xref: /openbmc/linux/arch/sparc/mm/srmmu.c (revision 384740dc)
1 /*
2  * srmmu.c:  SRMMU specific routines for memory management.
3  *
4  * Copyright (C) 1995 David S. Miller  (davem@caip.rutgers.edu)
5  * Copyright (C) 1995,2002 Pete Zaitcev (zaitcev@yahoo.com)
6  * Copyright (C) 1996 Eddie C. Dost    (ecd@skynet.be)
7  * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
8  * Copyright (C) 1999,2000 Anton Blanchard (anton@samba.org)
9  */
10 
11 #include <linux/kernel.h>
12 #include <linux/mm.h>
13 #include <linux/slab.h>
14 #include <linux/vmalloc.h>
15 #include <linux/pagemap.h>
16 #include <linux/init.h>
17 #include <linux/spinlock.h>
18 #include <linux/bootmem.h>
19 #include <linux/fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/kdebug.h>
22 
23 #include <asm/bitext.h>
24 #include <asm/page.h>
25 #include <asm/pgalloc.h>
26 #include <asm/pgtable.h>
27 #include <asm/io.h>
28 #include <asm/vaddrs.h>
29 #include <asm/traps.h>
30 #include <asm/smp.h>
31 #include <asm/mbus.h>
32 #include <asm/cache.h>
33 #include <asm/oplib.h>
34 #include <asm/sbus.h>
35 #include <asm/asi.h>
36 #include <asm/msi.h>
37 #include <asm/mmu_context.h>
38 #include <asm/io-unit.h>
39 #include <asm/cacheflush.h>
40 #include <asm/tlbflush.h>
41 
42 /* Now the cpu specific definitions. */
43 #include <asm/viking.h>
44 #include <asm/mxcc.h>
45 #include <asm/ross.h>
46 #include <asm/tsunami.h>
47 #include <asm/swift.h>
48 #include <asm/turbosparc.h>
49 
50 #include <asm/btfixup.h>
51 
52 enum mbus_module srmmu_modtype;
53 static unsigned int hwbug_bitmask;
54 int vac_cache_size;
55 int vac_line_size;
56 
57 extern struct resource sparc_iomap;
58 
59 extern unsigned long last_valid_pfn;
60 
61 extern unsigned long page_kernel;
62 
63 static pgd_t *srmmu_swapper_pg_dir;
64 
65 #ifdef CONFIG_SMP
66 #define FLUSH_BEGIN(mm)
67 #define FLUSH_END
68 #else
69 #define FLUSH_BEGIN(mm) if((mm)->context != NO_CONTEXT) {
70 #define FLUSH_END	}
71 #endif
72 
73 BTFIXUPDEF_CALL(void, flush_page_for_dma, unsigned long)
74 #define flush_page_for_dma(page) BTFIXUP_CALL(flush_page_for_dma)(page)
75 
76 int flush_page_for_dma_global = 1;
77 
78 #ifdef CONFIG_SMP
79 BTFIXUPDEF_CALL(void, local_flush_page_for_dma, unsigned long)
80 #define local_flush_page_for_dma(page) BTFIXUP_CALL(local_flush_page_for_dma)(page)
81 #endif
82 
83 char *srmmu_name;
84 
85 ctxd_t *srmmu_ctx_table_phys;
86 static ctxd_t *srmmu_context_table;
87 
88 int viking_mxcc_present;
89 static DEFINE_SPINLOCK(srmmu_context_spinlock);
90 
91 static int is_hypersparc;
92 
93 /*
94  * In general all page table modifications should use the V8 atomic
95  * swap instruction.  This insures the mmu and the cpu are in sync
96  * with respect to ref/mod bits in the page tables.
97  */
98 static inline unsigned long srmmu_swap(unsigned long *addr, unsigned long value)
99 {
100 	__asm__ __volatile__("swap [%2], %0" : "=&r" (value) : "0" (value), "r" (addr));
101 	return value;
102 }
103 
104 static inline void srmmu_set_pte(pte_t *ptep, pte_t pteval)
105 {
106 	srmmu_swap((unsigned long *)ptep, pte_val(pteval));
107 }
108 
109 /* The very generic SRMMU page table operations. */
110 static inline int srmmu_device_memory(unsigned long x)
111 {
112 	return ((x & 0xF0000000) != 0);
113 }
114 
115 static int srmmu_cache_pagetables;
116 
117 /* these will be initialized in srmmu_nocache_calcsize() */
118 static unsigned long srmmu_nocache_size;
119 static unsigned long srmmu_nocache_end;
120 
121 /* 1 bit <=> 256 bytes of nocache <=> 64 PTEs */
122 #define SRMMU_NOCACHE_BITMAP_SHIFT (PAGE_SHIFT - 4)
123 
124 /* The context table is a nocache user with the biggest alignment needs. */
125 #define SRMMU_NOCACHE_ALIGN_MAX (sizeof(ctxd_t)*SRMMU_MAX_CONTEXTS)
126 
127 void *srmmu_nocache_pool;
128 void *srmmu_nocache_bitmap;
129 static struct bit_map srmmu_nocache_map;
130 
131 static unsigned long srmmu_pte_pfn(pte_t pte)
132 {
133 	if (srmmu_device_memory(pte_val(pte))) {
134 		/* Just return something that will cause
135 		 * pfn_valid() to return false.  This makes
136 		 * copy_one_pte() to just directly copy to
137 		 * PTE over.
138 		 */
139 		return ~0UL;
140 	}
141 	return (pte_val(pte) & SRMMU_PTE_PMASK) >> (PAGE_SHIFT-4);
142 }
143 
144 static struct page *srmmu_pmd_page(pmd_t pmd)
145 {
146 
147 	if (srmmu_device_memory(pmd_val(pmd)))
148 		BUG();
149 	return pfn_to_page((pmd_val(pmd) & SRMMU_PTD_PMASK) >> (PAGE_SHIFT-4));
150 }
151 
152 static inline unsigned long srmmu_pgd_page(pgd_t pgd)
153 { return srmmu_device_memory(pgd_val(pgd))?~0:(unsigned long)__nocache_va((pgd_val(pgd) & SRMMU_PTD_PMASK) << 4); }
154 
155 
156 static inline int srmmu_pte_none(pte_t pte)
157 { return !(pte_val(pte) & 0xFFFFFFF); }
158 
159 static inline int srmmu_pte_present(pte_t pte)
160 { return ((pte_val(pte) & SRMMU_ET_MASK) == SRMMU_ET_PTE); }
161 
162 static inline void srmmu_pte_clear(pte_t *ptep)
163 { srmmu_set_pte(ptep, __pte(0)); }
164 
165 static inline int srmmu_pmd_none(pmd_t pmd)
166 { return !(pmd_val(pmd) & 0xFFFFFFF); }
167 
168 static inline int srmmu_pmd_bad(pmd_t pmd)
169 { return (pmd_val(pmd) & SRMMU_ET_MASK) != SRMMU_ET_PTD; }
170 
171 static inline int srmmu_pmd_present(pmd_t pmd)
172 { return ((pmd_val(pmd) & SRMMU_ET_MASK) == SRMMU_ET_PTD); }
173 
174 static inline void srmmu_pmd_clear(pmd_t *pmdp) {
175 	int i;
176 	for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++)
177 		srmmu_set_pte((pte_t *)&pmdp->pmdv[i], __pte(0));
178 }
179 
180 static inline int srmmu_pgd_none(pgd_t pgd)
181 { return !(pgd_val(pgd) & 0xFFFFFFF); }
182 
183 static inline int srmmu_pgd_bad(pgd_t pgd)
184 { return (pgd_val(pgd) & SRMMU_ET_MASK) != SRMMU_ET_PTD; }
185 
186 static inline int srmmu_pgd_present(pgd_t pgd)
187 { return ((pgd_val(pgd) & SRMMU_ET_MASK) == SRMMU_ET_PTD); }
188 
189 static inline void srmmu_pgd_clear(pgd_t * pgdp)
190 { srmmu_set_pte((pte_t *)pgdp, __pte(0)); }
191 
192 static inline pte_t srmmu_pte_wrprotect(pte_t pte)
193 { return __pte(pte_val(pte) & ~SRMMU_WRITE);}
194 
195 static inline pte_t srmmu_pte_mkclean(pte_t pte)
196 { return __pte(pte_val(pte) & ~SRMMU_DIRTY);}
197 
198 static inline pte_t srmmu_pte_mkold(pte_t pte)
199 { return __pte(pte_val(pte) & ~SRMMU_REF);}
200 
201 static inline pte_t srmmu_pte_mkwrite(pte_t pte)
202 { return __pte(pte_val(pte) | SRMMU_WRITE);}
203 
204 static inline pte_t srmmu_pte_mkdirty(pte_t pte)
205 { return __pte(pte_val(pte) | SRMMU_DIRTY);}
206 
207 static inline pte_t srmmu_pte_mkyoung(pte_t pte)
208 { return __pte(pte_val(pte) | SRMMU_REF);}
209 
210 /*
211  * Conversion functions: convert a page and protection to a page entry,
212  * and a page entry and page directory to the page they refer to.
213  */
214 static pte_t srmmu_mk_pte(struct page *page, pgprot_t pgprot)
215 { return __pte((page_to_pfn(page) << (PAGE_SHIFT-4)) | pgprot_val(pgprot)); }
216 
217 static pte_t srmmu_mk_pte_phys(unsigned long page, pgprot_t pgprot)
218 { return __pte(((page) >> 4) | pgprot_val(pgprot)); }
219 
220 static pte_t srmmu_mk_pte_io(unsigned long page, pgprot_t pgprot, int space)
221 { return __pte(((page) >> 4) | (space << 28) | pgprot_val(pgprot)); }
222 
223 /* XXX should we hyper_flush_whole_icache here - Anton */
224 static inline void srmmu_ctxd_set(ctxd_t *ctxp, pgd_t *pgdp)
225 { srmmu_set_pte((pte_t *)ctxp, (SRMMU_ET_PTD | (__nocache_pa((unsigned long) pgdp) >> 4))); }
226 
227 static inline void srmmu_pgd_set(pgd_t * pgdp, pmd_t * pmdp)
228 { srmmu_set_pte((pte_t *)pgdp, (SRMMU_ET_PTD | (__nocache_pa((unsigned long) pmdp) >> 4))); }
229 
230 static void srmmu_pmd_set(pmd_t *pmdp, pte_t *ptep)
231 {
232 	unsigned long ptp;	/* Physical address, shifted right by 4 */
233 	int i;
234 
235 	ptp = __nocache_pa((unsigned long) ptep) >> 4;
236 	for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) {
237 		srmmu_set_pte((pte_t *)&pmdp->pmdv[i], SRMMU_ET_PTD | ptp);
238 		ptp += (SRMMU_REAL_PTRS_PER_PTE*sizeof(pte_t) >> 4);
239 	}
240 }
241 
242 static void srmmu_pmd_populate(pmd_t *pmdp, struct page *ptep)
243 {
244 	unsigned long ptp;	/* Physical address, shifted right by 4 */
245 	int i;
246 
247 	ptp = page_to_pfn(ptep) << (PAGE_SHIFT-4);	/* watch for overflow */
248 	for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) {
249 		srmmu_set_pte((pte_t *)&pmdp->pmdv[i], SRMMU_ET_PTD | ptp);
250 		ptp += (SRMMU_REAL_PTRS_PER_PTE*sizeof(pte_t) >> 4);
251 	}
252 }
253 
254 static inline pte_t srmmu_pte_modify(pte_t pte, pgprot_t newprot)
255 { return __pte((pte_val(pte) & SRMMU_CHG_MASK) | pgprot_val(newprot)); }
256 
257 /* to find an entry in a top-level page table... */
258 static inline pgd_t *srmmu_pgd_offset(struct mm_struct * mm, unsigned long address)
259 { return mm->pgd + (address >> SRMMU_PGDIR_SHIFT); }
260 
261 /* Find an entry in the second-level page table.. */
262 static inline pmd_t *srmmu_pmd_offset(pgd_t * dir, unsigned long address)
263 {
264 	return (pmd_t *) srmmu_pgd_page(*dir) +
265 	    ((address >> PMD_SHIFT) & (PTRS_PER_PMD - 1));
266 }
267 
268 /* Find an entry in the third-level page table.. */
269 static inline pte_t *srmmu_pte_offset(pmd_t * dir, unsigned long address)
270 {
271 	void *pte;
272 
273 	pte = __nocache_va((dir->pmdv[0] & SRMMU_PTD_PMASK) << 4);
274 	return (pte_t *) pte +
275 	    ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
276 }
277 
278 static unsigned long srmmu_swp_type(swp_entry_t entry)
279 {
280 	return (entry.val >> SRMMU_SWP_TYPE_SHIFT) & SRMMU_SWP_TYPE_MASK;
281 }
282 
283 static unsigned long srmmu_swp_offset(swp_entry_t entry)
284 {
285 	return (entry.val >> SRMMU_SWP_OFF_SHIFT) & SRMMU_SWP_OFF_MASK;
286 }
287 
288 static swp_entry_t srmmu_swp_entry(unsigned long type, unsigned long offset)
289 {
290 	return (swp_entry_t) {
291 		  (type & SRMMU_SWP_TYPE_MASK) << SRMMU_SWP_TYPE_SHIFT
292 		| (offset & SRMMU_SWP_OFF_MASK) << SRMMU_SWP_OFF_SHIFT };
293 }
294 
295 /*
296  * size: bytes to allocate in the nocache area.
297  * align: bytes, number to align at.
298  * Returns the virtual address of the allocated area.
299  */
300 static unsigned long __srmmu_get_nocache(int size, int align)
301 {
302 	int offset;
303 
304 	if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
305 		printk("Size 0x%x too small for nocache request\n", size);
306 		size = SRMMU_NOCACHE_BITMAP_SHIFT;
307 	}
308 	if (size & (SRMMU_NOCACHE_BITMAP_SHIFT-1)) {
309 		printk("Size 0x%x unaligned int nocache request\n", size);
310 		size += SRMMU_NOCACHE_BITMAP_SHIFT-1;
311 	}
312 	BUG_ON(align > SRMMU_NOCACHE_ALIGN_MAX);
313 
314 	offset = bit_map_string_get(&srmmu_nocache_map,
315 		       			size >> SRMMU_NOCACHE_BITMAP_SHIFT,
316 					align >> SRMMU_NOCACHE_BITMAP_SHIFT);
317 	if (offset == -1) {
318 		printk("srmmu: out of nocache %d: %d/%d\n",
319 		    size, (int) srmmu_nocache_size,
320 		    srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
321 		return 0;
322 	}
323 
324 	return (SRMMU_NOCACHE_VADDR + (offset << SRMMU_NOCACHE_BITMAP_SHIFT));
325 }
326 
327 static unsigned long srmmu_get_nocache(int size, int align)
328 {
329 	unsigned long tmp;
330 
331 	tmp = __srmmu_get_nocache(size, align);
332 
333 	if (tmp)
334 		memset((void *)tmp, 0, size);
335 
336 	return tmp;
337 }
338 
339 static void srmmu_free_nocache(unsigned long vaddr, int size)
340 {
341 	int offset;
342 
343 	if (vaddr < SRMMU_NOCACHE_VADDR) {
344 		printk("Vaddr %lx is smaller than nocache base 0x%lx\n",
345 		    vaddr, (unsigned long)SRMMU_NOCACHE_VADDR);
346 		BUG();
347 	}
348 	if (vaddr+size > srmmu_nocache_end) {
349 		printk("Vaddr %lx is bigger than nocache end 0x%lx\n",
350 		    vaddr, srmmu_nocache_end);
351 		BUG();
352 	}
353 	if (size & (size-1)) {
354 		printk("Size 0x%x is not a power of 2\n", size);
355 		BUG();
356 	}
357 	if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
358 		printk("Size 0x%x is too small\n", size);
359 		BUG();
360 	}
361 	if (vaddr & (size-1)) {
362 		printk("Vaddr %lx is not aligned to size 0x%x\n", vaddr, size);
363 		BUG();
364 	}
365 
366 	offset = (vaddr - SRMMU_NOCACHE_VADDR) >> SRMMU_NOCACHE_BITMAP_SHIFT;
367 	size = size >> SRMMU_NOCACHE_BITMAP_SHIFT;
368 
369 	bit_map_clear(&srmmu_nocache_map, offset, size);
370 }
371 
372 static void srmmu_early_allocate_ptable_skeleton(unsigned long start,
373 						 unsigned long end);
374 
375 extern unsigned long probe_memory(void);	/* in fault.c */
376 
377 /*
378  * Reserve nocache dynamically proportionally to the amount of
379  * system RAM. -- Tomas Szepe <szepe@pinerecords.com>, June 2002
380  */
381 static void srmmu_nocache_calcsize(void)
382 {
383 	unsigned long sysmemavail = probe_memory() / 1024;
384 	int srmmu_nocache_npages;
385 
386 	srmmu_nocache_npages =
387 		sysmemavail / SRMMU_NOCACHE_ALCRATIO / 1024 * 256;
388 
389  /* P3 XXX The 4x overuse: corroborated by /proc/meminfo. */
390 	// if (srmmu_nocache_npages < 256) srmmu_nocache_npages = 256;
391 	if (srmmu_nocache_npages < SRMMU_MIN_NOCACHE_PAGES)
392 		srmmu_nocache_npages = SRMMU_MIN_NOCACHE_PAGES;
393 
394 	/* anything above 1280 blows up */
395 	if (srmmu_nocache_npages > SRMMU_MAX_NOCACHE_PAGES)
396 		srmmu_nocache_npages = SRMMU_MAX_NOCACHE_PAGES;
397 
398 	srmmu_nocache_size = srmmu_nocache_npages * PAGE_SIZE;
399 	srmmu_nocache_end = SRMMU_NOCACHE_VADDR + srmmu_nocache_size;
400 }
401 
402 static void __init srmmu_nocache_init(void)
403 {
404 	unsigned int bitmap_bits;
405 	pgd_t *pgd;
406 	pmd_t *pmd;
407 	pte_t *pte;
408 	unsigned long paddr, vaddr;
409 	unsigned long pteval;
410 
411 	bitmap_bits = srmmu_nocache_size >> SRMMU_NOCACHE_BITMAP_SHIFT;
412 
413 	srmmu_nocache_pool = __alloc_bootmem(srmmu_nocache_size,
414 		SRMMU_NOCACHE_ALIGN_MAX, 0UL);
415 	memset(srmmu_nocache_pool, 0, srmmu_nocache_size);
416 
417 	srmmu_nocache_bitmap = __alloc_bootmem(bitmap_bits >> 3, SMP_CACHE_BYTES, 0UL);
418 	bit_map_init(&srmmu_nocache_map, srmmu_nocache_bitmap, bitmap_bits);
419 
420 	srmmu_swapper_pg_dir = (pgd_t *)__srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
421 	memset(__nocache_fix(srmmu_swapper_pg_dir), 0, SRMMU_PGD_TABLE_SIZE);
422 	init_mm.pgd = srmmu_swapper_pg_dir;
423 
424 	srmmu_early_allocate_ptable_skeleton(SRMMU_NOCACHE_VADDR, srmmu_nocache_end);
425 
426 	paddr = __pa((unsigned long)srmmu_nocache_pool);
427 	vaddr = SRMMU_NOCACHE_VADDR;
428 
429 	while (vaddr < srmmu_nocache_end) {
430 		pgd = pgd_offset_k(vaddr);
431 		pmd = srmmu_pmd_offset(__nocache_fix(pgd), vaddr);
432 		pte = srmmu_pte_offset(__nocache_fix(pmd), vaddr);
433 
434 		pteval = ((paddr >> 4) | SRMMU_ET_PTE | SRMMU_PRIV);
435 
436 		if (srmmu_cache_pagetables)
437 			pteval |= SRMMU_CACHE;
438 
439 		srmmu_set_pte(__nocache_fix(pte), __pte(pteval));
440 
441 		vaddr += PAGE_SIZE;
442 		paddr += PAGE_SIZE;
443 	}
444 
445 	flush_cache_all();
446 	flush_tlb_all();
447 }
448 
449 static inline pgd_t *srmmu_get_pgd_fast(void)
450 {
451 	pgd_t *pgd = NULL;
452 
453 	pgd = (pgd_t *)__srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
454 	if (pgd) {
455 		pgd_t *init = pgd_offset_k(0);
456 		memset(pgd, 0, USER_PTRS_PER_PGD * sizeof(pgd_t));
457 		memcpy(pgd + USER_PTRS_PER_PGD, init + USER_PTRS_PER_PGD,
458 						(PTRS_PER_PGD - USER_PTRS_PER_PGD) * sizeof(pgd_t));
459 	}
460 
461 	return pgd;
462 }
463 
464 static void srmmu_free_pgd_fast(pgd_t *pgd)
465 {
466 	srmmu_free_nocache((unsigned long)pgd, SRMMU_PGD_TABLE_SIZE);
467 }
468 
469 static pmd_t *srmmu_pmd_alloc_one(struct mm_struct *mm, unsigned long address)
470 {
471 	return (pmd_t *)srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
472 }
473 
474 static void srmmu_pmd_free(pmd_t * pmd)
475 {
476 	srmmu_free_nocache((unsigned long)pmd, SRMMU_PMD_TABLE_SIZE);
477 }
478 
479 /*
480  * Hardware needs alignment to 256 only, but we align to whole page size
481  * to reduce fragmentation problems due to the buddy principle.
482  * XXX Provide actual fragmentation statistics in /proc.
483  *
484  * Alignments up to the page size are the same for physical and virtual
485  * addresses of the nocache area.
486  */
487 static pte_t *
488 srmmu_pte_alloc_one_kernel(struct mm_struct *mm, unsigned long address)
489 {
490 	return (pte_t *)srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
491 }
492 
493 static pgtable_t
494 srmmu_pte_alloc_one(struct mm_struct *mm, unsigned long address)
495 {
496 	unsigned long pte;
497 	struct page *page;
498 
499 	if ((pte = (unsigned long)srmmu_pte_alloc_one_kernel(mm, address)) == 0)
500 		return NULL;
501 	page = pfn_to_page( __nocache_pa(pte) >> PAGE_SHIFT );
502 	pgtable_page_ctor(page);
503 	return page;
504 }
505 
506 static void srmmu_free_pte_fast(pte_t *pte)
507 {
508 	srmmu_free_nocache((unsigned long)pte, PTE_SIZE);
509 }
510 
511 static void srmmu_pte_free(pgtable_t pte)
512 {
513 	unsigned long p;
514 
515 	pgtable_page_dtor(pte);
516 	p = (unsigned long)page_address(pte);	/* Cached address (for test) */
517 	if (p == 0)
518 		BUG();
519 	p = page_to_pfn(pte) << PAGE_SHIFT;	/* Physical address */
520 	p = (unsigned long) __nocache_va(p);	/* Nocached virtual */
521 	srmmu_free_nocache(p, PTE_SIZE);
522 }
523 
524 /*
525  */
526 static inline void alloc_context(struct mm_struct *old_mm, struct mm_struct *mm)
527 {
528 	struct ctx_list *ctxp;
529 
530 	ctxp = ctx_free.next;
531 	if(ctxp != &ctx_free) {
532 		remove_from_ctx_list(ctxp);
533 		add_to_used_ctxlist(ctxp);
534 		mm->context = ctxp->ctx_number;
535 		ctxp->ctx_mm = mm;
536 		return;
537 	}
538 	ctxp = ctx_used.next;
539 	if(ctxp->ctx_mm == old_mm)
540 		ctxp = ctxp->next;
541 	if(ctxp == &ctx_used)
542 		panic("out of mmu contexts");
543 	flush_cache_mm(ctxp->ctx_mm);
544 	flush_tlb_mm(ctxp->ctx_mm);
545 	remove_from_ctx_list(ctxp);
546 	add_to_used_ctxlist(ctxp);
547 	ctxp->ctx_mm->context = NO_CONTEXT;
548 	ctxp->ctx_mm = mm;
549 	mm->context = ctxp->ctx_number;
550 }
551 
552 static inline void free_context(int context)
553 {
554 	struct ctx_list *ctx_old;
555 
556 	ctx_old = ctx_list_pool + context;
557 	remove_from_ctx_list(ctx_old);
558 	add_to_free_ctxlist(ctx_old);
559 }
560 
561 
562 static void srmmu_switch_mm(struct mm_struct *old_mm, struct mm_struct *mm,
563     struct task_struct *tsk, int cpu)
564 {
565 	if(mm->context == NO_CONTEXT) {
566 		spin_lock(&srmmu_context_spinlock);
567 		alloc_context(old_mm, mm);
568 		spin_unlock(&srmmu_context_spinlock);
569 		srmmu_ctxd_set(&srmmu_context_table[mm->context], mm->pgd);
570 	}
571 
572 	if (is_hypersparc)
573 		hyper_flush_whole_icache();
574 
575 	srmmu_set_context(mm->context);
576 }
577 
578 /* Low level IO area allocation on the SRMMU. */
579 static inline void srmmu_mapioaddr(unsigned long physaddr,
580     unsigned long virt_addr, int bus_type)
581 {
582 	pgd_t *pgdp;
583 	pmd_t *pmdp;
584 	pte_t *ptep;
585 	unsigned long tmp;
586 
587 	physaddr &= PAGE_MASK;
588 	pgdp = pgd_offset_k(virt_addr);
589 	pmdp = srmmu_pmd_offset(pgdp, virt_addr);
590 	ptep = srmmu_pte_offset(pmdp, virt_addr);
591 	tmp = (physaddr >> 4) | SRMMU_ET_PTE;
592 
593 	/*
594 	 * I need to test whether this is consistent over all
595 	 * sun4m's.  The bus_type represents the upper 4 bits of
596 	 * 36-bit physical address on the I/O space lines...
597 	 */
598 	tmp |= (bus_type << 28);
599 	tmp |= SRMMU_PRIV;
600 	__flush_page_to_ram(virt_addr);
601 	srmmu_set_pte(ptep, __pte(tmp));
602 }
603 
604 static void srmmu_mapiorange(unsigned int bus, unsigned long xpa,
605     unsigned long xva, unsigned int len)
606 {
607 	while (len != 0) {
608 		len -= PAGE_SIZE;
609 		srmmu_mapioaddr(xpa, xva, bus);
610 		xva += PAGE_SIZE;
611 		xpa += PAGE_SIZE;
612 	}
613 	flush_tlb_all();
614 }
615 
616 static inline void srmmu_unmapioaddr(unsigned long virt_addr)
617 {
618 	pgd_t *pgdp;
619 	pmd_t *pmdp;
620 	pte_t *ptep;
621 
622 	pgdp = pgd_offset_k(virt_addr);
623 	pmdp = srmmu_pmd_offset(pgdp, virt_addr);
624 	ptep = srmmu_pte_offset(pmdp, virt_addr);
625 
626 	/* No need to flush uncacheable page. */
627 	srmmu_pte_clear(ptep);
628 }
629 
630 static void srmmu_unmapiorange(unsigned long virt_addr, unsigned int len)
631 {
632 	while (len != 0) {
633 		len -= PAGE_SIZE;
634 		srmmu_unmapioaddr(virt_addr);
635 		virt_addr += PAGE_SIZE;
636 	}
637 	flush_tlb_all();
638 }
639 
640 /*
641  * On the SRMMU we do not have the problems with limited tlb entries
642  * for mapping kernel pages, so we just take things from the free page
643  * pool.  As a side effect we are putting a little too much pressure
644  * on the gfp() subsystem.  This setup also makes the logic of the
645  * iommu mapping code a lot easier as we can transparently handle
646  * mappings on the kernel stack without any special code as we did
647  * need on the sun4c.
648  */
649 static struct thread_info *srmmu_alloc_thread_info(void)
650 {
651 	struct thread_info *ret;
652 
653 	ret = (struct thread_info *)__get_free_pages(GFP_KERNEL,
654 						     THREAD_INFO_ORDER);
655 #ifdef CONFIG_DEBUG_STACK_USAGE
656 	if (ret)
657 		memset(ret, 0, PAGE_SIZE << THREAD_INFO_ORDER);
658 #endif /* DEBUG_STACK_USAGE */
659 
660 	return ret;
661 }
662 
663 static void srmmu_free_thread_info(struct thread_info *ti)
664 {
665 	free_pages((unsigned long)ti, THREAD_INFO_ORDER);
666 }
667 
668 /* tsunami.S */
669 extern void tsunami_flush_cache_all(void);
670 extern void tsunami_flush_cache_mm(struct mm_struct *mm);
671 extern void tsunami_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
672 extern void tsunami_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
673 extern void tsunami_flush_page_to_ram(unsigned long page);
674 extern void tsunami_flush_page_for_dma(unsigned long page);
675 extern void tsunami_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
676 extern void tsunami_flush_tlb_all(void);
677 extern void tsunami_flush_tlb_mm(struct mm_struct *mm);
678 extern void tsunami_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
679 extern void tsunami_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
680 extern void tsunami_setup_blockops(void);
681 
682 /*
683  * Workaround, until we find what's going on with Swift. When low on memory,
684  * it sometimes loops in fault/handle_mm_fault incl. flush_tlb_page to find
685  * out it is already in page tables/ fault again on the same instruction.
686  * I really don't understand it, have checked it and contexts
687  * are right, flush_tlb_all is done as well, and it faults again...
688  * Strange. -jj
689  *
690  * The following code is a deadwood that may be necessary when
691  * we start to make precise page flushes again. --zaitcev
692  */
693 static void swift_update_mmu_cache(struct vm_area_struct * vma, unsigned long address, pte_t pte)
694 {
695 #if 0
696 	static unsigned long last;
697 	unsigned int val;
698 	/* unsigned int n; */
699 
700 	if (address == last) {
701 		val = srmmu_hwprobe(address);
702 		if (val != 0 && pte_val(pte) != val) {
703 			printk("swift_update_mmu_cache: "
704 			    "addr %lx put %08x probed %08x from %p\n",
705 			    address, pte_val(pte), val,
706 			    __builtin_return_address(0));
707 			srmmu_flush_whole_tlb();
708 		}
709 	}
710 	last = address;
711 #endif
712 }
713 
714 /* swift.S */
715 extern void swift_flush_cache_all(void);
716 extern void swift_flush_cache_mm(struct mm_struct *mm);
717 extern void swift_flush_cache_range(struct vm_area_struct *vma,
718 				    unsigned long start, unsigned long end);
719 extern void swift_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
720 extern void swift_flush_page_to_ram(unsigned long page);
721 extern void swift_flush_page_for_dma(unsigned long page);
722 extern void swift_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
723 extern void swift_flush_tlb_all(void);
724 extern void swift_flush_tlb_mm(struct mm_struct *mm);
725 extern void swift_flush_tlb_range(struct vm_area_struct *vma,
726 				  unsigned long start, unsigned long end);
727 extern void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
728 
729 #if 0  /* P3: deadwood to debug precise flushes on Swift. */
730 void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
731 {
732 	int cctx, ctx1;
733 
734 	page &= PAGE_MASK;
735 	if ((ctx1 = vma->vm_mm->context) != -1) {
736 		cctx = srmmu_get_context();
737 /* Is context # ever different from current context? P3 */
738 		if (cctx != ctx1) {
739 			printk("flush ctx %02x curr %02x\n", ctx1, cctx);
740 			srmmu_set_context(ctx1);
741 			swift_flush_page(page);
742 			__asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
743 					"r" (page), "i" (ASI_M_FLUSH_PROBE));
744 			srmmu_set_context(cctx);
745 		} else {
746 			 /* Rm. prot. bits from virt. c. */
747 			/* swift_flush_cache_all(); */
748 			/* swift_flush_cache_page(vma, page); */
749 			swift_flush_page(page);
750 
751 			__asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
752 				"r" (page), "i" (ASI_M_FLUSH_PROBE));
753 			/* same as above: srmmu_flush_tlb_page() */
754 		}
755 	}
756 }
757 #endif
758 
759 /*
760  * The following are all MBUS based SRMMU modules, and therefore could
761  * be found in a multiprocessor configuration.  On the whole, these
762  * chips seems to be much more touchy about DVMA and page tables
763  * with respect to cache coherency.
764  */
765 
766 /* Cypress flushes. */
767 static void cypress_flush_cache_all(void)
768 {
769 	volatile unsigned long cypress_sucks;
770 	unsigned long faddr, tagval;
771 
772 	flush_user_windows();
773 	for(faddr = 0; faddr < 0x10000; faddr += 0x20) {
774 		__asm__ __volatile__("lda [%1 + %2] %3, %0\n\t" :
775 				     "=r" (tagval) :
776 				     "r" (faddr), "r" (0x40000),
777 				     "i" (ASI_M_DATAC_TAG));
778 
779 		/* If modified and valid, kick it. */
780 		if((tagval & 0x60) == 0x60)
781 			cypress_sucks = *(unsigned long *)(0xf0020000 + faddr);
782 	}
783 }
784 
785 static void cypress_flush_cache_mm(struct mm_struct *mm)
786 {
787 	register unsigned long a, b, c, d, e, f, g;
788 	unsigned long flags, faddr;
789 	int octx;
790 
791 	FLUSH_BEGIN(mm)
792 	flush_user_windows();
793 	local_irq_save(flags);
794 	octx = srmmu_get_context();
795 	srmmu_set_context(mm->context);
796 	a = 0x20; b = 0x40; c = 0x60;
797 	d = 0x80; e = 0xa0; f = 0xc0; g = 0xe0;
798 
799 	faddr = (0x10000 - 0x100);
800 	goto inside;
801 	do {
802 		faddr -= 0x100;
803 	inside:
804 		__asm__ __volatile__("sta %%g0, [%0] %1\n\t"
805 				     "sta %%g0, [%0 + %2] %1\n\t"
806 				     "sta %%g0, [%0 + %3] %1\n\t"
807 				     "sta %%g0, [%0 + %4] %1\n\t"
808 				     "sta %%g0, [%0 + %5] %1\n\t"
809 				     "sta %%g0, [%0 + %6] %1\n\t"
810 				     "sta %%g0, [%0 + %7] %1\n\t"
811 				     "sta %%g0, [%0 + %8] %1\n\t" : :
812 				     "r" (faddr), "i" (ASI_M_FLUSH_CTX),
813 				     "r" (a), "r" (b), "r" (c), "r" (d),
814 				     "r" (e), "r" (f), "r" (g));
815 	} while(faddr);
816 	srmmu_set_context(octx);
817 	local_irq_restore(flags);
818 	FLUSH_END
819 }
820 
821 static void cypress_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
822 {
823 	struct mm_struct *mm = vma->vm_mm;
824 	register unsigned long a, b, c, d, e, f, g;
825 	unsigned long flags, faddr;
826 	int octx;
827 
828 	FLUSH_BEGIN(mm)
829 	flush_user_windows();
830 	local_irq_save(flags);
831 	octx = srmmu_get_context();
832 	srmmu_set_context(mm->context);
833 	a = 0x20; b = 0x40; c = 0x60;
834 	d = 0x80; e = 0xa0; f = 0xc0; g = 0xe0;
835 
836 	start &= SRMMU_REAL_PMD_MASK;
837 	while(start < end) {
838 		faddr = (start + (0x10000 - 0x100));
839 		goto inside;
840 		do {
841 			faddr -= 0x100;
842 		inside:
843 			__asm__ __volatile__("sta %%g0, [%0] %1\n\t"
844 					     "sta %%g0, [%0 + %2] %1\n\t"
845 					     "sta %%g0, [%0 + %3] %1\n\t"
846 					     "sta %%g0, [%0 + %4] %1\n\t"
847 					     "sta %%g0, [%0 + %5] %1\n\t"
848 					     "sta %%g0, [%0 + %6] %1\n\t"
849 					     "sta %%g0, [%0 + %7] %1\n\t"
850 					     "sta %%g0, [%0 + %8] %1\n\t" : :
851 					     "r" (faddr),
852 					     "i" (ASI_M_FLUSH_SEG),
853 					     "r" (a), "r" (b), "r" (c), "r" (d),
854 					     "r" (e), "r" (f), "r" (g));
855 		} while (faddr != start);
856 		start += SRMMU_REAL_PMD_SIZE;
857 	}
858 	srmmu_set_context(octx);
859 	local_irq_restore(flags);
860 	FLUSH_END
861 }
862 
863 static void cypress_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
864 {
865 	register unsigned long a, b, c, d, e, f, g;
866 	struct mm_struct *mm = vma->vm_mm;
867 	unsigned long flags, line;
868 	int octx;
869 
870 	FLUSH_BEGIN(mm)
871 	flush_user_windows();
872 	local_irq_save(flags);
873 	octx = srmmu_get_context();
874 	srmmu_set_context(mm->context);
875 	a = 0x20; b = 0x40; c = 0x60;
876 	d = 0x80; e = 0xa0; f = 0xc0; g = 0xe0;
877 
878 	page &= PAGE_MASK;
879 	line = (page + PAGE_SIZE) - 0x100;
880 	goto inside;
881 	do {
882 		line -= 0x100;
883 	inside:
884 			__asm__ __volatile__("sta %%g0, [%0] %1\n\t"
885 					     "sta %%g0, [%0 + %2] %1\n\t"
886 					     "sta %%g0, [%0 + %3] %1\n\t"
887 					     "sta %%g0, [%0 + %4] %1\n\t"
888 					     "sta %%g0, [%0 + %5] %1\n\t"
889 					     "sta %%g0, [%0 + %6] %1\n\t"
890 					     "sta %%g0, [%0 + %7] %1\n\t"
891 					     "sta %%g0, [%0 + %8] %1\n\t" : :
892 					     "r" (line),
893 					     "i" (ASI_M_FLUSH_PAGE),
894 					     "r" (a), "r" (b), "r" (c), "r" (d),
895 					     "r" (e), "r" (f), "r" (g));
896 	} while(line != page);
897 	srmmu_set_context(octx);
898 	local_irq_restore(flags);
899 	FLUSH_END
900 }
901 
902 /* Cypress is copy-back, at least that is how we configure it. */
903 static void cypress_flush_page_to_ram(unsigned long page)
904 {
905 	register unsigned long a, b, c, d, e, f, g;
906 	unsigned long line;
907 
908 	a = 0x20; b = 0x40; c = 0x60; d = 0x80; e = 0xa0; f = 0xc0; g = 0xe0;
909 	page &= PAGE_MASK;
910 	line = (page + PAGE_SIZE) - 0x100;
911 	goto inside;
912 	do {
913 		line -= 0x100;
914 	inside:
915 		__asm__ __volatile__("sta %%g0, [%0] %1\n\t"
916 				     "sta %%g0, [%0 + %2] %1\n\t"
917 				     "sta %%g0, [%0 + %3] %1\n\t"
918 				     "sta %%g0, [%0 + %4] %1\n\t"
919 				     "sta %%g0, [%0 + %5] %1\n\t"
920 				     "sta %%g0, [%0 + %6] %1\n\t"
921 				     "sta %%g0, [%0 + %7] %1\n\t"
922 				     "sta %%g0, [%0 + %8] %1\n\t" : :
923 				     "r" (line),
924 				     "i" (ASI_M_FLUSH_PAGE),
925 				     "r" (a), "r" (b), "r" (c), "r" (d),
926 				     "r" (e), "r" (f), "r" (g));
927 	} while(line != page);
928 }
929 
930 /* Cypress is also IO cache coherent. */
931 static void cypress_flush_page_for_dma(unsigned long page)
932 {
933 }
934 
935 /* Cypress has unified L2 VIPT, from which both instructions and data
936  * are stored.  It does not have an onboard icache of any sort, therefore
937  * no flush is necessary.
938  */
939 static void cypress_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
940 {
941 }
942 
943 static void cypress_flush_tlb_all(void)
944 {
945 	srmmu_flush_whole_tlb();
946 }
947 
948 static void cypress_flush_tlb_mm(struct mm_struct *mm)
949 {
950 	FLUSH_BEGIN(mm)
951 	__asm__ __volatile__(
952 	"lda	[%0] %3, %%g5\n\t"
953 	"sta	%2, [%0] %3\n\t"
954 	"sta	%%g0, [%1] %4\n\t"
955 	"sta	%%g5, [%0] %3\n"
956 	: /* no outputs */
957 	: "r" (SRMMU_CTX_REG), "r" (0x300), "r" (mm->context),
958 	  "i" (ASI_M_MMUREGS), "i" (ASI_M_FLUSH_PROBE)
959 	: "g5");
960 	FLUSH_END
961 }
962 
963 static void cypress_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
964 {
965 	struct mm_struct *mm = vma->vm_mm;
966 	unsigned long size;
967 
968 	FLUSH_BEGIN(mm)
969 	start &= SRMMU_PGDIR_MASK;
970 	size = SRMMU_PGDIR_ALIGN(end) - start;
971 	__asm__ __volatile__(
972 		"lda	[%0] %5, %%g5\n\t"
973 		"sta	%1, [%0] %5\n"
974 		"1:\n\t"
975 		"subcc	%3, %4, %3\n\t"
976 		"bne	1b\n\t"
977 		" sta	%%g0, [%2 + %3] %6\n\t"
978 		"sta	%%g5, [%0] %5\n"
979 	: /* no outputs */
980 	: "r" (SRMMU_CTX_REG), "r" (mm->context), "r" (start | 0x200),
981 	  "r" (size), "r" (SRMMU_PGDIR_SIZE), "i" (ASI_M_MMUREGS),
982 	  "i" (ASI_M_FLUSH_PROBE)
983 	: "g5", "cc");
984 	FLUSH_END
985 }
986 
987 static void cypress_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
988 {
989 	struct mm_struct *mm = vma->vm_mm;
990 
991 	FLUSH_BEGIN(mm)
992 	__asm__ __volatile__(
993 	"lda	[%0] %3, %%g5\n\t"
994 	"sta	%1, [%0] %3\n\t"
995 	"sta	%%g0, [%2] %4\n\t"
996 	"sta	%%g5, [%0] %3\n"
997 	: /* no outputs */
998 	: "r" (SRMMU_CTX_REG), "r" (mm->context), "r" (page & PAGE_MASK),
999 	  "i" (ASI_M_MMUREGS), "i" (ASI_M_FLUSH_PROBE)
1000 	: "g5");
1001 	FLUSH_END
1002 }
1003 
1004 /* viking.S */
1005 extern void viking_flush_cache_all(void);
1006 extern void viking_flush_cache_mm(struct mm_struct *mm);
1007 extern void viking_flush_cache_range(struct vm_area_struct *vma, unsigned long start,
1008 				     unsigned long end);
1009 extern void viking_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
1010 extern void viking_flush_page_to_ram(unsigned long page);
1011 extern void viking_flush_page_for_dma(unsigned long page);
1012 extern void viking_flush_sig_insns(struct mm_struct *mm, unsigned long addr);
1013 extern void viking_flush_page(unsigned long page);
1014 extern void viking_mxcc_flush_page(unsigned long page);
1015 extern void viking_flush_tlb_all(void);
1016 extern void viking_flush_tlb_mm(struct mm_struct *mm);
1017 extern void viking_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
1018 				   unsigned long end);
1019 extern void viking_flush_tlb_page(struct vm_area_struct *vma,
1020 				  unsigned long page);
1021 extern void sun4dsmp_flush_tlb_all(void);
1022 extern void sun4dsmp_flush_tlb_mm(struct mm_struct *mm);
1023 extern void sun4dsmp_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
1024 				   unsigned long end);
1025 extern void sun4dsmp_flush_tlb_page(struct vm_area_struct *vma,
1026 				  unsigned long page);
1027 
1028 /* hypersparc.S */
1029 extern void hypersparc_flush_cache_all(void);
1030 extern void hypersparc_flush_cache_mm(struct mm_struct *mm);
1031 extern void hypersparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
1032 extern void hypersparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
1033 extern void hypersparc_flush_page_to_ram(unsigned long page);
1034 extern void hypersparc_flush_page_for_dma(unsigned long page);
1035 extern void hypersparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
1036 extern void hypersparc_flush_tlb_all(void);
1037 extern void hypersparc_flush_tlb_mm(struct mm_struct *mm);
1038 extern void hypersparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
1039 extern void hypersparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
1040 extern void hypersparc_setup_blockops(void);
1041 
1042 /*
1043  * NOTE: All of this startup code assumes the low 16mb (approx.) of
1044  *       kernel mappings are done with one single contiguous chunk of
1045  *       ram.  On small ram machines (classics mainly) we only get
1046  *       around 8mb mapped for us.
1047  */
1048 
1049 static void __init early_pgtable_allocfail(char *type)
1050 {
1051 	prom_printf("inherit_prom_mappings: Cannot alloc kernel %s.\n", type);
1052 	prom_halt();
1053 }
1054 
1055 static void __init srmmu_early_allocate_ptable_skeleton(unsigned long start,
1056 							unsigned long end)
1057 {
1058 	pgd_t *pgdp;
1059 	pmd_t *pmdp;
1060 	pte_t *ptep;
1061 
1062 	while(start < end) {
1063 		pgdp = pgd_offset_k(start);
1064 		if(srmmu_pgd_none(*(pgd_t *)__nocache_fix(pgdp))) {
1065 			pmdp = (pmd_t *) __srmmu_get_nocache(
1066 			    SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
1067 			if (pmdp == NULL)
1068 				early_pgtable_allocfail("pmd");
1069 			memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
1070 			srmmu_pgd_set(__nocache_fix(pgdp), pmdp);
1071 		}
1072 		pmdp = srmmu_pmd_offset(__nocache_fix(pgdp), start);
1073 		if(srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
1074 			ptep = (pte_t *)__srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
1075 			if (ptep == NULL)
1076 				early_pgtable_allocfail("pte");
1077 			memset(__nocache_fix(ptep), 0, PTE_SIZE);
1078 			srmmu_pmd_set(__nocache_fix(pmdp), ptep);
1079 		}
1080 		if (start > (0xffffffffUL - PMD_SIZE))
1081 			break;
1082 		start = (start + PMD_SIZE) & PMD_MASK;
1083 	}
1084 }
1085 
1086 static void __init srmmu_allocate_ptable_skeleton(unsigned long start,
1087 						  unsigned long end)
1088 {
1089 	pgd_t *pgdp;
1090 	pmd_t *pmdp;
1091 	pte_t *ptep;
1092 
1093 	while(start < end) {
1094 		pgdp = pgd_offset_k(start);
1095 		if(srmmu_pgd_none(*pgdp)) {
1096 			pmdp = (pmd_t *)__srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
1097 			if (pmdp == NULL)
1098 				early_pgtable_allocfail("pmd");
1099 			memset(pmdp, 0, SRMMU_PMD_TABLE_SIZE);
1100 			srmmu_pgd_set(pgdp, pmdp);
1101 		}
1102 		pmdp = srmmu_pmd_offset(pgdp, start);
1103 		if(srmmu_pmd_none(*pmdp)) {
1104 			ptep = (pte_t *) __srmmu_get_nocache(PTE_SIZE,
1105 							     PTE_SIZE);
1106 			if (ptep == NULL)
1107 				early_pgtable_allocfail("pte");
1108 			memset(ptep, 0, PTE_SIZE);
1109 			srmmu_pmd_set(pmdp, ptep);
1110 		}
1111 		if (start > (0xffffffffUL - PMD_SIZE))
1112 			break;
1113 		start = (start + PMD_SIZE) & PMD_MASK;
1114 	}
1115 }
1116 
1117 /*
1118  * This is much cleaner than poking around physical address space
1119  * looking at the prom's page table directly which is what most
1120  * other OS's do.  Yuck... this is much better.
1121  */
1122 static void __init srmmu_inherit_prom_mappings(unsigned long start,
1123 					       unsigned long end)
1124 {
1125 	pgd_t *pgdp;
1126 	pmd_t *pmdp;
1127 	pte_t *ptep;
1128 	int what = 0; /* 0 = normal-pte, 1 = pmd-level pte, 2 = pgd-level pte */
1129 	unsigned long prompte;
1130 
1131 	while(start <= end) {
1132 		if (start == 0)
1133 			break; /* probably wrap around */
1134 		if(start == 0xfef00000)
1135 			start = KADB_DEBUGGER_BEGVM;
1136 		if(!(prompte = srmmu_hwprobe(start))) {
1137 			start += PAGE_SIZE;
1138 			continue;
1139 		}
1140 
1141 		/* A red snapper, see what it really is. */
1142 		what = 0;
1143 
1144 		if(!(start & ~(SRMMU_REAL_PMD_MASK))) {
1145 			if(srmmu_hwprobe((start-PAGE_SIZE) + SRMMU_REAL_PMD_SIZE) == prompte)
1146 				what = 1;
1147 		}
1148 
1149 		if(!(start & ~(SRMMU_PGDIR_MASK))) {
1150 			if(srmmu_hwprobe((start-PAGE_SIZE) + SRMMU_PGDIR_SIZE) ==
1151 			   prompte)
1152 				what = 2;
1153 		}
1154 
1155 		pgdp = pgd_offset_k(start);
1156 		if(what == 2) {
1157 			*(pgd_t *)__nocache_fix(pgdp) = __pgd(prompte);
1158 			start += SRMMU_PGDIR_SIZE;
1159 			continue;
1160 		}
1161 		if(srmmu_pgd_none(*(pgd_t *)__nocache_fix(pgdp))) {
1162 			pmdp = (pmd_t *)__srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
1163 			if (pmdp == NULL)
1164 				early_pgtable_allocfail("pmd");
1165 			memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
1166 			srmmu_pgd_set(__nocache_fix(pgdp), pmdp);
1167 		}
1168 		pmdp = srmmu_pmd_offset(__nocache_fix(pgdp), start);
1169 		if(srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
1170 			ptep = (pte_t *) __srmmu_get_nocache(PTE_SIZE,
1171 							     PTE_SIZE);
1172 			if (ptep == NULL)
1173 				early_pgtable_allocfail("pte");
1174 			memset(__nocache_fix(ptep), 0, PTE_SIZE);
1175 			srmmu_pmd_set(__nocache_fix(pmdp), ptep);
1176 		}
1177 		if(what == 1) {
1178 			/*
1179 			 * We bend the rule where all 16 PTPs in a pmd_t point
1180 			 * inside the same PTE page, and we leak a perfectly
1181 			 * good hardware PTE piece. Alternatives seem worse.
1182 			 */
1183 			unsigned int x;	/* Index of HW PMD in soft cluster */
1184 			x = (start >> PMD_SHIFT) & 15;
1185 			*(unsigned long *)__nocache_fix(&pmdp->pmdv[x]) = prompte;
1186 			start += SRMMU_REAL_PMD_SIZE;
1187 			continue;
1188 		}
1189 		ptep = srmmu_pte_offset(__nocache_fix(pmdp), start);
1190 		*(pte_t *)__nocache_fix(ptep) = __pte(prompte);
1191 		start += PAGE_SIZE;
1192 	}
1193 }
1194 
1195 #define KERNEL_PTE(page_shifted) ((page_shifted)|SRMMU_CACHE|SRMMU_PRIV|SRMMU_VALID)
1196 
1197 /* Create a third-level SRMMU 16MB page mapping. */
1198 static void __init do_large_mapping(unsigned long vaddr, unsigned long phys_base)
1199 {
1200 	pgd_t *pgdp = pgd_offset_k(vaddr);
1201 	unsigned long big_pte;
1202 
1203 	big_pte = KERNEL_PTE(phys_base >> 4);
1204 	*(pgd_t *)__nocache_fix(pgdp) = __pgd(big_pte);
1205 }
1206 
1207 /* Map sp_bank entry SP_ENTRY, starting at virtual address VBASE. */
1208 static unsigned long __init map_spbank(unsigned long vbase, int sp_entry)
1209 {
1210 	unsigned long pstart = (sp_banks[sp_entry].base_addr & SRMMU_PGDIR_MASK);
1211 	unsigned long vstart = (vbase & SRMMU_PGDIR_MASK);
1212 	unsigned long vend = SRMMU_PGDIR_ALIGN(vbase + sp_banks[sp_entry].num_bytes);
1213 	/* Map "low" memory only */
1214 	const unsigned long min_vaddr = PAGE_OFFSET;
1215 	const unsigned long max_vaddr = PAGE_OFFSET + SRMMU_MAXMEM;
1216 
1217 	if (vstart < min_vaddr || vstart >= max_vaddr)
1218 		return vstart;
1219 
1220 	if (vend > max_vaddr || vend < min_vaddr)
1221 		vend = max_vaddr;
1222 
1223 	while(vstart < vend) {
1224 		do_large_mapping(vstart, pstart);
1225 		vstart += SRMMU_PGDIR_SIZE; pstart += SRMMU_PGDIR_SIZE;
1226 	}
1227 	return vstart;
1228 }
1229 
1230 static inline void memprobe_error(char *msg)
1231 {
1232 	prom_printf(msg);
1233 	prom_printf("Halting now...\n");
1234 	prom_halt();
1235 }
1236 
1237 static inline void map_kernel(void)
1238 {
1239 	int i;
1240 
1241 	if (phys_base > 0) {
1242 		do_large_mapping(PAGE_OFFSET, phys_base);
1243 	}
1244 
1245 	for (i = 0; sp_banks[i].num_bytes != 0; i++) {
1246 		map_spbank((unsigned long)__va(sp_banks[i].base_addr), i);
1247 	}
1248 
1249 	BTFIXUPSET_SIMM13(user_ptrs_per_pgd, PAGE_OFFSET / SRMMU_PGDIR_SIZE);
1250 }
1251 
1252 /* Paging initialization on the Sparc Reference MMU. */
1253 extern void sparc_context_init(int);
1254 
1255 void (*poke_srmmu)(void) __initdata = NULL;
1256 
1257 extern unsigned long bootmem_init(unsigned long *pages_avail);
1258 
1259 void __init srmmu_paging_init(void)
1260 {
1261 	int i, cpunode;
1262 	char node_str[128];
1263 	pgd_t *pgd;
1264 	pmd_t *pmd;
1265 	pte_t *pte;
1266 	unsigned long pages_avail;
1267 
1268 	sparc_iomap.start = SUN4M_IOBASE_VADDR;	/* 16MB of IOSPACE on all sun4m's. */
1269 
1270 	if (sparc_cpu_model == sun4d)
1271 		num_contexts = 65536; /* We know it is Viking */
1272 	else {
1273 		/* Find the number of contexts on the srmmu. */
1274 		cpunode = prom_getchild(prom_root_node);
1275 		num_contexts = 0;
1276 		while(cpunode != 0) {
1277 			prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
1278 			if(!strcmp(node_str, "cpu")) {
1279 				num_contexts = prom_getintdefault(cpunode, "mmu-nctx", 0x8);
1280 				break;
1281 			}
1282 			cpunode = prom_getsibling(cpunode);
1283 		}
1284 	}
1285 
1286 	if(!num_contexts) {
1287 		prom_printf("Something wrong, can't find cpu node in paging_init.\n");
1288 		prom_halt();
1289 	}
1290 
1291 	pages_avail = 0;
1292 	last_valid_pfn = bootmem_init(&pages_avail);
1293 
1294 	srmmu_nocache_calcsize();
1295 	srmmu_nocache_init();
1296         srmmu_inherit_prom_mappings(0xfe400000,(LINUX_OPPROM_ENDVM-PAGE_SIZE));
1297 	map_kernel();
1298 
1299 	/* ctx table has to be physically aligned to its size */
1300 	srmmu_context_table = (ctxd_t *)__srmmu_get_nocache(num_contexts*sizeof(ctxd_t), num_contexts*sizeof(ctxd_t));
1301 	srmmu_ctx_table_phys = (ctxd_t *)__nocache_pa((unsigned long)srmmu_context_table);
1302 
1303 	for(i = 0; i < num_contexts; i++)
1304 		srmmu_ctxd_set((ctxd_t *)__nocache_fix(&srmmu_context_table[i]), srmmu_swapper_pg_dir);
1305 
1306 	flush_cache_all();
1307 	srmmu_set_ctable_ptr((unsigned long)srmmu_ctx_table_phys);
1308 #ifdef CONFIG_SMP
1309 	/* Stop from hanging here... */
1310 	local_flush_tlb_all();
1311 #else
1312 	flush_tlb_all();
1313 #endif
1314 	poke_srmmu();
1315 
1316 #ifdef CONFIG_SUN_IO
1317 	srmmu_allocate_ptable_skeleton(sparc_iomap.start, IOBASE_END);
1318 	srmmu_allocate_ptable_skeleton(DVMA_VADDR, DVMA_END);
1319 #endif
1320 
1321 	srmmu_allocate_ptable_skeleton(
1322 		__fix_to_virt(__end_of_fixed_addresses - 1), FIXADDR_TOP);
1323 	srmmu_allocate_ptable_skeleton(PKMAP_BASE, PKMAP_END);
1324 
1325 	pgd = pgd_offset_k(PKMAP_BASE);
1326 	pmd = srmmu_pmd_offset(pgd, PKMAP_BASE);
1327 	pte = srmmu_pte_offset(pmd, PKMAP_BASE);
1328 	pkmap_page_table = pte;
1329 
1330 	flush_cache_all();
1331 	flush_tlb_all();
1332 
1333 	sparc_context_init(num_contexts);
1334 
1335 	kmap_init();
1336 
1337 	{
1338 		unsigned long zones_size[MAX_NR_ZONES];
1339 		unsigned long zholes_size[MAX_NR_ZONES];
1340 		unsigned long npages;
1341 		int znum;
1342 
1343 		for (znum = 0; znum < MAX_NR_ZONES; znum++)
1344 			zones_size[znum] = zholes_size[znum] = 0;
1345 
1346 		npages = max_low_pfn - pfn_base;
1347 
1348 		zones_size[ZONE_DMA] = npages;
1349 		zholes_size[ZONE_DMA] = npages - pages_avail;
1350 
1351 		npages = highend_pfn - max_low_pfn;
1352 		zones_size[ZONE_HIGHMEM] = npages;
1353 		zholes_size[ZONE_HIGHMEM] = npages - calc_highpages();
1354 
1355 		free_area_init_node(0, zones_size, pfn_base, zholes_size);
1356 	}
1357 }
1358 
1359 static void srmmu_mmu_info(struct seq_file *m)
1360 {
1361 	seq_printf(m,
1362 		   "MMU type\t: %s\n"
1363 		   "contexts\t: %d\n"
1364 		   "nocache total\t: %ld\n"
1365 		   "nocache used\t: %d\n",
1366 		   srmmu_name,
1367 		   num_contexts,
1368 		   srmmu_nocache_size,
1369 		   srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
1370 }
1371 
1372 static void srmmu_update_mmu_cache(struct vm_area_struct * vma, unsigned long address, pte_t pte)
1373 {
1374 }
1375 
1376 static void srmmu_destroy_context(struct mm_struct *mm)
1377 {
1378 
1379 	if(mm->context != NO_CONTEXT) {
1380 		flush_cache_mm(mm);
1381 		srmmu_ctxd_set(&srmmu_context_table[mm->context], srmmu_swapper_pg_dir);
1382 		flush_tlb_mm(mm);
1383 		spin_lock(&srmmu_context_spinlock);
1384 		free_context(mm->context);
1385 		spin_unlock(&srmmu_context_spinlock);
1386 		mm->context = NO_CONTEXT;
1387 	}
1388 }
1389 
1390 /* Init various srmmu chip types. */
1391 static void __init srmmu_is_bad(void)
1392 {
1393 	prom_printf("Could not determine SRMMU chip type.\n");
1394 	prom_halt();
1395 }
1396 
1397 static void __init init_vac_layout(void)
1398 {
1399 	int nd, cache_lines;
1400 	char node_str[128];
1401 #ifdef CONFIG_SMP
1402 	int cpu = 0;
1403 	unsigned long max_size = 0;
1404 	unsigned long min_line_size = 0x10000000;
1405 #endif
1406 
1407 	nd = prom_getchild(prom_root_node);
1408 	while((nd = prom_getsibling(nd)) != 0) {
1409 		prom_getstring(nd, "device_type", node_str, sizeof(node_str));
1410 		if(!strcmp(node_str, "cpu")) {
1411 			vac_line_size = prom_getint(nd, "cache-line-size");
1412 			if (vac_line_size == -1) {
1413 				prom_printf("can't determine cache-line-size, "
1414 					    "halting.\n");
1415 				prom_halt();
1416 			}
1417 			cache_lines = prom_getint(nd, "cache-nlines");
1418 			if (cache_lines == -1) {
1419 				prom_printf("can't determine cache-nlines, halting.\n");
1420 				prom_halt();
1421 			}
1422 
1423 			vac_cache_size = cache_lines * vac_line_size;
1424 #ifdef CONFIG_SMP
1425 			if(vac_cache_size > max_size)
1426 				max_size = vac_cache_size;
1427 			if(vac_line_size < min_line_size)
1428 				min_line_size = vac_line_size;
1429 			//FIXME: cpus not contiguous!!
1430 			cpu++;
1431 			if (cpu >= NR_CPUS || !cpu_online(cpu))
1432 				break;
1433 #else
1434 			break;
1435 #endif
1436 		}
1437 	}
1438 	if(nd == 0) {
1439 		prom_printf("No CPU nodes found, halting.\n");
1440 		prom_halt();
1441 	}
1442 #ifdef CONFIG_SMP
1443 	vac_cache_size = max_size;
1444 	vac_line_size = min_line_size;
1445 #endif
1446 	printk("SRMMU: Using VAC size of %d bytes, line size %d bytes.\n",
1447 	       (int)vac_cache_size, (int)vac_line_size);
1448 }
1449 
1450 static void __init poke_hypersparc(void)
1451 {
1452 	volatile unsigned long clear;
1453 	unsigned long mreg = srmmu_get_mmureg();
1454 
1455 	hyper_flush_unconditional_combined();
1456 
1457 	mreg &= ~(HYPERSPARC_CWENABLE);
1458 	mreg |= (HYPERSPARC_CENABLE | HYPERSPARC_WBENABLE);
1459 	mreg |= (HYPERSPARC_CMODE);
1460 
1461 	srmmu_set_mmureg(mreg);
1462 
1463 #if 0 /* XXX I think this is bad news... -DaveM */
1464 	hyper_clear_all_tags();
1465 #endif
1466 
1467 	put_ross_icr(HYPERSPARC_ICCR_FTD | HYPERSPARC_ICCR_ICE);
1468 	hyper_flush_whole_icache();
1469 	clear = srmmu_get_faddr();
1470 	clear = srmmu_get_fstatus();
1471 }
1472 
1473 static void __init init_hypersparc(void)
1474 {
1475 	srmmu_name = "ROSS HyperSparc";
1476 	srmmu_modtype = HyperSparc;
1477 
1478 	init_vac_layout();
1479 
1480 	is_hypersparc = 1;
1481 
1482 	BTFIXUPSET_CALL(pte_clear, srmmu_pte_clear, BTFIXUPCALL_NORM);
1483 	BTFIXUPSET_CALL(pmd_clear, srmmu_pmd_clear, BTFIXUPCALL_NORM);
1484 	BTFIXUPSET_CALL(pgd_clear, srmmu_pgd_clear, BTFIXUPCALL_NORM);
1485 	BTFIXUPSET_CALL(flush_cache_all, hypersparc_flush_cache_all, BTFIXUPCALL_NORM);
1486 	BTFIXUPSET_CALL(flush_cache_mm, hypersparc_flush_cache_mm, BTFIXUPCALL_NORM);
1487 	BTFIXUPSET_CALL(flush_cache_range, hypersparc_flush_cache_range, BTFIXUPCALL_NORM);
1488 	BTFIXUPSET_CALL(flush_cache_page, hypersparc_flush_cache_page, BTFIXUPCALL_NORM);
1489 
1490 	BTFIXUPSET_CALL(flush_tlb_all, hypersparc_flush_tlb_all, BTFIXUPCALL_NORM);
1491 	BTFIXUPSET_CALL(flush_tlb_mm, hypersparc_flush_tlb_mm, BTFIXUPCALL_NORM);
1492 	BTFIXUPSET_CALL(flush_tlb_range, hypersparc_flush_tlb_range, BTFIXUPCALL_NORM);
1493 	BTFIXUPSET_CALL(flush_tlb_page, hypersparc_flush_tlb_page, BTFIXUPCALL_NORM);
1494 
1495 	BTFIXUPSET_CALL(__flush_page_to_ram, hypersparc_flush_page_to_ram, BTFIXUPCALL_NORM);
1496 	BTFIXUPSET_CALL(flush_sig_insns, hypersparc_flush_sig_insns, BTFIXUPCALL_NORM);
1497 	BTFIXUPSET_CALL(flush_page_for_dma, hypersparc_flush_page_for_dma, BTFIXUPCALL_NOP);
1498 
1499 
1500 	poke_srmmu = poke_hypersparc;
1501 
1502 	hypersparc_setup_blockops();
1503 }
1504 
1505 static void __init poke_cypress(void)
1506 {
1507 	unsigned long mreg = srmmu_get_mmureg();
1508 	unsigned long faddr, tagval;
1509 	volatile unsigned long cypress_sucks;
1510 	volatile unsigned long clear;
1511 
1512 	clear = srmmu_get_faddr();
1513 	clear = srmmu_get_fstatus();
1514 
1515 	if (!(mreg & CYPRESS_CENABLE)) {
1516 		for(faddr = 0x0; faddr < 0x10000; faddr += 20) {
1517 			__asm__ __volatile__("sta %%g0, [%0 + %1] %2\n\t"
1518 					     "sta %%g0, [%0] %2\n\t" : :
1519 					     "r" (faddr), "r" (0x40000),
1520 					     "i" (ASI_M_DATAC_TAG));
1521 		}
1522 	} else {
1523 		for(faddr = 0; faddr < 0x10000; faddr += 0x20) {
1524 			__asm__ __volatile__("lda [%1 + %2] %3, %0\n\t" :
1525 					     "=r" (tagval) :
1526 					     "r" (faddr), "r" (0x40000),
1527 					     "i" (ASI_M_DATAC_TAG));
1528 
1529 			/* If modified and valid, kick it. */
1530 			if((tagval & 0x60) == 0x60)
1531 				cypress_sucks = *(unsigned long *)
1532 							(0xf0020000 + faddr);
1533 		}
1534 	}
1535 
1536 	/* And one more, for our good neighbor, Mr. Broken Cypress. */
1537 	clear = srmmu_get_faddr();
1538 	clear = srmmu_get_fstatus();
1539 
1540 	mreg |= (CYPRESS_CENABLE | CYPRESS_CMODE);
1541 	srmmu_set_mmureg(mreg);
1542 }
1543 
1544 static void __init init_cypress_common(void)
1545 {
1546 	init_vac_layout();
1547 
1548 	BTFIXUPSET_CALL(pte_clear, srmmu_pte_clear, BTFIXUPCALL_NORM);
1549 	BTFIXUPSET_CALL(pmd_clear, srmmu_pmd_clear, BTFIXUPCALL_NORM);
1550 	BTFIXUPSET_CALL(pgd_clear, srmmu_pgd_clear, BTFIXUPCALL_NORM);
1551 	BTFIXUPSET_CALL(flush_cache_all, cypress_flush_cache_all, BTFIXUPCALL_NORM);
1552 	BTFIXUPSET_CALL(flush_cache_mm, cypress_flush_cache_mm, BTFIXUPCALL_NORM);
1553 	BTFIXUPSET_CALL(flush_cache_range, cypress_flush_cache_range, BTFIXUPCALL_NORM);
1554 	BTFIXUPSET_CALL(flush_cache_page, cypress_flush_cache_page, BTFIXUPCALL_NORM);
1555 
1556 	BTFIXUPSET_CALL(flush_tlb_all, cypress_flush_tlb_all, BTFIXUPCALL_NORM);
1557 	BTFIXUPSET_CALL(flush_tlb_mm, cypress_flush_tlb_mm, BTFIXUPCALL_NORM);
1558 	BTFIXUPSET_CALL(flush_tlb_page, cypress_flush_tlb_page, BTFIXUPCALL_NORM);
1559 	BTFIXUPSET_CALL(flush_tlb_range, cypress_flush_tlb_range, BTFIXUPCALL_NORM);
1560 
1561 
1562 	BTFIXUPSET_CALL(__flush_page_to_ram, cypress_flush_page_to_ram, BTFIXUPCALL_NORM);
1563 	BTFIXUPSET_CALL(flush_sig_insns, cypress_flush_sig_insns, BTFIXUPCALL_NOP);
1564 	BTFIXUPSET_CALL(flush_page_for_dma, cypress_flush_page_for_dma, BTFIXUPCALL_NOP);
1565 
1566 	poke_srmmu = poke_cypress;
1567 }
1568 
1569 static void __init init_cypress_604(void)
1570 {
1571 	srmmu_name = "ROSS Cypress-604(UP)";
1572 	srmmu_modtype = Cypress;
1573 	init_cypress_common();
1574 }
1575 
1576 static void __init init_cypress_605(unsigned long mrev)
1577 {
1578 	srmmu_name = "ROSS Cypress-605(MP)";
1579 	if(mrev == 0xe) {
1580 		srmmu_modtype = Cypress_vE;
1581 		hwbug_bitmask |= HWBUG_COPYBACK_BROKEN;
1582 	} else {
1583 		if(mrev == 0xd) {
1584 			srmmu_modtype = Cypress_vD;
1585 			hwbug_bitmask |= HWBUG_ASIFLUSH_BROKEN;
1586 		} else {
1587 			srmmu_modtype = Cypress;
1588 		}
1589 	}
1590 	init_cypress_common();
1591 }
1592 
1593 static void __init poke_swift(void)
1594 {
1595 	unsigned long mreg;
1596 
1597 	/* Clear any crap from the cache or else... */
1598 	swift_flush_cache_all();
1599 
1600 	/* Enable I & D caches */
1601 	mreg = srmmu_get_mmureg();
1602 	mreg |= (SWIFT_IE | SWIFT_DE);
1603 	/*
1604 	 * The Swift branch folding logic is completely broken.  At
1605 	 * trap time, if things are just right, if can mistakenly
1606 	 * think that a trap is coming from kernel mode when in fact
1607 	 * it is coming from user mode (it mis-executes the branch in
1608 	 * the trap code).  So you see things like crashme completely
1609 	 * hosing your machine which is completely unacceptable.  Turn
1610 	 * this shit off... nice job Fujitsu.
1611 	 */
1612 	mreg &= ~(SWIFT_BF);
1613 	srmmu_set_mmureg(mreg);
1614 }
1615 
1616 #define SWIFT_MASKID_ADDR  0x10003018
1617 static void __init init_swift(void)
1618 {
1619 	unsigned long swift_rev;
1620 
1621 	__asm__ __volatile__("lda [%1] %2, %0\n\t"
1622 			     "srl %0, 0x18, %0\n\t" :
1623 			     "=r" (swift_rev) :
1624 			     "r" (SWIFT_MASKID_ADDR), "i" (ASI_M_BYPASS));
1625 	srmmu_name = "Fujitsu Swift";
1626 	switch(swift_rev) {
1627 	case 0x11:
1628 	case 0x20:
1629 	case 0x23:
1630 	case 0x30:
1631 		srmmu_modtype = Swift_lots_o_bugs;
1632 		hwbug_bitmask |= (HWBUG_KERN_ACCBROKEN | HWBUG_KERN_CBITBROKEN);
1633 		/*
1634 		 * Gee george, I wonder why Sun is so hush hush about
1635 		 * this hardware bug... really braindamage stuff going
1636 		 * on here.  However I think we can find a way to avoid
1637 		 * all of the workaround overhead under Linux.  Basically,
1638 		 * any page fault can cause kernel pages to become user
1639 		 * accessible (the mmu gets confused and clears some of
1640 		 * the ACC bits in kernel ptes).  Aha, sounds pretty
1641 		 * horrible eh?  But wait, after extensive testing it appears
1642 		 * that if you use pgd_t level large kernel pte's (like the
1643 		 * 4MB pages on the Pentium) the bug does not get tripped
1644 		 * at all.  This avoids almost all of the major overhead.
1645 		 * Welcome to a world where your vendor tells you to,
1646 		 * "apply this kernel patch" instead of "sorry for the
1647 		 * broken hardware, send it back and we'll give you
1648 		 * properly functioning parts"
1649 		 */
1650 		break;
1651 	case 0x25:
1652 	case 0x31:
1653 		srmmu_modtype = Swift_bad_c;
1654 		hwbug_bitmask |= HWBUG_KERN_CBITBROKEN;
1655 		/*
1656 		 * You see Sun allude to this hardware bug but never
1657 		 * admit things directly, they'll say things like,
1658 		 * "the Swift chip cache problems" or similar.
1659 		 */
1660 		break;
1661 	default:
1662 		srmmu_modtype = Swift_ok;
1663 		break;
1664 	};
1665 
1666 	BTFIXUPSET_CALL(flush_cache_all, swift_flush_cache_all, BTFIXUPCALL_NORM);
1667 	BTFIXUPSET_CALL(flush_cache_mm, swift_flush_cache_mm, BTFIXUPCALL_NORM);
1668 	BTFIXUPSET_CALL(flush_cache_page, swift_flush_cache_page, BTFIXUPCALL_NORM);
1669 	BTFIXUPSET_CALL(flush_cache_range, swift_flush_cache_range, BTFIXUPCALL_NORM);
1670 
1671 
1672 	BTFIXUPSET_CALL(flush_tlb_all, swift_flush_tlb_all, BTFIXUPCALL_NORM);
1673 	BTFIXUPSET_CALL(flush_tlb_mm, swift_flush_tlb_mm, BTFIXUPCALL_NORM);
1674 	BTFIXUPSET_CALL(flush_tlb_page, swift_flush_tlb_page, BTFIXUPCALL_NORM);
1675 	BTFIXUPSET_CALL(flush_tlb_range, swift_flush_tlb_range, BTFIXUPCALL_NORM);
1676 
1677 	BTFIXUPSET_CALL(__flush_page_to_ram, swift_flush_page_to_ram, BTFIXUPCALL_NORM);
1678 	BTFIXUPSET_CALL(flush_sig_insns, swift_flush_sig_insns, BTFIXUPCALL_NORM);
1679 	BTFIXUPSET_CALL(flush_page_for_dma, swift_flush_page_for_dma, BTFIXUPCALL_NORM);
1680 
1681 	BTFIXUPSET_CALL(update_mmu_cache, swift_update_mmu_cache, BTFIXUPCALL_NORM);
1682 
1683 	flush_page_for_dma_global = 0;
1684 
1685 	/*
1686 	 * Are you now convinced that the Swift is one of the
1687 	 * biggest VLSI abortions of all time?  Bravo Fujitsu!
1688 	 * Fujitsu, the !#?!%$'d up processor people.  I bet if
1689 	 * you examined the microcode of the Swift you'd find
1690 	 * XXX's all over the place.
1691 	 */
1692 	poke_srmmu = poke_swift;
1693 }
1694 
1695 static void turbosparc_flush_cache_all(void)
1696 {
1697 	flush_user_windows();
1698 	turbosparc_idflash_clear();
1699 }
1700 
1701 static void turbosparc_flush_cache_mm(struct mm_struct *mm)
1702 {
1703 	FLUSH_BEGIN(mm)
1704 	flush_user_windows();
1705 	turbosparc_idflash_clear();
1706 	FLUSH_END
1707 }
1708 
1709 static void turbosparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1710 {
1711 	FLUSH_BEGIN(vma->vm_mm)
1712 	flush_user_windows();
1713 	turbosparc_idflash_clear();
1714 	FLUSH_END
1715 }
1716 
1717 static void turbosparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
1718 {
1719 	FLUSH_BEGIN(vma->vm_mm)
1720 	flush_user_windows();
1721 	if (vma->vm_flags & VM_EXEC)
1722 		turbosparc_flush_icache();
1723 	turbosparc_flush_dcache();
1724 	FLUSH_END
1725 }
1726 
1727 /* TurboSparc is copy-back, if we turn it on, but this does not work. */
1728 static void turbosparc_flush_page_to_ram(unsigned long page)
1729 {
1730 #ifdef TURBOSPARC_WRITEBACK
1731 	volatile unsigned long clear;
1732 
1733 	if (srmmu_hwprobe(page))
1734 		turbosparc_flush_page_cache(page);
1735 	clear = srmmu_get_fstatus();
1736 #endif
1737 }
1738 
1739 static void turbosparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
1740 {
1741 }
1742 
1743 static void turbosparc_flush_page_for_dma(unsigned long page)
1744 {
1745 	turbosparc_flush_dcache();
1746 }
1747 
1748 static void turbosparc_flush_tlb_all(void)
1749 {
1750 	srmmu_flush_whole_tlb();
1751 }
1752 
1753 static void turbosparc_flush_tlb_mm(struct mm_struct *mm)
1754 {
1755 	FLUSH_BEGIN(mm)
1756 	srmmu_flush_whole_tlb();
1757 	FLUSH_END
1758 }
1759 
1760 static void turbosparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1761 {
1762 	FLUSH_BEGIN(vma->vm_mm)
1763 	srmmu_flush_whole_tlb();
1764 	FLUSH_END
1765 }
1766 
1767 static void turbosparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
1768 {
1769 	FLUSH_BEGIN(vma->vm_mm)
1770 	srmmu_flush_whole_tlb();
1771 	FLUSH_END
1772 }
1773 
1774 
1775 static void __init poke_turbosparc(void)
1776 {
1777 	unsigned long mreg = srmmu_get_mmureg();
1778 	unsigned long ccreg;
1779 
1780 	/* Clear any crap from the cache or else... */
1781 	turbosparc_flush_cache_all();
1782 	mreg &= ~(TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE); /* Temporarily disable I & D caches */
1783 	mreg &= ~(TURBOSPARC_PCENABLE);		/* Don't check parity */
1784 	srmmu_set_mmureg(mreg);
1785 
1786 	ccreg = turbosparc_get_ccreg();
1787 
1788 #ifdef TURBOSPARC_WRITEBACK
1789 	ccreg |= (TURBOSPARC_SNENABLE);		/* Do DVMA snooping in Dcache */
1790 	ccreg &= ~(TURBOSPARC_uS2 | TURBOSPARC_WTENABLE);
1791 			/* Write-back D-cache, emulate VLSI
1792 			 * abortion number three, not number one */
1793 #else
1794 	/* For now let's play safe, optimize later */
1795 	ccreg |= (TURBOSPARC_SNENABLE | TURBOSPARC_WTENABLE);
1796 			/* Do DVMA snooping in Dcache, Write-thru D-cache */
1797 	ccreg &= ~(TURBOSPARC_uS2);
1798 			/* Emulate VLSI abortion number three, not number one */
1799 #endif
1800 
1801 	switch (ccreg & 7) {
1802 	case 0: /* No SE cache */
1803 	case 7: /* Test mode */
1804 		break;
1805 	default:
1806 		ccreg |= (TURBOSPARC_SCENABLE);
1807 	}
1808 	turbosparc_set_ccreg (ccreg);
1809 
1810 	mreg |= (TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE); /* I & D caches on */
1811 	mreg |= (TURBOSPARC_ICSNOOP);		/* Icache snooping on */
1812 	srmmu_set_mmureg(mreg);
1813 }
1814 
1815 static void __init init_turbosparc(void)
1816 {
1817 	srmmu_name = "Fujitsu TurboSparc";
1818 	srmmu_modtype = TurboSparc;
1819 
1820 	BTFIXUPSET_CALL(flush_cache_all, turbosparc_flush_cache_all, BTFIXUPCALL_NORM);
1821 	BTFIXUPSET_CALL(flush_cache_mm, turbosparc_flush_cache_mm, BTFIXUPCALL_NORM);
1822 	BTFIXUPSET_CALL(flush_cache_page, turbosparc_flush_cache_page, BTFIXUPCALL_NORM);
1823 	BTFIXUPSET_CALL(flush_cache_range, turbosparc_flush_cache_range, BTFIXUPCALL_NORM);
1824 
1825 	BTFIXUPSET_CALL(flush_tlb_all, turbosparc_flush_tlb_all, BTFIXUPCALL_NORM);
1826 	BTFIXUPSET_CALL(flush_tlb_mm, turbosparc_flush_tlb_mm, BTFIXUPCALL_NORM);
1827 	BTFIXUPSET_CALL(flush_tlb_page, turbosparc_flush_tlb_page, BTFIXUPCALL_NORM);
1828 	BTFIXUPSET_CALL(flush_tlb_range, turbosparc_flush_tlb_range, BTFIXUPCALL_NORM);
1829 
1830 	BTFIXUPSET_CALL(__flush_page_to_ram, turbosparc_flush_page_to_ram, BTFIXUPCALL_NORM);
1831 
1832 	BTFIXUPSET_CALL(flush_sig_insns, turbosparc_flush_sig_insns, BTFIXUPCALL_NOP);
1833 	BTFIXUPSET_CALL(flush_page_for_dma, turbosparc_flush_page_for_dma, BTFIXUPCALL_NORM);
1834 
1835 	poke_srmmu = poke_turbosparc;
1836 }
1837 
1838 static void __init poke_tsunami(void)
1839 {
1840 	unsigned long mreg = srmmu_get_mmureg();
1841 
1842 	tsunami_flush_icache();
1843 	tsunami_flush_dcache();
1844 	mreg &= ~TSUNAMI_ITD;
1845 	mreg |= (TSUNAMI_IENAB | TSUNAMI_DENAB);
1846 	srmmu_set_mmureg(mreg);
1847 }
1848 
1849 static void __init init_tsunami(void)
1850 {
1851 	/*
1852 	 * Tsunami's pretty sane, Sun and TI actually got it
1853 	 * somewhat right this time.  Fujitsu should have
1854 	 * taken some lessons from them.
1855 	 */
1856 
1857 	srmmu_name = "TI Tsunami";
1858 	srmmu_modtype = Tsunami;
1859 
1860 	BTFIXUPSET_CALL(flush_cache_all, tsunami_flush_cache_all, BTFIXUPCALL_NORM);
1861 	BTFIXUPSET_CALL(flush_cache_mm, tsunami_flush_cache_mm, BTFIXUPCALL_NORM);
1862 	BTFIXUPSET_CALL(flush_cache_page, tsunami_flush_cache_page, BTFIXUPCALL_NORM);
1863 	BTFIXUPSET_CALL(flush_cache_range, tsunami_flush_cache_range, BTFIXUPCALL_NORM);
1864 
1865 
1866 	BTFIXUPSET_CALL(flush_tlb_all, tsunami_flush_tlb_all, BTFIXUPCALL_NORM);
1867 	BTFIXUPSET_CALL(flush_tlb_mm, tsunami_flush_tlb_mm, BTFIXUPCALL_NORM);
1868 	BTFIXUPSET_CALL(flush_tlb_page, tsunami_flush_tlb_page, BTFIXUPCALL_NORM);
1869 	BTFIXUPSET_CALL(flush_tlb_range, tsunami_flush_tlb_range, BTFIXUPCALL_NORM);
1870 
1871 	BTFIXUPSET_CALL(__flush_page_to_ram, tsunami_flush_page_to_ram, BTFIXUPCALL_NOP);
1872 	BTFIXUPSET_CALL(flush_sig_insns, tsunami_flush_sig_insns, BTFIXUPCALL_NORM);
1873 	BTFIXUPSET_CALL(flush_page_for_dma, tsunami_flush_page_for_dma, BTFIXUPCALL_NORM);
1874 
1875 	poke_srmmu = poke_tsunami;
1876 
1877 	tsunami_setup_blockops();
1878 }
1879 
1880 static void __init poke_viking(void)
1881 {
1882 	unsigned long mreg = srmmu_get_mmureg();
1883 	static int smp_catch;
1884 
1885 	if(viking_mxcc_present) {
1886 		unsigned long mxcc_control = mxcc_get_creg();
1887 
1888 		mxcc_control |= (MXCC_CTL_ECE | MXCC_CTL_PRE | MXCC_CTL_MCE);
1889 		mxcc_control &= ~(MXCC_CTL_RRC);
1890 		mxcc_set_creg(mxcc_control);
1891 
1892 		/*
1893 		 * We don't need memory parity checks.
1894 		 * XXX This is a mess, have to dig out later. ecd.
1895 		viking_mxcc_turn_off_parity(&mreg, &mxcc_control);
1896 		 */
1897 
1898 		/* We do cache ptables on MXCC. */
1899 		mreg |= VIKING_TCENABLE;
1900 	} else {
1901 		unsigned long bpreg;
1902 
1903 		mreg &= ~(VIKING_TCENABLE);
1904 		if(smp_catch++) {
1905 			/* Must disable mixed-cmd mode here for other cpu's. */
1906 			bpreg = viking_get_bpreg();
1907 			bpreg &= ~(VIKING_ACTION_MIX);
1908 			viking_set_bpreg(bpreg);
1909 
1910 			/* Just in case PROM does something funny. */
1911 			msi_set_sync();
1912 		}
1913 	}
1914 
1915 	mreg |= VIKING_SPENABLE;
1916 	mreg |= (VIKING_ICENABLE | VIKING_DCENABLE);
1917 	mreg |= VIKING_SBENABLE;
1918 	mreg &= ~(VIKING_ACENABLE);
1919 	srmmu_set_mmureg(mreg);
1920 
1921 #ifdef CONFIG_SMP
1922 	/* Avoid unnecessary cross calls. */
1923 	BTFIXUPCOPY_CALL(flush_cache_all, local_flush_cache_all);
1924 	BTFIXUPCOPY_CALL(flush_cache_mm, local_flush_cache_mm);
1925 	BTFIXUPCOPY_CALL(flush_cache_range, local_flush_cache_range);
1926 	BTFIXUPCOPY_CALL(flush_cache_page, local_flush_cache_page);
1927 	BTFIXUPCOPY_CALL(__flush_page_to_ram, local_flush_page_to_ram);
1928 	BTFIXUPCOPY_CALL(flush_sig_insns, local_flush_sig_insns);
1929 	BTFIXUPCOPY_CALL(flush_page_for_dma, local_flush_page_for_dma);
1930 	btfixup();
1931 #endif
1932 }
1933 
1934 static void __init init_viking(void)
1935 {
1936 	unsigned long mreg = srmmu_get_mmureg();
1937 
1938 	/* Ahhh, the viking.  SRMMU VLSI abortion number two... */
1939 	if(mreg & VIKING_MMODE) {
1940 		srmmu_name = "TI Viking";
1941 		viking_mxcc_present = 0;
1942 		msi_set_sync();
1943 
1944 		BTFIXUPSET_CALL(pte_clear, srmmu_pte_clear, BTFIXUPCALL_NORM);
1945 		BTFIXUPSET_CALL(pmd_clear, srmmu_pmd_clear, BTFIXUPCALL_NORM);
1946 		BTFIXUPSET_CALL(pgd_clear, srmmu_pgd_clear, BTFIXUPCALL_NORM);
1947 
1948 		/*
1949 		 * We need this to make sure old viking takes no hits
1950 		 * on it's cache for dma snoops to workaround the
1951 		 * "load from non-cacheable memory" interrupt bug.
1952 		 * This is only necessary because of the new way in
1953 		 * which we use the IOMMU.
1954 		 */
1955 		BTFIXUPSET_CALL(flush_page_for_dma, viking_flush_page, BTFIXUPCALL_NORM);
1956 
1957 		flush_page_for_dma_global = 0;
1958 	} else {
1959 		srmmu_name = "TI Viking/MXCC";
1960 		viking_mxcc_present = 1;
1961 
1962 		srmmu_cache_pagetables = 1;
1963 
1964 		/* MXCC vikings lack the DMA snooping bug. */
1965 		BTFIXUPSET_CALL(flush_page_for_dma, viking_flush_page_for_dma, BTFIXUPCALL_NOP);
1966 	}
1967 
1968 	BTFIXUPSET_CALL(flush_cache_all, viking_flush_cache_all, BTFIXUPCALL_NORM);
1969 	BTFIXUPSET_CALL(flush_cache_mm, viking_flush_cache_mm, BTFIXUPCALL_NORM);
1970 	BTFIXUPSET_CALL(flush_cache_page, viking_flush_cache_page, BTFIXUPCALL_NORM);
1971 	BTFIXUPSET_CALL(flush_cache_range, viking_flush_cache_range, BTFIXUPCALL_NORM);
1972 
1973 #ifdef CONFIG_SMP
1974 	if (sparc_cpu_model == sun4d) {
1975 		BTFIXUPSET_CALL(flush_tlb_all, sun4dsmp_flush_tlb_all, BTFIXUPCALL_NORM);
1976 		BTFIXUPSET_CALL(flush_tlb_mm, sun4dsmp_flush_tlb_mm, BTFIXUPCALL_NORM);
1977 		BTFIXUPSET_CALL(flush_tlb_page, sun4dsmp_flush_tlb_page, BTFIXUPCALL_NORM);
1978 		BTFIXUPSET_CALL(flush_tlb_range, sun4dsmp_flush_tlb_range, BTFIXUPCALL_NORM);
1979 	} else
1980 #endif
1981 	{
1982 		BTFIXUPSET_CALL(flush_tlb_all, viking_flush_tlb_all, BTFIXUPCALL_NORM);
1983 		BTFIXUPSET_CALL(flush_tlb_mm, viking_flush_tlb_mm, BTFIXUPCALL_NORM);
1984 		BTFIXUPSET_CALL(flush_tlb_page, viking_flush_tlb_page, BTFIXUPCALL_NORM);
1985 		BTFIXUPSET_CALL(flush_tlb_range, viking_flush_tlb_range, BTFIXUPCALL_NORM);
1986 	}
1987 
1988 	BTFIXUPSET_CALL(__flush_page_to_ram, viking_flush_page_to_ram, BTFIXUPCALL_NOP);
1989 	BTFIXUPSET_CALL(flush_sig_insns, viking_flush_sig_insns, BTFIXUPCALL_NOP);
1990 
1991 	poke_srmmu = poke_viking;
1992 }
1993 
1994 /* Probe for the srmmu chip version. */
1995 static void __init get_srmmu_type(void)
1996 {
1997 	unsigned long mreg, psr;
1998 	unsigned long mod_typ, mod_rev, psr_typ, psr_vers;
1999 
2000 	srmmu_modtype = SRMMU_INVAL_MOD;
2001 	hwbug_bitmask = 0;
2002 
2003 	mreg = srmmu_get_mmureg(); psr = get_psr();
2004 	mod_typ = (mreg & 0xf0000000) >> 28;
2005 	mod_rev = (mreg & 0x0f000000) >> 24;
2006 	psr_typ = (psr >> 28) & 0xf;
2007 	psr_vers = (psr >> 24) & 0xf;
2008 
2009 	/* First, check for HyperSparc or Cypress. */
2010 	if(mod_typ == 1) {
2011 		switch(mod_rev) {
2012 		case 7:
2013 			/* UP or MP Hypersparc */
2014 			init_hypersparc();
2015 			break;
2016 		case 0:
2017 		case 2:
2018 			/* Uniprocessor Cypress */
2019 			init_cypress_604();
2020 			break;
2021 		case 10:
2022 		case 11:
2023 		case 12:
2024 			/* _REALLY OLD_ Cypress MP chips... */
2025 		case 13:
2026 		case 14:
2027 		case 15:
2028 			/* MP Cypress mmu/cache-controller */
2029 			init_cypress_605(mod_rev);
2030 			break;
2031 		default:
2032 			/* Some other Cypress revision, assume a 605. */
2033 			init_cypress_605(mod_rev);
2034 			break;
2035 		};
2036 		return;
2037 	}
2038 
2039 	/*
2040 	 * Now Fujitsu TurboSparc. It might happen that it is
2041 	 * in Swift emulation mode, so we will check later...
2042 	 */
2043 	if (psr_typ == 0 && psr_vers == 5) {
2044 		init_turbosparc();
2045 		return;
2046 	}
2047 
2048 	/* Next check for Fujitsu Swift. */
2049 	if(psr_typ == 0 && psr_vers == 4) {
2050 		int cpunode;
2051 		char node_str[128];
2052 
2053 		/* Look if it is not a TurboSparc emulating Swift... */
2054 		cpunode = prom_getchild(prom_root_node);
2055 		while((cpunode = prom_getsibling(cpunode)) != 0) {
2056 			prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
2057 			if(!strcmp(node_str, "cpu")) {
2058 				if (!prom_getintdefault(cpunode, "psr-implementation", 1) &&
2059 				    prom_getintdefault(cpunode, "psr-version", 1) == 5) {
2060 					init_turbosparc();
2061 					return;
2062 				}
2063 				break;
2064 			}
2065 		}
2066 
2067 		init_swift();
2068 		return;
2069 	}
2070 
2071 	/* Now the Viking family of srmmu. */
2072 	if(psr_typ == 4 &&
2073 	   ((psr_vers == 0) ||
2074 	    ((psr_vers == 1) && (mod_typ == 0) && (mod_rev == 0)))) {
2075 		init_viking();
2076 		return;
2077 	}
2078 
2079 	/* Finally the Tsunami. */
2080 	if(psr_typ == 4 && psr_vers == 1 && (mod_typ || mod_rev)) {
2081 		init_tsunami();
2082 		return;
2083 	}
2084 
2085 	/* Oh well */
2086 	srmmu_is_bad();
2087 }
2088 
2089 /* don't laugh, static pagetables */
2090 static void srmmu_check_pgt_cache(int low, int high)
2091 {
2092 }
2093 
2094 extern unsigned long spwin_mmu_patchme, fwin_mmu_patchme,
2095 	tsetup_mmu_patchme, rtrap_mmu_patchme;
2096 
2097 extern unsigned long spwin_srmmu_stackchk, srmmu_fwin_stackchk,
2098 	tsetup_srmmu_stackchk, srmmu_rett_stackchk;
2099 
2100 extern unsigned long srmmu_fault;
2101 
2102 #define PATCH_BRANCH(insn, dest) do { \
2103 		iaddr = &(insn); \
2104 		daddr = &(dest); \
2105 		*iaddr = SPARC_BRANCH((unsigned long) daddr, (unsigned long) iaddr); \
2106 	} while(0)
2107 
2108 static void __init patch_window_trap_handlers(void)
2109 {
2110 	unsigned long *iaddr, *daddr;
2111 
2112 	PATCH_BRANCH(spwin_mmu_patchme, spwin_srmmu_stackchk);
2113 	PATCH_BRANCH(fwin_mmu_patchme, srmmu_fwin_stackchk);
2114 	PATCH_BRANCH(tsetup_mmu_patchme, tsetup_srmmu_stackchk);
2115 	PATCH_BRANCH(rtrap_mmu_patchme, srmmu_rett_stackchk);
2116 	PATCH_BRANCH(sparc_ttable[SP_TRAP_TFLT].inst_three, srmmu_fault);
2117 	PATCH_BRANCH(sparc_ttable[SP_TRAP_DFLT].inst_three, srmmu_fault);
2118 	PATCH_BRANCH(sparc_ttable[SP_TRAP_DACC].inst_three, srmmu_fault);
2119 }
2120 
2121 #ifdef CONFIG_SMP
2122 /* Local cross-calls. */
2123 static void smp_flush_page_for_dma(unsigned long page)
2124 {
2125 	xc1((smpfunc_t) BTFIXUP_CALL(local_flush_page_for_dma), page);
2126 	local_flush_page_for_dma(page);
2127 }
2128 
2129 #endif
2130 
2131 static pte_t srmmu_pgoff_to_pte(unsigned long pgoff)
2132 {
2133 	return __pte((pgoff << SRMMU_PTE_FILE_SHIFT) | SRMMU_FILE);
2134 }
2135 
2136 static unsigned long srmmu_pte_to_pgoff(pte_t pte)
2137 {
2138 	return pte_val(pte) >> SRMMU_PTE_FILE_SHIFT;
2139 }
2140 
2141 static pgprot_t srmmu_pgprot_noncached(pgprot_t prot)
2142 {
2143 	prot &= ~__pgprot(SRMMU_CACHE);
2144 
2145 	return prot;
2146 }
2147 
2148 /* Load up routines and constants for sun4m and sun4d mmu */
2149 void __init ld_mmu_srmmu(void)
2150 {
2151 	extern void ld_mmu_iommu(void);
2152 	extern void ld_mmu_iounit(void);
2153 	extern void ___xchg32_sun4md(void);
2154 
2155 	BTFIXUPSET_SIMM13(pgdir_shift, SRMMU_PGDIR_SHIFT);
2156 	BTFIXUPSET_SETHI(pgdir_size, SRMMU_PGDIR_SIZE);
2157 	BTFIXUPSET_SETHI(pgdir_mask, SRMMU_PGDIR_MASK);
2158 
2159 	BTFIXUPSET_SIMM13(ptrs_per_pmd, SRMMU_PTRS_PER_PMD);
2160 	BTFIXUPSET_SIMM13(ptrs_per_pgd, SRMMU_PTRS_PER_PGD);
2161 
2162 	BTFIXUPSET_INT(page_none, pgprot_val(SRMMU_PAGE_NONE));
2163 	PAGE_SHARED = pgprot_val(SRMMU_PAGE_SHARED);
2164 	BTFIXUPSET_INT(page_copy, pgprot_val(SRMMU_PAGE_COPY));
2165 	BTFIXUPSET_INT(page_readonly, pgprot_val(SRMMU_PAGE_RDONLY));
2166 	BTFIXUPSET_INT(page_kernel, pgprot_val(SRMMU_PAGE_KERNEL));
2167 	page_kernel = pgprot_val(SRMMU_PAGE_KERNEL);
2168 
2169 	/* Functions */
2170 	BTFIXUPSET_CALL(pgprot_noncached, srmmu_pgprot_noncached, BTFIXUPCALL_NORM);
2171 #ifndef CONFIG_SMP
2172 	BTFIXUPSET_CALL(___xchg32, ___xchg32_sun4md, BTFIXUPCALL_SWAPG1G2);
2173 #endif
2174 	BTFIXUPSET_CALL(do_check_pgt_cache, srmmu_check_pgt_cache, BTFIXUPCALL_NOP);
2175 
2176 	BTFIXUPSET_CALL(set_pte, srmmu_set_pte, BTFIXUPCALL_SWAPO0O1);
2177 	BTFIXUPSET_CALL(switch_mm, srmmu_switch_mm, BTFIXUPCALL_NORM);
2178 
2179 	BTFIXUPSET_CALL(pte_pfn, srmmu_pte_pfn, BTFIXUPCALL_NORM);
2180 	BTFIXUPSET_CALL(pmd_page, srmmu_pmd_page, BTFIXUPCALL_NORM);
2181 	BTFIXUPSET_CALL(pgd_page_vaddr, srmmu_pgd_page, BTFIXUPCALL_NORM);
2182 
2183 	BTFIXUPSET_SETHI(none_mask, 0xF0000000);
2184 
2185 	BTFIXUPSET_CALL(pte_present, srmmu_pte_present, BTFIXUPCALL_NORM);
2186 	BTFIXUPSET_CALL(pte_clear, srmmu_pte_clear, BTFIXUPCALL_SWAPO0G0);
2187 
2188 	BTFIXUPSET_CALL(pmd_bad, srmmu_pmd_bad, BTFIXUPCALL_NORM);
2189 	BTFIXUPSET_CALL(pmd_present, srmmu_pmd_present, BTFIXUPCALL_NORM);
2190 	BTFIXUPSET_CALL(pmd_clear, srmmu_pmd_clear, BTFIXUPCALL_SWAPO0G0);
2191 
2192 	BTFIXUPSET_CALL(pgd_none, srmmu_pgd_none, BTFIXUPCALL_NORM);
2193 	BTFIXUPSET_CALL(pgd_bad, srmmu_pgd_bad, BTFIXUPCALL_NORM);
2194 	BTFIXUPSET_CALL(pgd_present, srmmu_pgd_present, BTFIXUPCALL_NORM);
2195 	BTFIXUPSET_CALL(pgd_clear, srmmu_pgd_clear, BTFIXUPCALL_SWAPO0G0);
2196 
2197 	BTFIXUPSET_CALL(mk_pte, srmmu_mk_pte, BTFIXUPCALL_NORM);
2198 	BTFIXUPSET_CALL(mk_pte_phys, srmmu_mk_pte_phys, BTFIXUPCALL_NORM);
2199 	BTFIXUPSET_CALL(mk_pte_io, srmmu_mk_pte_io, BTFIXUPCALL_NORM);
2200 	BTFIXUPSET_CALL(pgd_set, srmmu_pgd_set, BTFIXUPCALL_NORM);
2201 	BTFIXUPSET_CALL(pmd_set, srmmu_pmd_set, BTFIXUPCALL_NORM);
2202 	BTFIXUPSET_CALL(pmd_populate, srmmu_pmd_populate, BTFIXUPCALL_NORM);
2203 
2204 	BTFIXUPSET_INT(pte_modify_mask, SRMMU_CHG_MASK);
2205 	BTFIXUPSET_CALL(pmd_offset, srmmu_pmd_offset, BTFIXUPCALL_NORM);
2206 	BTFIXUPSET_CALL(pte_offset_kernel, srmmu_pte_offset, BTFIXUPCALL_NORM);
2207 
2208 	BTFIXUPSET_CALL(free_pte_fast, srmmu_free_pte_fast, BTFIXUPCALL_NORM);
2209 	BTFIXUPSET_CALL(pte_free, srmmu_pte_free, BTFIXUPCALL_NORM);
2210 	BTFIXUPSET_CALL(pte_alloc_one_kernel, srmmu_pte_alloc_one_kernel, BTFIXUPCALL_NORM);
2211 	BTFIXUPSET_CALL(pte_alloc_one, srmmu_pte_alloc_one, BTFIXUPCALL_NORM);
2212 	BTFIXUPSET_CALL(free_pmd_fast, srmmu_pmd_free, BTFIXUPCALL_NORM);
2213 	BTFIXUPSET_CALL(pmd_alloc_one, srmmu_pmd_alloc_one, BTFIXUPCALL_NORM);
2214 	BTFIXUPSET_CALL(free_pgd_fast, srmmu_free_pgd_fast, BTFIXUPCALL_NORM);
2215 	BTFIXUPSET_CALL(get_pgd_fast, srmmu_get_pgd_fast, BTFIXUPCALL_NORM);
2216 
2217 	BTFIXUPSET_HALF(pte_writei, SRMMU_WRITE);
2218 	BTFIXUPSET_HALF(pte_dirtyi, SRMMU_DIRTY);
2219 	BTFIXUPSET_HALF(pte_youngi, SRMMU_REF);
2220 	BTFIXUPSET_HALF(pte_filei, SRMMU_FILE);
2221 	BTFIXUPSET_HALF(pte_wrprotecti, SRMMU_WRITE);
2222 	BTFIXUPSET_HALF(pte_mkcleani, SRMMU_DIRTY);
2223 	BTFIXUPSET_HALF(pte_mkoldi, SRMMU_REF);
2224 	BTFIXUPSET_CALL(pte_mkwrite, srmmu_pte_mkwrite, BTFIXUPCALL_ORINT(SRMMU_WRITE));
2225 	BTFIXUPSET_CALL(pte_mkdirty, srmmu_pte_mkdirty, BTFIXUPCALL_ORINT(SRMMU_DIRTY));
2226 	BTFIXUPSET_CALL(pte_mkyoung, srmmu_pte_mkyoung, BTFIXUPCALL_ORINT(SRMMU_REF));
2227 	BTFIXUPSET_CALL(update_mmu_cache, srmmu_update_mmu_cache, BTFIXUPCALL_NOP);
2228 	BTFIXUPSET_CALL(destroy_context, srmmu_destroy_context, BTFIXUPCALL_NORM);
2229 
2230 	BTFIXUPSET_CALL(sparc_mapiorange, srmmu_mapiorange, BTFIXUPCALL_NORM);
2231 	BTFIXUPSET_CALL(sparc_unmapiorange, srmmu_unmapiorange, BTFIXUPCALL_NORM);
2232 
2233 	BTFIXUPSET_CALL(__swp_type, srmmu_swp_type, BTFIXUPCALL_NORM);
2234 	BTFIXUPSET_CALL(__swp_offset, srmmu_swp_offset, BTFIXUPCALL_NORM);
2235 	BTFIXUPSET_CALL(__swp_entry, srmmu_swp_entry, BTFIXUPCALL_NORM);
2236 
2237 	BTFIXUPSET_CALL(mmu_info, srmmu_mmu_info, BTFIXUPCALL_NORM);
2238 
2239 	BTFIXUPSET_CALL(alloc_thread_info, srmmu_alloc_thread_info, BTFIXUPCALL_NORM);
2240 	BTFIXUPSET_CALL(free_thread_info, srmmu_free_thread_info, BTFIXUPCALL_NORM);
2241 
2242 	BTFIXUPSET_CALL(pte_to_pgoff, srmmu_pte_to_pgoff, BTFIXUPCALL_NORM);
2243 	BTFIXUPSET_CALL(pgoff_to_pte, srmmu_pgoff_to_pte, BTFIXUPCALL_NORM);
2244 
2245 	get_srmmu_type();
2246 	patch_window_trap_handlers();
2247 
2248 #ifdef CONFIG_SMP
2249 	/* El switcheroo... */
2250 
2251 	BTFIXUPCOPY_CALL(local_flush_cache_all, flush_cache_all);
2252 	BTFIXUPCOPY_CALL(local_flush_cache_mm, flush_cache_mm);
2253 	BTFIXUPCOPY_CALL(local_flush_cache_range, flush_cache_range);
2254 	BTFIXUPCOPY_CALL(local_flush_cache_page, flush_cache_page);
2255 	BTFIXUPCOPY_CALL(local_flush_tlb_all, flush_tlb_all);
2256 	BTFIXUPCOPY_CALL(local_flush_tlb_mm, flush_tlb_mm);
2257 	BTFIXUPCOPY_CALL(local_flush_tlb_range, flush_tlb_range);
2258 	BTFIXUPCOPY_CALL(local_flush_tlb_page, flush_tlb_page);
2259 	BTFIXUPCOPY_CALL(local_flush_page_to_ram, __flush_page_to_ram);
2260 	BTFIXUPCOPY_CALL(local_flush_sig_insns, flush_sig_insns);
2261 	BTFIXUPCOPY_CALL(local_flush_page_for_dma, flush_page_for_dma);
2262 
2263 	BTFIXUPSET_CALL(flush_cache_all, smp_flush_cache_all, BTFIXUPCALL_NORM);
2264 	BTFIXUPSET_CALL(flush_cache_mm, smp_flush_cache_mm, BTFIXUPCALL_NORM);
2265 	BTFIXUPSET_CALL(flush_cache_range, smp_flush_cache_range, BTFIXUPCALL_NORM);
2266 	BTFIXUPSET_CALL(flush_cache_page, smp_flush_cache_page, BTFIXUPCALL_NORM);
2267 	if (sparc_cpu_model != sun4d) {
2268 		BTFIXUPSET_CALL(flush_tlb_all, smp_flush_tlb_all, BTFIXUPCALL_NORM);
2269 		BTFIXUPSET_CALL(flush_tlb_mm, smp_flush_tlb_mm, BTFIXUPCALL_NORM);
2270 		BTFIXUPSET_CALL(flush_tlb_range, smp_flush_tlb_range, BTFIXUPCALL_NORM);
2271 		BTFIXUPSET_CALL(flush_tlb_page, smp_flush_tlb_page, BTFIXUPCALL_NORM);
2272 	}
2273 	BTFIXUPSET_CALL(__flush_page_to_ram, smp_flush_page_to_ram, BTFIXUPCALL_NORM);
2274 	BTFIXUPSET_CALL(flush_sig_insns, smp_flush_sig_insns, BTFIXUPCALL_NORM);
2275 	BTFIXUPSET_CALL(flush_page_for_dma, smp_flush_page_for_dma, BTFIXUPCALL_NORM);
2276 #endif
2277 
2278 	if (sparc_cpu_model == sun4d)
2279 		ld_mmu_iounit();
2280 	else
2281 		ld_mmu_iommu();
2282 #ifdef CONFIG_SMP
2283 	if (sparc_cpu_model == sun4d)
2284 		sun4d_init_smp();
2285 	else
2286 		sun4m_init_smp();
2287 #endif
2288 }
2289