1 /* 2 * srmmu.c: SRMMU specific routines for memory management. 3 * 4 * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu) 5 * Copyright (C) 1995,2002 Pete Zaitcev (zaitcev@yahoo.com) 6 * Copyright (C) 1996 Eddie C. Dost (ecd@skynet.be) 7 * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz) 8 * Copyright (C) 1999,2000 Anton Blanchard (anton@samba.org) 9 */ 10 11 #include <linux/seq_file.h> 12 #include <linux/spinlock.h> 13 #include <linux/bootmem.h> 14 #include <linux/pagemap.h> 15 #include <linux/vmalloc.h> 16 #include <linux/kdebug.h> 17 #include <linux/export.h> 18 #include <linux/kernel.h> 19 #include <linux/init.h> 20 #include <linux/log2.h> 21 #include <linux/gfp.h> 22 #include <linux/fs.h> 23 #include <linux/mm.h> 24 25 #include <asm/mmu_context.h> 26 #include <asm/cacheflush.h> 27 #include <asm/tlbflush.h> 28 #include <asm/io-unit.h> 29 #include <asm/pgalloc.h> 30 #include <asm/pgtable.h> 31 #include <asm/bitext.h> 32 #include <asm/vaddrs.h> 33 #include <asm/cache.h> 34 #include <asm/traps.h> 35 #include <asm/oplib.h> 36 #include <asm/mbus.h> 37 #include <asm/page.h> 38 #include <asm/asi.h> 39 #include <asm/msi.h> 40 #include <asm/smp.h> 41 #include <asm/io.h> 42 43 /* Now the cpu specific definitions. */ 44 #include <asm/turbosparc.h> 45 #include <asm/tsunami.h> 46 #include <asm/viking.h> 47 #include <asm/swift.h> 48 #include <asm/leon.h> 49 #include <asm/mxcc.h> 50 #include <asm/ross.h> 51 52 #include "mm_32.h" 53 54 enum mbus_module srmmu_modtype; 55 static unsigned int hwbug_bitmask; 56 int vac_cache_size; 57 int vac_line_size; 58 59 extern struct resource sparc_iomap; 60 61 extern unsigned long last_valid_pfn; 62 63 static pgd_t *srmmu_swapper_pg_dir; 64 65 const struct sparc32_cachetlb_ops *sparc32_cachetlb_ops; 66 EXPORT_SYMBOL(sparc32_cachetlb_ops); 67 68 #ifdef CONFIG_SMP 69 const struct sparc32_cachetlb_ops *local_ops; 70 71 #define FLUSH_BEGIN(mm) 72 #define FLUSH_END 73 #else 74 #define FLUSH_BEGIN(mm) if ((mm)->context != NO_CONTEXT) { 75 #define FLUSH_END } 76 #endif 77 78 int flush_page_for_dma_global = 1; 79 80 char *srmmu_name; 81 82 ctxd_t *srmmu_ctx_table_phys; 83 static ctxd_t *srmmu_context_table; 84 85 int viking_mxcc_present; 86 static DEFINE_SPINLOCK(srmmu_context_spinlock); 87 88 static int is_hypersparc; 89 90 static int srmmu_cache_pagetables; 91 92 /* these will be initialized in srmmu_nocache_calcsize() */ 93 static unsigned long srmmu_nocache_size; 94 static unsigned long srmmu_nocache_end; 95 96 /* 1 bit <=> 256 bytes of nocache <=> 64 PTEs */ 97 #define SRMMU_NOCACHE_BITMAP_SHIFT (PAGE_SHIFT - 4) 98 99 /* The context table is a nocache user with the biggest alignment needs. */ 100 #define SRMMU_NOCACHE_ALIGN_MAX (sizeof(ctxd_t)*SRMMU_MAX_CONTEXTS) 101 102 void *srmmu_nocache_pool; 103 static struct bit_map srmmu_nocache_map; 104 105 static inline int srmmu_pmd_none(pmd_t pmd) 106 { return !(pmd_val(pmd) & 0xFFFFFFF); } 107 108 /* XXX should we hyper_flush_whole_icache here - Anton */ 109 static inline void srmmu_ctxd_set(ctxd_t *ctxp, pgd_t *pgdp) 110 { 111 pte_t pte; 112 113 pte = __pte((SRMMU_ET_PTD | (__nocache_pa(pgdp) >> 4))); 114 set_pte((pte_t *)ctxp, pte); 115 } 116 117 void pmd_set(pmd_t *pmdp, pte_t *ptep) 118 { 119 unsigned long ptp; /* Physical address, shifted right by 4 */ 120 int i; 121 122 ptp = __nocache_pa(ptep) >> 4; 123 for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) { 124 set_pte((pte_t *)&pmdp->pmdv[i], __pte(SRMMU_ET_PTD | ptp)); 125 ptp += (SRMMU_REAL_PTRS_PER_PTE * sizeof(pte_t) >> 4); 126 } 127 } 128 129 void pmd_populate(struct mm_struct *mm, pmd_t *pmdp, struct page *ptep) 130 { 131 unsigned long ptp; /* Physical address, shifted right by 4 */ 132 int i; 133 134 ptp = page_to_pfn(ptep) << (PAGE_SHIFT-4); /* watch for overflow */ 135 for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) { 136 set_pte((pte_t *)&pmdp->pmdv[i], __pte(SRMMU_ET_PTD | ptp)); 137 ptp += (SRMMU_REAL_PTRS_PER_PTE * sizeof(pte_t) >> 4); 138 } 139 } 140 141 /* Find an entry in the third-level page table.. */ 142 pte_t *pte_offset_kernel(pmd_t *dir, unsigned long address) 143 { 144 void *pte; 145 146 pte = __nocache_va((dir->pmdv[0] & SRMMU_PTD_PMASK) << 4); 147 return (pte_t *) pte + 148 ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)); 149 } 150 151 /* 152 * size: bytes to allocate in the nocache area. 153 * align: bytes, number to align at. 154 * Returns the virtual address of the allocated area. 155 */ 156 static void *__srmmu_get_nocache(int size, int align) 157 { 158 int offset; 159 unsigned long addr; 160 161 if (size < SRMMU_NOCACHE_BITMAP_SHIFT) { 162 printk(KERN_ERR "Size 0x%x too small for nocache request\n", 163 size); 164 size = SRMMU_NOCACHE_BITMAP_SHIFT; 165 } 166 if (size & (SRMMU_NOCACHE_BITMAP_SHIFT - 1)) { 167 printk(KERN_ERR "Size 0x%x unaligned int nocache request\n", 168 size); 169 size += SRMMU_NOCACHE_BITMAP_SHIFT - 1; 170 } 171 BUG_ON(align > SRMMU_NOCACHE_ALIGN_MAX); 172 173 offset = bit_map_string_get(&srmmu_nocache_map, 174 size >> SRMMU_NOCACHE_BITMAP_SHIFT, 175 align >> SRMMU_NOCACHE_BITMAP_SHIFT); 176 if (offset == -1) { 177 printk(KERN_ERR "srmmu: out of nocache %d: %d/%d\n", 178 size, (int) srmmu_nocache_size, 179 srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT); 180 return NULL; 181 } 182 183 addr = SRMMU_NOCACHE_VADDR + (offset << SRMMU_NOCACHE_BITMAP_SHIFT); 184 return (void *)addr; 185 } 186 187 void *srmmu_get_nocache(int size, int align) 188 { 189 void *tmp; 190 191 tmp = __srmmu_get_nocache(size, align); 192 193 if (tmp) 194 memset(tmp, 0, size); 195 196 return tmp; 197 } 198 199 void srmmu_free_nocache(void *addr, int size) 200 { 201 unsigned long vaddr; 202 int offset; 203 204 vaddr = (unsigned long)addr; 205 if (vaddr < SRMMU_NOCACHE_VADDR) { 206 printk("Vaddr %lx is smaller than nocache base 0x%lx\n", 207 vaddr, (unsigned long)SRMMU_NOCACHE_VADDR); 208 BUG(); 209 } 210 if (vaddr + size > srmmu_nocache_end) { 211 printk("Vaddr %lx is bigger than nocache end 0x%lx\n", 212 vaddr, srmmu_nocache_end); 213 BUG(); 214 } 215 if (!is_power_of_2(size)) { 216 printk("Size 0x%x is not a power of 2\n", size); 217 BUG(); 218 } 219 if (size < SRMMU_NOCACHE_BITMAP_SHIFT) { 220 printk("Size 0x%x is too small\n", size); 221 BUG(); 222 } 223 if (vaddr & (size - 1)) { 224 printk("Vaddr %lx is not aligned to size 0x%x\n", vaddr, size); 225 BUG(); 226 } 227 228 offset = (vaddr - SRMMU_NOCACHE_VADDR) >> SRMMU_NOCACHE_BITMAP_SHIFT; 229 size = size >> SRMMU_NOCACHE_BITMAP_SHIFT; 230 231 bit_map_clear(&srmmu_nocache_map, offset, size); 232 } 233 234 static void srmmu_early_allocate_ptable_skeleton(unsigned long start, 235 unsigned long end); 236 237 /* Return how much physical memory we have. */ 238 static unsigned long __init probe_memory(void) 239 { 240 unsigned long total = 0; 241 int i; 242 243 for (i = 0; sp_banks[i].num_bytes; i++) 244 total += sp_banks[i].num_bytes; 245 246 return total; 247 } 248 249 /* 250 * Reserve nocache dynamically proportionally to the amount of 251 * system RAM. -- Tomas Szepe <szepe@pinerecords.com>, June 2002 252 */ 253 static void __init srmmu_nocache_calcsize(void) 254 { 255 unsigned long sysmemavail = probe_memory() / 1024; 256 int srmmu_nocache_npages; 257 258 srmmu_nocache_npages = 259 sysmemavail / SRMMU_NOCACHE_ALCRATIO / 1024 * 256; 260 261 /* P3 XXX The 4x overuse: corroborated by /proc/meminfo. */ 262 // if (srmmu_nocache_npages < 256) srmmu_nocache_npages = 256; 263 if (srmmu_nocache_npages < SRMMU_MIN_NOCACHE_PAGES) 264 srmmu_nocache_npages = SRMMU_MIN_NOCACHE_PAGES; 265 266 /* anything above 1280 blows up */ 267 if (srmmu_nocache_npages > SRMMU_MAX_NOCACHE_PAGES) 268 srmmu_nocache_npages = SRMMU_MAX_NOCACHE_PAGES; 269 270 srmmu_nocache_size = srmmu_nocache_npages * PAGE_SIZE; 271 srmmu_nocache_end = SRMMU_NOCACHE_VADDR + srmmu_nocache_size; 272 } 273 274 static void __init srmmu_nocache_init(void) 275 { 276 void *srmmu_nocache_bitmap; 277 unsigned int bitmap_bits; 278 pgd_t *pgd; 279 pmd_t *pmd; 280 pte_t *pte; 281 unsigned long paddr, vaddr; 282 unsigned long pteval; 283 284 bitmap_bits = srmmu_nocache_size >> SRMMU_NOCACHE_BITMAP_SHIFT; 285 286 srmmu_nocache_pool = __alloc_bootmem(srmmu_nocache_size, 287 SRMMU_NOCACHE_ALIGN_MAX, 0UL); 288 memset(srmmu_nocache_pool, 0, srmmu_nocache_size); 289 290 srmmu_nocache_bitmap = 291 __alloc_bootmem(BITS_TO_LONGS(bitmap_bits) * sizeof(long), 292 SMP_CACHE_BYTES, 0UL); 293 bit_map_init(&srmmu_nocache_map, srmmu_nocache_bitmap, bitmap_bits); 294 295 srmmu_swapper_pg_dir = __srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE); 296 memset(__nocache_fix(srmmu_swapper_pg_dir), 0, SRMMU_PGD_TABLE_SIZE); 297 init_mm.pgd = srmmu_swapper_pg_dir; 298 299 srmmu_early_allocate_ptable_skeleton(SRMMU_NOCACHE_VADDR, srmmu_nocache_end); 300 301 paddr = __pa((unsigned long)srmmu_nocache_pool); 302 vaddr = SRMMU_NOCACHE_VADDR; 303 304 while (vaddr < srmmu_nocache_end) { 305 pgd = pgd_offset_k(vaddr); 306 pmd = pmd_offset(__nocache_fix(pgd), vaddr); 307 pte = pte_offset_kernel(__nocache_fix(pmd), vaddr); 308 309 pteval = ((paddr >> 4) | SRMMU_ET_PTE | SRMMU_PRIV); 310 311 if (srmmu_cache_pagetables) 312 pteval |= SRMMU_CACHE; 313 314 set_pte(__nocache_fix(pte), __pte(pteval)); 315 316 vaddr += PAGE_SIZE; 317 paddr += PAGE_SIZE; 318 } 319 320 flush_cache_all(); 321 flush_tlb_all(); 322 } 323 324 pgd_t *get_pgd_fast(void) 325 { 326 pgd_t *pgd = NULL; 327 328 pgd = __srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE); 329 if (pgd) { 330 pgd_t *init = pgd_offset_k(0); 331 memset(pgd, 0, USER_PTRS_PER_PGD * sizeof(pgd_t)); 332 memcpy(pgd + USER_PTRS_PER_PGD, init + USER_PTRS_PER_PGD, 333 (PTRS_PER_PGD - USER_PTRS_PER_PGD) * sizeof(pgd_t)); 334 } 335 336 return pgd; 337 } 338 339 /* 340 * Hardware needs alignment to 256 only, but we align to whole page size 341 * to reduce fragmentation problems due to the buddy principle. 342 * XXX Provide actual fragmentation statistics in /proc. 343 * 344 * Alignments up to the page size are the same for physical and virtual 345 * addresses of the nocache area. 346 */ 347 pgtable_t pte_alloc_one(struct mm_struct *mm, unsigned long address) 348 { 349 unsigned long pte; 350 struct page *page; 351 352 if ((pte = (unsigned long)pte_alloc_one_kernel(mm, address)) == 0) 353 return NULL; 354 page = pfn_to_page(__nocache_pa(pte) >> PAGE_SHIFT); 355 if (!pgtable_page_ctor(page)) { 356 __free_page(page); 357 return NULL; 358 } 359 return page; 360 } 361 362 void pte_free(struct mm_struct *mm, pgtable_t pte) 363 { 364 unsigned long p; 365 366 pgtable_page_dtor(pte); 367 p = (unsigned long)page_address(pte); /* Cached address (for test) */ 368 if (p == 0) 369 BUG(); 370 p = page_to_pfn(pte) << PAGE_SHIFT; /* Physical address */ 371 372 /* free non cached virtual address*/ 373 srmmu_free_nocache(__nocache_va(p), PTE_SIZE); 374 } 375 376 /* context handling - a dynamically sized pool is used */ 377 #define NO_CONTEXT -1 378 379 struct ctx_list { 380 struct ctx_list *next; 381 struct ctx_list *prev; 382 unsigned int ctx_number; 383 struct mm_struct *ctx_mm; 384 }; 385 386 static struct ctx_list *ctx_list_pool; 387 static struct ctx_list ctx_free; 388 static struct ctx_list ctx_used; 389 390 /* At boot time we determine the number of contexts */ 391 static int num_contexts; 392 393 static inline void remove_from_ctx_list(struct ctx_list *entry) 394 { 395 entry->next->prev = entry->prev; 396 entry->prev->next = entry->next; 397 } 398 399 static inline void add_to_ctx_list(struct ctx_list *head, struct ctx_list *entry) 400 { 401 entry->next = head; 402 (entry->prev = head->prev)->next = entry; 403 head->prev = entry; 404 } 405 #define add_to_free_ctxlist(entry) add_to_ctx_list(&ctx_free, entry) 406 #define add_to_used_ctxlist(entry) add_to_ctx_list(&ctx_used, entry) 407 408 409 static inline void alloc_context(struct mm_struct *old_mm, struct mm_struct *mm) 410 { 411 struct ctx_list *ctxp; 412 413 ctxp = ctx_free.next; 414 if (ctxp != &ctx_free) { 415 remove_from_ctx_list(ctxp); 416 add_to_used_ctxlist(ctxp); 417 mm->context = ctxp->ctx_number; 418 ctxp->ctx_mm = mm; 419 return; 420 } 421 ctxp = ctx_used.next; 422 if (ctxp->ctx_mm == old_mm) 423 ctxp = ctxp->next; 424 if (ctxp == &ctx_used) 425 panic("out of mmu contexts"); 426 flush_cache_mm(ctxp->ctx_mm); 427 flush_tlb_mm(ctxp->ctx_mm); 428 remove_from_ctx_list(ctxp); 429 add_to_used_ctxlist(ctxp); 430 ctxp->ctx_mm->context = NO_CONTEXT; 431 ctxp->ctx_mm = mm; 432 mm->context = ctxp->ctx_number; 433 } 434 435 static inline void free_context(int context) 436 { 437 struct ctx_list *ctx_old; 438 439 ctx_old = ctx_list_pool + context; 440 remove_from_ctx_list(ctx_old); 441 add_to_free_ctxlist(ctx_old); 442 } 443 444 static void __init sparc_context_init(int numctx) 445 { 446 int ctx; 447 unsigned long size; 448 449 size = numctx * sizeof(struct ctx_list); 450 ctx_list_pool = __alloc_bootmem(size, SMP_CACHE_BYTES, 0UL); 451 452 for (ctx = 0; ctx < numctx; ctx++) { 453 struct ctx_list *clist; 454 455 clist = (ctx_list_pool + ctx); 456 clist->ctx_number = ctx; 457 clist->ctx_mm = NULL; 458 } 459 ctx_free.next = ctx_free.prev = &ctx_free; 460 ctx_used.next = ctx_used.prev = &ctx_used; 461 for (ctx = 0; ctx < numctx; ctx++) 462 add_to_free_ctxlist(ctx_list_pool + ctx); 463 } 464 465 void switch_mm(struct mm_struct *old_mm, struct mm_struct *mm, 466 struct task_struct *tsk) 467 { 468 unsigned long flags; 469 470 if (mm->context == NO_CONTEXT) { 471 spin_lock_irqsave(&srmmu_context_spinlock, flags); 472 alloc_context(old_mm, mm); 473 spin_unlock_irqrestore(&srmmu_context_spinlock, flags); 474 srmmu_ctxd_set(&srmmu_context_table[mm->context], mm->pgd); 475 } 476 477 if (sparc_cpu_model == sparc_leon) 478 leon_switch_mm(); 479 480 if (is_hypersparc) 481 hyper_flush_whole_icache(); 482 483 srmmu_set_context(mm->context); 484 } 485 486 /* Low level IO area allocation on the SRMMU. */ 487 static inline void srmmu_mapioaddr(unsigned long physaddr, 488 unsigned long virt_addr, int bus_type) 489 { 490 pgd_t *pgdp; 491 pmd_t *pmdp; 492 pte_t *ptep; 493 unsigned long tmp; 494 495 physaddr &= PAGE_MASK; 496 pgdp = pgd_offset_k(virt_addr); 497 pmdp = pmd_offset(pgdp, virt_addr); 498 ptep = pte_offset_kernel(pmdp, virt_addr); 499 tmp = (physaddr >> 4) | SRMMU_ET_PTE; 500 501 /* I need to test whether this is consistent over all 502 * sun4m's. The bus_type represents the upper 4 bits of 503 * 36-bit physical address on the I/O space lines... 504 */ 505 tmp |= (bus_type << 28); 506 tmp |= SRMMU_PRIV; 507 __flush_page_to_ram(virt_addr); 508 set_pte(ptep, __pte(tmp)); 509 } 510 511 void srmmu_mapiorange(unsigned int bus, unsigned long xpa, 512 unsigned long xva, unsigned int len) 513 { 514 while (len != 0) { 515 len -= PAGE_SIZE; 516 srmmu_mapioaddr(xpa, xva, bus); 517 xva += PAGE_SIZE; 518 xpa += PAGE_SIZE; 519 } 520 flush_tlb_all(); 521 } 522 523 static inline void srmmu_unmapioaddr(unsigned long virt_addr) 524 { 525 pgd_t *pgdp; 526 pmd_t *pmdp; 527 pte_t *ptep; 528 529 pgdp = pgd_offset_k(virt_addr); 530 pmdp = pmd_offset(pgdp, virt_addr); 531 ptep = pte_offset_kernel(pmdp, virt_addr); 532 533 /* No need to flush uncacheable page. */ 534 __pte_clear(ptep); 535 } 536 537 void srmmu_unmapiorange(unsigned long virt_addr, unsigned int len) 538 { 539 while (len != 0) { 540 len -= PAGE_SIZE; 541 srmmu_unmapioaddr(virt_addr); 542 virt_addr += PAGE_SIZE; 543 } 544 flush_tlb_all(); 545 } 546 547 /* tsunami.S */ 548 extern void tsunami_flush_cache_all(void); 549 extern void tsunami_flush_cache_mm(struct mm_struct *mm); 550 extern void tsunami_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end); 551 extern void tsunami_flush_cache_page(struct vm_area_struct *vma, unsigned long page); 552 extern void tsunami_flush_page_to_ram(unsigned long page); 553 extern void tsunami_flush_page_for_dma(unsigned long page); 554 extern void tsunami_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr); 555 extern void tsunami_flush_tlb_all(void); 556 extern void tsunami_flush_tlb_mm(struct mm_struct *mm); 557 extern void tsunami_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end); 558 extern void tsunami_flush_tlb_page(struct vm_area_struct *vma, unsigned long page); 559 extern void tsunami_setup_blockops(void); 560 561 /* swift.S */ 562 extern void swift_flush_cache_all(void); 563 extern void swift_flush_cache_mm(struct mm_struct *mm); 564 extern void swift_flush_cache_range(struct vm_area_struct *vma, 565 unsigned long start, unsigned long end); 566 extern void swift_flush_cache_page(struct vm_area_struct *vma, unsigned long page); 567 extern void swift_flush_page_to_ram(unsigned long page); 568 extern void swift_flush_page_for_dma(unsigned long page); 569 extern void swift_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr); 570 extern void swift_flush_tlb_all(void); 571 extern void swift_flush_tlb_mm(struct mm_struct *mm); 572 extern void swift_flush_tlb_range(struct vm_area_struct *vma, 573 unsigned long start, unsigned long end); 574 extern void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page); 575 576 #if 0 /* P3: deadwood to debug precise flushes on Swift. */ 577 void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page) 578 { 579 int cctx, ctx1; 580 581 page &= PAGE_MASK; 582 if ((ctx1 = vma->vm_mm->context) != -1) { 583 cctx = srmmu_get_context(); 584 /* Is context # ever different from current context? P3 */ 585 if (cctx != ctx1) { 586 printk("flush ctx %02x curr %02x\n", ctx1, cctx); 587 srmmu_set_context(ctx1); 588 swift_flush_page(page); 589 __asm__ __volatile__("sta %%g0, [%0] %1\n\t" : : 590 "r" (page), "i" (ASI_M_FLUSH_PROBE)); 591 srmmu_set_context(cctx); 592 } else { 593 /* Rm. prot. bits from virt. c. */ 594 /* swift_flush_cache_all(); */ 595 /* swift_flush_cache_page(vma, page); */ 596 swift_flush_page(page); 597 598 __asm__ __volatile__("sta %%g0, [%0] %1\n\t" : : 599 "r" (page), "i" (ASI_M_FLUSH_PROBE)); 600 /* same as above: srmmu_flush_tlb_page() */ 601 } 602 } 603 } 604 #endif 605 606 /* 607 * The following are all MBUS based SRMMU modules, and therefore could 608 * be found in a multiprocessor configuration. On the whole, these 609 * chips seems to be much more touchy about DVMA and page tables 610 * with respect to cache coherency. 611 */ 612 613 /* viking.S */ 614 extern void viking_flush_cache_all(void); 615 extern void viking_flush_cache_mm(struct mm_struct *mm); 616 extern void viking_flush_cache_range(struct vm_area_struct *vma, unsigned long start, 617 unsigned long end); 618 extern void viking_flush_cache_page(struct vm_area_struct *vma, unsigned long page); 619 extern void viking_flush_page_to_ram(unsigned long page); 620 extern void viking_flush_page_for_dma(unsigned long page); 621 extern void viking_flush_sig_insns(struct mm_struct *mm, unsigned long addr); 622 extern void viking_flush_page(unsigned long page); 623 extern void viking_mxcc_flush_page(unsigned long page); 624 extern void viking_flush_tlb_all(void); 625 extern void viking_flush_tlb_mm(struct mm_struct *mm); 626 extern void viking_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, 627 unsigned long end); 628 extern void viking_flush_tlb_page(struct vm_area_struct *vma, 629 unsigned long page); 630 extern void sun4dsmp_flush_tlb_all(void); 631 extern void sun4dsmp_flush_tlb_mm(struct mm_struct *mm); 632 extern void sun4dsmp_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, 633 unsigned long end); 634 extern void sun4dsmp_flush_tlb_page(struct vm_area_struct *vma, 635 unsigned long page); 636 637 /* hypersparc.S */ 638 extern void hypersparc_flush_cache_all(void); 639 extern void hypersparc_flush_cache_mm(struct mm_struct *mm); 640 extern void hypersparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end); 641 extern void hypersparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page); 642 extern void hypersparc_flush_page_to_ram(unsigned long page); 643 extern void hypersparc_flush_page_for_dma(unsigned long page); 644 extern void hypersparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr); 645 extern void hypersparc_flush_tlb_all(void); 646 extern void hypersparc_flush_tlb_mm(struct mm_struct *mm); 647 extern void hypersparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end); 648 extern void hypersparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page); 649 extern void hypersparc_setup_blockops(void); 650 651 /* 652 * NOTE: All of this startup code assumes the low 16mb (approx.) of 653 * kernel mappings are done with one single contiguous chunk of 654 * ram. On small ram machines (classics mainly) we only get 655 * around 8mb mapped for us. 656 */ 657 658 static void __init early_pgtable_allocfail(char *type) 659 { 660 prom_printf("inherit_prom_mappings: Cannot alloc kernel %s.\n", type); 661 prom_halt(); 662 } 663 664 static void __init srmmu_early_allocate_ptable_skeleton(unsigned long start, 665 unsigned long end) 666 { 667 pgd_t *pgdp; 668 pmd_t *pmdp; 669 pte_t *ptep; 670 671 while (start < end) { 672 pgdp = pgd_offset_k(start); 673 if (pgd_none(*(pgd_t *)__nocache_fix(pgdp))) { 674 pmdp = __srmmu_get_nocache( 675 SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE); 676 if (pmdp == NULL) 677 early_pgtable_allocfail("pmd"); 678 memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE); 679 pgd_set(__nocache_fix(pgdp), pmdp); 680 } 681 pmdp = pmd_offset(__nocache_fix(pgdp), start); 682 if (srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) { 683 ptep = __srmmu_get_nocache(PTE_SIZE, PTE_SIZE); 684 if (ptep == NULL) 685 early_pgtable_allocfail("pte"); 686 memset(__nocache_fix(ptep), 0, PTE_SIZE); 687 pmd_set(__nocache_fix(pmdp), ptep); 688 } 689 if (start > (0xffffffffUL - PMD_SIZE)) 690 break; 691 start = (start + PMD_SIZE) & PMD_MASK; 692 } 693 } 694 695 static void __init srmmu_allocate_ptable_skeleton(unsigned long start, 696 unsigned long end) 697 { 698 pgd_t *pgdp; 699 pmd_t *pmdp; 700 pte_t *ptep; 701 702 while (start < end) { 703 pgdp = pgd_offset_k(start); 704 if (pgd_none(*pgdp)) { 705 pmdp = __srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE); 706 if (pmdp == NULL) 707 early_pgtable_allocfail("pmd"); 708 memset(pmdp, 0, SRMMU_PMD_TABLE_SIZE); 709 pgd_set(pgdp, pmdp); 710 } 711 pmdp = pmd_offset(pgdp, start); 712 if (srmmu_pmd_none(*pmdp)) { 713 ptep = __srmmu_get_nocache(PTE_SIZE, 714 PTE_SIZE); 715 if (ptep == NULL) 716 early_pgtable_allocfail("pte"); 717 memset(ptep, 0, PTE_SIZE); 718 pmd_set(pmdp, ptep); 719 } 720 if (start > (0xffffffffUL - PMD_SIZE)) 721 break; 722 start = (start + PMD_SIZE) & PMD_MASK; 723 } 724 } 725 726 /* These flush types are not available on all chips... */ 727 static inline unsigned long srmmu_probe(unsigned long vaddr) 728 { 729 unsigned long retval; 730 731 if (sparc_cpu_model != sparc_leon) { 732 733 vaddr &= PAGE_MASK; 734 __asm__ __volatile__("lda [%1] %2, %0\n\t" : 735 "=r" (retval) : 736 "r" (vaddr | 0x400), "i" (ASI_M_FLUSH_PROBE)); 737 } else { 738 retval = leon_swprobe(vaddr, NULL); 739 } 740 return retval; 741 } 742 743 /* 744 * This is much cleaner than poking around physical address space 745 * looking at the prom's page table directly which is what most 746 * other OS's do. Yuck... this is much better. 747 */ 748 static void __init srmmu_inherit_prom_mappings(unsigned long start, 749 unsigned long end) 750 { 751 unsigned long probed; 752 unsigned long addr; 753 pgd_t *pgdp; 754 pmd_t *pmdp; 755 pte_t *ptep; 756 int what; /* 0 = normal-pte, 1 = pmd-level pte, 2 = pgd-level pte */ 757 758 while (start <= end) { 759 if (start == 0) 760 break; /* probably wrap around */ 761 if (start == 0xfef00000) 762 start = KADB_DEBUGGER_BEGVM; 763 probed = srmmu_probe(start); 764 if (!probed) { 765 /* continue probing until we find an entry */ 766 start += PAGE_SIZE; 767 continue; 768 } 769 770 /* A red snapper, see what it really is. */ 771 what = 0; 772 addr = start - PAGE_SIZE; 773 774 if (!(start & ~(SRMMU_REAL_PMD_MASK))) { 775 if (srmmu_probe(addr + SRMMU_REAL_PMD_SIZE) == probed) 776 what = 1; 777 } 778 779 if (!(start & ~(SRMMU_PGDIR_MASK))) { 780 if (srmmu_probe(addr + SRMMU_PGDIR_SIZE) == probed) 781 what = 2; 782 } 783 784 pgdp = pgd_offset_k(start); 785 if (what == 2) { 786 *(pgd_t *)__nocache_fix(pgdp) = __pgd(probed); 787 start += SRMMU_PGDIR_SIZE; 788 continue; 789 } 790 if (pgd_none(*(pgd_t *)__nocache_fix(pgdp))) { 791 pmdp = __srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, 792 SRMMU_PMD_TABLE_SIZE); 793 if (pmdp == NULL) 794 early_pgtable_allocfail("pmd"); 795 memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE); 796 pgd_set(__nocache_fix(pgdp), pmdp); 797 } 798 pmdp = pmd_offset(__nocache_fix(pgdp), start); 799 if (srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) { 800 ptep = __srmmu_get_nocache(PTE_SIZE, PTE_SIZE); 801 if (ptep == NULL) 802 early_pgtable_allocfail("pte"); 803 memset(__nocache_fix(ptep), 0, PTE_SIZE); 804 pmd_set(__nocache_fix(pmdp), ptep); 805 } 806 if (what == 1) { 807 /* We bend the rule where all 16 PTPs in a pmd_t point 808 * inside the same PTE page, and we leak a perfectly 809 * good hardware PTE piece. Alternatives seem worse. 810 */ 811 unsigned int x; /* Index of HW PMD in soft cluster */ 812 unsigned long *val; 813 x = (start >> PMD_SHIFT) & 15; 814 val = &pmdp->pmdv[x]; 815 *(unsigned long *)__nocache_fix(val) = probed; 816 start += SRMMU_REAL_PMD_SIZE; 817 continue; 818 } 819 ptep = pte_offset_kernel(__nocache_fix(pmdp), start); 820 *(pte_t *)__nocache_fix(ptep) = __pte(probed); 821 start += PAGE_SIZE; 822 } 823 } 824 825 #define KERNEL_PTE(page_shifted) ((page_shifted)|SRMMU_CACHE|SRMMU_PRIV|SRMMU_VALID) 826 827 /* Create a third-level SRMMU 16MB page mapping. */ 828 static void __init do_large_mapping(unsigned long vaddr, unsigned long phys_base) 829 { 830 pgd_t *pgdp = pgd_offset_k(vaddr); 831 unsigned long big_pte; 832 833 big_pte = KERNEL_PTE(phys_base >> 4); 834 *(pgd_t *)__nocache_fix(pgdp) = __pgd(big_pte); 835 } 836 837 /* Map sp_bank entry SP_ENTRY, starting at virtual address VBASE. */ 838 static unsigned long __init map_spbank(unsigned long vbase, int sp_entry) 839 { 840 unsigned long pstart = (sp_banks[sp_entry].base_addr & SRMMU_PGDIR_MASK); 841 unsigned long vstart = (vbase & SRMMU_PGDIR_MASK); 842 unsigned long vend = SRMMU_PGDIR_ALIGN(vbase + sp_banks[sp_entry].num_bytes); 843 /* Map "low" memory only */ 844 const unsigned long min_vaddr = PAGE_OFFSET; 845 const unsigned long max_vaddr = PAGE_OFFSET + SRMMU_MAXMEM; 846 847 if (vstart < min_vaddr || vstart >= max_vaddr) 848 return vstart; 849 850 if (vend > max_vaddr || vend < min_vaddr) 851 vend = max_vaddr; 852 853 while (vstart < vend) { 854 do_large_mapping(vstart, pstart); 855 vstart += SRMMU_PGDIR_SIZE; pstart += SRMMU_PGDIR_SIZE; 856 } 857 return vstart; 858 } 859 860 static void __init map_kernel(void) 861 { 862 int i; 863 864 if (phys_base > 0) { 865 do_large_mapping(PAGE_OFFSET, phys_base); 866 } 867 868 for (i = 0; sp_banks[i].num_bytes != 0; i++) { 869 map_spbank((unsigned long)__va(sp_banks[i].base_addr), i); 870 } 871 } 872 873 void (*poke_srmmu)(void) = NULL; 874 875 void __init srmmu_paging_init(void) 876 { 877 int i; 878 phandle cpunode; 879 char node_str[128]; 880 pgd_t *pgd; 881 pmd_t *pmd; 882 pte_t *pte; 883 unsigned long pages_avail; 884 885 init_mm.context = (unsigned long) NO_CONTEXT; 886 sparc_iomap.start = SUN4M_IOBASE_VADDR; /* 16MB of IOSPACE on all sun4m's. */ 887 888 if (sparc_cpu_model == sun4d) 889 num_contexts = 65536; /* We know it is Viking */ 890 else { 891 /* Find the number of contexts on the srmmu. */ 892 cpunode = prom_getchild(prom_root_node); 893 num_contexts = 0; 894 while (cpunode != 0) { 895 prom_getstring(cpunode, "device_type", node_str, sizeof(node_str)); 896 if (!strcmp(node_str, "cpu")) { 897 num_contexts = prom_getintdefault(cpunode, "mmu-nctx", 0x8); 898 break; 899 } 900 cpunode = prom_getsibling(cpunode); 901 } 902 } 903 904 if (!num_contexts) { 905 prom_printf("Something wrong, can't find cpu node in paging_init.\n"); 906 prom_halt(); 907 } 908 909 pages_avail = 0; 910 last_valid_pfn = bootmem_init(&pages_avail); 911 912 srmmu_nocache_calcsize(); 913 srmmu_nocache_init(); 914 srmmu_inherit_prom_mappings(0xfe400000, (LINUX_OPPROM_ENDVM - PAGE_SIZE)); 915 map_kernel(); 916 917 /* ctx table has to be physically aligned to its size */ 918 srmmu_context_table = __srmmu_get_nocache(num_contexts * sizeof(ctxd_t), num_contexts * sizeof(ctxd_t)); 919 srmmu_ctx_table_phys = (ctxd_t *)__nocache_pa(srmmu_context_table); 920 921 for (i = 0; i < num_contexts; i++) 922 srmmu_ctxd_set((ctxd_t *)__nocache_fix(&srmmu_context_table[i]), srmmu_swapper_pg_dir); 923 924 flush_cache_all(); 925 srmmu_set_ctable_ptr((unsigned long)srmmu_ctx_table_phys); 926 #ifdef CONFIG_SMP 927 /* Stop from hanging here... */ 928 local_ops->tlb_all(); 929 #else 930 flush_tlb_all(); 931 #endif 932 poke_srmmu(); 933 934 srmmu_allocate_ptable_skeleton(sparc_iomap.start, IOBASE_END); 935 srmmu_allocate_ptable_skeleton(DVMA_VADDR, DVMA_END); 936 937 srmmu_allocate_ptable_skeleton( 938 __fix_to_virt(__end_of_fixed_addresses - 1), FIXADDR_TOP); 939 srmmu_allocate_ptable_skeleton(PKMAP_BASE, PKMAP_END); 940 941 pgd = pgd_offset_k(PKMAP_BASE); 942 pmd = pmd_offset(pgd, PKMAP_BASE); 943 pte = pte_offset_kernel(pmd, PKMAP_BASE); 944 pkmap_page_table = pte; 945 946 flush_cache_all(); 947 flush_tlb_all(); 948 949 sparc_context_init(num_contexts); 950 951 kmap_init(); 952 953 { 954 unsigned long zones_size[MAX_NR_ZONES]; 955 unsigned long zholes_size[MAX_NR_ZONES]; 956 unsigned long npages; 957 int znum; 958 959 for (znum = 0; znum < MAX_NR_ZONES; znum++) 960 zones_size[znum] = zholes_size[znum] = 0; 961 962 npages = max_low_pfn - pfn_base; 963 964 zones_size[ZONE_DMA] = npages; 965 zholes_size[ZONE_DMA] = npages - pages_avail; 966 967 npages = highend_pfn - max_low_pfn; 968 zones_size[ZONE_HIGHMEM] = npages; 969 zholes_size[ZONE_HIGHMEM] = npages - calc_highpages(); 970 971 free_area_init_node(0, zones_size, pfn_base, zholes_size); 972 } 973 } 974 975 void mmu_info(struct seq_file *m) 976 { 977 seq_printf(m, 978 "MMU type\t: %s\n" 979 "contexts\t: %d\n" 980 "nocache total\t: %ld\n" 981 "nocache used\t: %d\n", 982 srmmu_name, 983 num_contexts, 984 srmmu_nocache_size, 985 srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT); 986 } 987 988 int init_new_context(struct task_struct *tsk, struct mm_struct *mm) 989 { 990 mm->context = NO_CONTEXT; 991 return 0; 992 } 993 994 void destroy_context(struct mm_struct *mm) 995 { 996 unsigned long flags; 997 998 if (mm->context != NO_CONTEXT) { 999 flush_cache_mm(mm); 1000 srmmu_ctxd_set(&srmmu_context_table[mm->context], srmmu_swapper_pg_dir); 1001 flush_tlb_mm(mm); 1002 spin_lock_irqsave(&srmmu_context_spinlock, flags); 1003 free_context(mm->context); 1004 spin_unlock_irqrestore(&srmmu_context_spinlock, flags); 1005 mm->context = NO_CONTEXT; 1006 } 1007 } 1008 1009 /* Init various srmmu chip types. */ 1010 static void __init srmmu_is_bad(void) 1011 { 1012 prom_printf("Could not determine SRMMU chip type.\n"); 1013 prom_halt(); 1014 } 1015 1016 static void __init init_vac_layout(void) 1017 { 1018 phandle nd; 1019 int cache_lines; 1020 char node_str[128]; 1021 #ifdef CONFIG_SMP 1022 int cpu = 0; 1023 unsigned long max_size = 0; 1024 unsigned long min_line_size = 0x10000000; 1025 #endif 1026 1027 nd = prom_getchild(prom_root_node); 1028 while ((nd = prom_getsibling(nd)) != 0) { 1029 prom_getstring(nd, "device_type", node_str, sizeof(node_str)); 1030 if (!strcmp(node_str, "cpu")) { 1031 vac_line_size = prom_getint(nd, "cache-line-size"); 1032 if (vac_line_size == -1) { 1033 prom_printf("can't determine cache-line-size, halting.\n"); 1034 prom_halt(); 1035 } 1036 cache_lines = prom_getint(nd, "cache-nlines"); 1037 if (cache_lines == -1) { 1038 prom_printf("can't determine cache-nlines, halting.\n"); 1039 prom_halt(); 1040 } 1041 1042 vac_cache_size = cache_lines * vac_line_size; 1043 #ifdef CONFIG_SMP 1044 if (vac_cache_size > max_size) 1045 max_size = vac_cache_size; 1046 if (vac_line_size < min_line_size) 1047 min_line_size = vac_line_size; 1048 //FIXME: cpus not contiguous!! 1049 cpu++; 1050 if (cpu >= nr_cpu_ids || !cpu_online(cpu)) 1051 break; 1052 #else 1053 break; 1054 #endif 1055 } 1056 } 1057 if (nd == 0) { 1058 prom_printf("No CPU nodes found, halting.\n"); 1059 prom_halt(); 1060 } 1061 #ifdef CONFIG_SMP 1062 vac_cache_size = max_size; 1063 vac_line_size = min_line_size; 1064 #endif 1065 printk("SRMMU: Using VAC size of %d bytes, line size %d bytes.\n", 1066 (int)vac_cache_size, (int)vac_line_size); 1067 } 1068 1069 static void poke_hypersparc(void) 1070 { 1071 volatile unsigned long clear; 1072 unsigned long mreg = srmmu_get_mmureg(); 1073 1074 hyper_flush_unconditional_combined(); 1075 1076 mreg &= ~(HYPERSPARC_CWENABLE); 1077 mreg |= (HYPERSPARC_CENABLE | HYPERSPARC_WBENABLE); 1078 mreg |= (HYPERSPARC_CMODE); 1079 1080 srmmu_set_mmureg(mreg); 1081 1082 #if 0 /* XXX I think this is bad news... -DaveM */ 1083 hyper_clear_all_tags(); 1084 #endif 1085 1086 put_ross_icr(HYPERSPARC_ICCR_FTD | HYPERSPARC_ICCR_ICE); 1087 hyper_flush_whole_icache(); 1088 clear = srmmu_get_faddr(); 1089 clear = srmmu_get_fstatus(); 1090 } 1091 1092 static const struct sparc32_cachetlb_ops hypersparc_ops = { 1093 .cache_all = hypersparc_flush_cache_all, 1094 .cache_mm = hypersparc_flush_cache_mm, 1095 .cache_page = hypersparc_flush_cache_page, 1096 .cache_range = hypersparc_flush_cache_range, 1097 .tlb_all = hypersparc_flush_tlb_all, 1098 .tlb_mm = hypersparc_flush_tlb_mm, 1099 .tlb_page = hypersparc_flush_tlb_page, 1100 .tlb_range = hypersparc_flush_tlb_range, 1101 .page_to_ram = hypersparc_flush_page_to_ram, 1102 .sig_insns = hypersparc_flush_sig_insns, 1103 .page_for_dma = hypersparc_flush_page_for_dma, 1104 }; 1105 1106 static void __init init_hypersparc(void) 1107 { 1108 srmmu_name = "ROSS HyperSparc"; 1109 srmmu_modtype = HyperSparc; 1110 1111 init_vac_layout(); 1112 1113 is_hypersparc = 1; 1114 sparc32_cachetlb_ops = &hypersparc_ops; 1115 1116 poke_srmmu = poke_hypersparc; 1117 1118 hypersparc_setup_blockops(); 1119 } 1120 1121 static void poke_swift(void) 1122 { 1123 unsigned long mreg; 1124 1125 /* Clear any crap from the cache or else... */ 1126 swift_flush_cache_all(); 1127 1128 /* Enable I & D caches */ 1129 mreg = srmmu_get_mmureg(); 1130 mreg |= (SWIFT_IE | SWIFT_DE); 1131 /* 1132 * The Swift branch folding logic is completely broken. At 1133 * trap time, if things are just right, if can mistakenly 1134 * think that a trap is coming from kernel mode when in fact 1135 * it is coming from user mode (it mis-executes the branch in 1136 * the trap code). So you see things like crashme completely 1137 * hosing your machine which is completely unacceptable. Turn 1138 * this shit off... nice job Fujitsu. 1139 */ 1140 mreg &= ~(SWIFT_BF); 1141 srmmu_set_mmureg(mreg); 1142 } 1143 1144 static const struct sparc32_cachetlb_ops swift_ops = { 1145 .cache_all = swift_flush_cache_all, 1146 .cache_mm = swift_flush_cache_mm, 1147 .cache_page = swift_flush_cache_page, 1148 .cache_range = swift_flush_cache_range, 1149 .tlb_all = swift_flush_tlb_all, 1150 .tlb_mm = swift_flush_tlb_mm, 1151 .tlb_page = swift_flush_tlb_page, 1152 .tlb_range = swift_flush_tlb_range, 1153 .page_to_ram = swift_flush_page_to_ram, 1154 .sig_insns = swift_flush_sig_insns, 1155 .page_for_dma = swift_flush_page_for_dma, 1156 }; 1157 1158 #define SWIFT_MASKID_ADDR 0x10003018 1159 static void __init init_swift(void) 1160 { 1161 unsigned long swift_rev; 1162 1163 __asm__ __volatile__("lda [%1] %2, %0\n\t" 1164 "srl %0, 0x18, %0\n\t" : 1165 "=r" (swift_rev) : 1166 "r" (SWIFT_MASKID_ADDR), "i" (ASI_M_BYPASS)); 1167 srmmu_name = "Fujitsu Swift"; 1168 switch (swift_rev) { 1169 case 0x11: 1170 case 0x20: 1171 case 0x23: 1172 case 0x30: 1173 srmmu_modtype = Swift_lots_o_bugs; 1174 hwbug_bitmask |= (HWBUG_KERN_ACCBROKEN | HWBUG_KERN_CBITBROKEN); 1175 /* 1176 * Gee george, I wonder why Sun is so hush hush about 1177 * this hardware bug... really braindamage stuff going 1178 * on here. However I think we can find a way to avoid 1179 * all of the workaround overhead under Linux. Basically, 1180 * any page fault can cause kernel pages to become user 1181 * accessible (the mmu gets confused and clears some of 1182 * the ACC bits in kernel ptes). Aha, sounds pretty 1183 * horrible eh? But wait, after extensive testing it appears 1184 * that if you use pgd_t level large kernel pte's (like the 1185 * 4MB pages on the Pentium) the bug does not get tripped 1186 * at all. This avoids almost all of the major overhead. 1187 * Welcome to a world where your vendor tells you to, 1188 * "apply this kernel patch" instead of "sorry for the 1189 * broken hardware, send it back and we'll give you 1190 * properly functioning parts" 1191 */ 1192 break; 1193 case 0x25: 1194 case 0x31: 1195 srmmu_modtype = Swift_bad_c; 1196 hwbug_bitmask |= HWBUG_KERN_CBITBROKEN; 1197 /* 1198 * You see Sun allude to this hardware bug but never 1199 * admit things directly, they'll say things like, 1200 * "the Swift chip cache problems" or similar. 1201 */ 1202 break; 1203 default: 1204 srmmu_modtype = Swift_ok; 1205 break; 1206 } 1207 1208 sparc32_cachetlb_ops = &swift_ops; 1209 flush_page_for_dma_global = 0; 1210 1211 /* 1212 * Are you now convinced that the Swift is one of the 1213 * biggest VLSI abortions of all time? Bravo Fujitsu! 1214 * Fujitsu, the !#?!%$'d up processor people. I bet if 1215 * you examined the microcode of the Swift you'd find 1216 * XXX's all over the place. 1217 */ 1218 poke_srmmu = poke_swift; 1219 } 1220 1221 static void turbosparc_flush_cache_all(void) 1222 { 1223 flush_user_windows(); 1224 turbosparc_idflash_clear(); 1225 } 1226 1227 static void turbosparc_flush_cache_mm(struct mm_struct *mm) 1228 { 1229 FLUSH_BEGIN(mm) 1230 flush_user_windows(); 1231 turbosparc_idflash_clear(); 1232 FLUSH_END 1233 } 1234 1235 static void turbosparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end) 1236 { 1237 FLUSH_BEGIN(vma->vm_mm) 1238 flush_user_windows(); 1239 turbosparc_idflash_clear(); 1240 FLUSH_END 1241 } 1242 1243 static void turbosparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page) 1244 { 1245 FLUSH_BEGIN(vma->vm_mm) 1246 flush_user_windows(); 1247 if (vma->vm_flags & VM_EXEC) 1248 turbosparc_flush_icache(); 1249 turbosparc_flush_dcache(); 1250 FLUSH_END 1251 } 1252 1253 /* TurboSparc is copy-back, if we turn it on, but this does not work. */ 1254 static void turbosparc_flush_page_to_ram(unsigned long page) 1255 { 1256 #ifdef TURBOSPARC_WRITEBACK 1257 volatile unsigned long clear; 1258 1259 if (srmmu_probe(page)) 1260 turbosparc_flush_page_cache(page); 1261 clear = srmmu_get_fstatus(); 1262 #endif 1263 } 1264 1265 static void turbosparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr) 1266 { 1267 } 1268 1269 static void turbosparc_flush_page_for_dma(unsigned long page) 1270 { 1271 turbosparc_flush_dcache(); 1272 } 1273 1274 static void turbosparc_flush_tlb_all(void) 1275 { 1276 srmmu_flush_whole_tlb(); 1277 } 1278 1279 static void turbosparc_flush_tlb_mm(struct mm_struct *mm) 1280 { 1281 FLUSH_BEGIN(mm) 1282 srmmu_flush_whole_tlb(); 1283 FLUSH_END 1284 } 1285 1286 static void turbosparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end) 1287 { 1288 FLUSH_BEGIN(vma->vm_mm) 1289 srmmu_flush_whole_tlb(); 1290 FLUSH_END 1291 } 1292 1293 static void turbosparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page) 1294 { 1295 FLUSH_BEGIN(vma->vm_mm) 1296 srmmu_flush_whole_tlb(); 1297 FLUSH_END 1298 } 1299 1300 1301 static void poke_turbosparc(void) 1302 { 1303 unsigned long mreg = srmmu_get_mmureg(); 1304 unsigned long ccreg; 1305 1306 /* Clear any crap from the cache or else... */ 1307 turbosparc_flush_cache_all(); 1308 /* Temporarily disable I & D caches */ 1309 mreg &= ~(TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE); 1310 mreg &= ~(TURBOSPARC_PCENABLE); /* Don't check parity */ 1311 srmmu_set_mmureg(mreg); 1312 1313 ccreg = turbosparc_get_ccreg(); 1314 1315 #ifdef TURBOSPARC_WRITEBACK 1316 ccreg |= (TURBOSPARC_SNENABLE); /* Do DVMA snooping in Dcache */ 1317 ccreg &= ~(TURBOSPARC_uS2 | TURBOSPARC_WTENABLE); 1318 /* Write-back D-cache, emulate VLSI 1319 * abortion number three, not number one */ 1320 #else 1321 /* For now let's play safe, optimize later */ 1322 ccreg |= (TURBOSPARC_SNENABLE | TURBOSPARC_WTENABLE); 1323 /* Do DVMA snooping in Dcache, Write-thru D-cache */ 1324 ccreg &= ~(TURBOSPARC_uS2); 1325 /* Emulate VLSI abortion number three, not number one */ 1326 #endif 1327 1328 switch (ccreg & 7) { 1329 case 0: /* No SE cache */ 1330 case 7: /* Test mode */ 1331 break; 1332 default: 1333 ccreg |= (TURBOSPARC_SCENABLE); 1334 } 1335 turbosparc_set_ccreg(ccreg); 1336 1337 mreg |= (TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE); /* I & D caches on */ 1338 mreg |= (TURBOSPARC_ICSNOOP); /* Icache snooping on */ 1339 srmmu_set_mmureg(mreg); 1340 } 1341 1342 static const struct sparc32_cachetlb_ops turbosparc_ops = { 1343 .cache_all = turbosparc_flush_cache_all, 1344 .cache_mm = turbosparc_flush_cache_mm, 1345 .cache_page = turbosparc_flush_cache_page, 1346 .cache_range = turbosparc_flush_cache_range, 1347 .tlb_all = turbosparc_flush_tlb_all, 1348 .tlb_mm = turbosparc_flush_tlb_mm, 1349 .tlb_page = turbosparc_flush_tlb_page, 1350 .tlb_range = turbosparc_flush_tlb_range, 1351 .page_to_ram = turbosparc_flush_page_to_ram, 1352 .sig_insns = turbosparc_flush_sig_insns, 1353 .page_for_dma = turbosparc_flush_page_for_dma, 1354 }; 1355 1356 static void __init init_turbosparc(void) 1357 { 1358 srmmu_name = "Fujitsu TurboSparc"; 1359 srmmu_modtype = TurboSparc; 1360 sparc32_cachetlb_ops = &turbosparc_ops; 1361 poke_srmmu = poke_turbosparc; 1362 } 1363 1364 static void poke_tsunami(void) 1365 { 1366 unsigned long mreg = srmmu_get_mmureg(); 1367 1368 tsunami_flush_icache(); 1369 tsunami_flush_dcache(); 1370 mreg &= ~TSUNAMI_ITD; 1371 mreg |= (TSUNAMI_IENAB | TSUNAMI_DENAB); 1372 srmmu_set_mmureg(mreg); 1373 } 1374 1375 static const struct sparc32_cachetlb_ops tsunami_ops = { 1376 .cache_all = tsunami_flush_cache_all, 1377 .cache_mm = tsunami_flush_cache_mm, 1378 .cache_page = tsunami_flush_cache_page, 1379 .cache_range = tsunami_flush_cache_range, 1380 .tlb_all = tsunami_flush_tlb_all, 1381 .tlb_mm = tsunami_flush_tlb_mm, 1382 .tlb_page = tsunami_flush_tlb_page, 1383 .tlb_range = tsunami_flush_tlb_range, 1384 .page_to_ram = tsunami_flush_page_to_ram, 1385 .sig_insns = tsunami_flush_sig_insns, 1386 .page_for_dma = tsunami_flush_page_for_dma, 1387 }; 1388 1389 static void __init init_tsunami(void) 1390 { 1391 /* 1392 * Tsunami's pretty sane, Sun and TI actually got it 1393 * somewhat right this time. Fujitsu should have 1394 * taken some lessons from them. 1395 */ 1396 1397 srmmu_name = "TI Tsunami"; 1398 srmmu_modtype = Tsunami; 1399 sparc32_cachetlb_ops = &tsunami_ops; 1400 poke_srmmu = poke_tsunami; 1401 1402 tsunami_setup_blockops(); 1403 } 1404 1405 static void poke_viking(void) 1406 { 1407 unsigned long mreg = srmmu_get_mmureg(); 1408 static int smp_catch; 1409 1410 if (viking_mxcc_present) { 1411 unsigned long mxcc_control = mxcc_get_creg(); 1412 1413 mxcc_control |= (MXCC_CTL_ECE | MXCC_CTL_PRE | MXCC_CTL_MCE); 1414 mxcc_control &= ~(MXCC_CTL_RRC); 1415 mxcc_set_creg(mxcc_control); 1416 1417 /* 1418 * We don't need memory parity checks. 1419 * XXX This is a mess, have to dig out later. ecd. 1420 viking_mxcc_turn_off_parity(&mreg, &mxcc_control); 1421 */ 1422 1423 /* We do cache ptables on MXCC. */ 1424 mreg |= VIKING_TCENABLE; 1425 } else { 1426 unsigned long bpreg; 1427 1428 mreg &= ~(VIKING_TCENABLE); 1429 if (smp_catch++) { 1430 /* Must disable mixed-cmd mode here for other cpu's. */ 1431 bpreg = viking_get_bpreg(); 1432 bpreg &= ~(VIKING_ACTION_MIX); 1433 viking_set_bpreg(bpreg); 1434 1435 /* Just in case PROM does something funny. */ 1436 msi_set_sync(); 1437 } 1438 } 1439 1440 mreg |= VIKING_SPENABLE; 1441 mreg |= (VIKING_ICENABLE | VIKING_DCENABLE); 1442 mreg |= VIKING_SBENABLE; 1443 mreg &= ~(VIKING_ACENABLE); 1444 srmmu_set_mmureg(mreg); 1445 } 1446 1447 static struct sparc32_cachetlb_ops viking_ops __ro_after_init = { 1448 .cache_all = viking_flush_cache_all, 1449 .cache_mm = viking_flush_cache_mm, 1450 .cache_page = viking_flush_cache_page, 1451 .cache_range = viking_flush_cache_range, 1452 .tlb_all = viking_flush_tlb_all, 1453 .tlb_mm = viking_flush_tlb_mm, 1454 .tlb_page = viking_flush_tlb_page, 1455 .tlb_range = viking_flush_tlb_range, 1456 .page_to_ram = viking_flush_page_to_ram, 1457 .sig_insns = viking_flush_sig_insns, 1458 .page_for_dma = viking_flush_page_for_dma, 1459 }; 1460 1461 #ifdef CONFIG_SMP 1462 /* On sun4d the cpu broadcasts local TLB flushes, so we can just 1463 * perform the local TLB flush and all the other cpus will see it. 1464 * But, unfortunately, there is a bug in the sun4d XBUS backplane 1465 * that requires that we add some synchronization to these flushes. 1466 * 1467 * The bug is that the fifo which keeps track of all the pending TLB 1468 * broadcasts in the system is an entry or two too small, so if we 1469 * have too many going at once we'll overflow that fifo and lose a TLB 1470 * flush resulting in corruption. 1471 * 1472 * Our workaround is to take a global spinlock around the TLB flushes, 1473 * which guarentees we won't ever have too many pending. It's a big 1474 * hammer, but a semaphore like system to make sure we only have N TLB 1475 * flushes going at once will require SMP locking anyways so there's 1476 * no real value in trying any harder than this. 1477 */ 1478 static struct sparc32_cachetlb_ops viking_sun4d_smp_ops __ro_after_init = { 1479 .cache_all = viking_flush_cache_all, 1480 .cache_mm = viking_flush_cache_mm, 1481 .cache_page = viking_flush_cache_page, 1482 .cache_range = viking_flush_cache_range, 1483 .tlb_all = sun4dsmp_flush_tlb_all, 1484 .tlb_mm = sun4dsmp_flush_tlb_mm, 1485 .tlb_page = sun4dsmp_flush_tlb_page, 1486 .tlb_range = sun4dsmp_flush_tlb_range, 1487 .page_to_ram = viking_flush_page_to_ram, 1488 .sig_insns = viking_flush_sig_insns, 1489 .page_for_dma = viking_flush_page_for_dma, 1490 }; 1491 #endif 1492 1493 static void __init init_viking(void) 1494 { 1495 unsigned long mreg = srmmu_get_mmureg(); 1496 1497 /* Ahhh, the viking. SRMMU VLSI abortion number two... */ 1498 if (mreg & VIKING_MMODE) { 1499 srmmu_name = "TI Viking"; 1500 viking_mxcc_present = 0; 1501 msi_set_sync(); 1502 1503 /* 1504 * We need this to make sure old viking takes no hits 1505 * on it's cache for dma snoops to workaround the 1506 * "load from non-cacheable memory" interrupt bug. 1507 * This is only necessary because of the new way in 1508 * which we use the IOMMU. 1509 */ 1510 viking_ops.page_for_dma = viking_flush_page; 1511 #ifdef CONFIG_SMP 1512 viking_sun4d_smp_ops.page_for_dma = viking_flush_page; 1513 #endif 1514 flush_page_for_dma_global = 0; 1515 } else { 1516 srmmu_name = "TI Viking/MXCC"; 1517 viking_mxcc_present = 1; 1518 srmmu_cache_pagetables = 1; 1519 } 1520 1521 sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *) 1522 &viking_ops; 1523 #ifdef CONFIG_SMP 1524 if (sparc_cpu_model == sun4d) 1525 sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *) 1526 &viking_sun4d_smp_ops; 1527 #endif 1528 1529 poke_srmmu = poke_viking; 1530 } 1531 1532 /* Probe for the srmmu chip version. */ 1533 static void __init get_srmmu_type(void) 1534 { 1535 unsigned long mreg, psr; 1536 unsigned long mod_typ, mod_rev, psr_typ, psr_vers; 1537 1538 srmmu_modtype = SRMMU_INVAL_MOD; 1539 hwbug_bitmask = 0; 1540 1541 mreg = srmmu_get_mmureg(); psr = get_psr(); 1542 mod_typ = (mreg & 0xf0000000) >> 28; 1543 mod_rev = (mreg & 0x0f000000) >> 24; 1544 psr_typ = (psr >> 28) & 0xf; 1545 psr_vers = (psr >> 24) & 0xf; 1546 1547 /* First, check for sparc-leon. */ 1548 if (sparc_cpu_model == sparc_leon) { 1549 init_leon(); 1550 return; 1551 } 1552 1553 /* Second, check for HyperSparc or Cypress. */ 1554 if (mod_typ == 1) { 1555 switch (mod_rev) { 1556 case 7: 1557 /* UP or MP Hypersparc */ 1558 init_hypersparc(); 1559 break; 1560 case 0: 1561 case 2: 1562 case 10: 1563 case 11: 1564 case 12: 1565 case 13: 1566 case 14: 1567 case 15: 1568 default: 1569 prom_printf("Sparc-Linux Cypress support does not longer exit.\n"); 1570 prom_halt(); 1571 break; 1572 } 1573 return; 1574 } 1575 1576 /* Now Fujitsu TurboSparc. It might happen that it is 1577 * in Swift emulation mode, so we will check later... 1578 */ 1579 if (psr_typ == 0 && psr_vers == 5) { 1580 init_turbosparc(); 1581 return; 1582 } 1583 1584 /* Next check for Fujitsu Swift. */ 1585 if (psr_typ == 0 && psr_vers == 4) { 1586 phandle cpunode; 1587 char node_str[128]; 1588 1589 /* Look if it is not a TurboSparc emulating Swift... */ 1590 cpunode = prom_getchild(prom_root_node); 1591 while ((cpunode = prom_getsibling(cpunode)) != 0) { 1592 prom_getstring(cpunode, "device_type", node_str, sizeof(node_str)); 1593 if (!strcmp(node_str, "cpu")) { 1594 if (!prom_getintdefault(cpunode, "psr-implementation", 1) && 1595 prom_getintdefault(cpunode, "psr-version", 1) == 5) { 1596 init_turbosparc(); 1597 return; 1598 } 1599 break; 1600 } 1601 } 1602 1603 init_swift(); 1604 return; 1605 } 1606 1607 /* Now the Viking family of srmmu. */ 1608 if (psr_typ == 4 && 1609 ((psr_vers == 0) || 1610 ((psr_vers == 1) && (mod_typ == 0) && (mod_rev == 0)))) { 1611 init_viking(); 1612 return; 1613 } 1614 1615 /* Finally the Tsunami. */ 1616 if (psr_typ == 4 && psr_vers == 1 && (mod_typ || mod_rev)) { 1617 init_tsunami(); 1618 return; 1619 } 1620 1621 /* Oh well */ 1622 srmmu_is_bad(); 1623 } 1624 1625 #ifdef CONFIG_SMP 1626 /* Local cross-calls. */ 1627 static void smp_flush_page_for_dma(unsigned long page) 1628 { 1629 xc1((smpfunc_t) local_ops->page_for_dma, page); 1630 local_ops->page_for_dma(page); 1631 } 1632 1633 static void smp_flush_cache_all(void) 1634 { 1635 xc0((smpfunc_t) local_ops->cache_all); 1636 local_ops->cache_all(); 1637 } 1638 1639 static void smp_flush_tlb_all(void) 1640 { 1641 xc0((smpfunc_t) local_ops->tlb_all); 1642 local_ops->tlb_all(); 1643 } 1644 1645 static void smp_flush_cache_mm(struct mm_struct *mm) 1646 { 1647 if (mm->context != NO_CONTEXT) { 1648 cpumask_t cpu_mask; 1649 cpumask_copy(&cpu_mask, mm_cpumask(mm)); 1650 cpumask_clear_cpu(smp_processor_id(), &cpu_mask); 1651 if (!cpumask_empty(&cpu_mask)) 1652 xc1((smpfunc_t) local_ops->cache_mm, (unsigned long) mm); 1653 local_ops->cache_mm(mm); 1654 } 1655 } 1656 1657 static void smp_flush_tlb_mm(struct mm_struct *mm) 1658 { 1659 if (mm->context != NO_CONTEXT) { 1660 cpumask_t cpu_mask; 1661 cpumask_copy(&cpu_mask, mm_cpumask(mm)); 1662 cpumask_clear_cpu(smp_processor_id(), &cpu_mask); 1663 if (!cpumask_empty(&cpu_mask)) { 1664 xc1((smpfunc_t) local_ops->tlb_mm, (unsigned long) mm); 1665 if (atomic_read(&mm->mm_users) == 1 && current->active_mm == mm) 1666 cpumask_copy(mm_cpumask(mm), 1667 cpumask_of(smp_processor_id())); 1668 } 1669 local_ops->tlb_mm(mm); 1670 } 1671 } 1672 1673 static void smp_flush_cache_range(struct vm_area_struct *vma, 1674 unsigned long start, 1675 unsigned long end) 1676 { 1677 struct mm_struct *mm = vma->vm_mm; 1678 1679 if (mm->context != NO_CONTEXT) { 1680 cpumask_t cpu_mask; 1681 cpumask_copy(&cpu_mask, mm_cpumask(mm)); 1682 cpumask_clear_cpu(smp_processor_id(), &cpu_mask); 1683 if (!cpumask_empty(&cpu_mask)) 1684 xc3((smpfunc_t) local_ops->cache_range, 1685 (unsigned long) vma, start, end); 1686 local_ops->cache_range(vma, start, end); 1687 } 1688 } 1689 1690 static void smp_flush_tlb_range(struct vm_area_struct *vma, 1691 unsigned long start, 1692 unsigned long end) 1693 { 1694 struct mm_struct *mm = vma->vm_mm; 1695 1696 if (mm->context != NO_CONTEXT) { 1697 cpumask_t cpu_mask; 1698 cpumask_copy(&cpu_mask, mm_cpumask(mm)); 1699 cpumask_clear_cpu(smp_processor_id(), &cpu_mask); 1700 if (!cpumask_empty(&cpu_mask)) 1701 xc3((smpfunc_t) local_ops->tlb_range, 1702 (unsigned long) vma, start, end); 1703 local_ops->tlb_range(vma, start, end); 1704 } 1705 } 1706 1707 static void smp_flush_cache_page(struct vm_area_struct *vma, unsigned long page) 1708 { 1709 struct mm_struct *mm = vma->vm_mm; 1710 1711 if (mm->context != NO_CONTEXT) { 1712 cpumask_t cpu_mask; 1713 cpumask_copy(&cpu_mask, mm_cpumask(mm)); 1714 cpumask_clear_cpu(smp_processor_id(), &cpu_mask); 1715 if (!cpumask_empty(&cpu_mask)) 1716 xc2((smpfunc_t) local_ops->cache_page, 1717 (unsigned long) vma, page); 1718 local_ops->cache_page(vma, page); 1719 } 1720 } 1721 1722 static void smp_flush_tlb_page(struct vm_area_struct *vma, unsigned long page) 1723 { 1724 struct mm_struct *mm = vma->vm_mm; 1725 1726 if (mm->context != NO_CONTEXT) { 1727 cpumask_t cpu_mask; 1728 cpumask_copy(&cpu_mask, mm_cpumask(mm)); 1729 cpumask_clear_cpu(smp_processor_id(), &cpu_mask); 1730 if (!cpumask_empty(&cpu_mask)) 1731 xc2((smpfunc_t) local_ops->tlb_page, 1732 (unsigned long) vma, page); 1733 local_ops->tlb_page(vma, page); 1734 } 1735 } 1736 1737 static void smp_flush_page_to_ram(unsigned long page) 1738 { 1739 /* Current theory is that those who call this are the one's 1740 * who have just dirtied their cache with the pages contents 1741 * in kernel space, therefore we only run this on local cpu. 1742 * 1743 * XXX This experiment failed, research further... -DaveM 1744 */ 1745 #if 1 1746 xc1((smpfunc_t) local_ops->page_to_ram, page); 1747 #endif 1748 local_ops->page_to_ram(page); 1749 } 1750 1751 static void smp_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr) 1752 { 1753 cpumask_t cpu_mask; 1754 cpumask_copy(&cpu_mask, mm_cpumask(mm)); 1755 cpumask_clear_cpu(smp_processor_id(), &cpu_mask); 1756 if (!cpumask_empty(&cpu_mask)) 1757 xc2((smpfunc_t) local_ops->sig_insns, 1758 (unsigned long) mm, insn_addr); 1759 local_ops->sig_insns(mm, insn_addr); 1760 } 1761 1762 static struct sparc32_cachetlb_ops smp_cachetlb_ops __ro_after_init = { 1763 .cache_all = smp_flush_cache_all, 1764 .cache_mm = smp_flush_cache_mm, 1765 .cache_page = smp_flush_cache_page, 1766 .cache_range = smp_flush_cache_range, 1767 .tlb_all = smp_flush_tlb_all, 1768 .tlb_mm = smp_flush_tlb_mm, 1769 .tlb_page = smp_flush_tlb_page, 1770 .tlb_range = smp_flush_tlb_range, 1771 .page_to_ram = smp_flush_page_to_ram, 1772 .sig_insns = smp_flush_sig_insns, 1773 .page_for_dma = smp_flush_page_for_dma, 1774 }; 1775 #endif 1776 1777 /* Load up routines and constants for sun4m and sun4d mmu */ 1778 void __init load_mmu(void) 1779 { 1780 /* Functions */ 1781 get_srmmu_type(); 1782 1783 #ifdef CONFIG_SMP 1784 /* El switcheroo... */ 1785 local_ops = sparc32_cachetlb_ops; 1786 1787 if (sparc_cpu_model == sun4d || sparc_cpu_model == sparc_leon) { 1788 smp_cachetlb_ops.tlb_all = local_ops->tlb_all; 1789 smp_cachetlb_ops.tlb_mm = local_ops->tlb_mm; 1790 smp_cachetlb_ops.tlb_range = local_ops->tlb_range; 1791 smp_cachetlb_ops.tlb_page = local_ops->tlb_page; 1792 } 1793 1794 if (poke_srmmu == poke_viking) { 1795 /* Avoid unnecessary cross calls. */ 1796 smp_cachetlb_ops.cache_all = local_ops->cache_all; 1797 smp_cachetlb_ops.cache_mm = local_ops->cache_mm; 1798 smp_cachetlb_ops.cache_range = local_ops->cache_range; 1799 smp_cachetlb_ops.cache_page = local_ops->cache_page; 1800 1801 smp_cachetlb_ops.page_to_ram = local_ops->page_to_ram; 1802 smp_cachetlb_ops.sig_insns = local_ops->sig_insns; 1803 smp_cachetlb_ops.page_for_dma = local_ops->page_for_dma; 1804 } 1805 1806 /* It really is const after this point. */ 1807 sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *) 1808 &smp_cachetlb_ops; 1809 #endif 1810 1811 if (sparc_cpu_model == sun4d) 1812 ld_mmu_iounit(); 1813 else 1814 ld_mmu_iommu(); 1815 #ifdef CONFIG_SMP 1816 if (sparc_cpu_model == sun4d) 1817 sun4d_init_smp(); 1818 else if (sparc_cpu_model == sparc_leon) 1819 leon_init_smp(); 1820 else 1821 sun4m_init_smp(); 1822 #endif 1823 } 1824