1 /* 2 * srmmu.c: SRMMU specific routines for memory management. 3 * 4 * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu) 5 * Copyright (C) 1995,2002 Pete Zaitcev (zaitcev@yahoo.com) 6 * Copyright (C) 1996 Eddie C. Dost (ecd@skynet.be) 7 * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz) 8 * Copyright (C) 1999,2000 Anton Blanchard (anton@samba.org) 9 */ 10 11 #include <linux/kernel.h> 12 #include <linux/mm.h> 13 #include <linux/vmalloc.h> 14 #include <linux/pagemap.h> 15 #include <linux/init.h> 16 #include <linux/spinlock.h> 17 #include <linux/bootmem.h> 18 #include <linux/fs.h> 19 #include <linux/seq_file.h> 20 #include <linux/kdebug.h> 21 #include <linux/log2.h> 22 #include <linux/gfp.h> 23 24 #include <asm/bitext.h> 25 #include <asm/page.h> 26 #include <asm/pgalloc.h> 27 #include <asm/pgtable.h> 28 #include <asm/io.h> 29 #include <asm/vaddrs.h> 30 #include <asm/traps.h> 31 #include <asm/smp.h> 32 #include <asm/mbus.h> 33 #include <asm/cache.h> 34 #include <asm/oplib.h> 35 #include <asm/asi.h> 36 #include <asm/msi.h> 37 #include <asm/mmu_context.h> 38 #include <asm/io-unit.h> 39 #include <asm/cacheflush.h> 40 #include <asm/tlbflush.h> 41 42 /* Now the cpu specific definitions. */ 43 #include <asm/viking.h> 44 #include <asm/mxcc.h> 45 #include <asm/ross.h> 46 #include <asm/tsunami.h> 47 #include <asm/swift.h> 48 #include <asm/turbosparc.h> 49 #include <asm/leon.h> 50 51 #include <asm/btfixup.h> 52 53 enum mbus_module srmmu_modtype; 54 static unsigned int hwbug_bitmask; 55 int vac_cache_size; 56 int vac_line_size; 57 58 extern struct resource sparc_iomap; 59 60 extern unsigned long last_valid_pfn; 61 62 extern unsigned long page_kernel; 63 64 static pgd_t *srmmu_swapper_pg_dir; 65 66 #ifdef CONFIG_SMP 67 #define FLUSH_BEGIN(mm) 68 #define FLUSH_END 69 #else 70 #define FLUSH_BEGIN(mm) if((mm)->context != NO_CONTEXT) { 71 #define FLUSH_END } 72 #endif 73 74 BTFIXUPDEF_CALL(void, flush_page_for_dma, unsigned long) 75 #define flush_page_for_dma(page) BTFIXUP_CALL(flush_page_for_dma)(page) 76 77 int flush_page_for_dma_global = 1; 78 79 #ifdef CONFIG_SMP 80 BTFIXUPDEF_CALL(void, local_flush_page_for_dma, unsigned long) 81 #define local_flush_page_for_dma(page) BTFIXUP_CALL(local_flush_page_for_dma)(page) 82 #endif 83 84 char *srmmu_name; 85 86 ctxd_t *srmmu_ctx_table_phys; 87 static ctxd_t *srmmu_context_table; 88 89 int viking_mxcc_present; 90 static DEFINE_SPINLOCK(srmmu_context_spinlock); 91 92 static int is_hypersparc; 93 94 /* 95 * In general all page table modifications should use the V8 atomic 96 * swap instruction. This insures the mmu and the cpu are in sync 97 * with respect to ref/mod bits in the page tables. 98 */ 99 static inline unsigned long srmmu_swap(unsigned long *addr, unsigned long value) 100 { 101 __asm__ __volatile__("swap [%2], %0" : "=&r" (value) : "0" (value), "r" (addr)); 102 return value; 103 } 104 105 static inline void srmmu_set_pte(pte_t *ptep, pte_t pteval) 106 { 107 srmmu_swap((unsigned long *)ptep, pte_val(pteval)); 108 } 109 110 /* The very generic SRMMU page table operations. */ 111 static inline int srmmu_device_memory(unsigned long x) 112 { 113 return ((x & 0xF0000000) != 0); 114 } 115 116 static int srmmu_cache_pagetables; 117 118 /* these will be initialized in srmmu_nocache_calcsize() */ 119 static unsigned long srmmu_nocache_size; 120 static unsigned long srmmu_nocache_end; 121 122 /* 1 bit <=> 256 bytes of nocache <=> 64 PTEs */ 123 #define SRMMU_NOCACHE_BITMAP_SHIFT (PAGE_SHIFT - 4) 124 125 /* The context table is a nocache user with the biggest alignment needs. */ 126 #define SRMMU_NOCACHE_ALIGN_MAX (sizeof(ctxd_t)*SRMMU_MAX_CONTEXTS) 127 128 void *srmmu_nocache_pool; 129 void *srmmu_nocache_bitmap; 130 static struct bit_map srmmu_nocache_map; 131 132 static unsigned long srmmu_pte_pfn(pte_t pte) 133 { 134 if (srmmu_device_memory(pte_val(pte))) { 135 /* Just return something that will cause 136 * pfn_valid() to return false. This makes 137 * copy_one_pte() to just directly copy to 138 * PTE over. 139 */ 140 return ~0UL; 141 } 142 return (pte_val(pte) & SRMMU_PTE_PMASK) >> (PAGE_SHIFT-4); 143 } 144 145 static struct page *srmmu_pmd_page(pmd_t pmd) 146 { 147 148 if (srmmu_device_memory(pmd_val(pmd))) 149 BUG(); 150 return pfn_to_page((pmd_val(pmd) & SRMMU_PTD_PMASK) >> (PAGE_SHIFT-4)); 151 } 152 153 static inline unsigned long srmmu_pgd_page(pgd_t pgd) 154 { return srmmu_device_memory(pgd_val(pgd))?~0:(unsigned long)__nocache_va((pgd_val(pgd) & SRMMU_PTD_PMASK) << 4); } 155 156 157 static inline int srmmu_pte_none(pte_t pte) 158 { return !(pte_val(pte) & 0xFFFFFFF); } 159 160 static inline int srmmu_pte_present(pte_t pte) 161 { return ((pte_val(pte) & SRMMU_ET_MASK) == SRMMU_ET_PTE); } 162 163 static inline void srmmu_pte_clear(pte_t *ptep) 164 { srmmu_set_pte(ptep, __pte(0)); } 165 166 static inline int srmmu_pmd_none(pmd_t pmd) 167 { return !(pmd_val(pmd) & 0xFFFFFFF); } 168 169 static inline int srmmu_pmd_bad(pmd_t pmd) 170 { return (pmd_val(pmd) & SRMMU_ET_MASK) != SRMMU_ET_PTD; } 171 172 static inline int srmmu_pmd_present(pmd_t pmd) 173 { return ((pmd_val(pmd) & SRMMU_ET_MASK) == SRMMU_ET_PTD); } 174 175 static inline void srmmu_pmd_clear(pmd_t *pmdp) { 176 int i; 177 for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) 178 srmmu_set_pte((pte_t *)&pmdp->pmdv[i], __pte(0)); 179 } 180 181 static inline int srmmu_pgd_none(pgd_t pgd) 182 { return !(pgd_val(pgd) & 0xFFFFFFF); } 183 184 static inline int srmmu_pgd_bad(pgd_t pgd) 185 { return (pgd_val(pgd) & SRMMU_ET_MASK) != SRMMU_ET_PTD; } 186 187 static inline int srmmu_pgd_present(pgd_t pgd) 188 { return ((pgd_val(pgd) & SRMMU_ET_MASK) == SRMMU_ET_PTD); } 189 190 static inline void srmmu_pgd_clear(pgd_t * pgdp) 191 { srmmu_set_pte((pte_t *)pgdp, __pte(0)); } 192 193 static inline pte_t srmmu_pte_wrprotect(pte_t pte) 194 { return __pte(pte_val(pte) & ~SRMMU_WRITE);} 195 196 static inline pte_t srmmu_pte_mkclean(pte_t pte) 197 { return __pte(pte_val(pte) & ~SRMMU_DIRTY);} 198 199 static inline pte_t srmmu_pte_mkold(pte_t pte) 200 { return __pte(pte_val(pte) & ~SRMMU_REF);} 201 202 static inline pte_t srmmu_pte_mkwrite(pte_t pte) 203 { return __pte(pte_val(pte) | SRMMU_WRITE);} 204 205 static inline pte_t srmmu_pte_mkdirty(pte_t pte) 206 { return __pte(pte_val(pte) | SRMMU_DIRTY);} 207 208 static inline pte_t srmmu_pte_mkyoung(pte_t pte) 209 { return __pte(pte_val(pte) | SRMMU_REF);} 210 211 /* 212 * Conversion functions: convert a page and protection to a page entry, 213 * and a page entry and page directory to the page they refer to. 214 */ 215 static pte_t srmmu_mk_pte(struct page *page, pgprot_t pgprot) 216 { return __pte((page_to_pfn(page) << (PAGE_SHIFT-4)) | pgprot_val(pgprot)); } 217 218 static pte_t srmmu_mk_pte_phys(unsigned long page, pgprot_t pgprot) 219 { return __pte(((page) >> 4) | pgprot_val(pgprot)); } 220 221 static pte_t srmmu_mk_pte_io(unsigned long page, pgprot_t pgprot, int space) 222 { return __pte(((page) >> 4) | (space << 28) | pgprot_val(pgprot)); } 223 224 /* XXX should we hyper_flush_whole_icache here - Anton */ 225 static inline void srmmu_ctxd_set(ctxd_t *ctxp, pgd_t *pgdp) 226 { srmmu_set_pte((pte_t *)ctxp, (SRMMU_ET_PTD | (__nocache_pa((unsigned long) pgdp) >> 4))); } 227 228 static inline void srmmu_pgd_set(pgd_t * pgdp, pmd_t * pmdp) 229 { srmmu_set_pte((pte_t *)pgdp, (SRMMU_ET_PTD | (__nocache_pa((unsigned long) pmdp) >> 4))); } 230 231 static void srmmu_pmd_set(pmd_t *pmdp, pte_t *ptep) 232 { 233 unsigned long ptp; /* Physical address, shifted right by 4 */ 234 int i; 235 236 ptp = __nocache_pa((unsigned long) ptep) >> 4; 237 for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) { 238 srmmu_set_pte((pte_t *)&pmdp->pmdv[i], SRMMU_ET_PTD | ptp); 239 ptp += (SRMMU_REAL_PTRS_PER_PTE*sizeof(pte_t) >> 4); 240 } 241 } 242 243 static void srmmu_pmd_populate(pmd_t *pmdp, struct page *ptep) 244 { 245 unsigned long ptp; /* Physical address, shifted right by 4 */ 246 int i; 247 248 ptp = page_to_pfn(ptep) << (PAGE_SHIFT-4); /* watch for overflow */ 249 for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) { 250 srmmu_set_pte((pte_t *)&pmdp->pmdv[i], SRMMU_ET_PTD | ptp); 251 ptp += (SRMMU_REAL_PTRS_PER_PTE*sizeof(pte_t) >> 4); 252 } 253 } 254 255 static inline pte_t srmmu_pte_modify(pte_t pte, pgprot_t newprot) 256 { return __pte((pte_val(pte) & SRMMU_CHG_MASK) | pgprot_val(newprot)); } 257 258 /* to find an entry in a top-level page table... */ 259 static inline pgd_t *srmmu_pgd_offset(struct mm_struct * mm, unsigned long address) 260 { return mm->pgd + (address >> SRMMU_PGDIR_SHIFT); } 261 262 /* Find an entry in the second-level page table.. */ 263 static inline pmd_t *srmmu_pmd_offset(pgd_t * dir, unsigned long address) 264 { 265 return (pmd_t *) srmmu_pgd_page(*dir) + 266 ((address >> PMD_SHIFT) & (PTRS_PER_PMD - 1)); 267 } 268 269 /* Find an entry in the third-level page table.. */ 270 static inline pte_t *srmmu_pte_offset(pmd_t * dir, unsigned long address) 271 { 272 void *pte; 273 274 pte = __nocache_va((dir->pmdv[0] & SRMMU_PTD_PMASK) << 4); 275 return (pte_t *) pte + 276 ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)); 277 } 278 279 static unsigned long srmmu_swp_type(swp_entry_t entry) 280 { 281 return (entry.val >> SRMMU_SWP_TYPE_SHIFT) & SRMMU_SWP_TYPE_MASK; 282 } 283 284 static unsigned long srmmu_swp_offset(swp_entry_t entry) 285 { 286 return (entry.val >> SRMMU_SWP_OFF_SHIFT) & SRMMU_SWP_OFF_MASK; 287 } 288 289 static swp_entry_t srmmu_swp_entry(unsigned long type, unsigned long offset) 290 { 291 return (swp_entry_t) { 292 (type & SRMMU_SWP_TYPE_MASK) << SRMMU_SWP_TYPE_SHIFT 293 | (offset & SRMMU_SWP_OFF_MASK) << SRMMU_SWP_OFF_SHIFT }; 294 } 295 296 /* 297 * size: bytes to allocate in the nocache area. 298 * align: bytes, number to align at. 299 * Returns the virtual address of the allocated area. 300 */ 301 static unsigned long __srmmu_get_nocache(int size, int align) 302 { 303 int offset; 304 305 if (size < SRMMU_NOCACHE_BITMAP_SHIFT) { 306 printk("Size 0x%x too small for nocache request\n", size); 307 size = SRMMU_NOCACHE_BITMAP_SHIFT; 308 } 309 if (size & (SRMMU_NOCACHE_BITMAP_SHIFT-1)) { 310 printk("Size 0x%x unaligned int nocache request\n", size); 311 size += SRMMU_NOCACHE_BITMAP_SHIFT-1; 312 } 313 BUG_ON(align > SRMMU_NOCACHE_ALIGN_MAX); 314 315 offset = bit_map_string_get(&srmmu_nocache_map, 316 size >> SRMMU_NOCACHE_BITMAP_SHIFT, 317 align >> SRMMU_NOCACHE_BITMAP_SHIFT); 318 if (offset == -1) { 319 printk("srmmu: out of nocache %d: %d/%d\n", 320 size, (int) srmmu_nocache_size, 321 srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT); 322 return 0; 323 } 324 325 return (SRMMU_NOCACHE_VADDR + (offset << SRMMU_NOCACHE_BITMAP_SHIFT)); 326 } 327 328 static unsigned long srmmu_get_nocache(int size, int align) 329 { 330 unsigned long tmp; 331 332 tmp = __srmmu_get_nocache(size, align); 333 334 if (tmp) 335 memset((void *)tmp, 0, size); 336 337 return tmp; 338 } 339 340 static void srmmu_free_nocache(unsigned long vaddr, int size) 341 { 342 int offset; 343 344 if (vaddr < SRMMU_NOCACHE_VADDR) { 345 printk("Vaddr %lx is smaller than nocache base 0x%lx\n", 346 vaddr, (unsigned long)SRMMU_NOCACHE_VADDR); 347 BUG(); 348 } 349 if (vaddr+size > srmmu_nocache_end) { 350 printk("Vaddr %lx is bigger than nocache end 0x%lx\n", 351 vaddr, srmmu_nocache_end); 352 BUG(); 353 } 354 if (!is_power_of_2(size)) { 355 printk("Size 0x%x is not a power of 2\n", size); 356 BUG(); 357 } 358 if (size < SRMMU_NOCACHE_BITMAP_SHIFT) { 359 printk("Size 0x%x is too small\n", size); 360 BUG(); 361 } 362 if (vaddr & (size-1)) { 363 printk("Vaddr %lx is not aligned to size 0x%x\n", vaddr, size); 364 BUG(); 365 } 366 367 offset = (vaddr - SRMMU_NOCACHE_VADDR) >> SRMMU_NOCACHE_BITMAP_SHIFT; 368 size = size >> SRMMU_NOCACHE_BITMAP_SHIFT; 369 370 bit_map_clear(&srmmu_nocache_map, offset, size); 371 } 372 373 static void srmmu_early_allocate_ptable_skeleton(unsigned long start, 374 unsigned long end); 375 376 extern unsigned long probe_memory(void); /* in fault.c */ 377 378 /* 379 * Reserve nocache dynamically proportionally to the amount of 380 * system RAM. -- Tomas Szepe <szepe@pinerecords.com>, June 2002 381 */ 382 static void srmmu_nocache_calcsize(void) 383 { 384 unsigned long sysmemavail = probe_memory() / 1024; 385 int srmmu_nocache_npages; 386 387 srmmu_nocache_npages = 388 sysmemavail / SRMMU_NOCACHE_ALCRATIO / 1024 * 256; 389 390 /* P3 XXX The 4x overuse: corroborated by /proc/meminfo. */ 391 // if (srmmu_nocache_npages < 256) srmmu_nocache_npages = 256; 392 if (srmmu_nocache_npages < SRMMU_MIN_NOCACHE_PAGES) 393 srmmu_nocache_npages = SRMMU_MIN_NOCACHE_PAGES; 394 395 /* anything above 1280 blows up */ 396 if (srmmu_nocache_npages > SRMMU_MAX_NOCACHE_PAGES) 397 srmmu_nocache_npages = SRMMU_MAX_NOCACHE_PAGES; 398 399 srmmu_nocache_size = srmmu_nocache_npages * PAGE_SIZE; 400 srmmu_nocache_end = SRMMU_NOCACHE_VADDR + srmmu_nocache_size; 401 } 402 403 static void __init srmmu_nocache_init(void) 404 { 405 unsigned int bitmap_bits; 406 pgd_t *pgd; 407 pmd_t *pmd; 408 pte_t *pte; 409 unsigned long paddr, vaddr; 410 unsigned long pteval; 411 412 bitmap_bits = srmmu_nocache_size >> SRMMU_NOCACHE_BITMAP_SHIFT; 413 414 srmmu_nocache_pool = __alloc_bootmem(srmmu_nocache_size, 415 SRMMU_NOCACHE_ALIGN_MAX, 0UL); 416 memset(srmmu_nocache_pool, 0, srmmu_nocache_size); 417 418 srmmu_nocache_bitmap = __alloc_bootmem(bitmap_bits >> 3, SMP_CACHE_BYTES, 0UL); 419 bit_map_init(&srmmu_nocache_map, srmmu_nocache_bitmap, bitmap_bits); 420 421 srmmu_swapper_pg_dir = (pgd_t *)__srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE); 422 memset(__nocache_fix(srmmu_swapper_pg_dir), 0, SRMMU_PGD_TABLE_SIZE); 423 init_mm.pgd = srmmu_swapper_pg_dir; 424 425 srmmu_early_allocate_ptable_skeleton(SRMMU_NOCACHE_VADDR, srmmu_nocache_end); 426 427 paddr = __pa((unsigned long)srmmu_nocache_pool); 428 vaddr = SRMMU_NOCACHE_VADDR; 429 430 while (vaddr < srmmu_nocache_end) { 431 pgd = pgd_offset_k(vaddr); 432 pmd = srmmu_pmd_offset(__nocache_fix(pgd), vaddr); 433 pte = srmmu_pte_offset(__nocache_fix(pmd), vaddr); 434 435 pteval = ((paddr >> 4) | SRMMU_ET_PTE | SRMMU_PRIV); 436 437 if (srmmu_cache_pagetables) 438 pteval |= SRMMU_CACHE; 439 440 srmmu_set_pte(__nocache_fix(pte), __pte(pteval)); 441 442 vaddr += PAGE_SIZE; 443 paddr += PAGE_SIZE; 444 } 445 446 flush_cache_all(); 447 flush_tlb_all(); 448 } 449 450 static inline pgd_t *srmmu_get_pgd_fast(void) 451 { 452 pgd_t *pgd = NULL; 453 454 pgd = (pgd_t *)__srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE); 455 if (pgd) { 456 pgd_t *init = pgd_offset_k(0); 457 memset(pgd, 0, USER_PTRS_PER_PGD * sizeof(pgd_t)); 458 memcpy(pgd + USER_PTRS_PER_PGD, init + USER_PTRS_PER_PGD, 459 (PTRS_PER_PGD - USER_PTRS_PER_PGD) * sizeof(pgd_t)); 460 } 461 462 return pgd; 463 } 464 465 static void srmmu_free_pgd_fast(pgd_t *pgd) 466 { 467 srmmu_free_nocache((unsigned long)pgd, SRMMU_PGD_TABLE_SIZE); 468 } 469 470 static pmd_t *srmmu_pmd_alloc_one(struct mm_struct *mm, unsigned long address) 471 { 472 return (pmd_t *)srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE); 473 } 474 475 static void srmmu_pmd_free(pmd_t * pmd) 476 { 477 srmmu_free_nocache((unsigned long)pmd, SRMMU_PMD_TABLE_SIZE); 478 } 479 480 /* 481 * Hardware needs alignment to 256 only, but we align to whole page size 482 * to reduce fragmentation problems due to the buddy principle. 483 * XXX Provide actual fragmentation statistics in /proc. 484 * 485 * Alignments up to the page size are the same for physical and virtual 486 * addresses of the nocache area. 487 */ 488 static pte_t * 489 srmmu_pte_alloc_one_kernel(struct mm_struct *mm, unsigned long address) 490 { 491 return (pte_t *)srmmu_get_nocache(PTE_SIZE, PTE_SIZE); 492 } 493 494 static pgtable_t 495 srmmu_pte_alloc_one(struct mm_struct *mm, unsigned long address) 496 { 497 unsigned long pte; 498 struct page *page; 499 500 if ((pte = (unsigned long)srmmu_pte_alloc_one_kernel(mm, address)) == 0) 501 return NULL; 502 page = pfn_to_page( __nocache_pa(pte) >> PAGE_SHIFT ); 503 pgtable_page_ctor(page); 504 return page; 505 } 506 507 static void srmmu_free_pte_fast(pte_t *pte) 508 { 509 srmmu_free_nocache((unsigned long)pte, PTE_SIZE); 510 } 511 512 static void srmmu_pte_free(pgtable_t pte) 513 { 514 unsigned long p; 515 516 pgtable_page_dtor(pte); 517 p = (unsigned long)page_address(pte); /* Cached address (for test) */ 518 if (p == 0) 519 BUG(); 520 p = page_to_pfn(pte) << PAGE_SHIFT; /* Physical address */ 521 p = (unsigned long) __nocache_va(p); /* Nocached virtual */ 522 srmmu_free_nocache(p, PTE_SIZE); 523 } 524 525 /* 526 */ 527 static inline void alloc_context(struct mm_struct *old_mm, struct mm_struct *mm) 528 { 529 struct ctx_list *ctxp; 530 531 ctxp = ctx_free.next; 532 if(ctxp != &ctx_free) { 533 remove_from_ctx_list(ctxp); 534 add_to_used_ctxlist(ctxp); 535 mm->context = ctxp->ctx_number; 536 ctxp->ctx_mm = mm; 537 return; 538 } 539 ctxp = ctx_used.next; 540 if(ctxp->ctx_mm == old_mm) 541 ctxp = ctxp->next; 542 if(ctxp == &ctx_used) 543 panic("out of mmu contexts"); 544 flush_cache_mm(ctxp->ctx_mm); 545 flush_tlb_mm(ctxp->ctx_mm); 546 remove_from_ctx_list(ctxp); 547 add_to_used_ctxlist(ctxp); 548 ctxp->ctx_mm->context = NO_CONTEXT; 549 ctxp->ctx_mm = mm; 550 mm->context = ctxp->ctx_number; 551 } 552 553 static inline void free_context(int context) 554 { 555 struct ctx_list *ctx_old; 556 557 ctx_old = ctx_list_pool + context; 558 remove_from_ctx_list(ctx_old); 559 add_to_free_ctxlist(ctx_old); 560 } 561 562 563 static void srmmu_switch_mm(struct mm_struct *old_mm, struct mm_struct *mm, 564 struct task_struct *tsk, int cpu) 565 { 566 if(mm->context == NO_CONTEXT) { 567 spin_lock(&srmmu_context_spinlock); 568 alloc_context(old_mm, mm); 569 spin_unlock(&srmmu_context_spinlock); 570 srmmu_ctxd_set(&srmmu_context_table[mm->context], mm->pgd); 571 } 572 573 if (sparc_cpu_model == sparc_leon) 574 leon_switch_mm(); 575 576 if (is_hypersparc) 577 hyper_flush_whole_icache(); 578 579 srmmu_set_context(mm->context); 580 } 581 582 /* Low level IO area allocation on the SRMMU. */ 583 static inline void srmmu_mapioaddr(unsigned long physaddr, 584 unsigned long virt_addr, int bus_type) 585 { 586 pgd_t *pgdp; 587 pmd_t *pmdp; 588 pte_t *ptep; 589 unsigned long tmp; 590 591 physaddr &= PAGE_MASK; 592 pgdp = pgd_offset_k(virt_addr); 593 pmdp = srmmu_pmd_offset(pgdp, virt_addr); 594 ptep = srmmu_pte_offset(pmdp, virt_addr); 595 tmp = (physaddr >> 4) | SRMMU_ET_PTE; 596 597 /* 598 * I need to test whether this is consistent over all 599 * sun4m's. The bus_type represents the upper 4 bits of 600 * 36-bit physical address on the I/O space lines... 601 */ 602 tmp |= (bus_type << 28); 603 tmp |= SRMMU_PRIV; 604 __flush_page_to_ram(virt_addr); 605 srmmu_set_pte(ptep, __pte(tmp)); 606 } 607 608 static void srmmu_mapiorange(unsigned int bus, unsigned long xpa, 609 unsigned long xva, unsigned int len) 610 { 611 while (len != 0) { 612 len -= PAGE_SIZE; 613 srmmu_mapioaddr(xpa, xva, bus); 614 xva += PAGE_SIZE; 615 xpa += PAGE_SIZE; 616 } 617 flush_tlb_all(); 618 } 619 620 static inline void srmmu_unmapioaddr(unsigned long virt_addr) 621 { 622 pgd_t *pgdp; 623 pmd_t *pmdp; 624 pte_t *ptep; 625 626 pgdp = pgd_offset_k(virt_addr); 627 pmdp = srmmu_pmd_offset(pgdp, virt_addr); 628 ptep = srmmu_pte_offset(pmdp, virt_addr); 629 630 /* No need to flush uncacheable page. */ 631 srmmu_pte_clear(ptep); 632 } 633 634 static void srmmu_unmapiorange(unsigned long virt_addr, unsigned int len) 635 { 636 while (len != 0) { 637 len -= PAGE_SIZE; 638 srmmu_unmapioaddr(virt_addr); 639 virt_addr += PAGE_SIZE; 640 } 641 flush_tlb_all(); 642 } 643 644 /* 645 * On the SRMMU we do not have the problems with limited tlb entries 646 * for mapping kernel pages, so we just take things from the free page 647 * pool. As a side effect we are putting a little too much pressure 648 * on the gfp() subsystem. This setup also makes the logic of the 649 * iommu mapping code a lot easier as we can transparently handle 650 * mappings on the kernel stack without any special code as we did 651 * need on the sun4c. 652 */ 653 static struct thread_info *srmmu_alloc_thread_info(void) 654 { 655 struct thread_info *ret; 656 657 ret = (struct thread_info *)__get_free_pages(GFP_KERNEL, 658 THREAD_INFO_ORDER); 659 #ifdef CONFIG_DEBUG_STACK_USAGE 660 if (ret) 661 memset(ret, 0, PAGE_SIZE << THREAD_INFO_ORDER); 662 #endif /* DEBUG_STACK_USAGE */ 663 664 return ret; 665 } 666 667 static void srmmu_free_thread_info(struct thread_info *ti) 668 { 669 free_pages((unsigned long)ti, THREAD_INFO_ORDER); 670 } 671 672 /* tsunami.S */ 673 extern void tsunami_flush_cache_all(void); 674 extern void tsunami_flush_cache_mm(struct mm_struct *mm); 675 extern void tsunami_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end); 676 extern void tsunami_flush_cache_page(struct vm_area_struct *vma, unsigned long page); 677 extern void tsunami_flush_page_to_ram(unsigned long page); 678 extern void tsunami_flush_page_for_dma(unsigned long page); 679 extern void tsunami_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr); 680 extern void tsunami_flush_tlb_all(void); 681 extern void tsunami_flush_tlb_mm(struct mm_struct *mm); 682 extern void tsunami_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end); 683 extern void tsunami_flush_tlb_page(struct vm_area_struct *vma, unsigned long page); 684 extern void tsunami_setup_blockops(void); 685 686 /* 687 * Workaround, until we find what's going on with Swift. When low on memory, 688 * it sometimes loops in fault/handle_mm_fault incl. flush_tlb_page to find 689 * out it is already in page tables/ fault again on the same instruction. 690 * I really don't understand it, have checked it and contexts 691 * are right, flush_tlb_all is done as well, and it faults again... 692 * Strange. -jj 693 * 694 * The following code is a deadwood that may be necessary when 695 * we start to make precise page flushes again. --zaitcev 696 */ 697 static void swift_update_mmu_cache(struct vm_area_struct * vma, unsigned long address, pte_t *ptep) 698 { 699 #if 0 700 static unsigned long last; 701 unsigned int val; 702 /* unsigned int n; */ 703 704 if (address == last) { 705 val = srmmu_hwprobe(address); 706 if (val != 0 && pte_val(*ptep) != val) { 707 printk("swift_update_mmu_cache: " 708 "addr %lx put %08x probed %08x from %p\n", 709 address, pte_val(*ptep), val, 710 __builtin_return_address(0)); 711 srmmu_flush_whole_tlb(); 712 } 713 } 714 last = address; 715 #endif 716 } 717 718 /* swift.S */ 719 extern void swift_flush_cache_all(void); 720 extern void swift_flush_cache_mm(struct mm_struct *mm); 721 extern void swift_flush_cache_range(struct vm_area_struct *vma, 722 unsigned long start, unsigned long end); 723 extern void swift_flush_cache_page(struct vm_area_struct *vma, unsigned long page); 724 extern void swift_flush_page_to_ram(unsigned long page); 725 extern void swift_flush_page_for_dma(unsigned long page); 726 extern void swift_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr); 727 extern void swift_flush_tlb_all(void); 728 extern void swift_flush_tlb_mm(struct mm_struct *mm); 729 extern void swift_flush_tlb_range(struct vm_area_struct *vma, 730 unsigned long start, unsigned long end); 731 extern void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page); 732 733 #if 0 /* P3: deadwood to debug precise flushes on Swift. */ 734 void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page) 735 { 736 int cctx, ctx1; 737 738 page &= PAGE_MASK; 739 if ((ctx1 = vma->vm_mm->context) != -1) { 740 cctx = srmmu_get_context(); 741 /* Is context # ever different from current context? P3 */ 742 if (cctx != ctx1) { 743 printk("flush ctx %02x curr %02x\n", ctx1, cctx); 744 srmmu_set_context(ctx1); 745 swift_flush_page(page); 746 __asm__ __volatile__("sta %%g0, [%0] %1\n\t" : : 747 "r" (page), "i" (ASI_M_FLUSH_PROBE)); 748 srmmu_set_context(cctx); 749 } else { 750 /* Rm. prot. bits from virt. c. */ 751 /* swift_flush_cache_all(); */ 752 /* swift_flush_cache_page(vma, page); */ 753 swift_flush_page(page); 754 755 __asm__ __volatile__("sta %%g0, [%0] %1\n\t" : : 756 "r" (page), "i" (ASI_M_FLUSH_PROBE)); 757 /* same as above: srmmu_flush_tlb_page() */ 758 } 759 } 760 } 761 #endif 762 763 /* 764 * The following are all MBUS based SRMMU modules, and therefore could 765 * be found in a multiprocessor configuration. On the whole, these 766 * chips seems to be much more touchy about DVMA and page tables 767 * with respect to cache coherency. 768 */ 769 770 /* Cypress flushes. */ 771 static void cypress_flush_cache_all(void) 772 { 773 volatile unsigned long cypress_sucks; 774 unsigned long faddr, tagval; 775 776 flush_user_windows(); 777 for(faddr = 0; faddr < 0x10000; faddr += 0x20) { 778 __asm__ __volatile__("lda [%1 + %2] %3, %0\n\t" : 779 "=r" (tagval) : 780 "r" (faddr), "r" (0x40000), 781 "i" (ASI_M_DATAC_TAG)); 782 783 /* If modified and valid, kick it. */ 784 if((tagval & 0x60) == 0x60) 785 cypress_sucks = *(unsigned long *)(0xf0020000 + faddr); 786 } 787 } 788 789 static void cypress_flush_cache_mm(struct mm_struct *mm) 790 { 791 register unsigned long a, b, c, d, e, f, g; 792 unsigned long flags, faddr; 793 int octx; 794 795 FLUSH_BEGIN(mm) 796 flush_user_windows(); 797 local_irq_save(flags); 798 octx = srmmu_get_context(); 799 srmmu_set_context(mm->context); 800 a = 0x20; b = 0x40; c = 0x60; 801 d = 0x80; e = 0xa0; f = 0xc0; g = 0xe0; 802 803 faddr = (0x10000 - 0x100); 804 goto inside; 805 do { 806 faddr -= 0x100; 807 inside: 808 __asm__ __volatile__("sta %%g0, [%0] %1\n\t" 809 "sta %%g0, [%0 + %2] %1\n\t" 810 "sta %%g0, [%0 + %3] %1\n\t" 811 "sta %%g0, [%0 + %4] %1\n\t" 812 "sta %%g0, [%0 + %5] %1\n\t" 813 "sta %%g0, [%0 + %6] %1\n\t" 814 "sta %%g0, [%0 + %7] %1\n\t" 815 "sta %%g0, [%0 + %8] %1\n\t" : : 816 "r" (faddr), "i" (ASI_M_FLUSH_CTX), 817 "r" (a), "r" (b), "r" (c), "r" (d), 818 "r" (e), "r" (f), "r" (g)); 819 } while(faddr); 820 srmmu_set_context(octx); 821 local_irq_restore(flags); 822 FLUSH_END 823 } 824 825 static void cypress_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end) 826 { 827 struct mm_struct *mm = vma->vm_mm; 828 register unsigned long a, b, c, d, e, f, g; 829 unsigned long flags, faddr; 830 int octx; 831 832 FLUSH_BEGIN(mm) 833 flush_user_windows(); 834 local_irq_save(flags); 835 octx = srmmu_get_context(); 836 srmmu_set_context(mm->context); 837 a = 0x20; b = 0x40; c = 0x60; 838 d = 0x80; e = 0xa0; f = 0xc0; g = 0xe0; 839 840 start &= SRMMU_REAL_PMD_MASK; 841 while(start < end) { 842 faddr = (start + (0x10000 - 0x100)); 843 goto inside; 844 do { 845 faddr -= 0x100; 846 inside: 847 __asm__ __volatile__("sta %%g0, [%0] %1\n\t" 848 "sta %%g0, [%0 + %2] %1\n\t" 849 "sta %%g0, [%0 + %3] %1\n\t" 850 "sta %%g0, [%0 + %4] %1\n\t" 851 "sta %%g0, [%0 + %5] %1\n\t" 852 "sta %%g0, [%0 + %6] %1\n\t" 853 "sta %%g0, [%0 + %7] %1\n\t" 854 "sta %%g0, [%0 + %8] %1\n\t" : : 855 "r" (faddr), 856 "i" (ASI_M_FLUSH_SEG), 857 "r" (a), "r" (b), "r" (c), "r" (d), 858 "r" (e), "r" (f), "r" (g)); 859 } while (faddr != start); 860 start += SRMMU_REAL_PMD_SIZE; 861 } 862 srmmu_set_context(octx); 863 local_irq_restore(flags); 864 FLUSH_END 865 } 866 867 static void cypress_flush_cache_page(struct vm_area_struct *vma, unsigned long page) 868 { 869 register unsigned long a, b, c, d, e, f, g; 870 struct mm_struct *mm = vma->vm_mm; 871 unsigned long flags, line; 872 int octx; 873 874 FLUSH_BEGIN(mm) 875 flush_user_windows(); 876 local_irq_save(flags); 877 octx = srmmu_get_context(); 878 srmmu_set_context(mm->context); 879 a = 0x20; b = 0x40; c = 0x60; 880 d = 0x80; e = 0xa0; f = 0xc0; g = 0xe0; 881 882 page &= PAGE_MASK; 883 line = (page + PAGE_SIZE) - 0x100; 884 goto inside; 885 do { 886 line -= 0x100; 887 inside: 888 __asm__ __volatile__("sta %%g0, [%0] %1\n\t" 889 "sta %%g0, [%0 + %2] %1\n\t" 890 "sta %%g0, [%0 + %3] %1\n\t" 891 "sta %%g0, [%0 + %4] %1\n\t" 892 "sta %%g0, [%0 + %5] %1\n\t" 893 "sta %%g0, [%0 + %6] %1\n\t" 894 "sta %%g0, [%0 + %7] %1\n\t" 895 "sta %%g0, [%0 + %8] %1\n\t" : : 896 "r" (line), 897 "i" (ASI_M_FLUSH_PAGE), 898 "r" (a), "r" (b), "r" (c), "r" (d), 899 "r" (e), "r" (f), "r" (g)); 900 } while(line != page); 901 srmmu_set_context(octx); 902 local_irq_restore(flags); 903 FLUSH_END 904 } 905 906 /* Cypress is copy-back, at least that is how we configure it. */ 907 static void cypress_flush_page_to_ram(unsigned long page) 908 { 909 register unsigned long a, b, c, d, e, f, g; 910 unsigned long line; 911 912 a = 0x20; b = 0x40; c = 0x60; d = 0x80; e = 0xa0; f = 0xc0; g = 0xe0; 913 page &= PAGE_MASK; 914 line = (page + PAGE_SIZE) - 0x100; 915 goto inside; 916 do { 917 line -= 0x100; 918 inside: 919 __asm__ __volatile__("sta %%g0, [%0] %1\n\t" 920 "sta %%g0, [%0 + %2] %1\n\t" 921 "sta %%g0, [%0 + %3] %1\n\t" 922 "sta %%g0, [%0 + %4] %1\n\t" 923 "sta %%g0, [%0 + %5] %1\n\t" 924 "sta %%g0, [%0 + %6] %1\n\t" 925 "sta %%g0, [%0 + %7] %1\n\t" 926 "sta %%g0, [%0 + %8] %1\n\t" : : 927 "r" (line), 928 "i" (ASI_M_FLUSH_PAGE), 929 "r" (a), "r" (b), "r" (c), "r" (d), 930 "r" (e), "r" (f), "r" (g)); 931 } while(line != page); 932 } 933 934 /* Cypress is also IO cache coherent. */ 935 static void cypress_flush_page_for_dma(unsigned long page) 936 { 937 } 938 939 /* Cypress has unified L2 VIPT, from which both instructions and data 940 * are stored. It does not have an onboard icache of any sort, therefore 941 * no flush is necessary. 942 */ 943 static void cypress_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr) 944 { 945 } 946 947 static void cypress_flush_tlb_all(void) 948 { 949 srmmu_flush_whole_tlb(); 950 } 951 952 static void cypress_flush_tlb_mm(struct mm_struct *mm) 953 { 954 FLUSH_BEGIN(mm) 955 __asm__ __volatile__( 956 "lda [%0] %3, %%g5\n\t" 957 "sta %2, [%0] %3\n\t" 958 "sta %%g0, [%1] %4\n\t" 959 "sta %%g5, [%0] %3\n" 960 : /* no outputs */ 961 : "r" (SRMMU_CTX_REG), "r" (0x300), "r" (mm->context), 962 "i" (ASI_M_MMUREGS), "i" (ASI_M_FLUSH_PROBE) 963 : "g5"); 964 FLUSH_END 965 } 966 967 static void cypress_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end) 968 { 969 struct mm_struct *mm = vma->vm_mm; 970 unsigned long size; 971 972 FLUSH_BEGIN(mm) 973 start &= SRMMU_PGDIR_MASK; 974 size = SRMMU_PGDIR_ALIGN(end) - start; 975 __asm__ __volatile__( 976 "lda [%0] %5, %%g5\n\t" 977 "sta %1, [%0] %5\n" 978 "1:\n\t" 979 "subcc %3, %4, %3\n\t" 980 "bne 1b\n\t" 981 " sta %%g0, [%2 + %3] %6\n\t" 982 "sta %%g5, [%0] %5\n" 983 : /* no outputs */ 984 : "r" (SRMMU_CTX_REG), "r" (mm->context), "r" (start | 0x200), 985 "r" (size), "r" (SRMMU_PGDIR_SIZE), "i" (ASI_M_MMUREGS), 986 "i" (ASI_M_FLUSH_PROBE) 987 : "g5", "cc"); 988 FLUSH_END 989 } 990 991 static void cypress_flush_tlb_page(struct vm_area_struct *vma, unsigned long page) 992 { 993 struct mm_struct *mm = vma->vm_mm; 994 995 FLUSH_BEGIN(mm) 996 __asm__ __volatile__( 997 "lda [%0] %3, %%g5\n\t" 998 "sta %1, [%0] %3\n\t" 999 "sta %%g0, [%2] %4\n\t" 1000 "sta %%g5, [%0] %3\n" 1001 : /* no outputs */ 1002 : "r" (SRMMU_CTX_REG), "r" (mm->context), "r" (page & PAGE_MASK), 1003 "i" (ASI_M_MMUREGS), "i" (ASI_M_FLUSH_PROBE) 1004 : "g5"); 1005 FLUSH_END 1006 } 1007 1008 /* viking.S */ 1009 extern void viking_flush_cache_all(void); 1010 extern void viking_flush_cache_mm(struct mm_struct *mm); 1011 extern void viking_flush_cache_range(struct vm_area_struct *vma, unsigned long start, 1012 unsigned long end); 1013 extern void viking_flush_cache_page(struct vm_area_struct *vma, unsigned long page); 1014 extern void viking_flush_page_to_ram(unsigned long page); 1015 extern void viking_flush_page_for_dma(unsigned long page); 1016 extern void viking_flush_sig_insns(struct mm_struct *mm, unsigned long addr); 1017 extern void viking_flush_page(unsigned long page); 1018 extern void viking_mxcc_flush_page(unsigned long page); 1019 extern void viking_flush_tlb_all(void); 1020 extern void viking_flush_tlb_mm(struct mm_struct *mm); 1021 extern void viking_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, 1022 unsigned long end); 1023 extern void viking_flush_tlb_page(struct vm_area_struct *vma, 1024 unsigned long page); 1025 extern void sun4dsmp_flush_tlb_all(void); 1026 extern void sun4dsmp_flush_tlb_mm(struct mm_struct *mm); 1027 extern void sun4dsmp_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, 1028 unsigned long end); 1029 extern void sun4dsmp_flush_tlb_page(struct vm_area_struct *vma, 1030 unsigned long page); 1031 1032 /* hypersparc.S */ 1033 extern void hypersparc_flush_cache_all(void); 1034 extern void hypersparc_flush_cache_mm(struct mm_struct *mm); 1035 extern void hypersparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end); 1036 extern void hypersparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page); 1037 extern void hypersparc_flush_page_to_ram(unsigned long page); 1038 extern void hypersparc_flush_page_for_dma(unsigned long page); 1039 extern void hypersparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr); 1040 extern void hypersparc_flush_tlb_all(void); 1041 extern void hypersparc_flush_tlb_mm(struct mm_struct *mm); 1042 extern void hypersparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end); 1043 extern void hypersparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page); 1044 extern void hypersparc_setup_blockops(void); 1045 1046 /* 1047 * NOTE: All of this startup code assumes the low 16mb (approx.) of 1048 * kernel mappings are done with one single contiguous chunk of 1049 * ram. On small ram machines (classics mainly) we only get 1050 * around 8mb mapped for us. 1051 */ 1052 1053 static void __init early_pgtable_allocfail(char *type) 1054 { 1055 prom_printf("inherit_prom_mappings: Cannot alloc kernel %s.\n", type); 1056 prom_halt(); 1057 } 1058 1059 static void __init srmmu_early_allocate_ptable_skeleton(unsigned long start, 1060 unsigned long end) 1061 { 1062 pgd_t *pgdp; 1063 pmd_t *pmdp; 1064 pte_t *ptep; 1065 1066 while(start < end) { 1067 pgdp = pgd_offset_k(start); 1068 if(srmmu_pgd_none(*(pgd_t *)__nocache_fix(pgdp))) { 1069 pmdp = (pmd_t *) __srmmu_get_nocache( 1070 SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE); 1071 if (pmdp == NULL) 1072 early_pgtable_allocfail("pmd"); 1073 memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE); 1074 srmmu_pgd_set(__nocache_fix(pgdp), pmdp); 1075 } 1076 pmdp = srmmu_pmd_offset(__nocache_fix(pgdp), start); 1077 if(srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) { 1078 ptep = (pte_t *)__srmmu_get_nocache(PTE_SIZE, PTE_SIZE); 1079 if (ptep == NULL) 1080 early_pgtable_allocfail("pte"); 1081 memset(__nocache_fix(ptep), 0, PTE_SIZE); 1082 srmmu_pmd_set(__nocache_fix(pmdp), ptep); 1083 } 1084 if (start > (0xffffffffUL - PMD_SIZE)) 1085 break; 1086 start = (start + PMD_SIZE) & PMD_MASK; 1087 } 1088 } 1089 1090 static void __init srmmu_allocate_ptable_skeleton(unsigned long start, 1091 unsigned long end) 1092 { 1093 pgd_t *pgdp; 1094 pmd_t *pmdp; 1095 pte_t *ptep; 1096 1097 while(start < end) { 1098 pgdp = pgd_offset_k(start); 1099 if(srmmu_pgd_none(*pgdp)) { 1100 pmdp = (pmd_t *)__srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE); 1101 if (pmdp == NULL) 1102 early_pgtable_allocfail("pmd"); 1103 memset(pmdp, 0, SRMMU_PMD_TABLE_SIZE); 1104 srmmu_pgd_set(pgdp, pmdp); 1105 } 1106 pmdp = srmmu_pmd_offset(pgdp, start); 1107 if(srmmu_pmd_none(*pmdp)) { 1108 ptep = (pte_t *) __srmmu_get_nocache(PTE_SIZE, 1109 PTE_SIZE); 1110 if (ptep == NULL) 1111 early_pgtable_allocfail("pte"); 1112 memset(ptep, 0, PTE_SIZE); 1113 srmmu_pmd_set(pmdp, ptep); 1114 } 1115 if (start > (0xffffffffUL - PMD_SIZE)) 1116 break; 1117 start = (start + PMD_SIZE) & PMD_MASK; 1118 } 1119 } 1120 1121 /* 1122 * This is much cleaner than poking around physical address space 1123 * looking at the prom's page table directly which is what most 1124 * other OS's do. Yuck... this is much better. 1125 */ 1126 static void __init srmmu_inherit_prom_mappings(unsigned long start, 1127 unsigned long end) 1128 { 1129 pgd_t *pgdp; 1130 pmd_t *pmdp; 1131 pte_t *ptep; 1132 int what = 0; /* 0 = normal-pte, 1 = pmd-level pte, 2 = pgd-level pte */ 1133 unsigned long prompte; 1134 1135 while(start <= end) { 1136 if (start == 0) 1137 break; /* probably wrap around */ 1138 if(start == 0xfef00000) 1139 start = KADB_DEBUGGER_BEGVM; 1140 if(!(prompte = srmmu_hwprobe(start))) { 1141 start += PAGE_SIZE; 1142 continue; 1143 } 1144 1145 /* A red snapper, see what it really is. */ 1146 what = 0; 1147 1148 if(!(start & ~(SRMMU_REAL_PMD_MASK))) { 1149 if(srmmu_hwprobe((start-PAGE_SIZE) + SRMMU_REAL_PMD_SIZE) == prompte) 1150 what = 1; 1151 } 1152 1153 if(!(start & ~(SRMMU_PGDIR_MASK))) { 1154 if(srmmu_hwprobe((start-PAGE_SIZE) + SRMMU_PGDIR_SIZE) == 1155 prompte) 1156 what = 2; 1157 } 1158 1159 pgdp = pgd_offset_k(start); 1160 if(what == 2) { 1161 *(pgd_t *)__nocache_fix(pgdp) = __pgd(prompte); 1162 start += SRMMU_PGDIR_SIZE; 1163 continue; 1164 } 1165 if(srmmu_pgd_none(*(pgd_t *)__nocache_fix(pgdp))) { 1166 pmdp = (pmd_t *)__srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE); 1167 if (pmdp == NULL) 1168 early_pgtable_allocfail("pmd"); 1169 memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE); 1170 srmmu_pgd_set(__nocache_fix(pgdp), pmdp); 1171 } 1172 pmdp = srmmu_pmd_offset(__nocache_fix(pgdp), start); 1173 if(srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) { 1174 ptep = (pte_t *) __srmmu_get_nocache(PTE_SIZE, 1175 PTE_SIZE); 1176 if (ptep == NULL) 1177 early_pgtable_allocfail("pte"); 1178 memset(__nocache_fix(ptep), 0, PTE_SIZE); 1179 srmmu_pmd_set(__nocache_fix(pmdp), ptep); 1180 } 1181 if(what == 1) { 1182 /* 1183 * We bend the rule where all 16 PTPs in a pmd_t point 1184 * inside the same PTE page, and we leak a perfectly 1185 * good hardware PTE piece. Alternatives seem worse. 1186 */ 1187 unsigned int x; /* Index of HW PMD in soft cluster */ 1188 x = (start >> PMD_SHIFT) & 15; 1189 *(unsigned long *)__nocache_fix(&pmdp->pmdv[x]) = prompte; 1190 start += SRMMU_REAL_PMD_SIZE; 1191 continue; 1192 } 1193 ptep = srmmu_pte_offset(__nocache_fix(pmdp), start); 1194 *(pte_t *)__nocache_fix(ptep) = __pte(prompte); 1195 start += PAGE_SIZE; 1196 } 1197 } 1198 1199 #define KERNEL_PTE(page_shifted) ((page_shifted)|SRMMU_CACHE|SRMMU_PRIV|SRMMU_VALID) 1200 1201 /* Create a third-level SRMMU 16MB page mapping. */ 1202 static void __init do_large_mapping(unsigned long vaddr, unsigned long phys_base) 1203 { 1204 pgd_t *pgdp = pgd_offset_k(vaddr); 1205 unsigned long big_pte; 1206 1207 big_pte = KERNEL_PTE(phys_base >> 4); 1208 *(pgd_t *)__nocache_fix(pgdp) = __pgd(big_pte); 1209 } 1210 1211 /* Map sp_bank entry SP_ENTRY, starting at virtual address VBASE. */ 1212 static unsigned long __init map_spbank(unsigned long vbase, int sp_entry) 1213 { 1214 unsigned long pstart = (sp_banks[sp_entry].base_addr & SRMMU_PGDIR_MASK); 1215 unsigned long vstart = (vbase & SRMMU_PGDIR_MASK); 1216 unsigned long vend = SRMMU_PGDIR_ALIGN(vbase + sp_banks[sp_entry].num_bytes); 1217 /* Map "low" memory only */ 1218 const unsigned long min_vaddr = PAGE_OFFSET; 1219 const unsigned long max_vaddr = PAGE_OFFSET + SRMMU_MAXMEM; 1220 1221 if (vstart < min_vaddr || vstart >= max_vaddr) 1222 return vstart; 1223 1224 if (vend > max_vaddr || vend < min_vaddr) 1225 vend = max_vaddr; 1226 1227 while(vstart < vend) { 1228 do_large_mapping(vstart, pstart); 1229 vstart += SRMMU_PGDIR_SIZE; pstart += SRMMU_PGDIR_SIZE; 1230 } 1231 return vstart; 1232 } 1233 1234 static inline void memprobe_error(char *msg) 1235 { 1236 prom_printf(msg); 1237 prom_printf("Halting now...\n"); 1238 prom_halt(); 1239 } 1240 1241 static inline void map_kernel(void) 1242 { 1243 int i; 1244 1245 if (phys_base > 0) { 1246 do_large_mapping(PAGE_OFFSET, phys_base); 1247 } 1248 1249 for (i = 0; sp_banks[i].num_bytes != 0; i++) { 1250 map_spbank((unsigned long)__va(sp_banks[i].base_addr), i); 1251 } 1252 1253 BTFIXUPSET_SIMM13(user_ptrs_per_pgd, PAGE_OFFSET / SRMMU_PGDIR_SIZE); 1254 } 1255 1256 /* Paging initialization on the Sparc Reference MMU. */ 1257 extern void sparc_context_init(int); 1258 1259 void (*poke_srmmu)(void) __cpuinitdata = NULL; 1260 1261 extern unsigned long bootmem_init(unsigned long *pages_avail); 1262 1263 void __init srmmu_paging_init(void) 1264 { 1265 int i; 1266 phandle cpunode; 1267 char node_str[128]; 1268 pgd_t *pgd; 1269 pmd_t *pmd; 1270 pte_t *pte; 1271 unsigned long pages_avail; 1272 1273 sparc_iomap.start = SUN4M_IOBASE_VADDR; /* 16MB of IOSPACE on all sun4m's. */ 1274 1275 if (sparc_cpu_model == sun4d) 1276 num_contexts = 65536; /* We know it is Viking */ 1277 else { 1278 /* Find the number of contexts on the srmmu. */ 1279 cpunode = prom_getchild(prom_root_node); 1280 num_contexts = 0; 1281 while(cpunode != 0) { 1282 prom_getstring(cpunode, "device_type", node_str, sizeof(node_str)); 1283 if(!strcmp(node_str, "cpu")) { 1284 num_contexts = prom_getintdefault(cpunode, "mmu-nctx", 0x8); 1285 break; 1286 } 1287 cpunode = prom_getsibling(cpunode); 1288 } 1289 } 1290 1291 if(!num_contexts) { 1292 prom_printf("Something wrong, can't find cpu node in paging_init.\n"); 1293 prom_halt(); 1294 } 1295 1296 pages_avail = 0; 1297 last_valid_pfn = bootmem_init(&pages_avail); 1298 1299 srmmu_nocache_calcsize(); 1300 srmmu_nocache_init(); 1301 srmmu_inherit_prom_mappings(0xfe400000,(LINUX_OPPROM_ENDVM-PAGE_SIZE)); 1302 map_kernel(); 1303 1304 /* ctx table has to be physically aligned to its size */ 1305 srmmu_context_table = (ctxd_t *)__srmmu_get_nocache(num_contexts*sizeof(ctxd_t), num_contexts*sizeof(ctxd_t)); 1306 srmmu_ctx_table_phys = (ctxd_t *)__nocache_pa((unsigned long)srmmu_context_table); 1307 1308 for(i = 0; i < num_contexts; i++) 1309 srmmu_ctxd_set((ctxd_t *)__nocache_fix(&srmmu_context_table[i]), srmmu_swapper_pg_dir); 1310 1311 flush_cache_all(); 1312 srmmu_set_ctable_ptr((unsigned long)srmmu_ctx_table_phys); 1313 #ifdef CONFIG_SMP 1314 /* Stop from hanging here... */ 1315 local_flush_tlb_all(); 1316 #else 1317 flush_tlb_all(); 1318 #endif 1319 poke_srmmu(); 1320 1321 srmmu_allocate_ptable_skeleton(sparc_iomap.start, IOBASE_END); 1322 srmmu_allocate_ptable_skeleton(DVMA_VADDR, DVMA_END); 1323 1324 srmmu_allocate_ptable_skeleton( 1325 __fix_to_virt(__end_of_fixed_addresses - 1), FIXADDR_TOP); 1326 srmmu_allocate_ptable_skeleton(PKMAP_BASE, PKMAP_END); 1327 1328 pgd = pgd_offset_k(PKMAP_BASE); 1329 pmd = srmmu_pmd_offset(pgd, PKMAP_BASE); 1330 pte = srmmu_pte_offset(pmd, PKMAP_BASE); 1331 pkmap_page_table = pte; 1332 1333 flush_cache_all(); 1334 flush_tlb_all(); 1335 1336 sparc_context_init(num_contexts); 1337 1338 kmap_init(); 1339 1340 { 1341 unsigned long zones_size[MAX_NR_ZONES]; 1342 unsigned long zholes_size[MAX_NR_ZONES]; 1343 unsigned long npages; 1344 int znum; 1345 1346 for (znum = 0; znum < MAX_NR_ZONES; znum++) 1347 zones_size[znum] = zholes_size[znum] = 0; 1348 1349 npages = max_low_pfn - pfn_base; 1350 1351 zones_size[ZONE_DMA] = npages; 1352 zholes_size[ZONE_DMA] = npages - pages_avail; 1353 1354 npages = highend_pfn - max_low_pfn; 1355 zones_size[ZONE_HIGHMEM] = npages; 1356 zholes_size[ZONE_HIGHMEM] = npages - calc_highpages(); 1357 1358 free_area_init_node(0, zones_size, pfn_base, zholes_size); 1359 } 1360 } 1361 1362 static void srmmu_mmu_info(struct seq_file *m) 1363 { 1364 seq_printf(m, 1365 "MMU type\t: %s\n" 1366 "contexts\t: %d\n" 1367 "nocache total\t: %ld\n" 1368 "nocache used\t: %d\n", 1369 srmmu_name, 1370 num_contexts, 1371 srmmu_nocache_size, 1372 srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT); 1373 } 1374 1375 static void srmmu_update_mmu_cache(struct vm_area_struct * vma, unsigned long address, pte_t pte) 1376 { 1377 } 1378 1379 static void srmmu_destroy_context(struct mm_struct *mm) 1380 { 1381 1382 if(mm->context != NO_CONTEXT) { 1383 flush_cache_mm(mm); 1384 srmmu_ctxd_set(&srmmu_context_table[mm->context], srmmu_swapper_pg_dir); 1385 flush_tlb_mm(mm); 1386 spin_lock(&srmmu_context_spinlock); 1387 free_context(mm->context); 1388 spin_unlock(&srmmu_context_spinlock); 1389 mm->context = NO_CONTEXT; 1390 } 1391 } 1392 1393 /* Init various srmmu chip types. */ 1394 static void __init srmmu_is_bad(void) 1395 { 1396 prom_printf("Could not determine SRMMU chip type.\n"); 1397 prom_halt(); 1398 } 1399 1400 static void __init init_vac_layout(void) 1401 { 1402 phandle nd; 1403 int cache_lines; 1404 char node_str[128]; 1405 #ifdef CONFIG_SMP 1406 int cpu = 0; 1407 unsigned long max_size = 0; 1408 unsigned long min_line_size = 0x10000000; 1409 #endif 1410 1411 nd = prom_getchild(prom_root_node); 1412 while((nd = prom_getsibling(nd)) != 0) { 1413 prom_getstring(nd, "device_type", node_str, sizeof(node_str)); 1414 if(!strcmp(node_str, "cpu")) { 1415 vac_line_size = prom_getint(nd, "cache-line-size"); 1416 if (vac_line_size == -1) { 1417 prom_printf("can't determine cache-line-size, " 1418 "halting.\n"); 1419 prom_halt(); 1420 } 1421 cache_lines = prom_getint(nd, "cache-nlines"); 1422 if (cache_lines == -1) { 1423 prom_printf("can't determine cache-nlines, halting.\n"); 1424 prom_halt(); 1425 } 1426 1427 vac_cache_size = cache_lines * vac_line_size; 1428 #ifdef CONFIG_SMP 1429 if(vac_cache_size > max_size) 1430 max_size = vac_cache_size; 1431 if(vac_line_size < min_line_size) 1432 min_line_size = vac_line_size; 1433 //FIXME: cpus not contiguous!! 1434 cpu++; 1435 if (cpu >= nr_cpu_ids || !cpu_online(cpu)) 1436 break; 1437 #else 1438 break; 1439 #endif 1440 } 1441 } 1442 if(nd == 0) { 1443 prom_printf("No CPU nodes found, halting.\n"); 1444 prom_halt(); 1445 } 1446 #ifdef CONFIG_SMP 1447 vac_cache_size = max_size; 1448 vac_line_size = min_line_size; 1449 #endif 1450 printk("SRMMU: Using VAC size of %d bytes, line size %d bytes.\n", 1451 (int)vac_cache_size, (int)vac_line_size); 1452 } 1453 1454 static void __cpuinit poke_hypersparc(void) 1455 { 1456 volatile unsigned long clear; 1457 unsigned long mreg = srmmu_get_mmureg(); 1458 1459 hyper_flush_unconditional_combined(); 1460 1461 mreg &= ~(HYPERSPARC_CWENABLE); 1462 mreg |= (HYPERSPARC_CENABLE | HYPERSPARC_WBENABLE); 1463 mreg |= (HYPERSPARC_CMODE); 1464 1465 srmmu_set_mmureg(mreg); 1466 1467 #if 0 /* XXX I think this is bad news... -DaveM */ 1468 hyper_clear_all_tags(); 1469 #endif 1470 1471 put_ross_icr(HYPERSPARC_ICCR_FTD | HYPERSPARC_ICCR_ICE); 1472 hyper_flush_whole_icache(); 1473 clear = srmmu_get_faddr(); 1474 clear = srmmu_get_fstatus(); 1475 } 1476 1477 static void __init init_hypersparc(void) 1478 { 1479 srmmu_name = "ROSS HyperSparc"; 1480 srmmu_modtype = HyperSparc; 1481 1482 init_vac_layout(); 1483 1484 is_hypersparc = 1; 1485 1486 BTFIXUPSET_CALL(pte_clear, srmmu_pte_clear, BTFIXUPCALL_NORM); 1487 BTFIXUPSET_CALL(pmd_clear, srmmu_pmd_clear, BTFIXUPCALL_NORM); 1488 BTFIXUPSET_CALL(pgd_clear, srmmu_pgd_clear, BTFIXUPCALL_NORM); 1489 BTFIXUPSET_CALL(flush_cache_all, hypersparc_flush_cache_all, BTFIXUPCALL_NORM); 1490 BTFIXUPSET_CALL(flush_cache_mm, hypersparc_flush_cache_mm, BTFIXUPCALL_NORM); 1491 BTFIXUPSET_CALL(flush_cache_range, hypersparc_flush_cache_range, BTFIXUPCALL_NORM); 1492 BTFIXUPSET_CALL(flush_cache_page, hypersparc_flush_cache_page, BTFIXUPCALL_NORM); 1493 1494 BTFIXUPSET_CALL(flush_tlb_all, hypersparc_flush_tlb_all, BTFIXUPCALL_NORM); 1495 BTFIXUPSET_CALL(flush_tlb_mm, hypersparc_flush_tlb_mm, BTFIXUPCALL_NORM); 1496 BTFIXUPSET_CALL(flush_tlb_range, hypersparc_flush_tlb_range, BTFIXUPCALL_NORM); 1497 BTFIXUPSET_CALL(flush_tlb_page, hypersparc_flush_tlb_page, BTFIXUPCALL_NORM); 1498 1499 BTFIXUPSET_CALL(__flush_page_to_ram, hypersparc_flush_page_to_ram, BTFIXUPCALL_NORM); 1500 BTFIXUPSET_CALL(flush_sig_insns, hypersparc_flush_sig_insns, BTFIXUPCALL_NORM); 1501 BTFIXUPSET_CALL(flush_page_for_dma, hypersparc_flush_page_for_dma, BTFIXUPCALL_NOP); 1502 1503 1504 poke_srmmu = poke_hypersparc; 1505 1506 hypersparc_setup_blockops(); 1507 } 1508 1509 static void __cpuinit poke_cypress(void) 1510 { 1511 unsigned long mreg = srmmu_get_mmureg(); 1512 unsigned long faddr, tagval; 1513 volatile unsigned long cypress_sucks; 1514 volatile unsigned long clear; 1515 1516 clear = srmmu_get_faddr(); 1517 clear = srmmu_get_fstatus(); 1518 1519 if (!(mreg & CYPRESS_CENABLE)) { 1520 for(faddr = 0x0; faddr < 0x10000; faddr += 20) { 1521 __asm__ __volatile__("sta %%g0, [%0 + %1] %2\n\t" 1522 "sta %%g0, [%0] %2\n\t" : : 1523 "r" (faddr), "r" (0x40000), 1524 "i" (ASI_M_DATAC_TAG)); 1525 } 1526 } else { 1527 for(faddr = 0; faddr < 0x10000; faddr += 0x20) { 1528 __asm__ __volatile__("lda [%1 + %2] %3, %0\n\t" : 1529 "=r" (tagval) : 1530 "r" (faddr), "r" (0x40000), 1531 "i" (ASI_M_DATAC_TAG)); 1532 1533 /* If modified and valid, kick it. */ 1534 if((tagval & 0x60) == 0x60) 1535 cypress_sucks = *(unsigned long *) 1536 (0xf0020000 + faddr); 1537 } 1538 } 1539 1540 /* And one more, for our good neighbor, Mr. Broken Cypress. */ 1541 clear = srmmu_get_faddr(); 1542 clear = srmmu_get_fstatus(); 1543 1544 mreg |= (CYPRESS_CENABLE | CYPRESS_CMODE); 1545 srmmu_set_mmureg(mreg); 1546 } 1547 1548 static void __init init_cypress_common(void) 1549 { 1550 init_vac_layout(); 1551 1552 BTFIXUPSET_CALL(pte_clear, srmmu_pte_clear, BTFIXUPCALL_NORM); 1553 BTFIXUPSET_CALL(pmd_clear, srmmu_pmd_clear, BTFIXUPCALL_NORM); 1554 BTFIXUPSET_CALL(pgd_clear, srmmu_pgd_clear, BTFIXUPCALL_NORM); 1555 BTFIXUPSET_CALL(flush_cache_all, cypress_flush_cache_all, BTFIXUPCALL_NORM); 1556 BTFIXUPSET_CALL(flush_cache_mm, cypress_flush_cache_mm, BTFIXUPCALL_NORM); 1557 BTFIXUPSET_CALL(flush_cache_range, cypress_flush_cache_range, BTFIXUPCALL_NORM); 1558 BTFIXUPSET_CALL(flush_cache_page, cypress_flush_cache_page, BTFIXUPCALL_NORM); 1559 1560 BTFIXUPSET_CALL(flush_tlb_all, cypress_flush_tlb_all, BTFIXUPCALL_NORM); 1561 BTFIXUPSET_CALL(flush_tlb_mm, cypress_flush_tlb_mm, BTFIXUPCALL_NORM); 1562 BTFIXUPSET_CALL(flush_tlb_page, cypress_flush_tlb_page, BTFIXUPCALL_NORM); 1563 BTFIXUPSET_CALL(flush_tlb_range, cypress_flush_tlb_range, BTFIXUPCALL_NORM); 1564 1565 1566 BTFIXUPSET_CALL(__flush_page_to_ram, cypress_flush_page_to_ram, BTFIXUPCALL_NORM); 1567 BTFIXUPSET_CALL(flush_sig_insns, cypress_flush_sig_insns, BTFIXUPCALL_NOP); 1568 BTFIXUPSET_CALL(flush_page_for_dma, cypress_flush_page_for_dma, BTFIXUPCALL_NOP); 1569 1570 poke_srmmu = poke_cypress; 1571 } 1572 1573 static void __init init_cypress_604(void) 1574 { 1575 srmmu_name = "ROSS Cypress-604(UP)"; 1576 srmmu_modtype = Cypress; 1577 init_cypress_common(); 1578 } 1579 1580 static void __init init_cypress_605(unsigned long mrev) 1581 { 1582 srmmu_name = "ROSS Cypress-605(MP)"; 1583 if(mrev == 0xe) { 1584 srmmu_modtype = Cypress_vE; 1585 hwbug_bitmask |= HWBUG_COPYBACK_BROKEN; 1586 } else { 1587 if(mrev == 0xd) { 1588 srmmu_modtype = Cypress_vD; 1589 hwbug_bitmask |= HWBUG_ASIFLUSH_BROKEN; 1590 } else { 1591 srmmu_modtype = Cypress; 1592 } 1593 } 1594 init_cypress_common(); 1595 } 1596 1597 static void __cpuinit poke_swift(void) 1598 { 1599 unsigned long mreg; 1600 1601 /* Clear any crap from the cache or else... */ 1602 swift_flush_cache_all(); 1603 1604 /* Enable I & D caches */ 1605 mreg = srmmu_get_mmureg(); 1606 mreg |= (SWIFT_IE | SWIFT_DE); 1607 /* 1608 * The Swift branch folding logic is completely broken. At 1609 * trap time, if things are just right, if can mistakenly 1610 * think that a trap is coming from kernel mode when in fact 1611 * it is coming from user mode (it mis-executes the branch in 1612 * the trap code). So you see things like crashme completely 1613 * hosing your machine which is completely unacceptable. Turn 1614 * this shit off... nice job Fujitsu. 1615 */ 1616 mreg &= ~(SWIFT_BF); 1617 srmmu_set_mmureg(mreg); 1618 } 1619 1620 #define SWIFT_MASKID_ADDR 0x10003018 1621 static void __init init_swift(void) 1622 { 1623 unsigned long swift_rev; 1624 1625 __asm__ __volatile__("lda [%1] %2, %0\n\t" 1626 "srl %0, 0x18, %0\n\t" : 1627 "=r" (swift_rev) : 1628 "r" (SWIFT_MASKID_ADDR), "i" (ASI_M_BYPASS)); 1629 srmmu_name = "Fujitsu Swift"; 1630 switch(swift_rev) { 1631 case 0x11: 1632 case 0x20: 1633 case 0x23: 1634 case 0x30: 1635 srmmu_modtype = Swift_lots_o_bugs; 1636 hwbug_bitmask |= (HWBUG_KERN_ACCBROKEN | HWBUG_KERN_CBITBROKEN); 1637 /* 1638 * Gee george, I wonder why Sun is so hush hush about 1639 * this hardware bug... really braindamage stuff going 1640 * on here. However I think we can find a way to avoid 1641 * all of the workaround overhead under Linux. Basically, 1642 * any page fault can cause kernel pages to become user 1643 * accessible (the mmu gets confused and clears some of 1644 * the ACC bits in kernel ptes). Aha, sounds pretty 1645 * horrible eh? But wait, after extensive testing it appears 1646 * that if you use pgd_t level large kernel pte's (like the 1647 * 4MB pages on the Pentium) the bug does not get tripped 1648 * at all. This avoids almost all of the major overhead. 1649 * Welcome to a world where your vendor tells you to, 1650 * "apply this kernel patch" instead of "sorry for the 1651 * broken hardware, send it back and we'll give you 1652 * properly functioning parts" 1653 */ 1654 break; 1655 case 0x25: 1656 case 0x31: 1657 srmmu_modtype = Swift_bad_c; 1658 hwbug_bitmask |= HWBUG_KERN_CBITBROKEN; 1659 /* 1660 * You see Sun allude to this hardware bug but never 1661 * admit things directly, they'll say things like, 1662 * "the Swift chip cache problems" or similar. 1663 */ 1664 break; 1665 default: 1666 srmmu_modtype = Swift_ok; 1667 break; 1668 }; 1669 1670 BTFIXUPSET_CALL(flush_cache_all, swift_flush_cache_all, BTFIXUPCALL_NORM); 1671 BTFIXUPSET_CALL(flush_cache_mm, swift_flush_cache_mm, BTFIXUPCALL_NORM); 1672 BTFIXUPSET_CALL(flush_cache_page, swift_flush_cache_page, BTFIXUPCALL_NORM); 1673 BTFIXUPSET_CALL(flush_cache_range, swift_flush_cache_range, BTFIXUPCALL_NORM); 1674 1675 1676 BTFIXUPSET_CALL(flush_tlb_all, swift_flush_tlb_all, BTFIXUPCALL_NORM); 1677 BTFIXUPSET_CALL(flush_tlb_mm, swift_flush_tlb_mm, BTFIXUPCALL_NORM); 1678 BTFIXUPSET_CALL(flush_tlb_page, swift_flush_tlb_page, BTFIXUPCALL_NORM); 1679 BTFIXUPSET_CALL(flush_tlb_range, swift_flush_tlb_range, BTFIXUPCALL_NORM); 1680 1681 BTFIXUPSET_CALL(__flush_page_to_ram, swift_flush_page_to_ram, BTFIXUPCALL_NORM); 1682 BTFIXUPSET_CALL(flush_sig_insns, swift_flush_sig_insns, BTFIXUPCALL_NORM); 1683 BTFIXUPSET_CALL(flush_page_for_dma, swift_flush_page_for_dma, BTFIXUPCALL_NORM); 1684 1685 BTFIXUPSET_CALL(update_mmu_cache, swift_update_mmu_cache, BTFIXUPCALL_NORM); 1686 1687 flush_page_for_dma_global = 0; 1688 1689 /* 1690 * Are you now convinced that the Swift is one of the 1691 * biggest VLSI abortions of all time? Bravo Fujitsu! 1692 * Fujitsu, the !#?!%$'d up processor people. I bet if 1693 * you examined the microcode of the Swift you'd find 1694 * XXX's all over the place. 1695 */ 1696 poke_srmmu = poke_swift; 1697 } 1698 1699 static void turbosparc_flush_cache_all(void) 1700 { 1701 flush_user_windows(); 1702 turbosparc_idflash_clear(); 1703 } 1704 1705 static void turbosparc_flush_cache_mm(struct mm_struct *mm) 1706 { 1707 FLUSH_BEGIN(mm) 1708 flush_user_windows(); 1709 turbosparc_idflash_clear(); 1710 FLUSH_END 1711 } 1712 1713 static void turbosparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end) 1714 { 1715 FLUSH_BEGIN(vma->vm_mm) 1716 flush_user_windows(); 1717 turbosparc_idflash_clear(); 1718 FLUSH_END 1719 } 1720 1721 static void turbosparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page) 1722 { 1723 FLUSH_BEGIN(vma->vm_mm) 1724 flush_user_windows(); 1725 if (vma->vm_flags & VM_EXEC) 1726 turbosparc_flush_icache(); 1727 turbosparc_flush_dcache(); 1728 FLUSH_END 1729 } 1730 1731 /* TurboSparc is copy-back, if we turn it on, but this does not work. */ 1732 static void turbosparc_flush_page_to_ram(unsigned long page) 1733 { 1734 #ifdef TURBOSPARC_WRITEBACK 1735 volatile unsigned long clear; 1736 1737 if (srmmu_hwprobe(page)) 1738 turbosparc_flush_page_cache(page); 1739 clear = srmmu_get_fstatus(); 1740 #endif 1741 } 1742 1743 static void turbosparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr) 1744 { 1745 } 1746 1747 static void turbosparc_flush_page_for_dma(unsigned long page) 1748 { 1749 turbosparc_flush_dcache(); 1750 } 1751 1752 static void turbosparc_flush_tlb_all(void) 1753 { 1754 srmmu_flush_whole_tlb(); 1755 } 1756 1757 static void turbosparc_flush_tlb_mm(struct mm_struct *mm) 1758 { 1759 FLUSH_BEGIN(mm) 1760 srmmu_flush_whole_tlb(); 1761 FLUSH_END 1762 } 1763 1764 static void turbosparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end) 1765 { 1766 FLUSH_BEGIN(vma->vm_mm) 1767 srmmu_flush_whole_tlb(); 1768 FLUSH_END 1769 } 1770 1771 static void turbosparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page) 1772 { 1773 FLUSH_BEGIN(vma->vm_mm) 1774 srmmu_flush_whole_tlb(); 1775 FLUSH_END 1776 } 1777 1778 1779 static void __cpuinit poke_turbosparc(void) 1780 { 1781 unsigned long mreg = srmmu_get_mmureg(); 1782 unsigned long ccreg; 1783 1784 /* Clear any crap from the cache or else... */ 1785 turbosparc_flush_cache_all(); 1786 mreg &= ~(TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE); /* Temporarily disable I & D caches */ 1787 mreg &= ~(TURBOSPARC_PCENABLE); /* Don't check parity */ 1788 srmmu_set_mmureg(mreg); 1789 1790 ccreg = turbosparc_get_ccreg(); 1791 1792 #ifdef TURBOSPARC_WRITEBACK 1793 ccreg |= (TURBOSPARC_SNENABLE); /* Do DVMA snooping in Dcache */ 1794 ccreg &= ~(TURBOSPARC_uS2 | TURBOSPARC_WTENABLE); 1795 /* Write-back D-cache, emulate VLSI 1796 * abortion number three, not number one */ 1797 #else 1798 /* For now let's play safe, optimize later */ 1799 ccreg |= (TURBOSPARC_SNENABLE | TURBOSPARC_WTENABLE); 1800 /* Do DVMA snooping in Dcache, Write-thru D-cache */ 1801 ccreg &= ~(TURBOSPARC_uS2); 1802 /* Emulate VLSI abortion number three, not number one */ 1803 #endif 1804 1805 switch (ccreg & 7) { 1806 case 0: /* No SE cache */ 1807 case 7: /* Test mode */ 1808 break; 1809 default: 1810 ccreg |= (TURBOSPARC_SCENABLE); 1811 } 1812 turbosparc_set_ccreg (ccreg); 1813 1814 mreg |= (TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE); /* I & D caches on */ 1815 mreg |= (TURBOSPARC_ICSNOOP); /* Icache snooping on */ 1816 srmmu_set_mmureg(mreg); 1817 } 1818 1819 static void __init init_turbosparc(void) 1820 { 1821 srmmu_name = "Fujitsu TurboSparc"; 1822 srmmu_modtype = TurboSparc; 1823 1824 BTFIXUPSET_CALL(flush_cache_all, turbosparc_flush_cache_all, BTFIXUPCALL_NORM); 1825 BTFIXUPSET_CALL(flush_cache_mm, turbosparc_flush_cache_mm, BTFIXUPCALL_NORM); 1826 BTFIXUPSET_CALL(flush_cache_page, turbosparc_flush_cache_page, BTFIXUPCALL_NORM); 1827 BTFIXUPSET_CALL(flush_cache_range, turbosparc_flush_cache_range, BTFIXUPCALL_NORM); 1828 1829 BTFIXUPSET_CALL(flush_tlb_all, turbosparc_flush_tlb_all, BTFIXUPCALL_NORM); 1830 BTFIXUPSET_CALL(flush_tlb_mm, turbosparc_flush_tlb_mm, BTFIXUPCALL_NORM); 1831 BTFIXUPSET_CALL(flush_tlb_page, turbosparc_flush_tlb_page, BTFIXUPCALL_NORM); 1832 BTFIXUPSET_CALL(flush_tlb_range, turbosparc_flush_tlb_range, BTFIXUPCALL_NORM); 1833 1834 BTFIXUPSET_CALL(__flush_page_to_ram, turbosparc_flush_page_to_ram, BTFIXUPCALL_NORM); 1835 1836 BTFIXUPSET_CALL(flush_sig_insns, turbosparc_flush_sig_insns, BTFIXUPCALL_NOP); 1837 BTFIXUPSET_CALL(flush_page_for_dma, turbosparc_flush_page_for_dma, BTFIXUPCALL_NORM); 1838 1839 poke_srmmu = poke_turbosparc; 1840 } 1841 1842 static void __cpuinit poke_tsunami(void) 1843 { 1844 unsigned long mreg = srmmu_get_mmureg(); 1845 1846 tsunami_flush_icache(); 1847 tsunami_flush_dcache(); 1848 mreg &= ~TSUNAMI_ITD; 1849 mreg |= (TSUNAMI_IENAB | TSUNAMI_DENAB); 1850 srmmu_set_mmureg(mreg); 1851 } 1852 1853 static void __init init_tsunami(void) 1854 { 1855 /* 1856 * Tsunami's pretty sane, Sun and TI actually got it 1857 * somewhat right this time. Fujitsu should have 1858 * taken some lessons from them. 1859 */ 1860 1861 srmmu_name = "TI Tsunami"; 1862 srmmu_modtype = Tsunami; 1863 1864 BTFIXUPSET_CALL(flush_cache_all, tsunami_flush_cache_all, BTFIXUPCALL_NORM); 1865 BTFIXUPSET_CALL(flush_cache_mm, tsunami_flush_cache_mm, BTFIXUPCALL_NORM); 1866 BTFIXUPSET_CALL(flush_cache_page, tsunami_flush_cache_page, BTFIXUPCALL_NORM); 1867 BTFIXUPSET_CALL(flush_cache_range, tsunami_flush_cache_range, BTFIXUPCALL_NORM); 1868 1869 1870 BTFIXUPSET_CALL(flush_tlb_all, tsunami_flush_tlb_all, BTFIXUPCALL_NORM); 1871 BTFIXUPSET_CALL(flush_tlb_mm, tsunami_flush_tlb_mm, BTFIXUPCALL_NORM); 1872 BTFIXUPSET_CALL(flush_tlb_page, tsunami_flush_tlb_page, BTFIXUPCALL_NORM); 1873 BTFIXUPSET_CALL(flush_tlb_range, tsunami_flush_tlb_range, BTFIXUPCALL_NORM); 1874 1875 BTFIXUPSET_CALL(__flush_page_to_ram, tsunami_flush_page_to_ram, BTFIXUPCALL_NOP); 1876 BTFIXUPSET_CALL(flush_sig_insns, tsunami_flush_sig_insns, BTFIXUPCALL_NORM); 1877 BTFIXUPSET_CALL(flush_page_for_dma, tsunami_flush_page_for_dma, BTFIXUPCALL_NORM); 1878 1879 poke_srmmu = poke_tsunami; 1880 1881 tsunami_setup_blockops(); 1882 } 1883 1884 static void __cpuinit poke_viking(void) 1885 { 1886 unsigned long mreg = srmmu_get_mmureg(); 1887 static int smp_catch; 1888 1889 if(viking_mxcc_present) { 1890 unsigned long mxcc_control = mxcc_get_creg(); 1891 1892 mxcc_control |= (MXCC_CTL_ECE | MXCC_CTL_PRE | MXCC_CTL_MCE); 1893 mxcc_control &= ~(MXCC_CTL_RRC); 1894 mxcc_set_creg(mxcc_control); 1895 1896 /* 1897 * We don't need memory parity checks. 1898 * XXX This is a mess, have to dig out later. ecd. 1899 viking_mxcc_turn_off_parity(&mreg, &mxcc_control); 1900 */ 1901 1902 /* We do cache ptables on MXCC. */ 1903 mreg |= VIKING_TCENABLE; 1904 } else { 1905 unsigned long bpreg; 1906 1907 mreg &= ~(VIKING_TCENABLE); 1908 if(smp_catch++) { 1909 /* Must disable mixed-cmd mode here for other cpu's. */ 1910 bpreg = viking_get_bpreg(); 1911 bpreg &= ~(VIKING_ACTION_MIX); 1912 viking_set_bpreg(bpreg); 1913 1914 /* Just in case PROM does something funny. */ 1915 msi_set_sync(); 1916 } 1917 } 1918 1919 mreg |= VIKING_SPENABLE; 1920 mreg |= (VIKING_ICENABLE | VIKING_DCENABLE); 1921 mreg |= VIKING_SBENABLE; 1922 mreg &= ~(VIKING_ACENABLE); 1923 srmmu_set_mmureg(mreg); 1924 } 1925 1926 static void __init init_viking(void) 1927 { 1928 unsigned long mreg = srmmu_get_mmureg(); 1929 1930 /* Ahhh, the viking. SRMMU VLSI abortion number two... */ 1931 if(mreg & VIKING_MMODE) { 1932 srmmu_name = "TI Viking"; 1933 viking_mxcc_present = 0; 1934 msi_set_sync(); 1935 1936 BTFIXUPSET_CALL(pte_clear, srmmu_pte_clear, BTFIXUPCALL_NORM); 1937 BTFIXUPSET_CALL(pmd_clear, srmmu_pmd_clear, BTFIXUPCALL_NORM); 1938 BTFIXUPSET_CALL(pgd_clear, srmmu_pgd_clear, BTFIXUPCALL_NORM); 1939 1940 /* 1941 * We need this to make sure old viking takes no hits 1942 * on it's cache for dma snoops to workaround the 1943 * "load from non-cacheable memory" interrupt bug. 1944 * This is only necessary because of the new way in 1945 * which we use the IOMMU. 1946 */ 1947 BTFIXUPSET_CALL(flush_page_for_dma, viking_flush_page, BTFIXUPCALL_NORM); 1948 1949 flush_page_for_dma_global = 0; 1950 } else { 1951 srmmu_name = "TI Viking/MXCC"; 1952 viking_mxcc_present = 1; 1953 1954 srmmu_cache_pagetables = 1; 1955 1956 /* MXCC vikings lack the DMA snooping bug. */ 1957 BTFIXUPSET_CALL(flush_page_for_dma, viking_flush_page_for_dma, BTFIXUPCALL_NOP); 1958 } 1959 1960 BTFIXUPSET_CALL(flush_cache_all, viking_flush_cache_all, BTFIXUPCALL_NORM); 1961 BTFIXUPSET_CALL(flush_cache_mm, viking_flush_cache_mm, BTFIXUPCALL_NORM); 1962 BTFIXUPSET_CALL(flush_cache_page, viking_flush_cache_page, BTFIXUPCALL_NORM); 1963 BTFIXUPSET_CALL(flush_cache_range, viking_flush_cache_range, BTFIXUPCALL_NORM); 1964 1965 #ifdef CONFIG_SMP 1966 if (sparc_cpu_model == sun4d) { 1967 BTFIXUPSET_CALL(flush_tlb_all, sun4dsmp_flush_tlb_all, BTFIXUPCALL_NORM); 1968 BTFIXUPSET_CALL(flush_tlb_mm, sun4dsmp_flush_tlb_mm, BTFIXUPCALL_NORM); 1969 BTFIXUPSET_CALL(flush_tlb_page, sun4dsmp_flush_tlb_page, BTFIXUPCALL_NORM); 1970 BTFIXUPSET_CALL(flush_tlb_range, sun4dsmp_flush_tlb_range, BTFIXUPCALL_NORM); 1971 } else 1972 #endif 1973 { 1974 BTFIXUPSET_CALL(flush_tlb_all, viking_flush_tlb_all, BTFIXUPCALL_NORM); 1975 BTFIXUPSET_CALL(flush_tlb_mm, viking_flush_tlb_mm, BTFIXUPCALL_NORM); 1976 BTFIXUPSET_CALL(flush_tlb_page, viking_flush_tlb_page, BTFIXUPCALL_NORM); 1977 BTFIXUPSET_CALL(flush_tlb_range, viking_flush_tlb_range, BTFIXUPCALL_NORM); 1978 } 1979 1980 BTFIXUPSET_CALL(__flush_page_to_ram, viking_flush_page_to_ram, BTFIXUPCALL_NOP); 1981 BTFIXUPSET_CALL(flush_sig_insns, viking_flush_sig_insns, BTFIXUPCALL_NOP); 1982 1983 poke_srmmu = poke_viking; 1984 } 1985 1986 #ifdef CONFIG_SPARC_LEON 1987 1988 void __init poke_leonsparc(void) 1989 { 1990 } 1991 1992 void __init init_leon(void) 1993 { 1994 1995 srmmu_name = "LEON"; 1996 1997 BTFIXUPSET_CALL(flush_cache_all, leon_flush_cache_all, 1998 BTFIXUPCALL_NORM); 1999 BTFIXUPSET_CALL(flush_cache_mm, leon_flush_cache_all, 2000 BTFIXUPCALL_NORM); 2001 BTFIXUPSET_CALL(flush_cache_page, leon_flush_pcache_all, 2002 BTFIXUPCALL_NORM); 2003 BTFIXUPSET_CALL(flush_cache_range, leon_flush_cache_all, 2004 BTFIXUPCALL_NORM); 2005 BTFIXUPSET_CALL(flush_page_for_dma, leon_flush_dcache_all, 2006 BTFIXUPCALL_NORM); 2007 2008 BTFIXUPSET_CALL(flush_tlb_all, leon_flush_tlb_all, BTFIXUPCALL_NORM); 2009 BTFIXUPSET_CALL(flush_tlb_mm, leon_flush_tlb_all, BTFIXUPCALL_NORM); 2010 BTFIXUPSET_CALL(flush_tlb_page, leon_flush_tlb_all, BTFIXUPCALL_NORM); 2011 BTFIXUPSET_CALL(flush_tlb_range, leon_flush_tlb_all, BTFIXUPCALL_NORM); 2012 2013 BTFIXUPSET_CALL(__flush_page_to_ram, leon_flush_cache_all, 2014 BTFIXUPCALL_NOP); 2015 BTFIXUPSET_CALL(flush_sig_insns, leon_flush_cache_all, BTFIXUPCALL_NOP); 2016 2017 poke_srmmu = poke_leonsparc; 2018 2019 srmmu_cache_pagetables = 0; 2020 2021 leon_flush_during_switch = leon_flush_needed(); 2022 } 2023 #endif 2024 2025 /* Probe for the srmmu chip version. */ 2026 static void __init get_srmmu_type(void) 2027 { 2028 unsigned long mreg, psr; 2029 unsigned long mod_typ, mod_rev, psr_typ, psr_vers; 2030 2031 srmmu_modtype = SRMMU_INVAL_MOD; 2032 hwbug_bitmask = 0; 2033 2034 mreg = srmmu_get_mmureg(); psr = get_psr(); 2035 mod_typ = (mreg & 0xf0000000) >> 28; 2036 mod_rev = (mreg & 0x0f000000) >> 24; 2037 psr_typ = (psr >> 28) & 0xf; 2038 psr_vers = (psr >> 24) & 0xf; 2039 2040 /* First, check for sparc-leon. */ 2041 if (sparc_cpu_model == sparc_leon) { 2042 init_leon(); 2043 return; 2044 } 2045 2046 /* Second, check for HyperSparc or Cypress. */ 2047 if(mod_typ == 1) { 2048 switch(mod_rev) { 2049 case 7: 2050 /* UP or MP Hypersparc */ 2051 init_hypersparc(); 2052 break; 2053 case 0: 2054 case 2: 2055 /* Uniprocessor Cypress */ 2056 init_cypress_604(); 2057 break; 2058 case 10: 2059 case 11: 2060 case 12: 2061 /* _REALLY OLD_ Cypress MP chips... */ 2062 case 13: 2063 case 14: 2064 case 15: 2065 /* MP Cypress mmu/cache-controller */ 2066 init_cypress_605(mod_rev); 2067 break; 2068 default: 2069 /* Some other Cypress revision, assume a 605. */ 2070 init_cypress_605(mod_rev); 2071 break; 2072 }; 2073 return; 2074 } 2075 2076 /* 2077 * Now Fujitsu TurboSparc. It might happen that it is 2078 * in Swift emulation mode, so we will check later... 2079 */ 2080 if (psr_typ == 0 && psr_vers == 5) { 2081 init_turbosparc(); 2082 return; 2083 } 2084 2085 /* Next check for Fujitsu Swift. */ 2086 if(psr_typ == 0 && psr_vers == 4) { 2087 phandle cpunode; 2088 char node_str[128]; 2089 2090 /* Look if it is not a TurboSparc emulating Swift... */ 2091 cpunode = prom_getchild(prom_root_node); 2092 while((cpunode = prom_getsibling(cpunode)) != 0) { 2093 prom_getstring(cpunode, "device_type", node_str, sizeof(node_str)); 2094 if(!strcmp(node_str, "cpu")) { 2095 if (!prom_getintdefault(cpunode, "psr-implementation", 1) && 2096 prom_getintdefault(cpunode, "psr-version", 1) == 5) { 2097 init_turbosparc(); 2098 return; 2099 } 2100 break; 2101 } 2102 } 2103 2104 init_swift(); 2105 return; 2106 } 2107 2108 /* Now the Viking family of srmmu. */ 2109 if(psr_typ == 4 && 2110 ((psr_vers == 0) || 2111 ((psr_vers == 1) && (mod_typ == 0) && (mod_rev == 0)))) { 2112 init_viking(); 2113 return; 2114 } 2115 2116 /* Finally the Tsunami. */ 2117 if(psr_typ == 4 && psr_vers == 1 && (mod_typ || mod_rev)) { 2118 init_tsunami(); 2119 return; 2120 } 2121 2122 /* Oh well */ 2123 srmmu_is_bad(); 2124 } 2125 2126 /* don't laugh, static pagetables */ 2127 static void srmmu_check_pgt_cache(int low, int high) 2128 { 2129 } 2130 2131 extern unsigned long spwin_mmu_patchme, fwin_mmu_patchme, 2132 tsetup_mmu_patchme, rtrap_mmu_patchme; 2133 2134 extern unsigned long spwin_srmmu_stackchk, srmmu_fwin_stackchk, 2135 tsetup_srmmu_stackchk, srmmu_rett_stackchk; 2136 2137 extern unsigned long srmmu_fault; 2138 2139 #define PATCH_BRANCH(insn, dest) do { \ 2140 iaddr = &(insn); \ 2141 daddr = &(dest); \ 2142 *iaddr = SPARC_BRANCH((unsigned long) daddr, (unsigned long) iaddr); \ 2143 } while(0) 2144 2145 static void __init patch_window_trap_handlers(void) 2146 { 2147 unsigned long *iaddr, *daddr; 2148 2149 PATCH_BRANCH(spwin_mmu_patchme, spwin_srmmu_stackchk); 2150 PATCH_BRANCH(fwin_mmu_patchme, srmmu_fwin_stackchk); 2151 PATCH_BRANCH(tsetup_mmu_patchme, tsetup_srmmu_stackchk); 2152 PATCH_BRANCH(rtrap_mmu_patchme, srmmu_rett_stackchk); 2153 PATCH_BRANCH(sparc_ttable[SP_TRAP_TFLT].inst_three, srmmu_fault); 2154 PATCH_BRANCH(sparc_ttable[SP_TRAP_DFLT].inst_three, srmmu_fault); 2155 PATCH_BRANCH(sparc_ttable[SP_TRAP_DACC].inst_three, srmmu_fault); 2156 } 2157 2158 #ifdef CONFIG_SMP 2159 /* Local cross-calls. */ 2160 static void smp_flush_page_for_dma(unsigned long page) 2161 { 2162 xc1((smpfunc_t) BTFIXUP_CALL(local_flush_page_for_dma), page); 2163 local_flush_page_for_dma(page); 2164 } 2165 2166 #endif 2167 2168 static pte_t srmmu_pgoff_to_pte(unsigned long pgoff) 2169 { 2170 return __pte((pgoff << SRMMU_PTE_FILE_SHIFT) | SRMMU_FILE); 2171 } 2172 2173 static unsigned long srmmu_pte_to_pgoff(pte_t pte) 2174 { 2175 return pte_val(pte) >> SRMMU_PTE_FILE_SHIFT; 2176 } 2177 2178 static pgprot_t srmmu_pgprot_noncached(pgprot_t prot) 2179 { 2180 prot &= ~__pgprot(SRMMU_CACHE); 2181 2182 return prot; 2183 } 2184 2185 /* Load up routines and constants for sun4m and sun4d mmu */ 2186 void __init ld_mmu_srmmu(void) 2187 { 2188 extern void ld_mmu_iommu(void); 2189 extern void ld_mmu_iounit(void); 2190 extern void ___xchg32_sun4md(void); 2191 2192 BTFIXUPSET_SIMM13(pgdir_shift, SRMMU_PGDIR_SHIFT); 2193 BTFIXUPSET_SETHI(pgdir_size, SRMMU_PGDIR_SIZE); 2194 BTFIXUPSET_SETHI(pgdir_mask, SRMMU_PGDIR_MASK); 2195 2196 BTFIXUPSET_SIMM13(ptrs_per_pmd, SRMMU_PTRS_PER_PMD); 2197 BTFIXUPSET_SIMM13(ptrs_per_pgd, SRMMU_PTRS_PER_PGD); 2198 2199 BTFIXUPSET_INT(page_none, pgprot_val(SRMMU_PAGE_NONE)); 2200 PAGE_SHARED = pgprot_val(SRMMU_PAGE_SHARED); 2201 BTFIXUPSET_INT(page_copy, pgprot_val(SRMMU_PAGE_COPY)); 2202 BTFIXUPSET_INT(page_readonly, pgprot_val(SRMMU_PAGE_RDONLY)); 2203 BTFIXUPSET_INT(page_kernel, pgprot_val(SRMMU_PAGE_KERNEL)); 2204 page_kernel = pgprot_val(SRMMU_PAGE_KERNEL); 2205 2206 /* Functions */ 2207 BTFIXUPSET_CALL(pgprot_noncached, srmmu_pgprot_noncached, BTFIXUPCALL_NORM); 2208 #ifndef CONFIG_SMP 2209 BTFIXUPSET_CALL(___xchg32, ___xchg32_sun4md, BTFIXUPCALL_SWAPG1G2); 2210 #endif 2211 BTFIXUPSET_CALL(do_check_pgt_cache, srmmu_check_pgt_cache, BTFIXUPCALL_NOP); 2212 2213 BTFIXUPSET_CALL(set_pte, srmmu_set_pte, BTFIXUPCALL_SWAPO0O1); 2214 BTFIXUPSET_CALL(switch_mm, srmmu_switch_mm, BTFIXUPCALL_NORM); 2215 2216 BTFIXUPSET_CALL(pte_pfn, srmmu_pte_pfn, BTFIXUPCALL_NORM); 2217 BTFIXUPSET_CALL(pmd_page, srmmu_pmd_page, BTFIXUPCALL_NORM); 2218 BTFIXUPSET_CALL(pgd_page_vaddr, srmmu_pgd_page, BTFIXUPCALL_NORM); 2219 2220 BTFIXUPSET_CALL(pte_present, srmmu_pte_present, BTFIXUPCALL_NORM); 2221 BTFIXUPSET_CALL(pte_clear, srmmu_pte_clear, BTFIXUPCALL_SWAPO0G0); 2222 2223 BTFIXUPSET_CALL(pmd_bad, srmmu_pmd_bad, BTFIXUPCALL_NORM); 2224 BTFIXUPSET_CALL(pmd_present, srmmu_pmd_present, BTFIXUPCALL_NORM); 2225 BTFIXUPSET_CALL(pmd_clear, srmmu_pmd_clear, BTFIXUPCALL_SWAPO0G0); 2226 2227 BTFIXUPSET_CALL(pgd_none, srmmu_pgd_none, BTFIXUPCALL_NORM); 2228 BTFIXUPSET_CALL(pgd_bad, srmmu_pgd_bad, BTFIXUPCALL_NORM); 2229 BTFIXUPSET_CALL(pgd_present, srmmu_pgd_present, BTFIXUPCALL_NORM); 2230 BTFIXUPSET_CALL(pgd_clear, srmmu_pgd_clear, BTFIXUPCALL_SWAPO0G0); 2231 2232 BTFIXUPSET_CALL(mk_pte, srmmu_mk_pte, BTFIXUPCALL_NORM); 2233 BTFIXUPSET_CALL(mk_pte_phys, srmmu_mk_pte_phys, BTFIXUPCALL_NORM); 2234 BTFIXUPSET_CALL(mk_pte_io, srmmu_mk_pte_io, BTFIXUPCALL_NORM); 2235 BTFIXUPSET_CALL(pgd_set, srmmu_pgd_set, BTFIXUPCALL_NORM); 2236 BTFIXUPSET_CALL(pmd_set, srmmu_pmd_set, BTFIXUPCALL_NORM); 2237 BTFIXUPSET_CALL(pmd_populate, srmmu_pmd_populate, BTFIXUPCALL_NORM); 2238 2239 BTFIXUPSET_INT(pte_modify_mask, SRMMU_CHG_MASK); 2240 BTFIXUPSET_CALL(pmd_offset, srmmu_pmd_offset, BTFIXUPCALL_NORM); 2241 BTFIXUPSET_CALL(pte_offset_kernel, srmmu_pte_offset, BTFIXUPCALL_NORM); 2242 2243 BTFIXUPSET_CALL(free_pte_fast, srmmu_free_pte_fast, BTFIXUPCALL_NORM); 2244 BTFIXUPSET_CALL(pte_free, srmmu_pte_free, BTFIXUPCALL_NORM); 2245 BTFIXUPSET_CALL(pte_alloc_one_kernel, srmmu_pte_alloc_one_kernel, BTFIXUPCALL_NORM); 2246 BTFIXUPSET_CALL(pte_alloc_one, srmmu_pte_alloc_one, BTFIXUPCALL_NORM); 2247 BTFIXUPSET_CALL(free_pmd_fast, srmmu_pmd_free, BTFIXUPCALL_NORM); 2248 BTFIXUPSET_CALL(pmd_alloc_one, srmmu_pmd_alloc_one, BTFIXUPCALL_NORM); 2249 BTFIXUPSET_CALL(free_pgd_fast, srmmu_free_pgd_fast, BTFIXUPCALL_NORM); 2250 BTFIXUPSET_CALL(get_pgd_fast, srmmu_get_pgd_fast, BTFIXUPCALL_NORM); 2251 2252 BTFIXUPSET_HALF(pte_writei, SRMMU_WRITE); 2253 BTFIXUPSET_HALF(pte_dirtyi, SRMMU_DIRTY); 2254 BTFIXUPSET_HALF(pte_youngi, SRMMU_REF); 2255 BTFIXUPSET_HALF(pte_filei, SRMMU_FILE); 2256 BTFIXUPSET_HALF(pte_wrprotecti, SRMMU_WRITE); 2257 BTFIXUPSET_HALF(pte_mkcleani, SRMMU_DIRTY); 2258 BTFIXUPSET_HALF(pte_mkoldi, SRMMU_REF); 2259 BTFIXUPSET_CALL(pte_mkwrite, srmmu_pte_mkwrite, BTFIXUPCALL_ORINT(SRMMU_WRITE)); 2260 BTFIXUPSET_CALL(pte_mkdirty, srmmu_pte_mkdirty, BTFIXUPCALL_ORINT(SRMMU_DIRTY)); 2261 BTFIXUPSET_CALL(pte_mkyoung, srmmu_pte_mkyoung, BTFIXUPCALL_ORINT(SRMMU_REF)); 2262 BTFIXUPSET_CALL(update_mmu_cache, srmmu_update_mmu_cache, BTFIXUPCALL_NOP); 2263 BTFIXUPSET_CALL(destroy_context, srmmu_destroy_context, BTFIXUPCALL_NORM); 2264 2265 BTFIXUPSET_CALL(sparc_mapiorange, srmmu_mapiorange, BTFIXUPCALL_NORM); 2266 BTFIXUPSET_CALL(sparc_unmapiorange, srmmu_unmapiorange, BTFIXUPCALL_NORM); 2267 2268 BTFIXUPSET_CALL(__swp_type, srmmu_swp_type, BTFIXUPCALL_NORM); 2269 BTFIXUPSET_CALL(__swp_offset, srmmu_swp_offset, BTFIXUPCALL_NORM); 2270 BTFIXUPSET_CALL(__swp_entry, srmmu_swp_entry, BTFIXUPCALL_NORM); 2271 2272 BTFIXUPSET_CALL(mmu_info, srmmu_mmu_info, BTFIXUPCALL_NORM); 2273 2274 BTFIXUPSET_CALL(alloc_thread_info, srmmu_alloc_thread_info, BTFIXUPCALL_NORM); 2275 BTFIXUPSET_CALL(free_thread_info, srmmu_free_thread_info, BTFIXUPCALL_NORM); 2276 2277 BTFIXUPSET_CALL(pte_to_pgoff, srmmu_pte_to_pgoff, BTFIXUPCALL_NORM); 2278 BTFIXUPSET_CALL(pgoff_to_pte, srmmu_pgoff_to_pte, BTFIXUPCALL_NORM); 2279 2280 get_srmmu_type(); 2281 patch_window_trap_handlers(); 2282 2283 #ifdef CONFIG_SMP 2284 /* El switcheroo... */ 2285 2286 BTFIXUPCOPY_CALL(local_flush_cache_all, flush_cache_all); 2287 BTFIXUPCOPY_CALL(local_flush_cache_mm, flush_cache_mm); 2288 BTFIXUPCOPY_CALL(local_flush_cache_range, flush_cache_range); 2289 BTFIXUPCOPY_CALL(local_flush_cache_page, flush_cache_page); 2290 BTFIXUPCOPY_CALL(local_flush_tlb_all, flush_tlb_all); 2291 BTFIXUPCOPY_CALL(local_flush_tlb_mm, flush_tlb_mm); 2292 BTFIXUPCOPY_CALL(local_flush_tlb_range, flush_tlb_range); 2293 BTFIXUPCOPY_CALL(local_flush_tlb_page, flush_tlb_page); 2294 BTFIXUPCOPY_CALL(local_flush_page_to_ram, __flush_page_to_ram); 2295 BTFIXUPCOPY_CALL(local_flush_sig_insns, flush_sig_insns); 2296 BTFIXUPCOPY_CALL(local_flush_page_for_dma, flush_page_for_dma); 2297 2298 BTFIXUPSET_CALL(flush_cache_all, smp_flush_cache_all, BTFIXUPCALL_NORM); 2299 BTFIXUPSET_CALL(flush_cache_mm, smp_flush_cache_mm, BTFIXUPCALL_NORM); 2300 BTFIXUPSET_CALL(flush_cache_range, smp_flush_cache_range, BTFIXUPCALL_NORM); 2301 BTFIXUPSET_CALL(flush_cache_page, smp_flush_cache_page, BTFIXUPCALL_NORM); 2302 if (sparc_cpu_model != sun4d && 2303 sparc_cpu_model != sparc_leon) { 2304 BTFIXUPSET_CALL(flush_tlb_all, smp_flush_tlb_all, BTFIXUPCALL_NORM); 2305 BTFIXUPSET_CALL(flush_tlb_mm, smp_flush_tlb_mm, BTFIXUPCALL_NORM); 2306 BTFIXUPSET_CALL(flush_tlb_range, smp_flush_tlb_range, BTFIXUPCALL_NORM); 2307 BTFIXUPSET_CALL(flush_tlb_page, smp_flush_tlb_page, BTFIXUPCALL_NORM); 2308 } 2309 BTFIXUPSET_CALL(__flush_page_to_ram, smp_flush_page_to_ram, BTFIXUPCALL_NORM); 2310 BTFIXUPSET_CALL(flush_sig_insns, smp_flush_sig_insns, BTFIXUPCALL_NORM); 2311 BTFIXUPSET_CALL(flush_page_for_dma, smp_flush_page_for_dma, BTFIXUPCALL_NORM); 2312 2313 if (poke_srmmu == poke_viking) { 2314 /* Avoid unnecessary cross calls. */ 2315 BTFIXUPCOPY_CALL(flush_cache_all, local_flush_cache_all); 2316 BTFIXUPCOPY_CALL(flush_cache_mm, local_flush_cache_mm); 2317 BTFIXUPCOPY_CALL(flush_cache_range, local_flush_cache_range); 2318 BTFIXUPCOPY_CALL(flush_cache_page, local_flush_cache_page); 2319 BTFIXUPCOPY_CALL(__flush_page_to_ram, local_flush_page_to_ram); 2320 BTFIXUPCOPY_CALL(flush_sig_insns, local_flush_sig_insns); 2321 BTFIXUPCOPY_CALL(flush_page_for_dma, local_flush_page_for_dma); 2322 } 2323 #endif 2324 2325 if (sparc_cpu_model == sun4d) 2326 ld_mmu_iounit(); 2327 else 2328 ld_mmu_iommu(); 2329 #ifdef CONFIG_SMP 2330 if (sparc_cpu_model == sun4d) 2331 sun4d_init_smp(); 2332 else if (sparc_cpu_model == sparc_leon) 2333 leon_init_smp(); 2334 else 2335 sun4m_init_smp(); 2336 #endif 2337 } 2338