xref: /openbmc/linux/arch/sparc/mm/srmmu.c (revision 4800cd83)
1 /*
2  * srmmu.c:  SRMMU specific routines for memory management.
3  *
4  * Copyright (C) 1995 David S. Miller  (davem@caip.rutgers.edu)
5  * Copyright (C) 1995,2002 Pete Zaitcev (zaitcev@yahoo.com)
6  * Copyright (C) 1996 Eddie C. Dost    (ecd@skynet.be)
7  * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
8  * Copyright (C) 1999,2000 Anton Blanchard (anton@samba.org)
9  */
10 
11 #include <linux/kernel.h>
12 #include <linux/mm.h>
13 #include <linux/vmalloc.h>
14 #include <linux/pagemap.h>
15 #include <linux/init.h>
16 #include <linux/spinlock.h>
17 #include <linux/bootmem.h>
18 #include <linux/fs.h>
19 #include <linux/seq_file.h>
20 #include <linux/kdebug.h>
21 #include <linux/log2.h>
22 #include <linux/gfp.h>
23 
24 #include <asm/bitext.h>
25 #include <asm/page.h>
26 #include <asm/pgalloc.h>
27 #include <asm/pgtable.h>
28 #include <asm/io.h>
29 #include <asm/vaddrs.h>
30 #include <asm/traps.h>
31 #include <asm/smp.h>
32 #include <asm/mbus.h>
33 #include <asm/cache.h>
34 #include <asm/oplib.h>
35 #include <asm/asi.h>
36 #include <asm/msi.h>
37 #include <asm/mmu_context.h>
38 #include <asm/io-unit.h>
39 #include <asm/cacheflush.h>
40 #include <asm/tlbflush.h>
41 
42 /* Now the cpu specific definitions. */
43 #include <asm/viking.h>
44 #include <asm/mxcc.h>
45 #include <asm/ross.h>
46 #include <asm/tsunami.h>
47 #include <asm/swift.h>
48 #include <asm/turbosparc.h>
49 #include <asm/leon.h>
50 
51 #include <asm/btfixup.h>
52 
53 enum mbus_module srmmu_modtype;
54 static unsigned int hwbug_bitmask;
55 int vac_cache_size;
56 int vac_line_size;
57 
58 extern struct resource sparc_iomap;
59 
60 extern unsigned long last_valid_pfn;
61 
62 extern unsigned long page_kernel;
63 
64 static pgd_t *srmmu_swapper_pg_dir;
65 
66 #ifdef CONFIG_SMP
67 #define FLUSH_BEGIN(mm)
68 #define FLUSH_END
69 #else
70 #define FLUSH_BEGIN(mm) if((mm)->context != NO_CONTEXT) {
71 #define FLUSH_END	}
72 #endif
73 
74 BTFIXUPDEF_CALL(void, flush_page_for_dma, unsigned long)
75 #define flush_page_for_dma(page) BTFIXUP_CALL(flush_page_for_dma)(page)
76 
77 int flush_page_for_dma_global = 1;
78 
79 #ifdef CONFIG_SMP
80 BTFIXUPDEF_CALL(void, local_flush_page_for_dma, unsigned long)
81 #define local_flush_page_for_dma(page) BTFIXUP_CALL(local_flush_page_for_dma)(page)
82 #endif
83 
84 char *srmmu_name;
85 
86 ctxd_t *srmmu_ctx_table_phys;
87 static ctxd_t *srmmu_context_table;
88 
89 int viking_mxcc_present;
90 static DEFINE_SPINLOCK(srmmu_context_spinlock);
91 
92 static int is_hypersparc;
93 
94 /*
95  * In general all page table modifications should use the V8 atomic
96  * swap instruction.  This insures the mmu and the cpu are in sync
97  * with respect to ref/mod bits in the page tables.
98  */
99 static inline unsigned long srmmu_swap(unsigned long *addr, unsigned long value)
100 {
101 	__asm__ __volatile__("swap [%2], %0" : "=&r" (value) : "0" (value), "r" (addr));
102 	return value;
103 }
104 
105 static inline void srmmu_set_pte(pte_t *ptep, pte_t pteval)
106 {
107 	srmmu_swap((unsigned long *)ptep, pte_val(pteval));
108 }
109 
110 /* The very generic SRMMU page table operations. */
111 static inline int srmmu_device_memory(unsigned long x)
112 {
113 	return ((x & 0xF0000000) != 0);
114 }
115 
116 static int srmmu_cache_pagetables;
117 
118 /* these will be initialized in srmmu_nocache_calcsize() */
119 static unsigned long srmmu_nocache_size;
120 static unsigned long srmmu_nocache_end;
121 
122 /* 1 bit <=> 256 bytes of nocache <=> 64 PTEs */
123 #define SRMMU_NOCACHE_BITMAP_SHIFT (PAGE_SHIFT - 4)
124 
125 /* The context table is a nocache user with the biggest alignment needs. */
126 #define SRMMU_NOCACHE_ALIGN_MAX (sizeof(ctxd_t)*SRMMU_MAX_CONTEXTS)
127 
128 void *srmmu_nocache_pool;
129 void *srmmu_nocache_bitmap;
130 static struct bit_map srmmu_nocache_map;
131 
132 static unsigned long srmmu_pte_pfn(pte_t pte)
133 {
134 	if (srmmu_device_memory(pte_val(pte))) {
135 		/* Just return something that will cause
136 		 * pfn_valid() to return false.  This makes
137 		 * copy_one_pte() to just directly copy to
138 		 * PTE over.
139 		 */
140 		return ~0UL;
141 	}
142 	return (pte_val(pte) & SRMMU_PTE_PMASK) >> (PAGE_SHIFT-4);
143 }
144 
145 static struct page *srmmu_pmd_page(pmd_t pmd)
146 {
147 
148 	if (srmmu_device_memory(pmd_val(pmd)))
149 		BUG();
150 	return pfn_to_page((pmd_val(pmd) & SRMMU_PTD_PMASK) >> (PAGE_SHIFT-4));
151 }
152 
153 static inline unsigned long srmmu_pgd_page(pgd_t pgd)
154 { return srmmu_device_memory(pgd_val(pgd))?~0:(unsigned long)__nocache_va((pgd_val(pgd) & SRMMU_PTD_PMASK) << 4); }
155 
156 
157 static inline int srmmu_pte_none(pte_t pte)
158 { return !(pte_val(pte) & 0xFFFFFFF); }
159 
160 static inline int srmmu_pte_present(pte_t pte)
161 { return ((pte_val(pte) & SRMMU_ET_MASK) == SRMMU_ET_PTE); }
162 
163 static inline void srmmu_pte_clear(pte_t *ptep)
164 { srmmu_set_pte(ptep, __pte(0)); }
165 
166 static inline int srmmu_pmd_none(pmd_t pmd)
167 { return !(pmd_val(pmd) & 0xFFFFFFF); }
168 
169 static inline int srmmu_pmd_bad(pmd_t pmd)
170 { return (pmd_val(pmd) & SRMMU_ET_MASK) != SRMMU_ET_PTD; }
171 
172 static inline int srmmu_pmd_present(pmd_t pmd)
173 { return ((pmd_val(pmd) & SRMMU_ET_MASK) == SRMMU_ET_PTD); }
174 
175 static inline void srmmu_pmd_clear(pmd_t *pmdp) {
176 	int i;
177 	for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++)
178 		srmmu_set_pte((pte_t *)&pmdp->pmdv[i], __pte(0));
179 }
180 
181 static inline int srmmu_pgd_none(pgd_t pgd)
182 { return !(pgd_val(pgd) & 0xFFFFFFF); }
183 
184 static inline int srmmu_pgd_bad(pgd_t pgd)
185 { return (pgd_val(pgd) & SRMMU_ET_MASK) != SRMMU_ET_PTD; }
186 
187 static inline int srmmu_pgd_present(pgd_t pgd)
188 { return ((pgd_val(pgd) & SRMMU_ET_MASK) == SRMMU_ET_PTD); }
189 
190 static inline void srmmu_pgd_clear(pgd_t * pgdp)
191 { srmmu_set_pte((pte_t *)pgdp, __pte(0)); }
192 
193 static inline pte_t srmmu_pte_wrprotect(pte_t pte)
194 { return __pte(pte_val(pte) & ~SRMMU_WRITE);}
195 
196 static inline pte_t srmmu_pte_mkclean(pte_t pte)
197 { return __pte(pte_val(pte) & ~SRMMU_DIRTY);}
198 
199 static inline pte_t srmmu_pte_mkold(pte_t pte)
200 { return __pte(pte_val(pte) & ~SRMMU_REF);}
201 
202 static inline pte_t srmmu_pte_mkwrite(pte_t pte)
203 { return __pte(pte_val(pte) | SRMMU_WRITE);}
204 
205 static inline pte_t srmmu_pte_mkdirty(pte_t pte)
206 { return __pte(pte_val(pte) | SRMMU_DIRTY);}
207 
208 static inline pte_t srmmu_pte_mkyoung(pte_t pte)
209 { return __pte(pte_val(pte) | SRMMU_REF);}
210 
211 /*
212  * Conversion functions: convert a page and protection to a page entry,
213  * and a page entry and page directory to the page they refer to.
214  */
215 static pte_t srmmu_mk_pte(struct page *page, pgprot_t pgprot)
216 { return __pte((page_to_pfn(page) << (PAGE_SHIFT-4)) | pgprot_val(pgprot)); }
217 
218 static pte_t srmmu_mk_pte_phys(unsigned long page, pgprot_t pgprot)
219 { return __pte(((page) >> 4) | pgprot_val(pgprot)); }
220 
221 static pte_t srmmu_mk_pte_io(unsigned long page, pgprot_t pgprot, int space)
222 { return __pte(((page) >> 4) | (space << 28) | pgprot_val(pgprot)); }
223 
224 /* XXX should we hyper_flush_whole_icache here - Anton */
225 static inline void srmmu_ctxd_set(ctxd_t *ctxp, pgd_t *pgdp)
226 { srmmu_set_pte((pte_t *)ctxp, (SRMMU_ET_PTD | (__nocache_pa((unsigned long) pgdp) >> 4))); }
227 
228 static inline void srmmu_pgd_set(pgd_t * pgdp, pmd_t * pmdp)
229 { srmmu_set_pte((pte_t *)pgdp, (SRMMU_ET_PTD | (__nocache_pa((unsigned long) pmdp) >> 4))); }
230 
231 static void srmmu_pmd_set(pmd_t *pmdp, pte_t *ptep)
232 {
233 	unsigned long ptp;	/* Physical address, shifted right by 4 */
234 	int i;
235 
236 	ptp = __nocache_pa((unsigned long) ptep) >> 4;
237 	for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) {
238 		srmmu_set_pte((pte_t *)&pmdp->pmdv[i], SRMMU_ET_PTD | ptp);
239 		ptp += (SRMMU_REAL_PTRS_PER_PTE*sizeof(pte_t) >> 4);
240 	}
241 }
242 
243 static void srmmu_pmd_populate(pmd_t *pmdp, struct page *ptep)
244 {
245 	unsigned long ptp;	/* Physical address, shifted right by 4 */
246 	int i;
247 
248 	ptp = page_to_pfn(ptep) << (PAGE_SHIFT-4);	/* watch for overflow */
249 	for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) {
250 		srmmu_set_pte((pte_t *)&pmdp->pmdv[i], SRMMU_ET_PTD | ptp);
251 		ptp += (SRMMU_REAL_PTRS_PER_PTE*sizeof(pte_t) >> 4);
252 	}
253 }
254 
255 static inline pte_t srmmu_pte_modify(pte_t pte, pgprot_t newprot)
256 { return __pte((pte_val(pte) & SRMMU_CHG_MASK) | pgprot_val(newprot)); }
257 
258 /* to find an entry in a top-level page table... */
259 static inline pgd_t *srmmu_pgd_offset(struct mm_struct * mm, unsigned long address)
260 { return mm->pgd + (address >> SRMMU_PGDIR_SHIFT); }
261 
262 /* Find an entry in the second-level page table.. */
263 static inline pmd_t *srmmu_pmd_offset(pgd_t * dir, unsigned long address)
264 {
265 	return (pmd_t *) srmmu_pgd_page(*dir) +
266 	    ((address >> PMD_SHIFT) & (PTRS_PER_PMD - 1));
267 }
268 
269 /* Find an entry in the third-level page table.. */
270 static inline pte_t *srmmu_pte_offset(pmd_t * dir, unsigned long address)
271 {
272 	void *pte;
273 
274 	pte = __nocache_va((dir->pmdv[0] & SRMMU_PTD_PMASK) << 4);
275 	return (pte_t *) pte +
276 	    ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
277 }
278 
279 static unsigned long srmmu_swp_type(swp_entry_t entry)
280 {
281 	return (entry.val >> SRMMU_SWP_TYPE_SHIFT) & SRMMU_SWP_TYPE_MASK;
282 }
283 
284 static unsigned long srmmu_swp_offset(swp_entry_t entry)
285 {
286 	return (entry.val >> SRMMU_SWP_OFF_SHIFT) & SRMMU_SWP_OFF_MASK;
287 }
288 
289 static swp_entry_t srmmu_swp_entry(unsigned long type, unsigned long offset)
290 {
291 	return (swp_entry_t) {
292 		  (type & SRMMU_SWP_TYPE_MASK) << SRMMU_SWP_TYPE_SHIFT
293 		| (offset & SRMMU_SWP_OFF_MASK) << SRMMU_SWP_OFF_SHIFT };
294 }
295 
296 /*
297  * size: bytes to allocate in the nocache area.
298  * align: bytes, number to align at.
299  * Returns the virtual address of the allocated area.
300  */
301 static unsigned long __srmmu_get_nocache(int size, int align)
302 {
303 	int offset;
304 
305 	if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
306 		printk("Size 0x%x too small for nocache request\n", size);
307 		size = SRMMU_NOCACHE_BITMAP_SHIFT;
308 	}
309 	if (size & (SRMMU_NOCACHE_BITMAP_SHIFT-1)) {
310 		printk("Size 0x%x unaligned int nocache request\n", size);
311 		size += SRMMU_NOCACHE_BITMAP_SHIFT-1;
312 	}
313 	BUG_ON(align > SRMMU_NOCACHE_ALIGN_MAX);
314 
315 	offset = bit_map_string_get(&srmmu_nocache_map,
316 		       			size >> SRMMU_NOCACHE_BITMAP_SHIFT,
317 					align >> SRMMU_NOCACHE_BITMAP_SHIFT);
318 	if (offset == -1) {
319 		printk("srmmu: out of nocache %d: %d/%d\n",
320 		    size, (int) srmmu_nocache_size,
321 		    srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
322 		return 0;
323 	}
324 
325 	return (SRMMU_NOCACHE_VADDR + (offset << SRMMU_NOCACHE_BITMAP_SHIFT));
326 }
327 
328 static unsigned long srmmu_get_nocache(int size, int align)
329 {
330 	unsigned long tmp;
331 
332 	tmp = __srmmu_get_nocache(size, align);
333 
334 	if (tmp)
335 		memset((void *)tmp, 0, size);
336 
337 	return tmp;
338 }
339 
340 static void srmmu_free_nocache(unsigned long vaddr, int size)
341 {
342 	int offset;
343 
344 	if (vaddr < SRMMU_NOCACHE_VADDR) {
345 		printk("Vaddr %lx is smaller than nocache base 0x%lx\n",
346 		    vaddr, (unsigned long)SRMMU_NOCACHE_VADDR);
347 		BUG();
348 	}
349 	if (vaddr+size > srmmu_nocache_end) {
350 		printk("Vaddr %lx is bigger than nocache end 0x%lx\n",
351 		    vaddr, srmmu_nocache_end);
352 		BUG();
353 	}
354 	if (!is_power_of_2(size)) {
355 		printk("Size 0x%x is not a power of 2\n", size);
356 		BUG();
357 	}
358 	if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
359 		printk("Size 0x%x is too small\n", size);
360 		BUG();
361 	}
362 	if (vaddr & (size-1)) {
363 		printk("Vaddr %lx is not aligned to size 0x%x\n", vaddr, size);
364 		BUG();
365 	}
366 
367 	offset = (vaddr - SRMMU_NOCACHE_VADDR) >> SRMMU_NOCACHE_BITMAP_SHIFT;
368 	size = size >> SRMMU_NOCACHE_BITMAP_SHIFT;
369 
370 	bit_map_clear(&srmmu_nocache_map, offset, size);
371 }
372 
373 static void srmmu_early_allocate_ptable_skeleton(unsigned long start,
374 						 unsigned long end);
375 
376 extern unsigned long probe_memory(void);	/* in fault.c */
377 
378 /*
379  * Reserve nocache dynamically proportionally to the amount of
380  * system RAM. -- Tomas Szepe <szepe@pinerecords.com>, June 2002
381  */
382 static void srmmu_nocache_calcsize(void)
383 {
384 	unsigned long sysmemavail = probe_memory() / 1024;
385 	int srmmu_nocache_npages;
386 
387 	srmmu_nocache_npages =
388 		sysmemavail / SRMMU_NOCACHE_ALCRATIO / 1024 * 256;
389 
390  /* P3 XXX The 4x overuse: corroborated by /proc/meminfo. */
391 	// if (srmmu_nocache_npages < 256) srmmu_nocache_npages = 256;
392 	if (srmmu_nocache_npages < SRMMU_MIN_NOCACHE_PAGES)
393 		srmmu_nocache_npages = SRMMU_MIN_NOCACHE_PAGES;
394 
395 	/* anything above 1280 blows up */
396 	if (srmmu_nocache_npages > SRMMU_MAX_NOCACHE_PAGES)
397 		srmmu_nocache_npages = SRMMU_MAX_NOCACHE_PAGES;
398 
399 	srmmu_nocache_size = srmmu_nocache_npages * PAGE_SIZE;
400 	srmmu_nocache_end = SRMMU_NOCACHE_VADDR + srmmu_nocache_size;
401 }
402 
403 static void __init srmmu_nocache_init(void)
404 {
405 	unsigned int bitmap_bits;
406 	pgd_t *pgd;
407 	pmd_t *pmd;
408 	pte_t *pte;
409 	unsigned long paddr, vaddr;
410 	unsigned long pteval;
411 
412 	bitmap_bits = srmmu_nocache_size >> SRMMU_NOCACHE_BITMAP_SHIFT;
413 
414 	srmmu_nocache_pool = __alloc_bootmem(srmmu_nocache_size,
415 		SRMMU_NOCACHE_ALIGN_MAX, 0UL);
416 	memset(srmmu_nocache_pool, 0, srmmu_nocache_size);
417 
418 	srmmu_nocache_bitmap = __alloc_bootmem(bitmap_bits >> 3, SMP_CACHE_BYTES, 0UL);
419 	bit_map_init(&srmmu_nocache_map, srmmu_nocache_bitmap, bitmap_bits);
420 
421 	srmmu_swapper_pg_dir = (pgd_t *)__srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
422 	memset(__nocache_fix(srmmu_swapper_pg_dir), 0, SRMMU_PGD_TABLE_SIZE);
423 	init_mm.pgd = srmmu_swapper_pg_dir;
424 
425 	srmmu_early_allocate_ptable_skeleton(SRMMU_NOCACHE_VADDR, srmmu_nocache_end);
426 
427 	paddr = __pa((unsigned long)srmmu_nocache_pool);
428 	vaddr = SRMMU_NOCACHE_VADDR;
429 
430 	while (vaddr < srmmu_nocache_end) {
431 		pgd = pgd_offset_k(vaddr);
432 		pmd = srmmu_pmd_offset(__nocache_fix(pgd), vaddr);
433 		pte = srmmu_pte_offset(__nocache_fix(pmd), vaddr);
434 
435 		pteval = ((paddr >> 4) | SRMMU_ET_PTE | SRMMU_PRIV);
436 
437 		if (srmmu_cache_pagetables)
438 			pteval |= SRMMU_CACHE;
439 
440 		srmmu_set_pte(__nocache_fix(pte), __pte(pteval));
441 
442 		vaddr += PAGE_SIZE;
443 		paddr += PAGE_SIZE;
444 	}
445 
446 	flush_cache_all();
447 	flush_tlb_all();
448 }
449 
450 static inline pgd_t *srmmu_get_pgd_fast(void)
451 {
452 	pgd_t *pgd = NULL;
453 
454 	pgd = (pgd_t *)__srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
455 	if (pgd) {
456 		pgd_t *init = pgd_offset_k(0);
457 		memset(pgd, 0, USER_PTRS_PER_PGD * sizeof(pgd_t));
458 		memcpy(pgd + USER_PTRS_PER_PGD, init + USER_PTRS_PER_PGD,
459 						(PTRS_PER_PGD - USER_PTRS_PER_PGD) * sizeof(pgd_t));
460 	}
461 
462 	return pgd;
463 }
464 
465 static void srmmu_free_pgd_fast(pgd_t *pgd)
466 {
467 	srmmu_free_nocache((unsigned long)pgd, SRMMU_PGD_TABLE_SIZE);
468 }
469 
470 static pmd_t *srmmu_pmd_alloc_one(struct mm_struct *mm, unsigned long address)
471 {
472 	return (pmd_t *)srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
473 }
474 
475 static void srmmu_pmd_free(pmd_t * pmd)
476 {
477 	srmmu_free_nocache((unsigned long)pmd, SRMMU_PMD_TABLE_SIZE);
478 }
479 
480 /*
481  * Hardware needs alignment to 256 only, but we align to whole page size
482  * to reduce fragmentation problems due to the buddy principle.
483  * XXX Provide actual fragmentation statistics in /proc.
484  *
485  * Alignments up to the page size are the same for physical and virtual
486  * addresses of the nocache area.
487  */
488 static pte_t *
489 srmmu_pte_alloc_one_kernel(struct mm_struct *mm, unsigned long address)
490 {
491 	return (pte_t *)srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
492 }
493 
494 static pgtable_t
495 srmmu_pte_alloc_one(struct mm_struct *mm, unsigned long address)
496 {
497 	unsigned long pte;
498 	struct page *page;
499 
500 	if ((pte = (unsigned long)srmmu_pte_alloc_one_kernel(mm, address)) == 0)
501 		return NULL;
502 	page = pfn_to_page( __nocache_pa(pte) >> PAGE_SHIFT );
503 	pgtable_page_ctor(page);
504 	return page;
505 }
506 
507 static void srmmu_free_pte_fast(pte_t *pte)
508 {
509 	srmmu_free_nocache((unsigned long)pte, PTE_SIZE);
510 }
511 
512 static void srmmu_pte_free(pgtable_t pte)
513 {
514 	unsigned long p;
515 
516 	pgtable_page_dtor(pte);
517 	p = (unsigned long)page_address(pte);	/* Cached address (for test) */
518 	if (p == 0)
519 		BUG();
520 	p = page_to_pfn(pte) << PAGE_SHIFT;	/* Physical address */
521 	p = (unsigned long) __nocache_va(p);	/* Nocached virtual */
522 	srmmu_free_nocache(p, PTE_SIZE);
523 }
524 
525 /*
526  */
527 static inline void alloc_context(struct mm_struct *old_mm, struct mm_struct *mm)
528 {
529 	struct ctx_list *ctxp;
530 
531 	ctxp = ctx_free.next;
532 	if(ctxp != &ctx_free) {
533 		remove_from_ctx_list(ctxp);
534 		add_to_used_ctxlist(ctxp);
535 		mm->context = ctxp->ctx_number;
536 		ctxp->ctx_mm = mm;
537 		return;
538 	}
539 	ctxp = ctx_used.next;
540 	if(ctxp->ctx_mm == old_mm)
541 		ctxp = ctxp->next;
542 	if(ctxp == &ctx_used)
543 		panic("out of mmu contexts");
544 	flush_cache_mm(ctxp->ctx_mm);
545 	flush_tlb_mm(ctxp->ctx_mm);
546 	remove_from_ctx_list(ctxp);
547 	add_to_used_ctxlist(ctxp);
548 	ctxp->ctx_mm->context = NO_CONTEXT;
549 	ctxp->ctx_mm = mm;
550 	mm->context = ctxp->ctx_number;
551 }
552 
553 static inline void free_context(int context)
554 {
555 	struct ctx_list *ctx_old;
556 
557 	ctx_old = ctx_list_pool + context;
558 	remove_from_ctx_list(ctx_old);
559 	add_to_free_ctxlist(ctx_old);
560 }
561 
562 
563 static void srmmu_switch_mm(struct mm_struct *old_mm, struct mm_struct *mm,
564     struct task_struct *tsk, int cpu)
565 {
566 	if(mm->context == NO_CONTEXT) {
567 		spin_lock(&srmmu_context_spinlock);
568 		alloc_context(old_mm, mm);
569 		spin_unlock(&srmmu_context_spinlock);
570 		srmmu_ctxd_set(&srmmu_context_table[mm->context], mm->pgd);
571 	}
572 
573 	if (sparc_cpu_model == sparc_leon)
574 		leon_switch_mm();
575 
576 	if (is_hypersparc)
577 		hyper_flush_whole_icache();
578 
579 	srmmu_set_context(mm->context);
580 }
581 
582 /* Low level IO area allocation on the SRMMU. */
583 static inline void srmmu_mapioaddr(unsigned long physaddr,
584     unsigned long virt_addr, int bus_type)
585 {
586 	pgd_t *pgdp;
587 	pmd_t *pmdp;
588 	pte_t *ptep;
589 	unsigned long tmp;
590 
591 	physaddr &= PAGE_MASK;
592 	pgdp = pgd_offset_k(virt_addr);
593 	pmdp = srmmu_pmd_offset(pgdp, virt_addr);
594 	ptep = srmmu_pte_offset(pmdp, virt_addr);
595 	tmp = (physaddr >> 4) | SRMMU_ET_PTE;
596 
597 	/*
598 	 * I need to test whether this is consistent over all
599 	 * sun4m's.  The bus_type represents the upper 4 bits of
600 	 * 36-bit physical address on the I/O space lines...
601 	 */
602 	tmp |= (bus_type << 28);
603 	tmp |= SRMMU_PRIV;
604 	__flush_page_to_ram(virt_addr);
605 	srmmu_set_pte(ptep, __pte(tmp));
606 }
607 
608 static void srmmu_mapiorange(unsigned int bus, unsigned long xpa,
609     unsigned long xva, unsigned int len)
610 {
611 	while (len != 0) {
612 		len -= PAGE_SIZE;
613 		srmmu_mapioaddr(xpa, xva, bus);
614 		xva += PAGE_SIZE;
615 		xpa += PAGE_SIZE;
616 	}
617 	flush_tlb_all();
618 }
619 
620 static inline void srmmu_unmapioaddr(unsigned long virt_addr)
621 {
622 	pgd_t *pgdp;
623 	pmd_t *pmdp;
624 	pte_t *ptep;
625 
626 	pgdp = pgd_offset_k(virt_addr);
627 	pmdp = srmmu_pmd_offset(pgdp, virt_addr);
628 	ptep = srmmu_pte_offset(pmdp, virt_addr);
629 
630 	/* No need to flush uncacheable page. */
631 	srmmu_pte_clear(ptep);
632 }
633 
634 static void srmmu_unmapiorange(unsigned long virt_addr, unsigned int len)
635 {
636 	while (len != 0) {
637 		len -= PAGE_SIZE;
638 		srmmu_unmapioaddr(virt_addr);
639 		virt_addr += PAGE_SIZE;
640 	}
641 	flush_tlb_all();
642 }
643 
644 /*
645  * On the SRMMU we do not have the problems with limited tlb entries
646  * for mapping kernel pages, so we just take things from the free page
647  * pool.  As a side effect we are putting a little too much pressure
648  * on the gfp() subsystem.  This setup also makes the logic of the
649  * iommu mapping code a lot easier as we can transparently handle
650  * mappings on the kernel stack without any special code as we did
651  * need on the sun4c.
652  */
653 static struct thread_info *srmmu_alloc_thread_info(void)
654 {
655 	struct thread_info *ret;
656 
657 	ret = (struct thread_info *)__get_free_pages(GFP_KERNEL,
658 						     THREAD_INFO_ORDER);
659 #ifdef CONFIG_DEBUG_STACK_USAGE
660 	if (ret)
661 		memset(ret, 0, PAGE_SIZE << THREAD_INFO_ORDER);
662 #endif /* DEBUG_STACK_USAGE */
663 
664 	return ret;
665 }
666 
667 static void srmmu_free_thread_info(struct thread_info *ti)
668 {
669 	free_pages((unsigned long)ti, THREAD_INFO_ORDER);
670 }
671 
672 /* tsunami.S */
673 extern void tsunami_flush_cache_all(void);
674 extern void tsunami_flush_cache_mm(struct mm_struct *mm);
675 extern void tsunami_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
676 extern void tsunami_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
677 extern void tsunami_flush_page_to_ram(unsigned long page);
678 extern void tsunami_flush_page_for_dma(unsigned long page);
679 extern void tsunami_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
680 extern void tsunami_flush_tlb_all(void);
681 extern void tsunami_flush_tlb_mm(struct mm_struct *mm);
682 extern void tsunami_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
683 extern void tsunami_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
684 extern void tsunami_setup_blockops(void);
685 
686 /*
687  * Workaround, until we find what's going on with Swift. When low on memory,
688  * it sometimes loops in fault/handle_mm_fault incl. flush_tlb_page to find
689  * out it is already in page tables/ fault again on the same instruction.
690  * I really don't understand it, have checked it and contexts
691  * are right, flush_tlb_all is done as well, and it faults again...
692  * Strange. -jj
693  *
694  * The following code is a deadwood that may be necessary when
695  * we start to make precise page flushes again. --zaitcev
696  */
697 static void swift_update_mmu_cache(struct vm_area_struct * vma, unsigned long address, pte_t *ptep)
698 {
699 #if 0
700 	static unsigned long last;
701 	unsigned int val;
702 	/* unsigned int n; */
703 
704 	if (address == last) {
705 		val = srmmu_hwprobe(address);
706 		if (val != 0 && pte_val(*ptep) != val) {
707 			printk("swift_update_mmu_cache: "
708 			    "addr %lx put %08x probed %08x from %p\n",
709 			    address, pte_val(*ptep), val,
710 			    __builtin_return_address(0));
711 			srmmu_flush_whole_tlb();
712 		}
713 	}
714 	last = address;
715 #endif
716 }
717 
718 /* swift.S */
719 extern void swift_flush_cache_all(void);
720 extern void swift_flush_cache_mm(struct mm_struct *mm);
721 extern void swift_flush_cache_range(struct vm_area_struct *vma,
722 				    unsigned long start, unsigned long end);
723 extern void swift_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
724 extern void swift_flush_page_to_ram(unsigned long page);
725 extern void swift_flush_page_for_dma(unsigned long page);
726 extern void swift_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
727 extern void swift_flush_tlb_all(void);
728 extern void swift_flush_tlb_mm(struct mm_struct *mm);
729 extern void swift_flush_tlb_range(struct vm_area_struct *vma,
730 				  unsigned long start, unsigned long end);
731 extern void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
732 
733 #if 0  /* P3: deadwood to debug precise flushes on Swift. */
734 void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
735 {
736 	int cctx, ctx1;
737 
738 	page &= PAGE_MASK;
739 	if ((ctx1 = vma->vm_mm->context) != -1) {
740 		cctx = srmmu_get_context();
741 /* Is context # ever different from current context? P3 */
742 		if (cctx != ctx1) {
743 			printk("flush ctx %02x curr %02x\n", ctx1, cctx);
744 			srmmu_set_context(ctx1);
745 			swift_flush_page(page);
746 			__asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
747 					"r" (page), "i" (ASI_M_FLUSH_PROBE));
748 			srmmu_set_context(cctx);
749 		} else {
750 			 /* Rm. prot. bits from virt. c. */
751 			/* swift_flush_cache_all(); */
752 			/* swift_flush_cache_page(vma, page); */
753 			swift_flush_page(page);
754 
755 			__asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
756 				"r" (page), "i" (ASI_M_FLUSH_PROBE));
757 			/* same as above: srmmu_flush_tlb_page() */
758 		}
759 	}
760 }
761 #endif
762 
763 /*
764  * The following are all MBUS based SRMMU modules, and therefore could
765  * be found in a multiprocessor configuration.  On the whole, these
766  * chips seems to be much more touchy about DVMA and page tables
767  * with respect to cache coherency.
768  */
769 
770 /* Cypress flushes. */
771 static void cypress_flush_cache_all(void)
772 {
773 	volatile unsigned long cypress_sucks;
774 	unsigned long faddr, tagval;
775 
776 	flush_user_windows();
777 	for(faddr = 0; faddr < 0x10000; faddr += 0x20) {
778 		__asm__ __volatile__("lda [%1 + %2] %3, %0\n\t" :
779 				     "=r" (tagval) :
780 				     "r" (faddr), "r" (0x40000),
781 				     "i" (ASI_M_DATAC_TAG));
782 
783 		/* If modified and valid, kick it. */
784 		if((tagval & 0x60) == 0x60)
785 			cypress_sucks = *(unsigned long *)(0xf0020000 + faddr);
786 	}
787 }
788 
789 static void cypress_flush_cache_mm(struct mm_struct *mm)
790 {
791 	register unsigned long a, b, c, d, e, f, g;
792 	unsigned long flags, faddr;
793 	int octx;
794 
795 	FLUSH_BEGIN(mm)
796 	flush_user_windows();
797 	local_irq_save(flags);
798 	octx = srmmu_get_context();
799 	srmmu_set_context(mm->context);
800 	a = 0x20; b = 0x40; c = 0x60;
801 	d = 0x80; e = 0xa0; f = 0xc0; g = 0xe0;
802 
803 	faddr = (0x10000 - 0x100);
804 	goto inside;
805 	do {
806 		faddr -= 0x100;
807 	inside:
808 		__asm__ __volatile__("sta %%g0, [%0] %1\n\t"
809 				     "sta %%g0, [%0 + %2] %1\n\t"
810 				     "sta %%g0, [%0 + %3] %1\n\t"
811 				     "sta %%g0, [%0 + %4] %1\n\t"
812 				     "sta %%g0, [%0 + %5] %1\n\t"
813 				     "sta %%g0, [%0 + %6] %1\n\t"
814 				     "sta %%g0, [%0 + %7] %1\n\t"
815 				     "sta %%g0, [%0 + %8] %1\n\t" : :
816 				     "r" (faddr), "i" (ASI_M_FLUSH_CTX),
817 				     "r" (a), "r" (b), "r" (c), "r" (d),
818 				     "r" (e), "r" (f), "r" (g));
819 	} while(faddr);
820 	srmmu_set_context(octx);
821 	local_irq_restore(flags);
822 	FLUSH_END
823 }
824 
825 static void cypress_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
826 {
827 	struct mm_struct *mm = vma->vm_mm;
828 	register unsigned long a, b, c, d, e, f, g;
829 	unsigned long flags, faddr;
830 	int octx;
831 
832 	FLUSH_BEGIN(mm)
833 	flush_user_windows();
834 	local_irq_save(flags);
835 	octx = srmmu_get_context();
836 	srmmu_set_context(mm->context);
837 	a = 0x20; b = 0x40; c = 0x60;
838 	d = 0x80; e = 0xa0; f = 0xc0; g = 0xe0;
839 
840 	start &= SRMMU_REAL_PMD_MASK;
841 	while(start < end) {
842 		faddr = (start + (0x10000 - 0x100));
843 		goto inside;
844 		do {
845 			faddr -= 0x100;
846 		inside:
847 			__asm__ __volatile__("sta %%g0, [%0] %1\n\t"
848 					     "sta %%g0, [%0 + %2] %1\n\t"
849 					     "sta %%g0, [%0 + %3] %1\n\t"
850 					     "sta %%g0, [%0 + %4] %1\n\t"
851 					     "sta %%g0, [%0 + %5] %1\n\t"
852 					     "sta %%g0, [%0 + %6] %1\n\t"
853 					     "sta %%g0, [%0 + %7] %1\n\t"
854 					     "sta %%g0, [%0 + %8] %1\n\t" : :
855 					     "r" (faddr),
856 					     "i" (ASI_M_FLUSH_SEG),
857 					     "r" (a), "r" (b), "r" (c), "r" (d),
858 					     "r" (e), "r" (f), "r" (g));
859 		} while (faddr != start);
860 		start += SRMMU_REAL_PMD_SIZE;
861 	}
862 	srmmu_set_context(octx);
863 	local_irq_restore(flags);
864 	FLUSH_END
865 }
866 
867 static void cypress_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
868 {
869 	register unsigned long a, b, c, d, e, f, g;
870 	struct mm_struct *mm = vma->vm_mm;
871 	unsigned long flags, line;
872 	int octx;
873 
874 	FLUSH_BEGIN(mm)
875 	flush_user_windows();
876 	local_irq_save(flags);
877 	octx = srmmu_get_context();
878 	srmmu_set_context(mm->context);
879 	a = 0x20; b = 0x40; c = 0x60;
880 	d = 0x80; e = 0xa0; f = 0xc0; g = 0xe0;
881 
882 	page &= PAGE_MASK;
883 	line = (page + PAGE_SIZE) - 0x100;
884 	goto inside;
885 	do {
886 		line -= 0x100;
887 	inside:
888 			__asm__ __volatile__("sta %%g0, [%0] %1\n\t"
889 					     "sta %%g0, [%0 + %2] %1\n\t"
890 					     "sta %%g0, [%0 + %3] %1\n\t"
891 					     "sta %%g0, [%0 + %4] %1\n\t"
892 					     "sta %%g0, [%0 + %5] %1\n\t"
893 					     "sta %%g0, [%0 + %6] %1\n\t"
894 					     "sta %%g0, [%0 + %7] %1\n\t"
895 					     "sta %%g0, [%0 + %8] %1\n\t" : :
896 					     "r" (line),
897 					     "i" (ASI_M_FLUSH_PAGE),
898 					     "r" (a), "r" (b), "r" (c), "r" (d),
899 					     "r" (e), "r" (f), "r" (g));
900 	} while(line != page);
901 	srmmu_set_context(octx);
902 	local_irq_restore(flags);
903 	FLUSH_END
904 }
905 
906 /* Cypress is copy-back, at least that is how we configure it. */
907 static void cypress_flush_page_to_ram(unsigned long page)
908 {
909 	register unsigned long a, b, c, d, e, f, g;
910 	unsigned long line;
911 
912 	a = 0x20; b = 0x40; c = 0x60; d = 0x80; e = 0xa0; f = 0xc0; g = 0xe0;
913 	page &= PAGE_MASK;
914 	line = (page + PAGE_SIZE) - 0x100;
915 	goto inside;
916 	do {
917 		line -= 0x100;
918 	inside:
919 		__asm__ __volatile__("sta %%g0, [%0] %1\n\t"
920 				     "sta %%g0, [%0 + %2] %1\n\t"
921 				     "sta %%g0, [%0 + %3] %1\n\t"
922 				     "sta %%g0, [%0 + %4] %1\n\t"
923 				     "sta %%g0, [%0 + %5] %1\n\t"
924 				     "sta %%g0, [%0 + %6] %1\n\t"
925 				     "sta %%g0, [%0 + %7] %1\n\t"
926 				     "sta %%g0, [%0 + %8] %1\n\t" : :
927 				     "r" (line),
928 				     "i" (ASI_M_FLUSH_PAGE),
929 				     "r" (a), "r" (b), "r" (c), "r" (d),
930 				     "r" (e), "r" (f), "r" (g));
931 	} while(line != page);
932 }
933 
934 /* Cypress is also IO cache coherent. */
935 static void cypress_flush_page_for_dma(unsigned long page)
936 {
937 }
938 
939 /* Cypress has unified L2 VIPT, from which both instructions and data
940  * are stored.  It does not have an onboard icache of any sort, therefore
941  * no flush is necessary.
942  */
943 static void cypress_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
944 {
945 }
946 
947 static void cypress_flush_tlb_all(void)
948 {
949 	srmmu_flush_whole_tlb();
950 }
951 
952 static void cypress_flush_tlb_mm(struct mm_struct *mm)
953 {
954 	FLUSH_BEGIN(mm)
955 	__asm__ __volatile__(
956 	"lda	[%0] %3, %%g5\n\t"
957 	"sta	%2, [%0] %3\n\t"
958 	"sta	%%g0, [%1] %4\n\t"
959 	"sta	%%g5, [%0] %3\n"
960 	: /* no outputs */
961 	: "r" (SRMMU_CTX_REG), "r" (0x300), "r" (mm->context),
962 	  "i" (ASI_M_MMUREGS), "i" (ASI_M_FLUSH_PROBE)
963 	: "g5");
964 	FLUSH_END
965 }
966 
967 static void cypress_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
968 {
969 	struct mm_struct *mm = vma->vm_mm;
970 	unsigned long size;
971 
972 	FLUSH_BEGIN(mm)
973 	start &= SRMMU_PGDIR_MASK;
974 	size = SRMMU_PGDIR_ALIGN(end) - start;
975 	__asm__ __volatile__(
976 		"lda	[%0] %5, %%g5\n\t"
977 		"sta	%1, [%0] %5\n"
978 		"1:\n\t"
979 		"subcc	%3, %4, %3\n\t"
980 		"bne	1b\n\t"
981 		" sta	%%g0, [%2 + %3] %6\n\t"
982 		"sta	%%g5, [%0] %5\n"
983 	: /* no outputs */
984 	: "r" (SRMMU_CTX_REG), "r" (mm->context), "r" (start | 0x200),
985 	  "r" (size), "r" (SRMMU_PGDIR_SIZE), "i" (ASI_M_MMUREGS),
986 	  "i" (ASI_M_FLUSH_PROBE)
987 	: "g5", "cc");
988 	FLUSH_END
989 }
990 
991 static void cypress_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
992 {
993 	struct mm_struct *mm = vma->vm_mm;
994 
995 	FLUSH_BEGIN(mm)
996 	__asm__ __volatile__(
997 	"lda	[%0] %3, %%g5\n\t"
998 	"sta	%1, [%0] %3\n\t"
999 	"sta	%%g0, [%2] %4\n\t"
1000 	"sta	%%g5, [%0] %3\n"
1001 	: /* no outputs */
1002 	: "r" (SRMMU_CTX_REG), "r" (mm->context), "r" (page & PAGE_MASK),
1003 	  "i" (ASI_M_MMUREGS), "i" (ASI_M_FLUSH_PROBE)
1004 	: "g5");
1005 	FLUSH_END
1006 }
1007 
1008 /* viking.S */
1009 extern void viking_flush_cache_all(void);
1010 extern void viking_flush_cache_mm(struct mm_struct *mm);
1011 extern void viking_flush_cache_range(struct vm_area_struct *vma, unsigned long start,
1012 				     unsigned long end);
1013 extern void viking_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
1014 extern void viking_flush_page_to_ram(unsigned long page);
1015 extern void viking_flush_page_for_dma(unsigned long page);
1016 extern void viking_flush_sig_insns(struct mm_struct *mm, unsigned long addr);
1017 extern void viking_flush_page(unsigned long page);
1018 extern void viking_mxcc_flush_page(unsigned long page);
1019 extern void viking_flush_tlb_all(void);
1020 extern void viking_flush_tlb_mm(struct mm_struct *mm);
1021 extern void viking_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
1022 				   unsigned long end);
1023 extern void viking_flush_tlb_page(struct vm_area_struct *vma,
1024 				  unsigned long page);
1025 extern void sun4dsmp_flush_tlb_all(void);
1026 extern void sun4dsmp_flush_tlb_mm(struct mm_struct *mm);
1027 extern void sun4dsmp_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
1028 				   unsigned long end);
1029 extern void sun4dsmp_flush_tlb_page(struct vm_area_struct *vma,
1030 				  unsigned long page);
1031 
1032 /* hypersparc.S */
1033 extern void hypersparc_flush_cache_all(void);
1034 extern void hypersparc_flush_cache_mm(struct mm_struct *mm);
1035 extern void hypersparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
1036 extern void hypersparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
1037 extern void hypersparc_flush_page_to_ram(unsigned long page);
1038 extern void hypersparc_flush_page_for_dma(unsigned long page);
1039 extern void hypersparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
1040 extern void hypersparc_flush_tlb_all(void);
1041 extern void hypersparc_flush_tlb_mm(struct mm_struct *mm);
1042 extern void hypersparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
1043 extern void hypersparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
1044 extern void hypersparc_setup_blockops(void);
1045 
1046 /*
1047  * NOTE: All of this startup code assumes the low 16mb (approx.) of
1048  *       kernel mappings are done with one single contiguous chunk of
1049  *       ram.  On small ram machines (classics mainly) we only get
1050  *       around 8mb mapped for us.
1051  */
1052 
1053 static void __init early_pgtable_allocfail(char *type)
1054 {
1055 	prom_printf("inherit_prom_mappings: Cannot alloc kernel %s.\n", type);
1056 	prom_halt();
1057 }
1058 
1059 static void __init srmmu_early_allocate_ptable_skeleton(unsigned long start,
1060 							unsigned long end)
1061 {
1062 	pgd_t *pgdp;
1063 	pmd_t *pmdp;
1064 	pte_t *ptep;
1065 
1066 	while(start < end) {
1067 		pgdp = pgd_offset_k(start);
1068 		if(srmmu_pgd_none(*(pgd_t *)__nocache_fix(pgdp))) {
1069 			pmdp = (pmd_t *) __srmmu_get_nocache(
1070 			    SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
1071 			if (pmdp == NULL)
1072 				early_pgtable_allocfail("pmd");
1073 			memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
1074 			srmmu_pgd_set(__nocache_fix(pgdp), pmdp);
1075 		}
1076 		pmdp = srmmu_pmd_offset(__nocache_fix(pgdp), start);
1077 		if(srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
1078 			ptep = (pte_t *)__srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
1079 			if (ptep == NULL)
1080 				early_pgtable_allocfail("pte");
1081 			memset(__nocache_fix(ptep), 0, PTE_SIZE);
1082 			srmmu_pmd_set(__nocache_fix(pmdp), ptep);
1083 		}
1084 		if (start > (0xffffffffUL - PMD_SIZE))
1085 			break;
1086 		start = (start + PMD_SIZE) & PMD_MASK;
1087 	}
1088 }
1089 
1090 static void __init srmmu_allocate_ptable_skeleton(unsigned long start,
1091 						  unsigned long end)
1092 {
1093 	pgd_t *pgdp;
1094 	pmd_t *pmdp;
1095 	pte_t *ptep;
1096 
1097 	while(start < end) {
1098 		pgdp = pgd_offset_k(start);
1099 		if(srmmu_pgd_none(*pgdp)) {
1100 			pmdp = (pmd_t *)__srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
1101 			if (pmdp == NULL)
1102 				early_pgtable_allocfail("pmd");
1103 			memset(pmdp, 0, SRMMU_PMD_TABLE_SIZE);
1104 			srmmu_pgd_set(pgdp, pmdp);
1105 		}
1106 		pmdp = srmmu_pmd_offset(pgdp, start);
1107 		if(srmmu_pmd_none(*pmdp)) {
1108 			ptep = (pte_t *) __srmmu_get_nocache(PTE_SIZE,
1109 							     PTE_SIZE);
1110 			if (ptep == NULL)
1111 				early_pgtable_allocfail("pte");
1112 			memset(ptep, 0, PTE_SIZE);
1113 			srmmu_pmd_set(pmdp, ptep);
1114 		}
1115 		if (start > (0xffffffffUL - PMD_SIZE))
1116 			break;
1117 		start = (start + PMD_SIZE) & PMD_MASK;
1118 	}
1119 }
1120 
1121 /*
1122  * This is much cleaner than poking around physical address space
1123  * looking at the prom's page table directly which is what most
1124  * other OS's do.  Yuck... this is much better.
1125  */
1126 static void __init srmmu_inherit_prom_mappings(unsigned long start,
1127 					       unsigned long end)
1128 {
1129 	pgd_t *pgdp;
1130 	pmd_t *pmdp;
1131 	pte_t *ptep;
1132 	int what = 0; /* 0 = normal-pte, 1 = pmd-level pte, 2 = pgd-level pte */
1133 	unsigned long prompte;
1134 
1135 	while(start <= end) {
1136 		if (start == 0)
1137 			break; /* probably wrap around */
1138 		if(start == 0xfef00000)
1139 			start = KADB_DEBUGGER_BEGVM;
1140 		if(!(prompte = srmmu_hwprobe(start))) {
1141 			start += PAGE_SIZE;
1142 			continue;
1143 		}
1144 
1145 		/* A red snapper, see what it really is. */
1146 		what = 0;
1147 
1148 		if(!(start & ~(SRMMU_REAL_PMD_MASK))) {
1149 			if(srmmu_hwprobe((start-PAGE_SIZE) + SRMMU_REAL_PMD_SIZE) == prompte)
1150 				what = 1;
1151 		}
1152 
1153 		if(!(start & ~(SRMMU_PGDIR_MASK))) {
1154 			if(srmmu_hwprobe((start-PAGE_SIZE) + SRMMU_PGDIR_SIZE) ==
1155 			   prompte)
1156 				what = 2;
1157 		}
1158 
1159 		pgdp = pgd_offset_k(start);
1160 		if(what == 2) {
1161 			*(pgd_t *)__nocache_fix(pgdp) = __pgd(prompte);
1162 			start += SRMMU_PGDIR_SIZE;
1163 			continue;
1164 		}
1165 		if(srmmu_pgd_none(*(pgd_t *)__nocache_fix(pgdp))) {
1166 			pmdp = (pmd_t *)__srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
1167 			if (pmdp == NULL)
1168 				early_pgtable_allocfail("pmd");
1169 			memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
1170 			srmmu_pgd_set(__nocache_fix(pgdp), pmdp);
1171 		}
1172 		pmdp = srmmu_pmd_offset(__nocache_fix(pgdp), start);
1173 		if(srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
1174 			ptep = (pte_t *) __srmmu_get_nocache(PTE_SIZE,
1175 							     PTE_SIZE);
1176 			if (ptep == NULL)
1177 				early_pgtable_allocfail("pte");
1178 			memset(__nocache_fix(ptep), 0, PTE_SIZE);
1179 			srmmu_pmd_set(__nocache_fix(pmdp), ptep);
1180 		}
1181 		if(what == 1) {
1182 			/*
1183 			 * We bend the rule where all 16 PTPs in a pmd_t point
1184 			 * inside the same PTE page, and we leak a perfectly
1185 			 * good hardware PTE piece. Alternatives seem worse.
1186 			 */
1187 			unsigned int x;	/* Index of HW PMD in soft cluster */
1188 			x = (start >> PMD_SHIFT) & 15;
1189 			*(unsigned long *)__nocache_fix(&pmdp->pmdv[x]) = prompte;
1190 			start += SRMMU_REAL_PMD_SIZE;
1191 			continue;
1192 		}
1193 		ptep = srmmu_pte_offset(__nocache_fix(pmdp), start);
1194 		*(pte_t *)__nocache_fix(ptep) = __pte(prompte);
1195 		start += PAGE_SIZE;
1196 	}
1197 }
1198 
1199 #define KERNEL_PTE(page_shifted) ((page_shifted)|SRMMU_CACHE|SRMMU_PRIV|SRMMU_VALID)
1200 
1201 /* Create a third-level SRMMU 16MB page mapping. */
1202 static void __init do_large_mapping(unsigned long vaddr, unsigned long phys_base)
1203 {
1204 	pgd_t *pgdp = pgd_offset_k(vaddr);
1205 	unsigned long big_pte;
1206 
1207 	big_pte = KERNEL_PTE(phys_base >> 4);
1208 	*(pgd_t *)__nocache_fix(pgdp) = __pgd(big_pte);
1209 }
1210 
1211 /* Map sp_bank entry SP_ENTRY, starting at virtual address VBASE. */
1212 static unsigned long __init map_spbank(unsigned long vbase, int sp_entry)
1213 {
1214 	unsigned long pstart = (sp_banks[sp_entry].base_addr & SRMMU_PGDIR_MASK);
1215 	unsigned long vstart = (vbase & SRMMU_PGDIR_MASK);
1216 	unsigned long vend = SRMMU_PGDIR_ALIGN(vbase + sp_banks[sp_entry].num_bytes);
1217 	/* Map "low" memory only */
1218 	const unsigned long min_vaddr = PAGE_OFFSET;
1219 	const unsigned long max_vaddr = PAGE_OFFSET + SRMMU_MAXMEM;
1220 
1221 	if (vstart < min_vaddr || vstart >= max_vaddr)
1222 		return vstart;
1223 
1224 	if (vend > max_vaddr || vend < min_vaddr)
1225 		vend = max_vaddr;
1226 
1227 	while(vstart < vend) {
1228 		do_large_mapping(vstart, pstart);
1229 		vstart += SRMMU_PGDIR_SIZE; pstart += SRMMU_PGDIR_SIZE;
1230 	}
1231 	return vstart;
1232 }
1233 
1234 static inline void memprobe_error(char *msg)
1235 {
1236 	prom_printf(msg);
1237 	prom_printf("Halting now...\n");
1238 	prom_halt();
1239 }
1240 
1241 static inline void map_kernel(void)
1242 {
1243 	int i;
1244 
1245 	if (phys_base > 0) {
1246 		do_large_mapping(PAGE_OFFSET, phys_base);
1247 	}
1248 
1249 	for (i = 0; sp_banks[i].num_bytes != 0; i++) {
1250 		map_spbank((unsigned long)__va(sp_banks[i].base_addr), i);
1251 	}
1252 
1253 	BTFIXUPSET_SIMM13(user_ptrs_per_pgd, PAGE_OFFSET / SRMMU_PGDIR_SIZE);
1254 }
1255 
1256 /* Paging initialization on the Sparc Reference MMU. */
1257 extern void sparc_context_init(int);
1258 
1259 void (*poke_srmmu)(void) __cpuinitdata = NULL;
1260 
1261 extern unsigned long bootmem_init(unsigned long *pages_avail);
1262 
1263 void __init srmmu_paging_init(void)
1264 {
1265 	int i;
1266 	phandle cpunode;
1267 	char node_str[128];
1268 	pgd_t *pgd;
1269 	pmd_t *pmd;
1270 	pte_t *pte;
1271 	unsigned long pages_avail;
1272 
1273 	sparc_iomap.start = SUN4M_IOBASE_VADDR;	/* 16MB of IOSPACE on all sun4m's. */
1274 
1275 	if (sparc_cpu_model == sun4d)
1276 		num_contexts = 65536; /* We know it is Viking */
1277 	else {
1278 		/* Find the number of contexts on the srmmu. */
1279 		cpunode = prom_getchild(prom_root_node);
1280 		num_contexts = 0;
1281 		while(cpunode != 0) {
1282 			prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
1283 			if(!strcmp(node_str, "cpu")) {
1284 				num_contexts = prom_getintdefault(cpunode, "mmu-nctx", 0x8);
1285 				break;
1286 			}
1287 			cpunode = prom_getsibling(cpunode);
1288 		}
1289 	}
1290 
1291 	if(!num_contexts) {
1292 		prom_printf("Something wrong, can't find cpu node in paging_init.\n");
1293 		prom_halt();
1294 	}
1295 
1296 	pages_avail = 0;
1297 	last_valid_pfn = bootmem_init(&pages_avail);
1298 
1299 	srmmu_nocache_calcsize();
1300 	srmmu_nocache_init();
1301         srmmu_inherit_prom_mappings(0xfe400000,(LINUX_OPPROM_ENDVM-PAGE_SIZE));
1302 	map_kernel();
1303 
1304 	/* ctx table has to be physically aligned to its size */
1305 	srmmu_context_table = (ctxd_t *)__srmmu_get_nocache(num_contexts*sizeof(ctxd_t), num_contexts*sizeof(ctxd_t));
1306 	srmmu_ctx_table_phys = (ctxd_t *)__nocache_pa((unsigned long)srmmu_context_table);
1307 
1308 	for(i = 0; i < num_contexts; i++)
1309 		srmmu_ctxd_set((ctxd_t *)__nocache_fix(&srmmu_context_table[i]), srmmu_swapper_pg_dir);
1310 
1311 	flush_cache_all();
1312 	srmmu_set_ctable_ptr((unsigned long)srmmu_ctx_table_phys);
1313 #ifdef CONFIG_SMP
1314 	/* Stop from hanging here... */
1315 	local_flush_tlb_all();
1316 #else
1317 	flush_tlb_all();
1318 #endif
1319 	poke_srmmu();
1320 
1321 	srmmu_allocate_ptable_skeleton(sparc_iomap.start, IOBASE_END);
1322 	srmmu_allocate_ptable_skeleton(DVMA_VADDR, DVMA_END);
1323 
1324 	srmmu_allocate_ptable_skeleton(
1325 		__fix_to_virt(__end_of_fixed_addresses - 1), FIXADDR_TOP);
1326 	srmmu_allocate_ptable_skeleton(PKMAP_BASE, PKMAP_END);
1327 
1328 	pgd = pgd_offset_k(PKMAP_BASE);
1329 	pmd = srmmu_pmd_offset(pgd, PKMAP_BASE);
1330 	pte = srmmu_pte_offset(pmd, PKMAP_BASE);
1331 	pkmap_page_table = pte;
1332 
1333 	flush_cache_all();
1334 	flush_tlb_all();
1335 
1336 	sparc_context_init(num_contexts);
1337 
1338 	kmap_init();
1339 
1340 	{
1341 		unsigned long zones_size[MAX_NR_ZONES];
1342 		unsigned long zholes_size[MAX_NR_ZONES];
1343 		unsigned long npages;
1344 		int znum;
1345 
1346 		for (znum = 0; znum < MAX_NR_ZONES; znum++)
1347 			zones_size[znum] = zholes_size[znum] = 0;
1348 
1349 		npages = max_low_pfn - pfn_base;
1350 
1351 		zones_size[ZONE_DMA] = npages;
1352 		zholes_size[ZONE_DMA] = npages - pages_avail;
1353 
1354 		npages = highend_pfn - max_low_pfn;
1355 		zones_size[ZONE_HIGHMEM] = npages;
1356 		zholes_size[ZONE_HIGHMEM] = npages - calc_highpages();
1357 
1358 		free_area_init_node(0, zones_size, pfn_base, zholes_size);
1359 	}
1360 }
1361 
1362 static void srmmu_mmu_info(struct seq_file *m)
1363 {
1364 	seq_printf(m,
1365 		   "MMU type\t: %s\n"
1366 		   "contexts\t: %d\n"
1367 		   "nocache total\t: %ld\n"
1368 		   "nocache used\t: %d\n",
1369 		   srmmu_name,
1370 		   num_contexts,
1371 		   srmmu_nocache_size,
1372 		   srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
1373 }
1374 
1375 static void srmmu_update_mmu_cache(struct vm_area_struct * vma, unsigned long address, pte_t pte)
1376 {
1377 }
1378 
1379 static void srmmu_destroy_context(struct mm_struct *mm)
1380 {
1381 
1382 	if(mm->context != NO_CONTEXT) {
1383 		flush_cache_mm(mm);
1384 		srmmu_ctxd_set(&srmmu_context_table[mm->context], srmmu_swapper_pg_dir);
1385 		flush_tlb_mm(mm);
1386 		spin_lock(&srmmu_context_spinlock);
1387 		free_context(mm->context);
1388 		spin_unlock(&srmmu_context_spinlock);
1389 		mm->context = NO_CONTEXT;
1390 	}
1391 }
1392 
1393 /* Init various srmmu chip types. */
1394 static void __init srmmu_is_bad(void)
1395 {
1396 	prom_printf("Could not determine SRMMU chip type.\n");
1397 	prom_halt();
1398 }
1399 
1400 static void __init init_vac_layout(void)
1401 {
1402 	phandle nd;
1403 	int cache_lines;
1404 	char node_str[128];
1405 #ifdef CONFIG_SMP
1406 	int cpu = 0;
1407 	unsigned long max_size = 0;
1408 	unsigned long min_line_size = 0x10000000;
1409 #endif
1410 
1411 	nd = prom_getchild(prom_root_node);
1412 	while((nd = prom_getsibling(nd)) != 0) {
1413 		prom_getstring(nd, "device_type", node_str, sizeof(node_str));
1414 		if(!strcmp(node_str, "cpu")) {
1415 			vac_line_size = prom_getint(nd, "cache-line-size");
1416 			if (vac_line_size == -1) {
1417 				prom_printf("can't determine cache-line-size, "
1418 					    "halting.\n");
1419 				prom_halt();
1420 			}
1421 			cache_lines = prom_getint(nd, "cache-nlines");
1422 			if (cache_lines == -1) {
1423 				prom_printf("can't determine cache-nlines, halting.\n");
1424 				prom_halt();
1425 			}
1426 
1427 			vac_cache_size = cache_lines * vac_line_size;
1428 #ifdef CONFIG_SMP
1429 			if(vac_cache_size > max_size)
1430 				max_size = vac_cache_size;
1431 			if(vac_line_size < min_line_size)
1432 				min_line_size = vac_line_size;
1433 			//FIXME: cpus not contiguous!!
1434 			cpu++;
1435 			if (cpu >= nr_cpu_ids || !cpu_online(cpu))
1436 				break;
1437 #else
1438 			break;
1439 #endif
1440 		}
1441 	}
1442 	if(nd == 0) {
1443 		prom_printf("No CPU nodes found, halting.\n");
1444 		prom_halt();
1445 	}
1446 #ifdef CONFIG_SMP
1447 	vac_cache_size = max_size;
1448 	vac_line_size = min_line_size;
1449 #endif
1450 	printk("SRMMU: Using VAC size of %d bytes, line size %d bytes.\n",
1451 	       (int)vac_cache_size, (int)vac_line_size);
1452 }
1453 
1454 static void __cpuinit poke_hypersparc(void)
1455 {
1456 	volatile unsigned long clear;
1457 	unsigned long mreg = srmmu_get_mmureg();
1458 
1459 	hyper_flush_unconditional_combined();
1460 
1461 	mreg &= ~(HYPERSPARC_CWENABLE);
1462 	mreg |= (HYPERSPARC_CENABLE | HYPERSPARC_WBENABLE);
1463 	mreg |= (HYPERSPARC_CMODE);
1464 
1465 	srmmu_set_mmureg(mreg);
1466 
1467 #if 0 /* XXX I think this is bad news... -DaveM */
1468 	hyper_clear_all_tags();
1469 #endif
1470 
1471 	put_ross_icr(HYPERSPARC_ICCR_FTD | HYPERSPARC_ICCR_ICE);
1472 	hyper_flush_whole_icache();
1473 	clear = srmmu_get_faddr();
1474 	clear = srmmu_get_fstatus();
1475 }
1476 
1477 static void __init init_hypersparc(void)
1478 {
1479 	srmmu_name = "ROSS HyperSparc";
1480 	srmmu_modtype = HyperSparc;
1481 
1482 	init_vac_layout();
1483 
1484 	is_hypersparc = 1;
1485 
1486 	BTFIXUPSET_CALL(pte_clear, srmmu_pte_clear, BTFIXUPCALL_NORM);
1487 	BTFIXUPSET_CALL(pmd_clear, srmmu_pmd_clear, BTFIXUPCALL_NORM);
1488 	BTFIXUPSET_CALL(pgd_clear, srmmu_pgd_clear, BTFIXUPCALL_NORM);
1489 	BTFIXUPSET_CALL(flush_cache_all, hypersparc_flush_cache_all, BTFIXUPCALL_NORM);
1490 	BTFIXUPSET_CALL(flush_cache_mm, hypersparc_flush_cache_mm, BTFIXUPCALL_NORM);
1491 	BTFIXUPSET_CALL(flush_cache_range, hypersparc_flush_cache_range, BTFIXUPCALL_NORM);
1492 	BTFIXUPSET_CALL(flush_cache_page, hypersparc_flush_cache_page, BTFIXUPCALL_NORM);
1493 
1494 	BTFIXUPSET_CALL(flush_tlb_all, hypersparc_flush_tlb_all, BTFIXUPCALL_NORM);
1495 	BTFIXUPSET_CALL(flush_tlb_mm, hypersparc_flush_tlb_mm, BTFIXUPCALL_NORM);
1496 	BTFIXUPSET_CALL(flush_tlb_range, hypersparc_flush_tlb_range, BTFIXUPCALL_NORM);
1497 	BTFIXUPSET_CALL(flush_tlb_page, hypersparc_flush_tlb_page, BTFIXUPCALL_NORM);
1498 
1499 	BTFIXUPSET_CALL(__flush_page_to_ram, hypersparc_flush_page_to_ram, BTFIXUPCALL_NORM);
1500 	BTFIXUPSET_CALL(flush_sig_insns, hypersparc_flush_sig_insns, BTFIXUPCALL_NORM);
1501 	BTFIXUPSET_CALL(flush_page_for_dma, hypersparc_flush_page_for_dma, BTFIXUPCALL_NOP);
1502 
1503 
1504 	poke_srmmu = poke_hypersparc;
1505 
1506 	hypersparc_setup_blockops();
1507 }
1508 
1509 static void __cpuinit poke_cypress(void)
1510 {
1511 	unsigned long mreg = srmmu_get_mmureg();
1512 	unsigned long faddr, tagval;
1513 	volatile unsigned long cypress_sucks;
1514 	volatile unsigned long clear;
1515 
1516 	clear = srmmu_get_faddr();
1517 	clear = srmmu_get_fstatus();
1518 
1519 	if (!(mreg & CYPRESS_CENABLE)) {
1520 		for(faddr = 0x0; faddr < 0x10000; faddr += 20) {
1521 			__asm__ __volatile__("sta %%g0, [%0 + %1] %2\n\t"
1522 					     "sta %%g0, [%0] %2\n\t" : :
1523 					     "r" (faddr), "r" (0x40000),
1524 					     "i" (ASI_M_DATAC_TAG));
1525 		}
1526 	} else {
1527 		for(faddr = 0; faddr < 0x10000; faddr += 0x20) {
1528 			__asm__ __volatile__("lda [%1 + %2] %3, %0\n\t" :
1529 					     "=r" (tagval) :
1530 					     "r" (faddr), "r" (0x40000),
1531 					     "i" (ASI_M_DATAC_TAG));
1532 
1533 			/* If modified and valid, kick it. */
1534 			if((tagval & 0x60) == 0x60)
1535 				cypress_sucks = *(unsigned long *)
1536 							(0xf0020000 + faddr);
1537 		}
1538 	}
1539 
1540 	/* And one more, for our good neighbor, Mr. Broken Cypress. */
1541 	clear = srmmu_get_faddr();
1542 	clear = srmmu_get_fstatus();
1543 
1544 	mreg |= (CYPRESS_CENABLE | CYPRESS_CMODE);
1545 	srmmu_set_mmureg(mreg);
1546 }
1547 
1548 static void __init init_cypress_common(void)
1549 {
1550 	init_vac_layout();
1551 
1552 	BTFIXUPSET_CALL(pte_clear, srmmu_pte_clear, BTFIXUPCALL_NORM);
1553 	BTFIXUPSET_CALL(pmd_clear, srmmu_pmd_clear, BTFIXUPCALL_NORM);
1554 	BTFIXUPSET_CALL(pgd_clear, srmmu_pgd_clear, BTFIXUPCALL_NORM);
1555 	BTFIXUPSET_CALL(flush_cache_all, cypress_flush_cache_all, BTFIXUPCALL_NORM);
1556 	BTFIXUPSET_CALL(flush_cache_mm, cypress_flush_cache_mm, BTFIXUPCALL_NORM);
1557 	BTFIXUPSET_CALL(flush_cache_range, cypress_flush_cache_range, BTFIXUPCALL_NORM);
1558 	BTFIXUPSET_CALL(flush_cache_page, cypress_flush_cache_page, BTFIXUPCALL_NORM);
1559 
1560 	BTFIXUPSET_CALL(flush_tlb_all, cypress_flush_tlb_all, BTFIXUPCALL_NORM);
1561 	BTFIXUPSET_CALL(flush_tlb_mm, cypress_flush_tlb_mm, BTFIXUPCALL_NORM);
1562 	BTFIXUPSET_CALL(flush_tlb_page, cypress_flush_tlb_page, BTFIXUPCALL_NORM);
1563 	BTFIXUPSET_CALL(flush_tlb_range, cypress_flush_tlb_range, BTFIXUPCALL_NORM);
1564 
1565 
1566 	BTFIXUPSET_CALL(__flush_page_to_ram, cypress_flush_page_to_ram, BTFIXUPCALL_NORM);
1567 	BTFIXUPSET_CALL(flush_sig_insns, cypress_flush_sig_insns, BTFIXUPCALL_NOP);
1568 	BTFIXUPSET_CALL(flush_page_for_dma, cypress_flush_page_for_dma, BTFIXUPCALL_NOP);
1569 
1570 	poke_srmmu = poke_cypress;
1571 }
1572 
1573 static void __init init_cypress_604(void)
1574 {
1575 	srmmu_name = "ROSS Cypress-604(UP)";
1576 	srmmu_modtype = Cypress;
1577 	init_cypress_common();
1578 }
1579 
1580 static void __init init_cypress_605(unsigned long mrev)
1581 {
1582 	srmmu_name = "ROSS Cypress-605(MP)";
1583 	if(mrev == 0xe) {
1584 		srmmu_modtype = Cypress_vE;
1585 		hwbug_bitmask |= HWBUG_COPYBACK_BROKEN;
1586 	} else {
1587 		if(mrev == 0xd) {
1588 			srmmu_modtype = Cypress_vD;
1589 			hwbug_bitmask |= HWBUG_ASIFLUSH_BROKEN;
1590 		} else {
1591 			srmmu_modtype = Cypress;
1592 		}
1593 	}
1594 	init_cypress_common();
1595 }
1596 
1597 static void __cpuinit poke_swift(void)
1598 {
1599 	unsigned long mreg;
1600 
1601 	/* Clear any crap from the cache or else... */
1602 	swift_flush_cache_all();
1603 
1604 	/* Enable I & D caches */
1605 	mreg = srmmu_get_mmureg();
1606 	mreg |= (SWIFT_IE | SWIFT_DE);
1607 	/*
1608 	 * The Swift branch folding logic is completely broken.  At
1609 	 * trap time, if things are just right, if can mistakenly
1610 	 * think that a trap is coming from kernel mode when in fact
1611 	 * it is coming from user mode (it mis-executes the branch in
1612 	 * the trap code).  So you see things like crashme completely
1613 	 * hosing your machine which is completely unacceptable.  Turn
1614 	 * this shit off... nice job Fujitsu.
1615 	 */
1616 	mreg &= ~(SWIFT_BF);
1617 	srmmu_set_mmureg(mreg);
1618 }
1619 
1620 #define SWIFT_MASKID_ADDR  0x10003018
1621 static void __init init_swift(void)
1622 {
1623 	unsigned long swift_rev;
1624 
1625 	__asm__ __volatile__("lda [%1] %2, %0\n\t"
1626 			     "srl %0, 0x18, %0\n\t" :
1627 			     "=r" (swift_rev) :
1628 			     "r" (SWIFT_MASKID_ADDR), "i" (ASI_M_BYPASS));
1629 	srmmu_name = "Fujitsu Swift";
1630 	switch(swift_rev) {
1631 	case 0x11:
1632 	case 0x20:
1633 	case 0x23:
1634 	case 0x30:
1635 		srmmu_modtype = Swift_lots_o_bugs;
1636 		hwbug_bitmask |= (HWBUG_KERN_ACCBROKEN | HWBUG_KERN_CBITBROKEN);
1637 		/*
1638 		 * Gee george, I wonder why Sun is so hush hush about
1639 		 * this hardware bug... really braindamage stuff going
1640 		 * on here.  However I think we can find a way to avoid
1641 		 * all of the workaround overhead under Linux.  Basically,
1642 		 * any page fault can cause kernel pages to become user
1643 		 * accessible (the mmu gets confused and clears some of
1644 		 * the ACC bits in kernel ptes).  Aha, sounds pretty
1645 		 * horrible eh?  But wait, after extensive testing it appears
1646 		 * that if you use pgd_t level large kernel pte's (like the
1647 		 * 4MB pages on the Pentium) the bug does not get tripped
1648 		 * at all.  This avoids almost all of the major overhead.
1649 		 * Welcome to a world where your vendor tells you to,
1650 		 * "apply this kernel patch" instead of "sorry for the
1651 		 * broken hardware, send it back and we'll give you
1652 		 * properly functioning parts"
1653 		 */
1654 		break;
1655 	case 0x25:
1656 	case 0x31:
1657 		srmmu_modtype = Swift_bad_c;
1658 		hwbug_bitmask |= HWBUG_KERN_CBITBROKEN;
1659 		/*
1660 		 * You see Sun allude to this hardware bug but never
1661 		 * admit things directly, they'll say things like,
1662 		 * "the Swift chip cache problems" or similar.
1663 		 */
1664 		break;
1665 	default:
1666 		srmmu_modtype = Swift_ok;
1667 		break;
1668 	};
1669 
1670 	BTFIXUPSET_CALL(flush_cache_all, swift_flush_cache_all, BTFIXUPCALL_NORM);
1671 	BTFIXUPSET_CALL(flush_cache_mm, swift_flush_cache_mm, BTFIXUPCALL_NORM);
1672 	BTFIXUPSET_CALL(flush_cache_page, swift_flush_cache_page, BTFIXUPCALL_NORM);
1673 	BTFIXUPSET_CALL(flush_cache_range, swift_flush_cache_range, BTFIXUPCALL_NORM);
1674 
1675 
1676 	BTFIXUPSET_CALL(flush_tlb_all, swift_flush_tlb_all, BTFIXUPCALL_NORM);
1677 	BTFIXUPSET_CALL(flush_tlb_mm, swift_flush_tlb_mm, BTFIXUPCALL_NORM);
1678 	BTFIXUPSET_CALL(flush_tlb_page, swift_flush_tlb_page, BTFIXUPCALL_NORM);
1679 	BTFIXUPSET_CALL(flush_tlb_range, swift_flush_tlb_range, BTFIXUPCALL_NORM);
1680 
1681 	BTFIXUPSET_CALL(__flush_page_to_ram, swift_flush_page_to_ram, BTFIXUPCALL_NORM);
1682 	BTFIXUPSET_CALL(flush_sig_insns, swift_flush_sig_insns, BTFIXUPCALL_NORM);
1683 	BTFIXUPSET_CALL(flush_page_for_dma, swift_flush_page_for_dma, BTFIXUPCALL_NORM);
1684 
1685 	BTFIXUPSET_CALL(update_mmu_cache, swift_update_mmu_cache, BTFIXUPCALL_NORM);
1686 
1687 	flush_page_for_dma_global = 0;
1688 
1689 	/*
1690 	 * Are you now convinced that the Swift is one of the
1691 	 * biggest VLSI abortions of all time?  Bravo Fujitsu!
1692 	 * Fujitsu, the !#?!%$'d up processor people.  I bet if
1693 	 * you examined the microcode of the Swift you'd find
1694 	 * XXX's all over the place.
1695 	 */
1696 	poke_srmmu = poke_swift;
1697 }
1698 
1699 static void turbosparc_flush_cache_all(void)
1700 {
1701 	flush_user_windows();
1702 	turbosparc_idflash_clear();
1703 }
1704 
1705 static void turbosparc_flush_cache_mm(struct mm_struct *mm)
1706 {
1707 	FLUSH_BEGIN(mm)
1708 	flush_user_windows();
1709 	turbosparc_idflash_clear();
1710 	FLUSH_END
1711 }
1712 
1713 static void turbosparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1714 {
1715 	FLUSH_BEGIN(vma->vm_mm)
1716 	flush_user_windows();
1717 	turbosparc_idflash_clear();
1718 	FLUSH_END
1719 }
1720 
1721 static void turbosparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
1722 {
1723 	FLUSH_BEGIN(vma->vm_mm)
1724 	flush_user_windows();
1725 	if (vma->vm_flags & VM_EXEC)
1726 		turbosparc_flush_icache();
1727 	turbosparc_flush_dcache();
1728 	FLUSH_END
1729 }
1730 
1731 /* TurboSparc is copy-back, if we turn it on, but this does not work. */
1732 static void turbosparc_flush_page_to_ram(unsigned long page)
1733 {
1734 #ifdef TURBOSPARC_WRITEBACK
1735 	volatile unsigned long clear;
1736 
1737 	if (srmmu_hwprobe(page))
1738 		turbosparc_flush_page_cache(page);
1739 	clear = srmmu_get_fstatus();
1740 #endif
1741 }
1742 
1743 static void turbosparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
1744 {
1745 }
1746 
1747 static void turbosparc_flush_page_for_dma(unsigned long page)
1748 {
1749 	turbosparc_flush_dcache();
1750 }
1751 
1752 static void turbosparc_flush_tlb_all(void)
1753 {
1754 	srmmu_flush_whole_tlb();
1755 }
1756 
1757 static void turbosparc_flush_tlb_mm(struct mm_struct *mm)
1758 {
1759 	FLUSH_BEGIN(mm)
1760 	srmmu_flush_whole_tlb();
1761 	FLUSH_END
1762 }
1763 
1764 static void turbosparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1765 {
1766 	FLUSH_BEGIN(vma->vm_mm)
1767 	srmmu_flush_whole_tlb();
1768 	FLUSH_END
1769 }
1770 
1771 static void turbosparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
1772 {
1773 	FLUSH_BEGIN(vma->vm_mm)
1774 	srmmu_flush_whole_tlb();
1775 	FLUSH_END
1776 }
1777 
1778 
1779 static void __cpuinit poke_turbosparc(void)
1780 {
1781 	unsigned long mreg = srmmu_get_mmureg();
1782 	unsigned long ccreg;
1783 
1784 	/* Clear any crap from the cache or else... */
1785 	turbosparc_flush_cache_all();
1786 	mreg &= ~(TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE); /* Temporarily disable I & D caches */
1787 	mreg &= ~(TURBOSPARC_PCENABLE);		/* Don't check parity */
1788 	srmmu_set_mmureg(mreg);
1789 
1790 	ccreg = turbosparc_get_ccreg();
1791 
1792 #ifdef TURBOSPARC_WRITEBACK
1793 	ccreg |= (TURBOSPARC_SNENABLE);		/* Do DVMA snooping in Dcache */
1794 	ccreg &= ~(TURBOSPARC_uS2 | TURBOSPARC_WTENABLE);
1795 			/* Write-back D-cache, emulate VLSI
1796 			 * abortion number three, not number one */
1797 #else
1798 	/* For now let's play safe, optimize later */
1799 	ccreg |= (TURBOSPARC_SNENABLE | TURBOSPARC_WTENABLE);
1800 			/* Do DVMA snooping in Dcache, Write-thru D-cache */
1801 	ccreg &= ~(TURBOSPARC_uS2);
1802 			/* Emulate VLSI abortion number three, not number one */
1803 #endif
1804 
1805 	switch (ccreg & 7) {
1806 	case 0: /* No SE cache */
1807 	case 7: /* Test mode */
1808 		break;
1809 	default:
1810 		ccreg |= (TURBOSPARC_SCENABLE);
1811 	}
1812 	turbosparc_set_ccreg (ccreg);
1813 
1814 	mreg |= (TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE); /* I & D caches on */
1815 	mreg |= (TURBOSPARC_ICSNOOP);		/* Icache snooping on */
1816 	srmmu_set_mmureg(mreg);
1817 }
1818 
1819 static void __init init_turbosparc(void)
1820 {
1821 	srmmu_name = "Fujitsu TurboSparc";
1822 	srmmu_modtype = TurboSparc;
1823 
1824 	BTFIXUPSET_CALL(flush_cache_all, turbosparc_flush_cache_all, BTFIXUPCALL_NORM);
1825 	BTFIXUPSET_CALL(flush_cache_mm, turbosparc_flush_cache_mm, BTFIXUPCALL_NORM);
1826 	BTFIXUPSET_CALL(flush_cache_page, turbosparc_flush_cache_page, BTFIXUPCALL_NORM);
1827 	BTFIXUPSET_CALL(flush_cache_range, turbosparc_flush_cache_range, BTFIXUPCALL_NORM);
1828 
1829 	BTFIXUPSET_CALL(flush_tlb_all, turbosparc_flush_tlb_all, BTFIXUPCALL_NORM);
1830 	BTFIXUPSET_CALL(flush_tlb_mm, turbosparc_flush_tlb_mm, BTFIXUPCALL_NORM);
1831 	BTFIXUPSET_CALL(flush_tlb_page, turbosparc_flush_tlb_page, BTFIXUPCALL_NORM);
1832 	BTFIXUPSET_CALL(flush_tlb_range, turbosparc_flush_tlb_range, BTFIXUPCALL_NORM);
1833 
1834 	BTFIXUPSET_CALL(__flush_page_to_ram, turbosparc_flush_page_to_ram, BTFIXUPCALL_NORM);
1835 
1836 	BTFIXUPSET_CALL(flush_sig_insns, turbosparc_flush_sig_insns, BTFIXUPCALL_NOP);
1837 	BTFIXUPSET_CALL(flush_page_for_dma, turbosparc_flush_page_for_dma, BTFIXUPCALL_NORM);
1838 
1839 	poke_srmmu = poke_turbosparc;
1840 }
1841 
1842 static void __cpuinit poke_tsunami(void)
1843 {
1844 	unsigned long mreg = srmmu_get_mmureg();
1845 
1846 	tsunami_flush_icache();
1847 	tsunami_flush_dcache();
1848 	mreg &= ~TSUNAMI_ITD;
1849 	mreg |= (TSUNAMI_IENAB | TSUNAMI_DENAB);
1850 	srmmu_set_mmureg(mreg);
1851 }
1852 
1853 static void __init init_tsunami(void)
1854 {
1855 	/*
1856 	 * Tsunami's pretty sane, Sun and TI actually got it
1857 	 * somewhat right this time.  Fujitsu should have
1858 	 * taken some lessons from them.
1859 	 */
1860 
1861 	srmmu_name = "TI Tsunami";
1862 	srmmu_modtype = Tsunami;
1863 
1864 	BTFIXUPSET_CALL(flush_cache_all, tsunami_flush_cache_all, BTFIXUPCALL_NORM);
1865 	BTFIXUPSET_CALL(flush_cache_mm, tsunami_flush_cache_mm, BTFIXUPCALL_NORM);
1866 	BTFIXUPSET_CALL(flush_cache_page, tsunami_flush_cache_page, BTFIXUPCALL_NORM);
1867 	BTFIXUPSET_CALL(flush_cache_range, tsunami_flush_cache_range, BTFIXUPCALL_NORM);
1868 
1869 
1870 	BTFIXUPSET_CALL(flush_tlb_all, tsunami_flush_tlb_all, BTFIXUPCALL_NORM);
1871 	BTFIXUPSET_CALL(flush_tlb_mm, tsunami_flush_tlb_mm, BTFIXUPCALL_NORM);
1872 	BTFIXUPSET_CALL(flush_tlb_page, tsunami_flush_tlb_page, BTFIXUPCALL_NORM);
1873 	BTFIXUPSET_CALL(flush_tlb_range, tsunami_flush_tlb_range, BTFIXUPCALL_NORM);
1874 
1875 	BTFIXUPSET_CALL(__flush_page_to_ram, tsunami_flush_page_to_ram, BTFIXUPCALL_NOP);
1876 	BTFIXUPSET_CALL(flush_sig_insns, tsunami_flush_sig_insns, BTFIXUPCALL_NORM);
1877 	BTFIXUPSET_CALL(flush_page_for_dma, tsunami_flush_page_for_dma, BTFIXUPCALL_NORM);
1878 
1879 	poke_srmmu = poke_tsunami;
1880 
1881 	tsunami_setup_blockops();
1882 }
1883 
1884 static void __cpuinit poke_viking(void)
1885 {
1886 	unsigned long mreg = srmmu_get_mmureg();
1887 	static int smp_catch;
1888 
1889 	if(viking_mxcc_present) {
1890 		unsigned long mxcc_control = mxcc_get_creg();
1891 
1892 		mxcc_control |= (MXCC_CTL_ECE | MXCC_CTL_PRE | MXCC_CTL_MCE);
1893 		mxcc_control &= ~(MXCC_CTL_RRC);
1894 		mxcc_set_creg(mxcc_control);
1895 
1896 		/*
1897 		 * We don't need memory parity checks.
1898 		 * XXX This is a mess, have to dig out later. ecd.
1899 		viking_mxcc_turn_off_parity(&mreg, &mxcc_control);
1900 		 */
1901 
1902 		/* We do cache ptables on MXCC. */
1903 		mreg |= VIKING_TCENABLE;
1904 	} else {
1905 		unsigned long bpreg;
1906 
1907 		mreg &= ~(VIKING_TCENABLE);
1908 		if(smp_catch++) {
1909 			/* Must disable mixed-cmd mode here for other cpu's. */
1910 			bpreg = viking_get_bpreg();
1911 			bpreg &= ~(VIKING_ACTION_MIX);
1912 			viking_set_bpreg(bpreg);
1913 
1914 			/* Just in case PROM does something funny. */
1915 			msi_set_sync();
1916 		}
1917 	}
1918 
1919 	mreg |= VIKING_SPENABLE;
1920 	mreg |= (VIKING_ICENABLE | VIKING_DCENABLE);
1921 	mreg |= VIKING_SBENABLE;
1922 	mreg &= ~(VIKING_ACENABLE);
1923 	srmmu_set_mmureg(mreg);
1924 }
1925 
1926 static void __init init_viking(void)
1927 {
1928 	unsigned long mreg = srmmu_get_mmureg();
1929 
1930 	/* Ahhh, the viking.  SRMMU VLSI abortion number two... */
1931 	if(mreg & VIKING_MMODE) {
1932 		srmmu_name = "TI Viking";
1933 		viking_mxcc_present = 0;
1934 		msi_set_sync();
1935 
1936 		BTFIXUPSET_CALL(pte_clear, srmmu_pte_clear, BTFIXUPCALL_NORM);
1937 		BTFIXUPSET_CALL(pmd_clear, srmmu_pmd_clear, BTFIXUPCALL_NORM);
1938 		BTFIXUPSET_CALL(pgd_clear, srmmu_pgd_clear, BTFIXUPCALL_NORM);
1939 
1940 		/*
1941 		 * We need this to make sure old viking takes no hits
1942 		 * on it's cache for dma snoops to workaround the
1943 		 * "load from non-cacheable memory" interrupt bug.
1944 		 * This is only necessary because of the new way in
1945 		 * which we use the IOMMU.
1946 		 */
1947 		BTFIXUPSET_CALL(flush_page_for_dma, viking_flush_page, BTFIXUPCALL_NORM);
1948 
1949 		flush_page_for_dma_global = 0;
1950 	} else {
1951 		srmmu_name = "TI Viking/MXCC";
1952 		viking_mxcc_present = 1;
1953 
1954 		srmmu_cache_pagetables = 1;
1955 
1956 		/* MXCC vikings lack the DMA snooping bug. */
1957 		BTFIXUPSET_CALL(flush_page_for_dma, viking_flush_page_for_dma, BTFIXUPCALL_NOP);
1958 	}
1959 
1960 	BTFIXUPSET_CALL(flush_cache_all, viking_flush_cache_all, BTFIXUPCALL_NORM);
1961 	BTFIXUPSET_CALL(flush_cache_mm, viking_flush_cache_mm, BTFIXUPCALL_NORM);
1962 	BTFIXUPSET_CALL(flush_cache_page, viking_flush_cache_page, BTFIXUPCALL_NORM);
1963 	BTFIXUPSET_CALL(flush_cache_range, viking_flush_cache_range, BTFIXUPCALL_NORM);
1964 
1965 #ifdef CONFIG_SMP
1966 	if (sparc_cpu_model == sun4d) {
1967 		BTFIXUPSET_CALL(flush_tlb_all, sun4dsmp_flush_tlb_all, BTFIXUPCALL_NORM);
1968 		BTFIXUPSET_CALL(flush_tlb_mm, sun4dsmp_flush_tlb_mm, BTFIXUPCALL_NORM);
1969 		BTFIXUPSET_CALL(flush_tlb_page, sun4dsmp_flush_tlb_page, BTFIXUPCALL_NORM);
1970 		BTFIXUPSET_CALL(flush_tlb_range, sun4dsmp_flush_tlb_range, BTFIXUPCALL_NORM);
1971 	} else
1972 #endif
1973 	{
1974 		BTFIXUPSET_CALL(flush_tlb_all, viking_flush_tlb_all, BTFIXUPCALL_NORM);
1975 		BTFIXUPSET_CALL(flush_tlb_mm, viking_flush_tlb_mm, BTFIXUPCALL_NORM);
1976 		BTFIXUPSET_CALL(flush_tlb_page, viking_flush_tlb_page, BTFIXUPCALL_NORM);
1977 		BTFIXUPSET_CALL(flush_tlb_range, viking_flush_tlb_range, BTFIXUPCALL_NORM);
1978 	}
1979 
1980 	BTFIXUPSET_CALL(__flush_page_to_ram, viking_flush_page_to_ram, BTFIXUPCALL_NOP);
1981 	BTFIXUPSET_CALL(flush_sig_insns, viking_flush_sig_insns, BTFIXUPCALL_NOP);
1982 
1983 	poke_srmmu = poke_viking;
1984 }
1985 
1986 #ifdef CONFIG_SPARC_LEON
1987 
1988 void __init poke_leonsparc(void)
1989 {
1990 }
1991 
1992 void __init init_leon(void)
1993 {
1994 
1995 	srmmu_name = "LEON";
1996 
1997 	BTFIXUPSET_CALL(flush_cache_all, leon_flush_cache_all,
1998 			BTFIXUPCALL_NORM);
1999 	BTFIXUPSET_CALL(flush_cache_mm, leon_flush_cache_all,
2000 			BTFIXUPCALL_NORM);
2001 	BTFIXUPSET_CALL(flush_cache_page, leon_flush_pcache_all,
2002 			BTFIXUPCALL_NORM);
2003 	BTFIXUPSET_CALL(flush_cache_range, leon_flush_cache_all,
2004 			BTFIXUPCALL_NORM);
2005 	BTFIXUPSET_CALL(flush_page_for_dma, leon_flush_dcache_all,
2006 			BTFIXUPCALL_NORM);
2007 
2008 	BTFIXUPSET_CALL(flush_tlb_all, leon_flush_tlb_all, BTFIXUPCALL_NORM);
2009 	BTFIXUPSET_CALL(flush_tlb_mm, leon_flush_tlb_all, BTFIXUPCALL_NORM);
2010 	BTFIXUPSET_CALL(flush_tlb_page, leon_flush_tlb_all, BTFIXUPCALL_NORM);
2011 	BTFIXUPSET_CALL(flush_tlb_range, leon_flush_tlb_all, BTFIXUPCALL_NORM);
2012 
2013 	BTFIXUPSET_CALL(__flush_page_to_ram, leon_flush_cache_all,
2014 			BTFIXUPCALL_NOP);
2015 	BTFIXUPSET_CALL(flush_sig_insns, leon_flush_cache_all, BTFIXUPCALL_NOP);
2016 
2017 	poke_srmmu = poke_leonsparc;
2018 
2019 	srmmu_cache_pagetables = 0;
2020 
2021 	leon_flush_during_switch = leon_flush_needed();
2022 }
2023 #endif
2024 
2025 /* Probe for the srmmu chip version. */
2026 static void __init get_srmmu_type(void)
2027 {
2028 	unsigned long mreg, psr;
2029 	unsigned long mod_typ, mod_rev, psr_typ, psr_vers;
2030 
2031 	srmmu_modtype = SRMMU_INVAL_MOD;
2032 	hwbug_bitmask = 0;
2033 
2034 	mreg = srmmu_get_mmureg(); psr = get_psr();
2035 	mod_typ = (mreg & 0xf0000000) >> 28;
2036 	mod_rev = (mreg & 0x0f000000) >> 24;
2037 	psr_typ = (psr >> 28) & 0xf;
2038 	psr_vers = (psr >> 24) & 0xf;
2039 
2040 	/* First, check for sparc-leon. */
2041 	if (sparc_cpu_model == sparc_leon) {
2042 		init_leon();
2043 		return;
2044 	}
2045 
2046 	/* Second, check for HyperSparc or Cypress. */
2047 	if(mod_typ == 1) {
2048 		switch(mod_rev) {
2049 		case 7:
2050 			/* UP or MP Hypersparc */
2051 			init_hypersparc();
2052 			break;
2053 		case 0:
2054 		case 2:
2055 			/* Uniprocessor Cypress */
2056 			init_cypress_604();
2057 			break;
2058 		case 10:
2059 		case 11:
2060 		case 12:
2061 			/* _REALLY OLD_ Cypress MP chips... */
2062 		case 13:
2063 		case 14:
2064 		case 15:
2065 			/* MP Cypress mmu/cache-controller */
2066 			init_cypress_605(mod_rev);
2067 			break;
2068 		default:
2069 			/* Some other Cypress revision, assume a 605. */
2070 			init_cypress_605(mod_rev);
2071 			break;
2072 		};
2073 		return;
2074 	}
2075 
2076 	/*
2077 	 * Now Fujitsu TurboSparc. It might happen that it is
2078 	 * in Swift emulation mode, so we will check later...
2079 	 */
2080 	if (psr_typ == 0 && psr_vers == 5) {
2081 		init_turbosparc();
2082 		return;
2083 	}
2084 
2085 	/* Next check for Fujitsu Swift. */
2086 	if(psr_typ == 0 && psr_vers == 4) {
2087 		phandle cpunode;
2088 		char node_str[128];
2089 
2090 		/* Look if it is not a TurboSparc emulating Swift... */
2091 		cpunode = prom_getchild(prom_root_node);
2092 		while((cpunode = prom_getsibling(cpunode)) != 0) {
2093 			prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
2094 			if(!strcmp(node_str, "cpu")) {
2095 				if (!prom_getintdefault(cpunode, "psr-implementation", 1) &&
2096 				    prom_getintdefault(cpunode, "psr-version", 1) == 5) {
2097 					init_turbosparc();
2098 					return;
2099 				}
2100 				break;
2101 			}
2102 		}
2103 
2104 		init_swift();
2105 		return;
2106 	}
2107 
2108 	/* Now the Viking family of srmmu. */
2109 	if(psr_typ == 4 &&
2110 	   ((psr_vers == 0) ||
2111 	    ((psr_vers == 1) && (mod_typ == 0) && (mod_rev == 0)))) {
2112 		init_viking();
2113 		return;
2114 	}
2115 
2116 	/* Finally the Tsunami. */
2117 	if(psr_typ == 4 && psr_vers == 1 && (mod_typ || mod_rev)) {
2118 		init_tsunami();
2119 		return;
2120 	}
2121 
2122 	/* Oh well */
2123 	srmmu_is_bad();
2124 }
2125 
2126 /* don't laugh, static pagetables */
2127 static void srmmu_check_pgt_cache(int low, int high)
2128 {
2129 }
2130 
2131 extern unsigned long spwin_mmu_patchme, fwin_mmu_patchme,
2132 	tsetup_mmu_patchme, rtrap_mmu_patchme;
2133 
2134 extern unsigned long spwin_srmmu_stackchk, srmmu_fwin_stackchk,
2135 	tsetup_srmmu_stackchk, srmmu_rett_stackchk;
2136 
2137 extern unsigned long srmmu_fault;
2138 
2139 #define PATCH_BRANCH(insn, dest) do { \
2140 		iaddr = &(insn); \
2141 		daddr = &(dest); \
2142 		*iaddr = SPARC_BRANCH((unsigned long) daddr, (unsigned long) iaddr); \
2143 	} while(0)
2144 
2145 static void __init patch_window_trap_handlers(void)
2146 {
2147 	unsigned long *iaddr, *daddr;
2148 
2149 	PATCH_BRANCH(spwin_mmu_patchme, spwin_srmmu_stackchk);
2150 	PATCH_BRANCH(fwin_mmu_patchme, srmmu_fwin_stackchk);
2151 	PATCH_BRANCH(tsetup_mmu_patchme, tsetup_srmmu_stackchk);
2152 	PATCH_BRANCH(rtrap_mmu_patchme, srmmu_rett_stackchk);
2153 	PATCH_BRANCH(sparc_ttable[SP_TRAP_TFLT].inst_three, srmmu_fault);
2154 	PATCH_BRANCH(sparc_ttable[SP_TRAP_DFLT].inst_three, srmmu_fault);
2155 	PATCH_BRANCH(sparc_ttable[SP_TRAP_DACC].inst_three, srmmu_fault);
2156 }
2157 
2158 #ifdef CONFIG_SMP
2159 /* Local cross-calls. */
2160 static void smp_flush_page_for_dma(unsigned long page)
2161 {
2162 	xc1((smpfunc_t) BTFIXUP_CALL(local_flush_page_for_dma), page);
2163 	local_flush_page_for_dma(page);
2164 }
2165 
2166 #endif
2167 
2168 static pte_t srmmu_pgoff_to_pte(unsigned long pgoff)
2169 {
2170 	return __pte((pgoff << SRMMU_PTE_FILE_SHIFT) | SRMMU_FILE);
2171 }
2172 
2173 static unsigned long srmmu_pte_to_pgoff(pte_t pte)
2174 {
2175 	return pte_val(pte) >> SRMMU_PTE_FILE_SHIFT;
2176 }
2177 
2178 static pgprot_t srmmu_pgprot_noncached(pgprot_t prot)
2179 {
2180 	prot &= ~__pgprot(SRMMU_CACHE);
2181 
2182 	return prot;
2183 }
2184 
2185 /* Load up routines and constants for sun4m and sun4d mmu */
2186 void __init ld_mmu_srmmu(void)
2187 {
2188 	extern void ld_mmu_iommu(void);
2189 	extern void ld_mmu_iounit(void);
2190 	extern void ___xchg32_sun4md(void);
2191 
2192 	BTFIXUPSET_SIMM13(pgdir_shift, SRMMU_PGDIR_SHIFT);
2193 	BTFIXUPSET_SETHI(pgdir_size, SRMMU_PGDIR_SIZE);
2194 	BTFIXUPSET_SETHI(pgdir_mask, SRMMU_PGDIR_MASK);
2195 
2196 	BTFIXUPSET_SIMM13(ptrs_per_pmd, SRMMU_PTRS_PER_PMD);
2197 	BTFIXUPSET_SIMM13(ptrs_per_pgd, SRMMU_PTRS_PER_PGD);
2198 
2199 	BTFIXUPSET_INT(page_none, pgprot_val(SRMMU_PAGE_NONE));
2200 	PAGE_SHARED = pgprot_val(SRMMU_PAGE_SHARED);
2201 	BTFIXUPSET_INT(page_copy, pgprot_val(SRMMU_PAGE_COPY));
2202 	BTFIXUPSET_INT(page_readonly, pgprot_val(SRMMU_PAGE_RDONLY));
2203 	BTFIXUPSET_INT(page_kernel, pgprot_val(SRMMU_PAGE_KERNEL));
2204 	page_kernel = pgprot_val(SRMMU_PAGE_KERNEL);
2205 
2206 	/* Functions */
2207 	BTFIXUPSET_CALL(pgprot_noncached, srmmu_pgprot_noncached, BTFIXUPCALL_NORM);
2208 #ifndef CONFIG_SMP
2209 	BTFIXUPSET_CALL(___xchg32, ___xchg32_sun4md, BTFIXUPCALL_SWAPG1G2);
2210 #endif
2211 	BTFIXUPSET_CALL(do_check_pgt_cache, srmmu_check_pgt_cache, BTFIXUPCALL_NOP);
2212 
2213 	BTFIXUPSET_CALL(set_pte, srmmu_set_pte, BTFIXUPCALL_SWAPO0O1);
2214 	BTFIXUPSET_CALL(switch_mm, srmmu_switch_mm, BTFIXUPCALL_NORM);
2215 
2216 	BTFIXUPSET_CALL(pte_pfn, srmmu_pte_pfn, BTFIXUPCALL_NORM);
2217 	BTFIXUPSET_CALL(pmd_page, srmmu_pmd_page, BTFIXUPCALL_NORM);
2218 	BTFIXUPSET_CALL(pgd_page_vaddr, srmmu_pgd_page, BTFIXUPCALL_NORM);
2219 
2220 	BTFIXUPSET_CALL(pte_present, srmmu_pte_present, BTFIXUPCALL_NORM);
2221 	BTFIXUPSET_CALL(pte_clear, srmmu_pte_clear, BTFIXUPCALL_SWAPO0G0);
2222 
2223 	BTFIXUPSET_CALL(pmd_bad, srmmu_pmd_bad, BTFIXUPCALL_NORM);
2224 	BTFIXUPSET_CALL(pmd_present, srmmu_pmd_present, BTFIXUPCALL_NORM);
2225 	BTFIXUPSET_CALL(pmd_clear, srmmu_pmd_clear, BTFIXUPCALL_SWAPO0G0);
2226 
2227 	BTFIXUPSET_CALL(pgd_none, srmmu_pgd_none, BTFIXUPCALL_NORM);
2228 	BTFIXUPSET_CALL(pgd_bad, srmmu_pgd_bad, BTFIXUPCALL_NORM);
2229 	BTFIXUPSET_CALL(pgd_present, srmmu_pgd_present, BTFIXUPCALL_NORM);
2230 	BTFIXUPSET_CALL(pgd_clear, srmmu_pgd_clear, BTFIXUPCALL_SWAPO0G0);
2231 
2232 	BTFIXUPSET_CALL(mk_pte, srmmu_mk_pte, BTFIXUPCALL_NORM);
2233 	BTFIXUPSET_CALL(mk_pte_phys, srmmu_mk_pte_phys, BTFIXUPCALL_NORM);
2234 	BTFIXUPSET_CALL(mk_pte_io, srmmu_mk_pte_io, BTFIXUPCALL_NORM);
2235 	BTFIXUPSET_CALL(pgd_set, srmmu_pgd_set, BTFIXUPCALL_NORM);
2236 	BTFIXUPSET_CALL(pmd_set, srmmu_pmd_set, BTFIXUPCALL_NORM);
2237 	BTFIXUPSET_CALL(pmd_populate, srmmu_pmd_populate, BTFIXUPCALL_NORM);
2238 
2239 	BTFIXUPSET_INT(pte_modify_mask, SRMMU_CHG_MASK);
2240 	BTFIXUPSET_CALL(pmd_offset, srmmu_pmd_offset, BTFIXUPCALL_NORM);
2241 	BTFIXUPSET_CALL(pte_offset_kernel, srmmu_pte_offset, BTFIXUPCALL_NORM);
2242 
2243 	BTFIXUPSET_CALL(free_pte_fast, srmmu_free_pte_fast, BTFIXUPCALL_NORM);
2244 	BTFIXUPSET_CALL(pte_free, srmmu_pte_free, BTFIXUPCALL_NORM);
2245 	BTFIXUPSET_CALL(pte_alloc_one_kernel, srmmu_pte_alloc_one_kernel, BTFIXUPCALL_NORM);
2246 	BTFIXUPSET_CALL(pte_alloc_one, srmmu_pte_alloc_one, BTFIXUPCALL_NORM);
2247 	BTFIXUPSET_CALL(free_pmd_fast, srmmu_pmd_free, BTFIXUPCALL_NORM);
2248 	BTFIXUPSET_CALL(pmd_alloc_one, srmmu_pmd_alloc_one, BTFIXUPCALL_NORM);
2249 	BTFIXUPSET_CALL(free_pgd_fast, srmmu_free_pgd_fast, BTFIXUPCALL_NORM);
2250 	BTFIXUPSET_CALL(get_pgd_fast, srmmu_get_pgd_fast, BTFIXUPCALL_NORM);
2251 
2252 	BTFIXUPSET_HALF(pte_writei, SRMMU_WRITE);
2253 	BTFIXUPSET_HALF(pte_dirtyi, SRMMU_DIRTY);
2254 	BTFIXUPSET_HALF(pte_youngi, SRMMU_REF);
2255 	BTFIXUPSET_HALF(pte_filei, SRMMU_FILE);
2256 	BTFIXUPSET_HALF(pte_wrprotecti, SRMMU_WRITE);
2257 	BTFIXUPSET_HALF(pte_mkcleani, SRMMU_DIRTY);
2258 	BTFIXUPSET_HALF(pte_mkoldi, SRMMU_REF);
2259 	BTFIXUPSET_CALL(pte_mkwrite, srmmu_pte_mkwrite, BTFIXUPCALL_ORINT(SRMMU_WRITE));
2260 	BTFIXUPSET_CALL(pte_mkdirty, srmmu_pte_mkdirty, BTFIXUPCALL_ORINT(SRMMU_DIRTY));
2261 	BTFIXUPSET_CALL(pte_mkyoung, srmmu_pte_mkyoung, BTFIXUPCALL_ORINT(SRMMU_REF));
2262 	BTFIXUPSET_CALL(update_mmu_cache, srmmu_update_mmu_cache, BTFIXUPCALL_NOP);
2263 	BTFIXUPSET_CALL(destroy_context, srmmu_destroy_context, BTFIXUPCALL_NORM);
2264 
2265 	BTFIXUPSET_CALL(sparc_mapiorange, srmmu_mapiorange, BTFIXUPCALL_NORM);
2266 	BTFIXUPSET_CALL(sparc_unmapiorange, srmmu_unmapiorange, BTFIXUPCALL_NORM);
2267 
2268 	BTFIXUPSET_CALL(__swp_type, srmmu_swp_type, BTFIXUPCALL_NORM);
2269 	BTFIXUPSET_CALL(__swp_offset, srmmu_swp_offset, BTFIXUPCALL_NORM);
2270 	BTFIXUPSET_CALL(__swp_entry, srmmu_swp_entry, BTFIXUPCALL_NORM);
2271 
2272 	BTFIXUPSET_CALL(mmu_info, srmmu_mmu_info, BTFIXUPCALL_NORM);
2273 
2274 	BTFIXUPSET_CALL(alloc_thread_info, srmmu_alloc_thread_info, BTFIXUPCALL_NORM);
2275 	BTFIXUPSET_CALL(free_thread_info, srmmu_free_thread_info, BTFIXUPCALL_NORM);
2276 
2277 	BTFIXUPSET_CALL(pte_to_pgoff, srmmu_pte_to_pgoff, BTFIXUPCALL_NORM);
2278 	BTFIXUPSET_CALL(pgoff_to_pte, srmmu_pgoff_to_pte, BTFIXUPCALL_NORM);
2279 
2280 	get_srmmu_type();
2281 	patch_window_trap_handlers();
2282 
2283 #ifdef CONFIG_SMP
2284 	/* El switcheroo... */
2285 
2286 	BTFIXUPCOPY_CALL(local_flush_cache_all, flush_cache_all);
2287 	BTFIXUPCOPY_CALL(local_flush_cache_mm, flush_cache_mm);
2288 	BTFIXUPCOPY_CALL(local_flush_cache_range, flush_cache_range);
2289 	BTFIXUPCOPY_CALL(local_flush_cache_page, flush_cache_page);
2290 	BTFIXUPCOPY_CALL(local_flush_tlb_all, flush_tlb_all);
2291 	BTFIXUPCOPY_CALL(local_flush_tlb_mm, flush_tlb_mm);
2292 	BTFIXUPCOPY_CALL(local_flush_tlb_range, flush_tlb_range);
2293 	BTFIXUPCOPY_CALL(local_flush_tlb_page, flush_tlb_page);
2294 	BTFIXUPCOPY_CALL(local_flush_page_to_ram, __flush_page_to_ram);
2295 	BTFIXUPCOPY_CALL(local_flush_sig_insns, flush_sig_insns);
2296 	BTFIXUPCOPY_CALL(local_flush_page_for_dma, flush_page_for_dma);
2297 
2298 	BTFIXUPSET_CALL(flush_cache_all, smp_flush_cache_all, BTFIXUPCALL_NORM);
2299 	BTFIXUPSET_CALL(flush_cache_mm, smp_flush_cache_mm, BTFIXUPCALL_NORM);
2300 	BTFIXUPSET_CALL(flush_cache_range, smp_flush_cache_range, BTFIXUPCALL_NORM);
2301 	BTFIXUPSET_CALL(flush_cache_page, smp_flush_cache_page, BTFIXUPCALL_NORM);
2302 	if (sparc_cpu_model != sun4d &&
2303 	    sparc_cpu_model != sparc_leon) {
2304 		BTFIXUPSET_CALL(flush_tlb_all, smp_flush_tlb_all, BTFIXUPCALL_NORM);
2305 		BTFIXUPSET_CALL(flush_tlb_mm, smp_flush_tlb_mm, BTFIXUPCALL_NORM);
2306 		BTFIXUPSET_CALL(flush_tlb_range, smp_flush_tlb_range, BTFIXUPCALL_NORM);
2307 		BTFIXUPSET_CALL(flush_tlb_page, smp_flush_tlb_page, BTFIXUPCALL_NORM);
2308 	}
2309 	BTFIXUPSET_CALL(__flush_page_to_ram, smp_flush_page_to_ram, BTFIXUPCALL_NORM);
2310 	BTFIXUPSET_CALL(flush_sig_insns, smp_flush_sig_insns, BTFIXUPCALL_NORM);
2311 	BTFIXUPSET_CALL(flush_page_for_dma, smp_flush_page_for_dma, BTFIXUPCALL_NORM);
2312 
2313 	if (poke_srmmu == poke_viking) {
2314 		/* Avoid unnecessary cross calls. */
2315 		BTFIXUPCOPY_CALL(flush_cache_all, local_flush_cache_all);
2316 		BTFIXUPCOPY_CALL(flush_cache_mm, local_flush_cache_mm);
2317 		BTFIXUPCOPY_CALL(flush_cache_range, local_flush_cache_range);
2318 		BTFIXUPCOPY_CALL(flush_cache_page, local_flush_cache_page);
2319 		BTFIXUPCOPY_CALL(__flush_page_to_ram, local_flush_page_to_ram);
2320 		BTFIXUPCOPY_CALL(flush_sig_insns, local_flush_sig_insns);
2321 		BTFIXUPCOPY_CALL(flush_page_for_dma, local_flush_page_for_dma);
2322 	}
2323 #endif
2324 
2325 	if (sparc_cpu_model == sun4d)
2326 		ld_mmu_iounit();
2327 	else
2328 		ld_mmu_iommu();
2329 #ifdef CONFIG_SMP
2330 	if (sparc_cpu_model == sun4d)
2331 		sun4d_init_smp();
2332 	else if (sparc_cpu_model == sparc_leon)
2333 		leon_init_smp();
2334 	else
2335 		sun4m_init_smp();
2336 #endif
2337 }
2338