_OFFSET, phys_base);
1236 	}
1237 
1238 	for (i = 0; sp_banks[i].num_bytes != 0; i++) {
1239 		map_spbank((unsigned long)__va(sp_banks[i].base_addr), i);
1240 	}
1241 
1242 	BTFIXUPSET_SIMM13(user_ptrs_per_pgd, PAGE_OFFSET / SRMMU_PGDIR_SIZE);
1243 }
1244 
1245 /* Paging initialization on the Sparc Reference MMU. */
1246 extern void sparc_context_init(int);
1247 
1248 void (*poke_srmmu)(void) __initdata = NULL;
1249 
1250 extern unsigned long bootmem_init(unsigned long *pages_avail);
1251 
1252 void __init srmmu_paging_init(void)
1253 {
1254 	int i, cpunode;
1255 	char node_str[128];
1256 	pgd_t *pgd;
1257 	pmd_t *pmd;
1258 	pte_t *pte;
1259 	unsigned long pages_avail;
1260 
1261 	sparc_iomap.start = SUN4M_IOBASE_VADDR;	/* 16MB of IOSPACE on all sun4m's. */
1262 
1263 	if (sparc_cpu_model == sun4d)
1264 		num_contexts = 65536; /* We know it is Viking */
1265 	else {
1266 		/* Find the number of contexts on the srmmu. */
1267 		cpunode = prom_getchild(prom_root_node);
1268 		num_contexts = 0;
1269 		while(cpunode != 0) {
1270 			prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
1271 			if(!strcmp(node_str, "cpu")) {
1272 				num_contexts = prom_getintdefault(cpunode, "mmu-nctx", 0x8);
1273 				break;
1274 			}
1275 			cpunode = prom_getsibling(cpunode);
1276 		}
1277 	}
1278 
1279 	if(!num_contexts) {
1280 		prom_printf("Something wrong, can't find cpu node in paging_init.\n");
1281 		prom_halt();
1282 	}
1283 
1284 	pages_avail = 0;
1285 	last_valid_pfn = bootmem_init(&pages_avail);
1286 
1287 	srmmu_nocache_calcsize();
1288 	srmmu_nocache_init();
1289         srmmu_inherit_prom_mappings(0xfe400000,(LINUX_OPPROM_ENDVM-PAGE_SIZE));
1290 	map_kernel();
1291 
1292 	/* ctx table has to be physically aligned to its size */
1293 	srmmu_context_table = (ctxd_t *)__srmmu_get_nocache(num_contexts*sizeof(ctxd_t), num_contexts*sizeof(ctxd_t));
1294 	srmmu_ctx_table_phys = (ctxd_t *)__nocache_pa((unsigned long)srmmu_context_table);
1295 
1296 	for(i = 0; i < num_contexts; i++)
1297 		srmmu_ctxd_set((ctxd_t *)__nocache_fix(&srmmu_context_table[i]), srmmu_swapper_pg_dir);
1298 
1299 	flush_cache_all();
1300 	srmmu_set_ctable_ptr((unsigned long)srmmu_ctx_table_phys);
1301 #ifdef CONFIG_SMP
1302 	/* Stop from hanging here... */
1303 	local_flush_tlb_all();
1304 #else
1305 	flush_tlb_all();
1306 #endif
1307 	poke_srmmu();
1308 
1309 #ifdef CONFIG_SUN_IO
1310 	srmmu_allocate_ptable_skeleton(sparc_iomap.start, IOBASE_END);
1311 	srmmu_allocate_ptable_skeleton(DVMA_VADDR, DVMA_END);
1312 #endif
1313 
1314 	srmmu_allocate_ptable_skeleton(
1315 		__fix_to_virt(__end_of_fixed_addresses - 1), FIXADDR_TOP);
1316 	srmmu_allocate_ptable_skeleton(PKMAP_BASE, PKMAP_END);
1317 
1318 	pgd = pgd_offset_k(PKMAP_BASE);
1319 	pmd = srmmu_pmd_offset(pgd, PKMAP_BASE);
1320 	pte = srmmu_pte_offset(pmd, PKMAP_BASE);
1321 	pkmap_page_table = pte;
1322 
1323 	flush_cache_all();
1324 	flush_tlb_all();
1325 
1326 	sparc_context_init(num_contexts);
1327 
1328 	kmap_init();
1329 
1330 	{
1331 		unsigned long zones_size[MAX_NR_ZONES];
1332 		unsigned long zholes_size[MAX_NR_ZONES];
1333 		unsigned long npages;
1334 		int znum;
1335 
1336 		for (znum = 0; znum < MAX_NR_ZONES; znum++)
1337 			zones_size[znum] = zholes_size[znum] = 0;
1338 
1339 		npages = max_low_pfn - pfn_base;
1340 
1341 		zones_size[ZONE_DMA] = npages;
1342 		zholes_size[ZONE_DMA] = npages - pages_avail;
1343 
1344 		npages = highend_pfn - max_low_pfn;
1345 		zones_size[ZONE_HIGHMEM] = npages;
1346 		zholes_size[ZONE_HIGHMEM] = npages - calc_highpages();
1347 
1348 		free_area_init_node(0, &contig_page_data, zones_size,
1349 				    pfn_base, zholes_size);
1350 	}
1351 }
1352 
1353 static void srmmu_mmu_info(struct seq_file *m)
1354 {
1355 	seq_printf(m,
1356 		   "MMU type\t: %s\n"
1357 		   "contexts\t: %d\n"
1358 		   "nocache total\t: %ld\n"
1359 		   "nocache used\t: %d\n",
1360 		   srmmu_name,
1361 		   num_contexts,
1362 		   srmmu_nocache_size,
1363 		   srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
1364 }
1365 
1366 static void srmmu_update_mmu_cache(struct vm_area_struct * vma, unsigned long address, pte_t pte)
1367 {
1368 }
1369 
1370 static void srmmu_destroy_context(struct mm_struct *mm)
1371 {
1372 
1373 	if(mm->context != NO_CONTEXT) {
1374 		flush_cache_mm(mm);
1375 		srmmu_ctxd_set(&srmmu_context_table[mm->context], srmmu_swapper_pg_dir);
1376 		flush_tlb_mm(mm);
1377 		spin_lock(&srmmu_context_spinlock);
1378 		free_context(mm->context);
1379 		spin_unlock(&srmmu_context_spinlock);
1380 		mm->context = NO_CONTEXT;
1381 	}
1382 }
1383 
1384 /* Init various srmmu chip types. */
1385 static void __init srmmu_is_bad(void)
1386 {
1387 	prom_printf("Could not determine SRMMU chip type.\n");
1388 	prom_halt();
1389 }
1390 
1391 static void __init init_vac_layout(void)
1392 {
1393 	int nd, cache_lines;
1394 	char node_str[128];
1395 #ifdef CONFIG_SMP
1396 	int cpu = 0;
1397 	unsigned long max_size = 0;
1398 	unsigned long min_line_size = 0x10000000;
1399 #endif
1400 
1401 	nd = prom_getchild(prom_root_node);
1402 	while((nd = prom_getsibling(nd)) != 0) {
1403 		prom_getstring(nd, "device_type", node_str, sizeof(node_str));
1404 		if(!strcmp(node_str, "cpu")) {
1405 			vac_line_size = prom_getint(nd, "cache-line-size");
1406 			if (vac_line_size == -1) {
1407 				prom_printf("can't determine cache-line-size, "
1408 					    "halting.\n");
1409 				prom_halt();
1410 			}
1411 			cache_lines = prom_getint(nd, "cache-nlines");
1412 			if (cache_lines == -1) {
1413 				prom_printf("can't determine cache-nlines, halting.\n");
1414 				prom_halt();
1415 			}
1416 
1417 			vac_cache_size = cache_lines * vac_line_size;
1418 #ifdef CONFIG_SMP
1419 			if(vac_cache_size > max_size)
1420 				max_size = vac_cache_size;
1421 			if(vac_line_size < min_line_size)
1422 				min_line_size = vac_line_size;
1423 			//FIXME: cpus not contiguous!!
1424 			cpu++;
1425 			if (cpu >= NR_CPUS || !cpu_online(cpu))
1426 				break;
1427 #else
1428 			break;
1429 #endif
1430 		}
1431 	}
1432 	if(nd == 0) {
1433 		prom_printf("No CPU nodes found, halting.\n");
1434 		prom_halt();
1435 	}
1436 #ifdef CONFIG_SMP
1437 	vac_cache_size = max_size;
1438 	vac_line_size = min_line_size;
1439 #endif
1440 	printk("SRMMU: Using VAC size of %d bytes, line size %d bytes.\n",
1441 	       (int)vac_cache_size, (int)vac_line_size);
1442 }
1443 
1444 static void __init poke_hypersparc(void)
1445 {
1446 	volatile unsigned long clear;
1447 	unsigned long mreg = srmmu_get_mmureg();
1448 
1449 	hyper_flush_unconditional_combined();
1450 
1451 	mreg &= ~(HYPERSPARC_CWENABLE);
1452 	mreg |= (HYPERSPARC_CENABLE | HYPERSPARC_WBENABLE);
1453 	mreg |= (HYPERSPARC_CMODE);
1454 
1455 	srmmu_set_mmureg(mreg);
1456 
1457 #if 0 /* XXX I think this is bad news... -DaveM */
1458 	hyper_clear_all_tags();
1459 #endif
1460 
1461 	put_ross_icr(HYPERSPARC_ICCR_FTD | HYPERSPARC_ICCR_ICE);
1462 	hyper_flush_whole_icache();
1463 	clear = srmmu_get_faddr();
1464 	clear = srmmu_get_fstatus();
1465 }
1466 
1467 static void __init init_hypersparc(void)
1468 {
1469 	srmmu_name = "ROSS HyperSparc";
1470 	srmmu_modtype = HyperSparc;
1471 
1472 	init_vac_layout();
1473 
1474 	is_hypersparc = 1;
1475 
1476 	BTFIXUPSET_CALL(pte_clear, srmmu_pte_clear, BTFIXUPCALL_NORM);
1477 	BTFIXUPSET_CALL(pmd_clear, srmmu_pmd_clear, BTFIXUPCALL_NORM);
1478 	BTFIXUPSET_CALL(pgd_clear, srmmu_pgd_clear, BTFIXUPCALL_NORM);
1479 	BTFIXUPSET_CALL(flush_cache_all, hypersparc_flush_cache_all, BTFIXUPCALL_NORM);
1480 	BTFIXUPSET_CALL(flush_cache_mm, hypersparc_flush_cache_mm, BTFIXUPCALL_NORM);
1481 	BTFIXUPSET_CALL(flush_cache_range, hypersparc_flush_cache_range, BTFIXUPCALL_NORM);
1482 	BTFIXUPSET_CALL(flush_cache_page, hypersparc_flush_cache_page, BTFIXUPCALL_NORM);
1483 
1484 	BTFIXUPSET_CALL(flush_tlb_all, hypersparc_flush_tlb_all, BTFIXUPCALL_NORM);
1485 	BTFIXUPSET_CALL(flush_tlb_mm, hypersparc_flush_tlb_mm, BTFIXUPCALL_NORM);
1486 	BTFIXUPSET_CALL(flush_tlb_range, hypersparc_flush_tlb_range, BTFIXUPCALL_NORM);
1487 	BTFIXUPSET_CALL(flush_tlb_page, hypersparc_flush_tlb_page, BTFIXUPCALL_NORM);
1488 
1489 	BTFIXUPSET_CALL(__flush_page_to_ram, hypersparc_flush_page_to_ram, BTFIXUPCALL_NORM);
1490 	BTFIXUPSET_CALL(flush_sig_insns, hypersparc_flush_sig_insns, BTFIXUPCALL_NORM);
1491 	BTFIXUPSET_CALL(flush_page_for_dma, hypersparc_flush_page_for_dma, BTFIXUPCALL_NOP);
1492 
1493 
1494 	poke_srmmu = poke_hypersparc;
1495 
1496 	hypersparc_setup_blockops();
1497 }
1498 
1499 static void __init poke_cypress(void)
1500 {
1501 	unsigned long mreg = srmmu_get_mmureg();
1502 	unsigned long faddr, tagval;
1503 	volatile unsigned long cypress_sucks;
1504 	volatile unsigned long clear;
1505 
1506 	clear = srmmu_get_faddr();
1507 	clear = srmmu_get_fstatus();
1508 
1509 	if (!(mreg & CYPRESS_CENABLE)) {
1510 		for(faddr = 0x0; faddr < 0x10000; faddr += 20) {
1511 			__asm__ __volatile__("sta %%g0, [%0 + %1] %2\n\t"
1512 					     "sta %%g0, [%0] %2\n\t" : :
1513 					     "r" (faddr), "r" (0x40000),
1514 					     "i" (ASI_M_DATAC_TAG));
1515 		}
1516 	} else {
1517 		for(faddr = 0; faddr < 0x10000; faddr += 0x20) {
1518 			__asm__ __volatile__("lda [%1 + %2] %3, %0\n\t" :
1519 					     "=r" (tagval) :
1520 					     "r" (faddr), "r" (0x40000),
1521 					     "i" (ASI_M_DATAC_TAG));
1522 
1523 			/* If modified and valid, kick it. */
1524 			if((tagval & 0x60) == 0x60)
1525 				cypress_sucks = *(unsigned long *)
1526 							(0xf0020000 + faddr);
1527 		}
1528 	}
1529 
1530 	/* And one more, for our good neighbor, Mr. Broken Cypress. */
1531 	clear = srmmu_get_faddr();
1532 	clear = srmmu_get_fstatus();
1533 
1534 	mreg |= (CYPRESS_CENABLE | CYPRESS_CMODE);
1535 	srmmu_set_mmureg(mreg);
1536 }
1537 
1538 static void __init init_cypress_common(void)
1539 {
1540 	init_vac_layout();
1541 
1542 	BTFIXUPSET_CALL(pte_clear, srmmu_pte_clear, BTFIXUPCALL_NORM);
1543 	BTFIXUPSET_CALL(pmd_clear, srmmu_pmd_clear, BTFIXUPCALL_NORM);
1544 	BTFIXUPSET_CALL(pgd_clear, srmmu_pgd_clear, BTFIXUPCALL_NORM);
1545 	BTFIXUPSET_CALL(flush_cache_all, cypress_flush_cache_all, BTFIXUPCALL_NORM);
1546 	BTFIXUPSET_CALL(flush_cache_mm, cypress_flush_cache_mm, BTFIXUPCALL_NORM);
1547 	BTFIXUPSET_CALL(flush_cache_range, cypress_flush_cache_range, BTFIXUPCALL_NORM);
1548 	BTFIXUPSET_CALL(flush_cache_page, cypress_flush_cache_page, BTFIXUPCALL_NORM);
1549 
1550 	BTFIXUPSET_CALL(flush_tlb_all, cypress_flush_tlb_all, BTFIXUPCALL_NORM);
1551 	BTFIXUPSET_CALL(flush_tlb_mm, cypress_flush_tlb_mm, BTFIXUPCALL_NORM);
1552 	BTFIXUPSET_CALL(flush_tlb_page, cypress_flush_tlb_page, BTFIXUPCALL_NORM);
1553 	BTFIXUPSET_CALL(flush_tlb_range, cypress_flush_tlb_range, BTFIXUPCALL_NORM);
1554 
1555 
1556 	BTFIXUPSET_CALL(__flush_page_to_ram, cypress_flush_page_to_ram, BTFIXUPCALL_NORM);
1557 	BTFIXUPSET_CALL(flush_sig_insns, cypress_flush_sig_insns, BTFIXUPCALL_NOP);
1558 	BTFIXUPSET_CALL(flush_page_for_dma, cypress_flush_page_for_dma, BTFIXUPCALL_NOP);
1559 
1560 	poke_srmmu = poke_cypress;
1561 }
1562 
1563 static void __init init_cypress_604(void)
1564 {
1565 	srmmu_name = "ROSS Cypress-604(UP)";
1566 	srmmu_modtype = Cypress;
1567 	init_cypress_common();
1568 }
1569 
1570 static void __init init_cypress_605(unsigned long mrev)
1571 {
1572 	srmmu_name = "ROSS Cypress-605(MP)";
1573 	if(mrev == 0xe) {
1574 		srmmu_modtype = Cypress_vE;
1575 		hwbug_bitmask |= HWBUG_COPYBACK_BROKEN;
1576 	} else {
1577 		if(mrev == 0xd) {
1578 			srmmu_modtype = Cypress_vD;
1579 			hwbug_bitmask |= HWBUG_ASIFLUSH_BROKEN;
1580 		} else {
1581 			srmmu_modtype = Cypress;
1582 		}
1583 	}
1584 	init_cypress_common();
1585 }
1586 
1587 static void __init poke_swift(void)
1588 {
1589 	unsigned long mreg;
1590 
1591 	/* Clear any crap from the cache or else... */
1592 	swift_flush_cache_all();
1593 
1594 	/* Enable I & D caches */
1595 	mreg = srmmu_get_mmureg();
1596 	mreg |= (SWIFT_IE | SWIFT_DE);
1597 	/*
1598 	 * The Swift branch folding logic is completely broken.  At
1599 	 * trap time, if things are just right, if can mistakenly
1600 	 * think that a trap is coming from kernel mode when in fact
1601 	 * it is coming from user mode (it mis-executes the branch in
1602 	 * the trap code).  So you see things like crashme completely
1603 	 * hosing your machine which is completely unacceptable.  Turn
1604 	 * this shit off... nice job Fujitsu.
1605 	 */
1606 	mreg &= ~(SWIFT_BF);
1607 	srmmu_set_mmureg(mreg);
1608 }
1609 
1610 #define SWIFT_MASKID_ADDR  0x10003018
1611 static void __init init_swift(void)
1612 {
1613 	unsigned long swift_rev;
1614 
1615 	__asm__ __volatile__("lda [%1] %2, %0\n\t"
1616 			     "srl %0, 0x18, %0\n\t" :
1617 			     "=r" (swift_rev) :
1618 			     "r" (SWIFT_MASKID_ADDR), "i" (ASI_M_BYPASS));
1619 	srmmu_name = "Fujitsu Swift";
1620 	switch(swift_rev) {
1621 	case 0x11:
1622 	case 0x20:
1623 	case 0x23:
1624 	case 0x30:
1625 		srmmu_modtype = Swift_lots_o_bugs;
1626 		hwbug_bitmask |= (HWBUG_KERN_ACCBROKEN | HWBUG_KERN_CBITBROKEN);
1627 		/*
1628 		 * Gee george, I wonder why Sun is so hush hush about
1629 		 * this hardware bug... really braindamage stuff going
1630 		 * on here.  However I think we can find a way to avoid
1631 		 * all of the workaround overhead under Linux.  Basically,
1632 		 * any page fault can cause kernel pages to become user
1633 		 * accessible (the mmu gets confused and clears some of
1634 		 * the ACC bits in kernel ptes).  Aha, sounds pretty
1635 		 * horrible eh?  But wait, after extensive testing it appears
1636 		 * that if you use pgd_t level large kernel pte's (like the
1637 		 * 4MB pages on the Pentium) the bug does not get tripped
1638 		 * at all.  This avoids almost all of the major overhead.
1639 		 * Welcome to a world where your vendor tells you to,
1640 		 * "apply this kernel patch" instead of "sorry for the
1641 		 * broken hardware, send it back and we'll give you
1642 		 * properly functioning parts"
1643 		 */
1644 		break;
1645 	case 0x25:
1646 	case 0x31:
1647 		srmmu_modtype = Swift_bad_c;
1648 		hwbug_bitmask |= HWBUG_KERN_CBITBROKEN;
1649 		/*
1650 		 * You see Sun allude to this hardware bug but never
1651 		 * admit things directly, they'll say things like,
1652 		 * "the Swift chip cache problems" or similar.
1653 		 */
1654 		break;
1655 	default:
1656 		srmmu_modtype = Swift_ok;
1657 		break;
1658 	};
1659 
1660 	BTFIXUPSET_CALL(flush_cache_all, swift_flush_cache_all, BTFIXUPCALL_NORM);
1661 	BTFIXUPSET_CALL(flush_cache_mm, swift_flush_cache_mm, BTFIXUPCALL_NORM);
1662 	BTFIXUPSET_CALL(flush_cache_page, swift_flush_cache_page, BTFIXUPCALL_NORM);
1663 	BTFIXUPSET_CALL(flush_cache_range, swift_flush_cache_range, BTFIXUPCALL_NORM);
1664 
1665 
1666 	BTFIXUPSET_CALL(flush_tlb_all, swift_flush_tlb_all, BTFIXUPCALL_NORM);
1667 	BTFIXUPSET_CALL(flush_tlb_mm, swift_flush_tlb_mm, BTFIXUPCALL_NORM);
1668 	BTFIXUPSET_CALL(flush_tlb_page, swift_flush_tlb_page, BTFIXUPCALL_NORM);
1669 	BTFIXUPSET_CALL(flush_tlb_range, swift_flush_tlb_range, BTFIXUPCALL_NORM);
1670 
1671 	BTFIXUPSET_CALL(__flush_page_to_ram, swift_flush_page_to_ram, BTFIXUPCALL_NORM);
1672 	BTFIXUPSET_CALL(flush_sig_insns, swift_flush_sig_insns, BTFIXUPCALL_NORM);
1673 	BTFIXUPSET_CALL(flush_page_for_dma, swift_flush_page_for_dma, BTFIXUPCALL_NORM);
1674 
1675 	BTFIXUPSET_CALL(update_mmu_cache, swift_update_mmu_cache, BTFIXUPCALL_NORM);
1676 
1677 	flush_page_for_dma_global = 0;
1678 
1679 	/*
1680 	 * Are you now convinced that the Swift is one of the
1681 	 * biggest VLSI abortions of all time?  Bravo Fujitsu!
1682 	 * Fujitsu, the !#?!%$'d up processor people.  I bet if
1683 	 * you examined the microcode of the Swift you'd find
1684 	 * XXX's all over the place.
1685 	 */
1686 	poke_srmmu = poke_swift;
1687 }
1688 
1689 static void turbosparc_flush_cache_all(void)
1690 {
1691 	flush_user_windows();
1692 	turbosparc_idflash_clear();
1693 }
1694 
1695 static void turbosparc_flush_cache_mm(struct mm_struct *mm)
1696 {
1697 	FLUSH_BEGIN(mm)
1698 	flush_user_windows();
1699 	turbosparc_idflash_clear();
1700 	FLUSH_END
1701 }
1702 
1703 static void turbosparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1704 {
1705 	FLUSH_BEGIN(vma->vm_mm)
1706 	flush_user_windows();
1707 	turbosparc_idflash_clear();
1708 	FLUSH_END
1709 }
1710 
1711 static void turbosparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
1712 {
1713 	FLUSH_BEGIN(vma->vm_mm)
1714 	flush_user_windows();
1715 	if (vma->vm_flags & VM_EXEC)
1716 		turbosparc_flush_icache();
1717 	turbosparc_flush_dcache();
1718 	FLUSH_END
1719 }
1720 
1721 /* TurboSparc is copy-back, if we turn it on, but this does not work. */
1722 static void turbosparc_flush_page_to_ram(unsigned long page)
1723 {
1724 #ifdef TURBOSPARC_WRITEBACK
1725 	volatile unsigned long clear;
1726 
1727 	if (srmmu_hwprobe(page))
1728 		turbosparc_flush_page_cache(page);
1729 	clear = srmmu_get_fstatus();
1730 #endif
1731 }
1732 
1733 static void turbosparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
1734 {
1735 }
1736 
1737 static void turbosparc_flush_page_for_dma(unsigned long page)
1738 {
1739 	turbosparc_flush_dcache();
1740 }
1741 
1742 static void turbosparc_flush_tlb_all(void)
1743 {
1744 	srmmu_flush_whole_tlb();
1745 }
1746 
1747 static void turbosparc_flush_tlb_mm(struct mm_struct *mm)
1748 {
1749 	FLUSH_BEGIN(mm)
1750 	srmmu_flush_whole_tlb();
1751 	FLUSH_END
1752 }
1753 
1754 static void turbosparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1755 {
1756 	FLUSH_BEGIN(vma->vm_mm)
1757 	srmmu_flush_whole_tlb();
1758 	FLUSH_END
1759 }
1760 
1761 static void turbosparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
1762 {
1763 	FLUSH_BEGIN(vma->vm_mm)
1764 	srmmu_flush_whole_tlb();
1765 	FLUSH_END
1766 }
1767 
1768 
1769 static void __init poke_turbosparc(void)
1770 {
1771 	unsigned long mreg = srmmu_get_mmureg();
1772 	unsigned long ccreg;
1773 
1774 	/* Clear any crap from the cache or else... */
1775 	turbosparc_flush_cache_all();
1776 	mreg &= ~(TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE); /* Temporarily disable I & D caches */
1777 	mreg &= ~(TURBOSPARC_PCENABLE);		/* Don't check parity */
1778 	srmmu_set_mmureg(mreg);
1779 
1780 	ccreg = turbosparc_get_ccreg();
1781 
1782 #ifdef TURBOSPARC_WRITEBACK
1783 	ccreg |= (TURBOSPARC_SNENABLE);		/* Do DVMA snooping in Dcache */
1784 	ccreg &= ~(TURBOSPARC_uS2 | TURBOSPARC_WTENABLE);
1785 			/* Write-back D-cache, emulate VLSI
1786 			 * abortion number three, not number one */
1787 #else
1788 	/* For now let's play safe, optimize later */
1789 	ccreg |= (TURBOSPARC_SNENABLE | TURBOSPARC_WTENABLE);
1790 			/* Do DVMA snooping in Dcache, Write-thru D-cache */
1791 	ccreg &= ~(TURBOSPARC_uS2);
1792 			/* Emulate VLSI abortion number three, not number one */
1793 #endif
1794 
1795 	switch (ccreg & 7) {
1796 	case 0: /* No SE cache */
1797 	case 7: /* Test mode */
1798 		break;
1799 	default:
1800 		ccreg |= (TURBOSPARC_SCENABLE);
1801 	}
1802 	turbosparc_set_ccreg (ccreg);
1803 
1804 	mreg |= (TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE); /* I & D caches on */
1805 	mreg |= (TURBOSPARC_ICSNOOP);		/* Icache snooping on */
1806 	srmmu_set_mmureg(mreg);
1807 }
1808 
1809 static void __init init_turbosparc(void)
1810 {
1811 	srmmu_name = "Fujitsu TurboSparc";
1812 	srmmu_modtype = TurboSparc;
1813 
1814 	BTFIXUPSET_CALL(flush_cache_all, turbosparc_flush_cache_all, BTFIXUPCALL_NORM);
1815 	BTFIXUPSET_CALL(flush_cache_mm, turbosparc_flush_cache_mm, BTFIXUPCALL_NORM);
1816 	BTFIXUPSET_CALL(flush_cache_page, turbosparc_flush_cache_page, BTFIXUPCALL_NORM);
1817 	BTFIXUPSET_CALL(flush_cache_range, turbosparc_flush_cache_range, BTFIXUPCALL_NORM);
1818 
1819 	BTFIXUPSET_CALL(flush_tlb_all, turbosparc_flush_tlb_all, BTFIXUPCALL_NORM);
1820 	BTFIXUPSET_CALL(flush_tlb_mm, turbosparc_flush_tlb_mm, BTFIXUPCALL_NORM);
1821 	BTFIXUPSET_CALL(flush_tlb_page, turbosparc_flush_tlb_page, BTFIXUPCALL_NORM);
1822 	BTFIXUPSET_CALL(flush_tlb_range, turbosparc_flush_tlb_range, BTFIXUPCALL_NORM);
1823 
1824 	BTFIXUPSET_CALL(__flush_page_to_ram, turbosparc_flush_page_to_ram, BTFIXUPCALL_NORM);
1825 
1826 	BTFIXUPSET_CALL(flush_sig_insns, turbosparc_flush_sig_insns, BTFIXUPCALL_NOP);
1827 	BTFIXUPSET_CALL(flush_page_for_dma, turbosparc_flush_page_for_dma, BTFIXUPCALL_NORM);
1828 
1829 	poke_srmmu = poke_turbosparc;
1830 }
1831 
1832 static void __init poke_tsunami(void)
1833 {
1834 	unsigned long mreg = srmmu_get_mmureg();
1835 
1836 	tsunami_flush_icache();
1837 	tsunami_flush_dcache();
1838 	mreg &= ~TSUNAMI_ITD;
1839 	mreg |= (TSUNAMI_IENAB | TSUNAMI_DENAB);
1840 	srmmu_set_mmureg(mreg);
1841 }
1842 
1843 static void __init init_tsunami(void)
1844 {
1845 	/*
1846 	 * Tsunami's pretty sane, Sun and TI actually got it
1847 	 * somewhat right this time.  Fujitsu should have
1848 	 * taken some lessons from them.
1849 	 */
1850 
1851 	srmmu_name = "TI Tsunami";
1852 	srmmu_modtype = Tsunami;
1853 
1854 	BTFIXUPSET_CALL(flush_cache_all, tsunami_flush_cache_all, BTFIXUPCALL_NORM);
1855 	BTFIXUPSET_CALL(flush_cache_mm, tsunami_flush_cache_mm, BTFIXUPCALL_NORM);
1856 	BTFIXUPSET_CALL(flush_cache_page, tsunami_flush_cache_page, BTFIXUPCALL_NORM);
1857 	BTFIXUPSET_CALL(flush_cache_range, tsunami_flush_cache_range, BTFIXUPCALL_NORM);
1858 
1859 
1860 	BTFIXUPSET_CALL(flush_tlb_all, tsunami_flush_tlb_all, BTFIXUPCALL_NORM);
1861 	BTFIXUPSET_CALL(flush_tlb_mm, tsunami_flush_tlb_mm, BTFIXUPCALL_NORM);
1862 	BTFIXUPSET_CALL(flush_tlb_page, tsunami_flush_tlb_page, BTFIXUPCALL_NORM);
1863 	BTFIXUPSET_CALL(flush_tlb_range, tsunami_flush_tlb_range, BTFIXUPCALL_NORM);
1864 
1865 	BTFIXUPSET_CALL(__flush_page_to_ram, tsunami_flush_page_to_ram, BTFIXUPCALL_NOP);
1866 	BTFIXUPSET_CALL(flush_sig_insns, tsunami_flush_sig_insns, BTFIXUPCALL_NORM);
1867 	BTFIXUPSET_CALL(flush_page_for_dma, tsunami_flush_page_for_dma, BTFIXUPCALL_NORM);
1868 
1869 	poke_srmmu = poke_tsunami;
1870 
1871 	tsunami_setup_blockops();
1872 }
1873 
1874 static void __init poke_viking(void)
1875 {
1876 	unsigned long mreg = srmmu_get_mmureg();
1877 	static int smp_catch;
1878 
1879 	if(viking_mxcc_present) {
1880 		unsigned long mxcc_control = mxcc_get_creg();
1881 
1882 		mxcc_control |= (MXCC_CTL_ECE | MXCC_CTL_PRE | MXCC_CTL_MCE);
1883 		mxcc_control &= ~(MXCC_CTL_RRC);
1884 		mxcc_set_creg(mxcc_control);
1885 
1886 		/*
1887 		 * We don't need memory parity checks.
1888 		 * XXX This is a mess, have to dig out later. ecd.
1889 		viking_mxcc_turn_off_parity(&mreg, &mxcc_control);
1890 		 */
1891 
1892 		/* We do cache ptables on MXCC. */
1893 		mreg |= VIKING_TCENABLE;
1894 	} else {
1895 		unsigned long bpreg;
1896 
1897 		mreg &= ~(VIKING_TCENABLE);
1898 		if(smp_catch++) {
1899 			/* Must disable mixed-cmd mode here for other cpu's. */
1900 			bpreg = viking_get_bpreg();
1901 			bpreg &= ~(VIKING_ACTION_MIX);
1902 			viking_set_bpreg(bpreg);
1903 
1904 			/* Just in case PROM does something funny. */
1905 			msi_set_sync();
1906 		}
1907 	}
1908 
1909 	mreg |= VIKING_SPENABLE;
1910 	mreg |= (VIKING_ICENABLE | VIKING_DCENABLE);
1911 	mreg |= VIKING_SBENABLE;
1912 	mreg &= ~(VIKING_ACENABLE);
1913 	srmmu_set_mmureg(mreg);
1914 
1915 #ifdef CONFIG_SMP
1916 	/* Avoid unnecessary cross calls. */
1917 	BTFIXUPCOPY_CALL(flush_cache_all, local_flush_cache_all);
1918 	BTFIXUPCOPY_CALL(flush_cache_mm, local_flush_cache_mm);
1919 	BTFIXUPCOPY_CALL(flush_cache_range, local_flush_cache_range);
1920 	BTFIXUPCOPY_CALL(flush_cache_page, local_flush_cache_page);
1921 	BTFIXUPCOPY_CALL(__flush_page_to_ram, local_flush_page_to_ram);
1922 	BTFIXUPCOPY_CALL(flush_sig_insns, local_flush_sig_insns);
1923 	BTFIXUPCOPY_CALL(flush_page_for_dma, local_flush_page_for_dma);
1924 	btfixup();
1925 #endif
1926 }
1927 
1928 static void __init init_viking(void)
1929 {
1930 	unsigned long mreg = srmmu_get_mmureg();
1931 
1932 	/* Ahhh, the viking.  SRMMU VLSI abortion number two... */
1933 	if(mreg & VIKING_MMODE) {
1934 		srmmu_name = "TI Viking";
1935 		viking_mxcc_present = 0;
1936 		msi_set_sync();
1937 
1938 		BTFIXUPSET_CALL(pte_clear, srmmu_pte_clear, BTFIXUPCALL_NORM);
1939 		BTFIXUPSET_CALL(pmd_clear, srmmu_pmd_clear, BTFIXUPCALL_NORM);
1940 		BTFIXUPSET_CALL(pgd_clear, srmmu_pgd_clear, BTFIXUPCALL_NORM);
1941 
1942 		/*
1943 		 * We need this to make sure old viking takes no hits
1944 		 * on it's cache for dma snoops to workaround the
1945 		 * "load from non-cacheable memory" interrupt bug.
1946 		 * This is only necessary because of the new way in
1947 		 * which we use the IOMMU.
1948 		 */
1949 		BTFIXUPSET_CALL(flush_page_for_dma, viking_flush_page, BTFIXUPCALL_NORM);
1950 
1951 		flush_page_for_dma_global = 0;
1952 	} else {
1953 		srmmu_name = "TI Viking/MXCC";
1954 		viking_mxcc_present = 1;
1955 
1956 		srmmu_cache_pagetables = 1;
1957 
1958 		/* MXCC vikings lack the DMA snooping bug. */
1959 		BTFIXUPSET_CALL(flush_page_for_dma, viking_flush_page_for_dma, BTFIXUPCALL_NOP);
1960 	}
1961 
1962 	BTFIXUPSET_CALL(flush_cache_all, viking_flush_cache_all, BTFIXUPCALL_NORM);
1963 	BTFIXUPSET_CALL(flush_cache_mm, viking_flush_cache_mm, BTFIXUPCALL_NORM);
1964 	BTFIXUPSET_CALL(flush_cache_page, viking_flush_cache_page, BTFIXUPCALL_NORM);
1965 	BTFIXUPSET_CALL(flush_cache_range, viking_flush_cache_range, BTFIXUPCALL_NORM);
1966 
1967 #ifdef CONFIG_SMP
1968 	if (sparc_cpu_model == sun4d) {
1969 		BTFIXUPSET_CALL(flush_tlb_all, sun4dsmp_flush_tlb_all, BTFIXUPCALL_NORM);
1970 		BTFIXUPSET_CALL(flush_tlb_mm, sun4dsmp_flush_tlb_mm, BTFIXUPCALL_NORM);
1971 		BTFIXUPSET_CALL(flush_tlb_page, sun4dsmp_flush_tlb_page, BTFIXUPCALL_NORM);
1972 		BTFIXUPSET_CALL(flush_tlb_range, sun4dsmp_flush_tlb_range, BTFIXUPCALL_NORM);
1973 	} else
1974 #endif
1975 	{
1976 		BTFIXUPSET_CALL(flush_tlb_all, viking_flush_tlb_all, BTFIXUPCALL_NORM);
1977 		BTFIXUPSET_CALL(flush_tlb_mm, viking_flush_tlb_mm, BTFIXUPCALL_NORM);
1978 		BTFIXUPSET_CALL(flush_tlb_page, viking_flush_tlb_page, BTFIXUPCALL_NORM);
1979 		BTFIXUPSET_CALL(flush_tlb_range, viking_flush_tlb_range, BTFIXUPCALL_NORM);
1980 	}
1981 
1982 	BTFIXUPSET_CALL(__flush_page_to_ram, viking_flush_page_to_ram, BTFIXUPCALL_NOP);
1983 	BTFIXUPSET_CALL(flush_sig_insns, viking_flush_sig_insns, BTFIXUPCALL_NOP);
1984 
1985 	poke_srmmu = poke_viking;
1986 }
1987 
1988 /* Probe for the srmmu chip version. */
1989 static void __init get_srmmu_type(void)
1990 {
1991 	unsigned long mreg, psr;
1992 	unsigned long mod_typ, mod_rev, psr_typ, psr_vers;
1993 
1994 	srmmu_modtype = SRMMU_INVAL_MOD;
1995 	hwbug_bitmask = 0;
1996 
1997 	mreg = srmmu_get_mmureg(); psr = get_psr();
1998 	mod_typ = (mreg & 0xf0000000) >> 28;
1999 	mod_rev = (mreg & 0x0f000000) >> 24;
2000 	psr_typ = (psr >> 28) & 0xf;
2001 	psr_vers = (psr >> 24) & 0xf;
2002 
2003 	/* First, check for HyperSparc or Cypress. */
2004 	if(mod_typ == 1) {
2005 		switch(mod_rev) {
2006 		case 7:
2007 			/* UP or MP Hypersparc */
2008 			init_hypersparc();
2009 			break;
2010 		case 0:
2011 		case 2:
2012 			/* Uniprocessor Cypress */
2013 			init_cypress_604();
2014 			break;
2015 		case 10:
2016 		case 11:
2017 		case 12:
2018 			/* _REALLY OLD_ Cypress MP chips... */
2019 		case 13:
2020 		case 14:
2021 		case 15:
2022 			/* MP Cypress mmu/cache-controller */
2023 			init_cypress_605(mod_rev);
2024 			break;
2025 		default:
2026 			/* Some other Cypress revision, assume a 605. */
2027 			init_cypress_605(mod_rev);
2028 			break;
2029 		};
2030 		return;
2031 	}
2032 
2033 	/*
2034 	 * Now Fujitsu TurboSparc. It might happen that it is
2035 	 * in Swift emulation mode, so we will check later...
2036 	 */
2037 	if (psr_typ == 0 && psr_vers == 5) {
2038 		init_turbosparc();
2039 		return;
2040 	}
2041 
2042 	/* Next check for Fujitsu Swift. */
2043 	if(psr_typ == 0 && psr_vers == 4) {
2044 		int cpunode;
2045 		char node_str[128];
2046 
2047 		/* Look if it is not a TurboSparc emulating Swift... */
2048 		cpunode = prom_getchild(prom_root_node);
2049 		while((cpunode = prom_getsibling(cpunode)) != 0) {
2050 			prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
2051 			if(!strcmp(node_str, "cpu")) {
2052 				if (!prom_getintdefault(cpunode, "psr-implementation", 1) &&
2053 				    prom_getintdefault(cpunode, "psr-version", 1) == 5) {
2054 					init_turbosparc();
2055 					return;
2056 				}
2057 				break;
2058 			}
2059 		}
2060 
2061 		init_swift();
2062 		return;
2063 	}
2064 
2065 	/* Now the Viking family of srmmu. */
2066 	if(psr_typ == 4 &&
2067 	   ((psr_vers == 0) ||
2068 	    ((psr_vers == 1) && (mod_typ == 0) && (mod_rev == 0)))) {
2069 		init_viking();
2070 		return;
2071 	}
2072 
2073 	/* Finally the Tsunami. */
2074 	if(psr_typ == 4 && psr_vers == 1 && (mod_typ || mod_rev)) {
2075 		init_tsunami();
2076 		return;
2077 	}
2078 
2079 	/* Oh well */
2080 	srmmu_is_bad();
2081 }
2082 
2083 /* don't laugh, static pagetables */
2084 static void srmmu_check_pgt_cache(int low, int high)
2085 {
2086 }
2087 
2088 extern unsigned long spwin_mmu_patchme, fwin_mmu_patchme,
2089 	tsetup_mmu_patchme, rtrap_mmu_patchme;
2090 
2091 extern unsigned long spwin_srmmu_stackchk, srmmu_fwin_stackchk,
2092 	tsetup_srmmu_stackchk, srmmu_rett_stackchk;
2093 
2094 extern unsigned long srmmu_fault;
2095 
2096 #define PATCH_BRANCH(insn, dest) do { \
2097 		iaddr = &(insn); \
2098 		daddr = &(dest); \
2099 		*iaddr = SPARC_BRANCH((unsigned long) daddr, (unsigned long) iaddr); \
2100 	} while(0)
2101 
2102 static void __init patch_window_trap_handlers(void)
2103 {
2104 	unsigned long *iaddr, *daddr;
2105 
2106 	PATCH_BRANCH(spwin_mmu_patchme, spwin_srmmu_stackchk);
2107 	PATCH_BRANCH(fwin_mmu_patchme, srmmu_fwin_stackchk);
2108 	PATCH_BRANCH(tsetup_mmu_patchme, tsetup_srmmu_stackchk);
2109 	PATCH_BRANCH(rtrap_mmu_patchme, srmmu_rett_stackchk);
2110 	PATCH_BRANCH(sparc_ttable[SP_TRAP_TFLT].inst_three, srmmu_fault);
2111 	PATCH_BRANCH(sparc_ttable[SP_TRAP_DFLT].inst_three, srmmu_fault);
2112 	PATCH_BRANCH(sparc_ttable[SP_TRAP_DACC].inst_three, srmmu_fault);
2113 }
2114 
2115 #ifdef CONFIG_SMP
2116 /* Local cross-calls. */
2117 static void smp_flush_page_for_dma(unsigned long page)
2118 {
2119 	xc1((smpfunc_t) BTFIXUP_CALL(local_flush_page_for_dma), page);
2120 	local_flush_page_for_dma(page);
2121 }
2122 
2123 #endif
2124 
2125 static pte_t srmmu_pgoff_to_pte(unsigned long pgoff)
2126 {
2127 	return __pte((pgoff << SRMMU_PTE_FILE_SHIFT) | SRMMU_FILE);
2128 }
2129 
2130 static unsigned long srmmu_pte_to_pgoff(pte_t pte)
2131 {
2132 	return pte_val(pte) >> SRMMU_PTE_FILE_SHIFT;
2133 }
2134 
2135 static pgprot_t srmmu_pgprot_noncached(pgprot_t prot)
2136 {
2137 	prot &= ~__pgprot(SRMMU_CACHE);
2138 
2139 	return prot;
2140 }
2141 
2142 /* Load up routines and constants for sun4m and sun4d mmu */
2143 void __init ld_mmu_srmmu(void)
2144 {
2145 	extern void ld_mmu_iommu(void);
2146 	extern void ld_mmu_iounit(void);
2147 	extern void ___xchg32_sun4md(void);
2148 
2149 	BTFIXUPSET_SIMM13(pgdir_shift, SRMMU_PGDIR_SHIFT);
2150 	BTFIXUPSET_SETHI(pgdir_size, SRMMU_PGDIR_SIZE);
2151 	BTFIXUPSET_SETHI(pgdir_mask, SRMMU_PGDIR_MASK);
2152 
2153 	BTFIXUPSET_SIMM13(ptrs_per_pmd, SRMMU_PTRS_PER_PMD);
2154 	BTFIXUPSET_SIMM13(ptrs_per_pgd, SRMMU_PTRS_PER_PGD);
2155 
2156 	BTFIXUPSET_INT(page_none, pgprot_val(SRMMU_PAGE_NONE));
2157 	PAGE_SHARED = pgprot_val(SRMMU_PAGE_SHARED);
2158 	BTFIXUPSET_INT(page_copy, pgprot_val(SRMMU_PAGE_COPY));
2159 	BTFIXUPSET_INT(page_readonly, pgprot_val(SRMMU_PAGE_RDONLY));
2160 	BTFIXUPSET_INT(page_kernel, pgprot_val(SRMMU_PAGE_KERNEL));
2161 	page_kernel = pgprot_val(SRMMU_PAGE_KERNEL);
2162 
2163 	/* Functions */
2164 	BTFIXUPSET_CALL(pgprot_noncached, srmmu_pgprot_noncached, BTFIXUPCALL_NORM);
2165 #ifndef CONFIG_SMP
2166 	BTFIXUPSET_CALL(___xchg32, ___xchg32_sun4md, BTFIXUPCALL_SWAPG1G2);
2167 #endif
2168 	BTFIXUPSET_CALL(do_check_pgt_cache, srmmu_check_pgt_cache, BTFIXUPCALL_NOP);
2169 
2170 	BTFIXUPSET_CALL(set_pte, srmmu_set_pte, BTFIXUPCALL_SWAPO0O1);
2171 	BTFIXUPSET_CALL(switch_mm, srmmu_switch_mm, BTFIXUPCALL_NORM);
2172 
2173 	BTFIXUPSET_CALL(pte_pfn, srmmu_pte_pfn, BTFIXUPCALL_NORM);
2174 	BTFIXUPSET_CALL(pmd_page, srmmu_pmd_page, BTFIXUPCALL_NORM);
2175 	BTFIXUPSET_CALL(pgd_page_vaddr, srmmu_pgd_page, BTFIXUPCALL_NORM);
2176 
2177 	BTFIXUPSET_SETHI(none_mask, 0xF0000000);
2178 
2179 	BTFIXUPSET_CALL(pte_present, srmmu_pte_present, BTFIXUPCALL_NORM);
2180 	BTFIXUPSET_CALL(pte_clear, srmmu_pte_clear, BTFIXUPCALL_SWAPO0G0);
2181 
2182 	BTFIXUPSET_CALL(pmd_bad, srmmu_pmd_bad, BTFIXUPCALL_NORM);
2183 	BTFIXUPSET_CALL(pmd_present, srmmu_pmd_present, BTFIXUPCALL_NORM);
2184 	BTFIXUPSET_CALL(pmd_clear, srmmu_pmd_clear, BTFIXUPCALL_SWAPO0G0);
2185 
2186 	BTFIXUPSET_CALL(pgd_none, srmmu_pgd_none, BTFIXUPCALL_NORM);
2187 	BTFIXUPSET_CALL(pgd_bad, srmmu_pgd_bad, BTFIXUPCALL_NORM);
2188 	BTFIXUPSET_CALL(pgd_present, srmmu_pgd_present, BTFIXUPCALL_NORM);
2189 	BTFIXUPSET_CALL(pgd_clear, srmmu_pgd_clear, BTFIXUPCALL_SWAPO0G0);
2190 
2191 	BTFIXUPSET_CALL(mk_pte, srmmu_mk_pte, BTFIXUPCALL_NORM);
2192 	BTFIXUPSET_CALL(mk_pte_phys, srmmu_mk_pte_phys, BTFIXUPCALL_NORM);
2193 	BTFIXUPSET_CALL(mk_pte_io, srmmu_mk_pte_io, BTFIXUPCALL_NORM);
2194 	BTFIXUPSET_CALL(pgd_set, srmmu_pgd_set, BTFIXUPCALL_NORM);
2195 	BTFIXUPSET_CALL(pmd_set, srmmu_pmd_set, BTFIXUPCALL_NORM);
2196 	BTFIXUPSET_CALL(pmd_populate, srmmu_pmd_populate, BTFIXUPCALL_NORM);
2197 
2198 	BTFIXUPSET_INT(pte_modify_mask, SRMMU_CHG_MASK);
2199 	BTFIXUPSET_CALL(pmd_offset, srmmu_pmd_offset, BTFIXUPCALL_NORM);
2200 	BTFIXUPSET_CALL(pte_offset_kernel, srmmu_pte_offset, BTFIXUPCALL_NORM);
2201 
2202 	BTFIXUPSET_CALL(free_pte_fast, srmmu_free_pte_fast, BTFIXUPCALL_NORM);
2203 	BTFIXUPSET_CALL(pte_free, srmmu_pte_free, BTFIXUPCALL_NORM);
2204 	BTFIXUPSET_CALL(pte_alloc_one_kernel, srmmu_pte_alloc_one_kernel, BTFIXUPCALL_NORM);
2205 	BTFIXUPSET_CALL(pte_alloc_one, srmmu_pte_alloc_one, BTFIXUPCALL_NORM);
2206 	BTFIXUPSET_CALL(free_pmd_fast, srmmu_pmd_free, BTFIXUPCALL_NORM);
2207 	BTFIXUPSET_CALL(pmd_alloc_one, srmmu_pmd_alloc_one, BTFIXUPCALL_NORM);
2208 	BTFIXUPSET_CALL(free_pgd_fast, srmmu_free_pgd_fast, BTFIXUPCALL_NORM);
2209 	BTFIXUPSET_CALL(get_pgd_fast, srmmu_get_pgd_fast, BTFIXUPCALL_NORM);
2210 
2211 	BTFIXUPSET_HALF(pte_writei, SRMMU_WRITE);
2212 	BTFIXUPSET_HALF(pte_dirtyi, SRMMU_DIRTY);
2213 	BTFIXUPSET_HALF(pte_youngi, SRMMU_REF);
2214 	BTFIXUPSET_HALF(pte_filei, SRMMU_FILE);
2215 	BTFIXUPSET_HALF(pte_wrprotecti, SRMMU_WRITE);
2216 	BTFIXUPSET_HALF(pte_mkcleani, SRMMU_DIRTY);
2217 	BTFIXUPSET_HALF(pte_mkoldi, SRMMU_REF);
2218 	BTFIXUPSET_CALL(pte_mkwrite, srmmu_pte_mkwrite, BTFIXUPCALL_ORINT(SRMMU_WRITE));
2219 	BTFIXUPSET_CALL(pte_mkdirty, srmmu_pte_mkdirty, BTFIXUPCALL_ORINT(SRMMU_DIRTY));
2220 	BTFIXUPSET_CALL(pte_mkyoung, srmmu_pte_mkyoung, BTFIXUPCALL_ORINT(SRMMU_REF));
2221 	BTFIXUPSET_CALL(update_mmu_cache, srmmu_update_mmu_cache, BTFIXUPCALL_NOP);
2222 	BTFIXUPSET_CALL(destroy_context, srmmu_destroy_context, BTFIXUPCALL_NORM);
2223 
2224 	BTFIXUPSET_CALL(sparc_mapiorange, srmmu_mapiorange, BTFIXUPCALL_NORM);
2225 	BTFIXUPSET_CALL(sparc_unmapiorange, srmmu_unmapiorange, BTFIXUPCALL_NORM);
2226 
2227 	BTFIXUPSET_CALL(__swp_type, srmmu_swp_type, BTFIXUPCALL_NORM);
2228 	BTFIXUPSET_CALL(__swp_offset, srmmu_swp_offset, BTFIXUPCALL_NORM);
2229 	BTFIXUPSET_CALL(__swp_entry, srmmu_swp_entry, BTFIXUPCALL_NORM);
2230 
2231 	BTFIXUPSET_CALL(mmu_info, srmmu_mmu_info, BTFIXUPCALL_NORM);
2232 
2233 	BTFIXUPSET_CALL(alloc_thread_info, srmmu_alloc_thread_info, BTFIXUPCALL_NORM);
2234 	BTFIXUPSET_CALL(free_thread_info, srmmu_free_thread_info, BTFIXUPCALL_NORM);
2235 
2236 	BTFIXUPSET_CALL(pte_to_pgoff, srmmu_pte_to_pgoff, BTFIXUPCALL_NORM);
2237 	BTFIXUPSET_CALL(pgoff_to_pte, srmmu_pgoff_to_pte, BTFIXUPCALL_NORM);
2238 
2239 	get_srmmu_type();
2240 	patch_window_trap_handlers();
2241 
2242 #ifdef CONFIG_SMP
2243 	/* El switcheroo... */
2244 
2245 	BTFIXUPCOPY_CALL(local_flush_cache_all, flush_cache_all);
2246 	BTFIXUPCOPY_CALL(local_flush_cache_mm, flush_cache_mm);
2247 	BTFIXUPCOPY_CALL(local_flush_cache_range, flush_cache_range);
2248 	BTFIXUPCOPY_CALL(local_flush_cache_page, flush_cache_page);
2249 	BTFIXUPCOPY_CALL(local_flush_tlb_all, flush_tlb_all);
2250 	BTFIXUPCOPY_CALL(local_flush_tlb_mm, flush_tlb_mm);
2251 	BTFIXUPCOPY_CALL(local_flush_tlb_range, flush_tlb_range);
2252 	BTFIXUPCOPY_CALL(local_flush_tlb_page, flush_tlb_page);
2253 	BTFIXUPCOPY_CALL(local_flush_page_to_ram, __flush_page_to_ram);
2254 	BTFIXUPCOPY_CALL(local_flush_sig_insns, flush_sig_insns);
2255 	BTFIXUPCOPY_CALL(local_flush_page_for_dma, flush_page_for_dma);
2256 
2257 	BTFIXUPSET_CALL(flush_cache_all, smp_flush_cache_all, BTFIXUPCALL_NORM);
2258 	BTFIXUPSET_CALL(flush_cache_mm, smp_flush_cache_mm, BTFIXUPCALL_NORM);
2259 	BTFIXUPSET_CALL(flush_cache_range, smp_flush_cache_range, BTFIXUPCALL_NORM);
2260 	BTFIXUPSET_CALL(flush_cache_page, smp_flush_cache_page, BTFIXUPCALL_NORM);
2261 	if (sparc_cpu_model != sun4d) {
2262 		BTFIXUPSET_CALL(flush_tlb_all, smp_flush_tlb_all, BTFIXUPCALL_NORM);
2263 		BTFIXUPSET_CALL(flush_tlb_mm, smp_flush_tlb_mm, BTFIXUPCALL_NORM);
2264 		BTFIXUPSET_CALL(flush_tlb_range, smp_flush_tlb_range, BTFIXUPCALL_NORM);
2265 		BTFIXUPSET_CALL(flush_tlb_page, smp_flush_tlb_page, BTFIXUPCALL_NORM);
2266 	}
2267 	BTFIXUPSET_CALL(__flush_page_to_ram, smp_flush_page_to_ram, BTFIXUPCALL_NORM);
2268 	BTFIXUPSET_CALL(flush_sig_insns, smp_flush_sig_insns, BTFIXUPCALL_NORM);
2269 	BTFIXUPSET_CALL(flush_page_for_dma, smp_flush_page_for_dma, BTFIXUPCALL_NORM);
2270 #endif
2271 
2272 	if (sparc_cpu_model == sun4d)
2273 		ld_mmu_iounit();
2274 	else
2275 		ld_mmu_iommu();
2276 #ifdef CONFIG_SMP
2277 	if (sparc_cpu_model == sun4d)
2278 		sun4d_init_smp();
2279 	else
2280 		sun4m_init_smp();
2281 #endif
2282 }
2283