xref: /openbmc/linux/arch/sparc/mm/srmmu.c (revision 22fc4c4c9fd60427bcda00878cee94e7622cfa7a)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * srmmu.c:  SRMMU specific routines for memory management.
4  *
5  * Copyright (C) 1995 David S. Miller  (davem@caip.rutgers.edu)
6  * Copyright (C) 1995,2002 Pete Zaitcev (zaitcev@yahoo.com)
7  * Copyright (C) 1996 Eddie C. Dost    (ecd@skynet.be)
8  * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
9  * Copyright (C) 1999,2000 Anton Blanchard (anton@samba.org)
10  */
11 
12 #include <linux/seq_file.h>
13 #include <linux/spinlock.h>
14 #include <linux/memblock.h>
15 #include <linux/pagemap.h>
16 #include <linux/vmalloc.h>
17 #include <linux/kdebug.h>
18 #include <linux/export.h>
19 #include <linux/kernel.h>
20 #include <linux/init.h>
21 #include <linux/log2.h>
22 #include <linux/gfp.h>
23 #include <linux/fs.h>
24 #include <linux/mm.h>
25 
26 #include <asm/mmu_context.h>
27 #include <asm/cacheflush.h>
28 #include <asm/tlbflush.h>
29 #include <asm/io-unit.h>
30 #include <asm/pgalloc.h>
31 #include <asm/pgtable.h>
32 #include <asm/bitext.h>
33 #include <asm/vaddrs.h>
34 #include <asm/cache.h>
35 #include <asm/traps.h>
36 #include <asm/oplib.h>
37 #include <asm/mbus.h>
38 #include <asm/page.h>
39 #include <asm/asi.h>
40 #include <asm/smp.h>
41 #include <asm/io.h>
42 
43 /* Now the cpu specific definitions. */
44 #include <asm/turbosparc.h>
45 #include <asm/tsunami.h>
46 #include <asm/viking.h>
47 #include <asm/swift.h>
48 #include <asm/leon.h>
49 #include <asm/mxcc.h>
50 #include <asm/ross.h>
51 
52 #include "mm_32.h"
53 
54 enum mbus_module srmmu_modtype;
55 static unsigned int hwbug_bitmask;
56 int vac_cache_size;
57 EXPORT_SYMBOL(vac_cache_size);
58 int vac_line_size;
59 
60 extern struct resource sparc_iomap;
61 
62 extern unsigned long last_valid_pfn;
63 
64 static pgd_t *srmmu_swapper_pg_dir;
65 
66 const struct sparc32_cachetlb_ops *sparc32_cachetlb_ops;
67 EXPORT_SYMBOL(sparc32_cachetlb_ops);
68 
69 #ifdef CONFIG_SMP
70 const struct sparc32_cachetlb_ops *local_ops;
71 
72 #define FLUSH_BEGIN(mm)
73 #define FLUSH_END
74 #else
75 #define FLUSH_BEGIN(mm) if ((mm)->context != NO_CONTEXT) {
76 #define FLUSH_END	}
77 #endif
78 
79 int flush_page_for_dma_global = 1;
80 
81 char *srmmu_name;
82 
83 ctxd_t *srmmu_ctx_table_phys;
84 static ctxd_t *srmmu_context_table;
85 
86 int viking_mxcc_present;
87 static DEFINE_SPINLOCK(srmmu_context_spinlock);
88 
89 static int is_hypersparc;
90 
91 static int srmmu_cache_pagetables;
92 
93 /* these will be initialized in srmmu_nocache_calcsize() */
94 static unsigned long srmmu_nocache_size;
95 static unsigned long srmmu_nocache_end;
96 
97 /* 1 bit <=> 256 bytes of nocache <=> 64 PTEs */
98 #define SRMMU_NOCACHE_BITMAP_SHIFT (PAGE_SHIFT - 4)
99 
100 /* The context table is a nocache user with the biggest alignment needs. */
101 #define SRMMU_NOCACHE_ALIGN_MAX (sizeof(ctxd_t)*SRMMU_MAX_CONTEXTS)
102 
103 void *srmmu_nocache_pool;
104 static struct bit_map srmmu_nocache_map;
105 
106 static inline int srmmu_pmd_none(pmd_t pmd)
107 { return !(pmd_val(pmd) & 0xFFFFFFF); }
108 
109 /* XXX should we hyper_flush_whole_icache here - Anton */
110 static inline void srmmu_ctxd_set(ctxd_t *ctxp, pgd_t *pgdp)
111 {
112 	pte_t pte;
113 
114 	pte = __pte((SRMMU_ET_PTD | (__nocache_pa(pgdp) >> 4)));
115 	set_pte((pte_t *)ctxp, pte);
116 }
117 
118 /*
119  * Locations of MSI Registers.
120  */
121 #define MSI_MBUS_ARBEN	0xe0001008	/* MBus Arbiter Enable register */
122 
123 /*
124  * Useful bits in the MSI Registers.
125  */
126 #define MSI_ASYNC_MODE  0x80000000	/* Operate the MSI asynchronously */
127 
128 static void msi_set_sync(void)
129 {
130 	__asm__ __volatile__ ("lda [%0] %1, %%g3\n\t"
131 			      "andn %%g3, %2, %%g3\n\t"
132 			      "sta %%g3, [%0] %1\n\t" : :
133 			      "r" (MSI_MBUS_ARBEN),
134 			      "i" (ASI_M_CTL), "r" (MSI_ASYNC_MODE) : "g3");
135 }
136 
137 void pmd_set(pmd_t *pmdp, pte_t *ptep)
138 {
139 	unsigned long ptp;	/* Physical address, shifted right by 4 */
140 	int i;
141 
142 	ptp = __nocache_pa(ptep) >> 4;
143 	for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) {
144 		set_pte((pte_t *)&pmdp->pmdv[i], __pte(SRMMU_ET_PTD | ptp));
145 		ptp += (SRMMU_REAL_PTRS_PER_PTE * sizeof(pte_t) >> 4);
146 	}
147 }
148 
149 void pmd_populate(struct mm_struct *mm, pmd_t *pmdp, struct page *ptep)
150 {
151 	unsigned long ptp;	/* Physical address, shifted right by 4 */
152 	int i;
153 
154 	ptp = page_to_pfn(ptep) << (PAGE_SHIFT-4);	/* watch for overflow */
155 	for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) {
156 		set_pte((pte_t *)&pmdp->pmdv[i], __pte(SRMMU_ET_PTD | ptp));
157 		ptp += (SRMMU_REAL_PTRS_PER_PTE * sizeof(pte_t) >> 4);
158 	}
159 }
160 
161 /* Find an entry in the third-level page table.. */
162 pte_t *pte_offset_kernel(pmd_t *dir, unsigned long address)
163 {
164 	void *pte;
165 
166 	pte = __nocache_va((dir->pmdv[0] & SRMMU_PTD_PMASK) << 4);
167 	return (pte_t *) pte +
168 	    ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
169 }
170 
171 /*
172  * size: bytes to allocate in the nocache area.
173  * align: bytes, number to align at.
174  * Returns the virtual address of the allocated area.
175  */
176 static void *__srmmu_get_nocache(int size, int align)
177 {
178 	int offset;
179 	unsigned long addr;
180 
181 	if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
182 		printk(KERN_ERR "Size 0x%x too small for nocache request\n",
183 		       size);
184 		size = SRMMU_NOCACHE_BITMAP_SHIFT;
185 	}
186 	if (size & (SRMMU_NOCACHE_BITMAP_SHIFT - 1)) {
187 		printk(KERN_ERR "Size 0x%x unaligned int nocache request\n",
188 		       size);
189 		size += SRMMU_NOCACHE_BITMAP_SHIFT - 1;
190 	}
191 	BUG_ON(align > SRMMU_NOCACHE_ALIGN_MAX);
192 
193 	offset = bit_map_string_get(&srmmu_nocache_map,
194 				    size >> SRMMU_NOCACHE_BITMAP_SHIFT,
195 				    align >> SRMMU_NOCACHE_BITMAP_SHIFT);
196 	if (offset == -1) {
197 		printk(KERN_ERR "srmmu: out of nocache %d: %d/%d\n",
198 		       size, (int) srmmu_nocache_size,
199 		       srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
200 		return NULL;
201 	}
202 
203 	addr = SRMMU_NOCACHE_VADDR + (offset << SRMMU_NOCACHE_BITMAP_SHIFT);
204 	return (void *)addr;
205 }
206 
207 void *srmmu_get_nocache(int size, int align)
208 {
209 	void *tmp;
210 
211 	tmp = __srmmu_get_nocache(size, align);
212 
213 	if (tmp)
214 		memset(tmp, 0, size);
215 
216 	return tmp;
217 }
218 
219 void srmmu_free_nocache(void *addr, int size)
220 {
221 	unsigned long vaddr;
222 	int offset;
223 
224 	vaddr = (unsigned long)addr;
225 	if (vaddr < SRMMU_NOCACHE_VADDR) {
226 		printk("Vaddr %lx is smaller than nocache base 0x%lx\n",
227 		    vaddr, (unsigned long)SRMMU_NOCACHE_VADDR);
228 		BUG();
229 	}
230 	if (vaddr + size > srmmu_nocache_end) {
231 		printk("Vaddr %lx is bigger than nocache end 0x%lx\n",
232 		    vaddr, srmmu_nocache_end);
233 		BUG();
234 	}
235 	if (!is_power_of_2(size)) {
236 		printk("Size 0x%x is not a power of 2\n", size);
237 		BUG();
238 	}
239 	if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
240 		printk("Size 0x%x is too small\n", size);
241 		BUG();
242 	}
243 	if (vaddr & (size - 1)) {
244 		printk("Vaddr %lx is not aligned to size 0x%x\n", vaddr, size);
245 		BUG();
246 	}
247 
248 	offset = (vaddr - SRMMU_NOCACHE_VADDR) >> SRMMU_NOCACHE_BITMAP_SHIFT;
249 	size = size >> SRMMU_NOCACHE_BITMAP_SHIFT;
250 
251 	bit_map_clear(&srmmu_nocache_map, offset, size);
252 }
253 
254 static void srmmu_early_allocate_ptable_skeleton(unsigned long start,
255 						 unsigned long end);
256 
257 /* Return how much physical memory we have.  */
258 static unsigned long __init probe_memory(void)
259 {
260 	unsigned long total = 0;
261 	int i;
262 
263 	for (i = 0; sp_banks[i].num_bytes; i++)
264 		total += sp_banks[i].num_bytes;
265 
266 	return total;
267 }
268 
269 /*
270  * Reserve nocache dynamically proportionally to the amount of
271  * system RAM. -- Tomas Szepe <szepe@pinerecords.com>, June 2002
272  */
273 static void __init srmmu_nocache_calcsize(void)
274 {
275 	unsigned long sysmemavail = probe_memory() / 1024;
276 	int srmmu_nocache_npages;
277 
278 	srmmu_nocache_npages =
279 		sysmemavail / SRMMU_NOCACHE_ALCRATIO / 1024 * 256;
280 
281  /* P3 XXX The 4x overuse: corroborated by /proc/meminfo. */
282 	// if (srmmu_nocache_npages < 256) srmmu_nocache_npages = 256;
283 	if (srmmu_nocache_npages < SRMMU_MIN_NOCACHE_PAGES)
284 		srmmu_nocache_npages = SRMMU_MIN_NOCACHE_PAGES;
285 
286 	/* anything above 1280 blows up */
287 	if (srmmu_nocache_npages > SRMMU_MAX_NOCACHE_PAGES)
288 		srmmu_nocache_npages = SRMMU_MAX_NOCACHE_PAGES;
289 
290 	srmmu_nocache_size = srmmu_nocache_npages * PAGE_SIZE;
291 	srmmu_nocache_end = SRMMU_NOCACHE_VADDR + srmmu_nocache_size;
292 }
293 
294 static void __init srmmu_nocache_init(void)
295 {
296 	void *srmmu_nocache_bitmap;
297 	unsigned int bitmap_bits;
298 	pgd_t *pgd;
299 	pmd_t *pmd;
300 	pte_t *pte;
301 	unsigned long paddr, vaddr;
302 	unsigned long pteval;
303 
304 	bitmap_bits = srmmu_nocache_size >> SRMMU_NOCACHE_BITMAP_SHIFT;
305 
306 	srmmu_nocache_pool = memblock_alloc_from(srmmu_nocache_size,
307 						 SRMMU_NOCACHE_ALIGN_MAX, 0UL);
308 	memset(srmmu_nocache_pool, 0, srmmu_nocache_size);
309 
310 	srmmu_nocache_bitmap =
311 		memblock_alloc_from(BITS_TO_LONGS(bitmap_bits) * sizeof(long),
312 				    SMP_CACHE_BYTES, 0UL);
313 	bit_map_init(&srmmu_nocache_map, srmmu_nocache_bitmap, bitmap_bits);
314 
315 	srmmu_swapper_pg_dir = __srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
316 	memset(__nocache_fix(srmmu_swapper_pg_dir), 0, SRMMU_PGD_TABLE_SIZE);
317 	init_mm.pgd = srmmu_swapper_pg_dir;
318 
319 	srmmu_early_allocate_ptable_skeleton(SRMMU_NOCACHE_VADDR, srmmu_nocache_end);
320 
321 	paddr = __pa((unsigned long)srmmu_nocache_pool);
322 	vaddr = SRMMU_NOCACHE_VADDR;
323 
324 	while (vaddr < srmmu_nocache_end) {
325 		pgd = pgd_offset_k(vaddr);
326 		pmd = pmd_offset(__nocache_fix(pgd), vaddr);
327 		pte = pte_offset_kernel(__nocache_fix(pmd), vaddr);
328 
329 		pteval = ((paddr >> 4) | SRMMU_ET_PTE | SRMMU_PRIV);
330 
331 		if (srmmu_cache_pagetables)
332 			pteval |= SRMMU_CACHE;
333 
334 		set_pte(__nocache_fix(pte), __pte(pteval));
335 
336 		vaddr += PAGE_SIZE;
337 		paddr += PAGE_SIZE;
338 	}
339 
340 	flush_cache_all();
341 	flush_tlb_all();
342 }
343 
344 pgd_t *get_pgd_fast(void)
345 {
346 	pgd_t *pgd = NULL;
347 
348 	pgd = __srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
349 	if (pgd) {
350 		pgd_t *init = pgd_offset_k(0);
351 		memset(pgd, 0, USER_PTRS_PER_PGD * sizeof(pgd_t));
352 		memcpy(pgd + USER_PTRS_PER_PGD, init + USER_PTRS_PER_PGD,
353 						(PTRS_PER_PGD - USER_PTRS_PER_PGD) * sizeof(pgd_t));
354 	}
355 
356 	return pgd;
357 }
358 
359 /*
360  * Hardware needs alignment to 256 only, but we align to whole page size
361  * to reduce fragmentation problems due to the buddy principle.
362  * XXX Provide actual fragmentation statistics in /proc.
363  *
364  * Alignments up to the page size are the same for physical and virtual
365  * addresses of the nocache area.
366  */
367 pgtable_t pte_alloc_one(struct mm_struct *mm)
368 {
369 	unsigned long pte;
370 	struct page *page;
371 
372 	if ((pte = (unsigned long)pte_alloc_one_kernel(mm)) == 0)
373 		return NULL;
374 	page = pfn_to_page(__nocache_pa(pte) >> PAGE_SHIFT);
375 	if (!pgtable_page_ctor(page)) {
376 		__free_page(page);
377 		return NULL;
378 	}
379 	return page;
380 }
381 
382 void pte_free(struct mm_struct *mm, pgtable_t pte)
383 {
384 	unsigned long p;
385 
386 	pgtable_page_dtor(pte);
387 	p = (unsigned long)page_address(pte);	/* Cached address (for test) */
388 	if (p == 0)
389 		BUG();
390 	p = page_to_pfn(pte) << PAGE_SHIFT;	/* Physical address */
391 
392 	/* free non cached virtual address*/
393 	srmmu_free_nocache(__nocache_va(p), PTE_SIZE);
394 }
395 
396 /* context handling - a dynamically sized pool is used */
397 #define NO_CONTEXT	-1
398 
399 struct ctx_list {
400 	struct ctx_list *next;
401 	struct ctx_list *prev;
402 	unsigned int ctx_number;
403 	struct mm_struct *ctx_mm;
404 };
405 
406 static struct ctx_list *ctx_list_pool;
407 static struct ctx_list ctx_free;
408 static struct ctx_list ctx_used;
409 
410 /* At boot time we determine the number of contexts */
411 static int num_contexts;
412 
413 static inline void remove_from_ctx_list(struct ctx_list *entry)
414 {
415 	entry->next->prev = entry->prev;
416 	entry->prev->next = entry->next;
417 }
418 
419 static inline void add_to_ctx_list(struct ctx_list *head, struct ctx_list *entry)
420 {
421 	entry->next = head;
422 	(entry->prev = head->prev)->next = entry;
423 	head->prev = entry;
424 }
425 #define add_to_free_ctxlist(entry) add_to_ctx_list(&ctx_free, entry)
426 #define add_to_used_ctxlist(entry) add_to_ctx_list(&ctx_used, entry)
427 
428 
429 static inline void alloc_context(struct mm_struct *old_mm, struct mm_struct *mm)
430 {
431 	struct ctx_list *ctxp;
432 
433 	ctxp = ctx_free.next;
434 	if (ctxp != &ctx_free) {
435 		remove_from_ctx_list(ctxp);
436 		add_to_used_ctxlist(ctxp);
437 		mm->context = ctxp->ctx_number;
438 		ctxp->ctx_mm = mm;
439 		return;
440 	}
441 	ctxp = ctx_used.next;
442 	if (ctxp->ctx_mm == old_mm)
443 		ctxp = ctxp->next;
444 	if (ctxp == &ctx_used)
445 		panic("out of mmu contexts");
446 	flush_cache_mm(ctxp->ctx_mm);
447 	flush_tlb_mm(ctxp->ctx_mm);
448 	remove_from_ctx_list(ctxp);
449 	add_to_used_ctxlist(ctxp);
450 	ctxp->ctx_mm->context = NO_CONTEXT;
451 	ctxp->ctx_mm = mm;
452 	mm->context = ctxp->ctx_number;
453 }
454 
455 static inline void free_context(int context)
456 {
457 	struct ctx_list *ctx_old;
458 
459 	ctx_old = ctx_list_pool + context;
460 	remove_from_ctx_list(ctx_old);
461 	add_to_free_ctxlist(ctx_old);
462 }
463 
464 static void __init sparc_context_init(int numctx)
465 {
466 	int ctx;
467 	unsigned long size;
468 
469 	size = numctx * sizeof(struct ctx_list);
470 	ctx_list_pool = memblock_alloc_from(size, SMP_CACHE_BYTES, 0UL);
471 
472 	for (ctx = 0; ctx < numctx; ctx++) {
473 		struct ctx_list *clist;
474 
475 		clist = (ctx_list_pool + ctx);
476 		clist->ctx_number = ctx;
477 		clist->ctx_mm = NULL;
478 	}
479 	ctx_free.next = ctx_free.prev = &ctx_free;
480 	ctx_used.next = ctx_used.prev = &ctx_used;
481 	for (ctx = 0; ctx < numctx; ctx++)
482 		add_to_free_ctxlist(ctx_list_pool + ctx);
483 }
484 
485 void switch_mm(struct mm_struct *old_mm, struct mm_struct *mm,
486 	       struct task_struct *tsk)
487 {
488 	unsigned long flags;
489 
490 	if (mm->context == NO_CONTEXT) {
491 		spin_lock_irqsave(&srmmu_context_spinlock, flags);
492 		alloc_context(old_mm, mm);
493 		spin_unlock_irqrestore(&srmmu_context_spinlock, flags);
494 		srmmu_ctxd_set(&srmmu_context_table[mm->context], mm->pgd);
495 	}
496 
497 	if (sparc_cpu_model == sparc_leon)
498 		leon_switch_mm();
499 
500 	if (is_hypersparc)
501 		hyper_flush_whole_icache();
502 
503 	srmmu_set_context(mm->context);
504 }
505 
506 /* Low level IO area allocation on the SRMMU. */
507 static inline void srmmu_mapioaddr(unsigned long physaddr,
508 				   unsigned long virt_addr, int bus_type)
509 {
510 	pgd_t *pgdp;
511 	pmd_t *pmdp;
512 	pte_t *ptep;
513 	unsigned long tmp;
514 
515 	physaddr &= PAGE_MASK;
516 	pgdp = pgd_offset_k(virt_addr);
517 	pmdp = pmd_offset(pgdp, virt_addr);
518 	ptep = pte_offset_kernel(pmdp, virt_addr);
519 	tmp = (physaddr >> 4) | SRMMU_ET_PTE;
520 
521 	/* I need to test whether this is consistent over all
522 	 * sun4m's.  The bus_type represents the upper 4 bits of
523 	 * 36-bit physical address on the I/O space lines...
524 	 */
525 	tmp |= (bus_type << 28);
526 	tmp |= SRMMU_PRIV;
527 	__flush_page_to_ram(virt_addr);
528 	set_pte(ptep, __pte(tmp));
529 }
530 
531 void srmmu_mapiorange(unsigned int bus, unsigned long xpa,
532 		      unsigned long xva, unsigned int len)
533 {
534 	while (len != 0) {
535 		len -= PAGE_SIZE;
536 		srmmu_mapioaddr(xpa, xva, bus);
537 		xva += PAGE_SIZE;
538 		xpa += PAGE_SIZE;
539 	}
540 	flush_tlb_all();
541 }
542 
543 static inline void srmmu_unmapioaddr(unsigned long virt_addr)
544 {
545 	pgd_t *pgdp;
546 	pmd_t *pmdp;
547 	pte_t *ptep;
548 
549 	pgdp = pgd_offset_k(virt_addr);
550 	pmdp = pmd_offset(pgdp, virt_addr);
551 	ptep = pte_offset_kernel(pmdp, virt_addr);
552 
553 	/* No need to flush uncacheable page. */
554 	__pte_clear(ptep);
555 }
556 
557 void srmmu_unmapiorange(unsigned long virt_addr, unsigned int len)
558 {
559 	while (len != 0) {
560 		len -= PAGE_SIZE;
561 		srmmu_unmapioaddr(virt_addr);
562 		virt_addr += PAGE_SIZE;
563 	}
564 	flush_tlb_all();
565 }
566 
567 /* tsunami.S */
568 extern void tsunami_flush_cache_all(void);
569 extern void tsunami_flush_cache_mm(struct mm_struct *mm);
570 extern void tsunami_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
571 extern void tsunami_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
572 extern void tsunami_flush_page_to_ram(unsigned long page);
573 extern void tsunami_flush_page_for_dma(unsigned long page);
574 extern void tsunami_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
575 extern void tsunami_flush_tlb_all(void);
576 extern void tsunami_flush_tlb_mm(struct mm_struct *mm);
577 extern void tsunami_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
578 extern void tsunami_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
579 extern void tsunami_setup_blockops(void);
580 
581 /* swift.S */
582 extern void swift_flush_cache_all(void);
583 extern void swift_flush_cache_mm(struct mm_struct *mm);
584 extern void swift_flush_cache_range(struct vm_area_struct *vma,
585 				    unsigned long start, unsigned long end);
586 extern void swift_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
587 extern void swift_flush_page_to_ram(unsigned long page);
588 extern void swift_flush_page_for_dma(unsigned long page);
589 extern void swift_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
590 extern void swift_flush_tlb_all(void);
591 extern void swift_flush_tlb_mm(struct mm_struct *mm);
592 extern void swift_flush_tlb_range(struct vm_area_struct *vma,
593 				  unsigned long start, unsigned long end);
594 extern void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
595 
596 #if 0  /* P3: deadwood to debug precise flushes on Swift. */
597 void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
598 {
599 	int cctx, ctx1;
600 
601 	page &= PAGE_MASK;
602 	if ((ctx1 = vma->vm_mm->context) != -1) {
603 		cctx = srmmu_get_context();
604 /* Is context # ever different from current context? P3 */
605 		if (cctx != ctx1) {
606 			printk("flush ctx %02x curr %02x\n", ctx1, cctx);
607 			srmmu_set_context(ctx1);
608 			swift_flush_page(page);
609 			__asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
610 					"r" (page), "i" (ASI_M_FLUSH_PROBE));
611 			srmmu_set_context(cctx);
612 		} else {
613 			 /* Rm. prot. bits from virt. c. */
614 			/* swift_flush_cache_all(); */
615 			/* swift_flush_cache_page(vma, page); */
616 			swift_flush_page(page);
617 
618 			__asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
619 				"r" (page), "i" (ASI_M_FLUSH_PROBE));
620 			/* same as above: srmmu_flush_tlb_page() */
621 		}
622 	}
623 }
624 #endif
625 
626 /*
627  * The following are all MBUS based SRMMU modules, and therefore could
628  * be found in a multiprocessor configuration.  On the whole, these
629  * chips seems to be much more touchy about DVMA and page tables
630  * with respect to cache coherency.
631  */
632 
633 /* viking.S */
634 extern void viking_flush_cache_all(void);
635 extern void viking_flush_cache_mm(struct mm_struct *mm);
636 extern void viking_flush_cache_range(struct vm_area_struct *vma, unsigned long start,
637 				     unsigned long end);
638 extern void viking_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
639 extern void viking_flush_page_to_ram(unsigned long page);
640 extern void viking_flush_page_for_dma(unsigned long page);
641 extern void viking_flush_sig_insns(struct mm_struct *mm, unsigned long addr);
642 extern void viking_flush_page(unsigned long page);
643 extern void viking_mxcc_flush_page(unsigned long page);
644 extern void viking_flush_tlb_all(void);
645 extern void viking_flush_tlb_mm(struct mm_struct *mm);
646 extern void viking_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
647 				   unsigned long end);
648 extern void viking_flush_tlb_page(struct vm_area_struct *vma,
649 				  unsigned long page);
650 extern void sun4dsmp_flush_tlb_all(void);
651 extern void sun4dsmp_flush_tlb_mm(struct mm_struct *mm);
652 extern void sun4dsmp_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
653 				   unsigned long end);
654 extern void sun4dsmp_flush_tlb_page(struct vm_area_struct *vma,
655 				  unsigned long page);
656 
657 /* hypersparc.S */
658 extern void hypersparc_flush_cache_all(void);
659 extern void hypersparc_flush_cache_mm(struct mm_struct *mm);
660 extern void hypersparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
661 extern void hypersparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
662 extern void hypersparc_flush_page_to_ram(unsigned long page);
663 extern void hypersparc_flush_page_for_dma(unsigned long page);
664 extern void hypersparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
665 extern void hypersparc_flush_tlb_all(void);
666 extern void hypersparc_flush_tlb_mm(struct mm_struct *mm);
667 extern void hypersparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
668 extern void hypersparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
669 extern void hypersparc_setup_blockops(void);
670 
671 /*
672  * NOTE: All of this startup code assumes the low 16mb (approx.) of
673  *       kernel mappings are done with one single contiguous chunk of
674  *       ram.  On small ram machines (classics mainly) we only get
675  *       around 8mb mapped for us.
676  */
677 
678 static void __init early_pgtable_allocfail(char *type)
679 {
680 	prom_printf("inherit_prom_mappings: Cannot alloc kernel %s.\n", type);
681 	prom_halt();
682 }
683 
684 static void __init srmmu_early_allocate_ptable_skeleton(unsigned long start,
685 							unsigned long end)
686 {
687 	pgd_t *pgdp;
688 	pmd_t *pmdp;
689 	pte_t *ptep;
690 
691 	while (start < end) {
692 		pgdp = pgd_offset_k(start);
693 		if (pgd_none(*(pgd_t *)__nocache_fix(pgdp))) {
694 			pmdp = __srmmu_get_nocache(
695 			    SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
696 			if (pmdp == NULL)
697 				early_pgtable_allocfail("pmd");
698 			memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
699 			pgd_set(__nocache_fix(pgdp), pmdp);
700 		}
701 		pmdp = pmd_offset(__nocache_fix(pgdp), start);
702 		if (srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
703 			ptep = __srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
704 			if (ptep == NULL)
705 				early_pgtable_allocfail("pte");
706 			memset(__nocache_fix(ptep), 0, PTE_SIZE);
707 			pmd_set(__nocache_fix(pmdp), ptep);
708 		}
709 		if (start > (0xffffffffUL - PMD_SIZE))
710 			break;
711 		start = (start + PMD_SIZE) & PMD_MASK;
712 	}
713 }
714 
715 static void __init srmmu_allocate_ptable_skeleton(unsigned long start,
716 						  unsigned long end)
717 {
718 	pgd_t *pgdp;
719 	pmd_t *pmdp;
720 	pte_t *ptep;
721 
722 	while (start < end) {
723 		pgdp = pgd_offset_k(start);
724 		if (pgd_none(*pgdp)) {
725 			pmdp = __srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
726 			if (pmdp == NULL)
727 				early_pgtable_allocfail("pmd");
728 			memset(pmdp, 0, SRMMU_PMD_TABLE_SIZE);
729 			pgd_set(pgdp, pmdp);
730 		}
731 		pmdp = pmd_offset(pgdp, start);
732 		if (srmmu_pmd_none(*pmdp)) {
733 			ptep = __srmmu_get_nocache(PTE_SIZE,
734 							     PTE_SIZE);
735 			if (ptep == NULL)
736 				early_pgtable_allocfail("pte");
737 			memset(ptep, 0, PTE_SIZE);
738 			pmd_set(pmdp, ptep);
739 		}
740 		if (start > (0xffffffffUL - PMD_SIZE))
741 			break;
742 		start = (start + PMD_SIZE) & PMD_MASK;
743 	}
744 }
745 
746 /* These flush types are not available on all chips... */
747 static inline unsigned long srmmu_probe(unsigned long vaddr)
748 {
749 	unsigned long retval;
750 
751 	if (sparc_cpu_model != sparc_leon) {
752 
753 		vaddr &= PAGE_MASK;
754 		__asm__ __volatile__("lda [%1] %2, %0\n\t" :
755 				     "=r" (retval) :
756 				     "r" (vaddr | 0x400), "i" (ASI_M_FLUSH_PROBE));
757 	} else {
758 		retval = leon_swprobe(vaddr, NULL);
759 	}
760 	return retval;
761 }
762 
763 /*
764  * This is much cleaner than poking around physical address space
765  * looking at the prom's page table directly which is what most
766  * other OS's do.  Yuck... this is much better.
767  */
768 static void __init srmmu_inherit_prom_mappings(unsigned long start,
769 					       unsigned long end)
770 {
771 	unsigned long probed;
772 	unsigned long addr;
773 	pgd_t *pgdp;
774 	pmd_t *pmdp;
775 	pte_t *ptep;
776 	int what; /* 0 = normal-pte, 1 = pmd-level pte, 2 = pgd-level pte */
777 
778 	while (start <= end) {
779 		if (start == 0)
780 			break; /* probably wrap around */
781 		if (start == 0xfef00000)
782 			start = KADB_DEBUGGER_BEGVM;
783 		probed = srmmu_probe(start);
784 		if (!probed) {
785 			/* continue probing until we find an entry */
786 			start += PAGE_SIZE;
787 			continue;
788 		}
789 
790 		/* A red snapper, see what it really is. */
791 		what = 0;
792 		addr = start - PAGE_SIZE;
793 
794 		if (!(start & ~(SRMMU_REAL_PMD_MASK))) {
795 			if (srmmu_probe(addr + SRMMU_REAL_PMD_SIZE) == probed)
796 				what = 1;
797 		}
798 
799 		if (!(start & ~(SRMMU_PGDIR_MASK))) {
800 			if (srmmu_probe(addr + SRMMU_PGDIR_SIZE) == probed)
801 				what = 2;
802 		}
803 
804 		pgdp = pgd_offset_k(start);
805 		if (what == 2) {
806 			*(pgd_t *)__nocache_fix(pgdp) = __pgd(probed);
807 			start += SRMMU_PGDIR_SIZE;
808 			continue;
809 		}
810 		if (pgd_none(*(pgd_t *)__nocache_fix(pgdp))) {
811 			pmdp = __srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE,
812 						   SRMMU_PMD_TABLE_SIZE);
813 			if (pmdp == NULL)
814 				early_pgtable_allocfail("pmd");
815 			memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
816 			pgd_set(__nocache_fix(pgdp), pmdp);
817 		}
818 		pmdp = pmd_offset(__nocache_fix(pgdp), start);
819 		if (srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
820 			ptep = __srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
821 			if (ptep == NULL)
822 				early_pgtable_allocfail("pte");
823 			memset(__nocache_fix(ptep), 0, PTE_SIZE);
824 			pmd_set(__nocache_fix(pmdp), ptep);
825 		}
826 		if (what == 1) {
827 			/* We bend the rule where all 16 PTPs in a pmd_t point
828 			 * inside the same PTE page, and we leak a perfectly
829 			 * good hardware PTE piece. Alternatives seem worse.
830 			 */
831 			unsigned int x;	/* Index of HW PMD in soft cluster */
832 			unsigned long *val;
833 			x = (start >> PMD_SHIFT) & 15;
834 			val = &pmdp->pmdv[x];
835 			*(unsigned long *)__nocache_fix(val) = probed;
836 			start += SRMMU_REAL_PMD_SIZE;
837 			continue;
838 		}
839 		ptep = pte_offset_kernel(__nocache_fix(pmdp), start);
840 		*(pte_t *)__nocache_fix(ptep) = __pte(probed);
841 		start += PAGE_SIZE;
842 	}
843 }
844 
845 #define KERNEL_PTE(page_shifted) ((page_shifted)|SRMMU_CACHE|SRMMU_PRIV|SRMMU_VALID)
846 
847 /* Create a third-level SRMMU 16MB page mapping. */
848 static void __init do_large_mapping(unsigned long vaddr, unsigned long phys_base)
849 {
850 	pgd_t *pgdp = pgd_offset_k(vaddr);
851 	unsigned long big_pte;
852 
853 	big_pte = KERNEL_PTE(phys_base >> 4);
854 	*(pgd_t *)__nocache_fix(pgdp) = __pgd(big_pte);
855 }
856 
857 /* Map sp_bank entry SP_ENTRY, starting at virtual address VBASE. */
858 static unsigned long __init map_spbank(unsigned long vbase, int sp_entry)
859 {
860 	unsigned long pstart = (sp_banks[sp_entry].base_addr & SRMMU_PGDIR_MASK);
861 	unsigned long vstart = (vbase & SRMMU_PGDIR_MASK);
862 	unsigned long vend = SRMMU_PGDIR_ALIGN(vbase + sp_banks[sp_entry].num_bytes);
863 	/* Map "low" memory only */
864 	const unsigned long min_vaddr = PAGE_OFFSET;
865 	const unsigned long max_vaddr = PAGE_OFFSET + SRMMU_MAXMEM;
866 
867 	if (vstart < min_vaddr || vstart >= max_vaddr)
868 		return vstart;
869 
870 	if (vend > max_vaddr || vend < min_vaddr)
871 		vend = max_vaddr;
872 
873 	while (vstart < vend) {
874 		do_large_mapping(vstart, pstart);
875 		vstart += SRMMU_PGDIR_SIZE; pstart += SRMMU_PGDIR_SIZE;
876 	}
877 	return vstart;
878 }
879 
880 static void __init map_kernel(void)
881 {
882 	int i;
883 
884 	if (phys_base > 0) {
885 		do_large_mapping(PAGE_OFFSET, phys_base);
886 	}
887 
888 	for (i = 0; sp_banks[i].num_bytes != 0; i++) {
889 		map_spbank((unsigned long)__va(sp_banks[i].base_addr), i);
890 	}
891 }
892 
893 void (*poke_srmmu)(void) = NULL;
894 
895 void __init srmmu_paging_init(void)
896 {
897 	int i;
898 	phandle cpunode;
899 	char node_str[128];
900 	pgd_t *pgd;
901 	pmd_t *pmd;
902 	pte_t *pte;
903 	unsigned long pages_avail;
904 
905 	init_mm.context = (unsigned long) NO_CONTEXT;
906 	sparc_iomap.start = SUN4M_IOBASE_VADDR;	/* 16MB of IOSPACE on all sun4m's. */
907 
908 	if (sparc_cpu_model == sun4d)
909 		num_contexts = 65536; /* We know it is Viking */
910 	else {
911 		/* Find the number of contexts on the srmmu. */
912 		cpunode = prom_getchild(prom_root_node);
913 		num_contexts = 0;
914 		while (cpunode != 0) {
915 			prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
916 			if (!strcmp(node_str, "cpu")) {
917 				num_contexts = prom_getintdefault(cpunode, "mmu-nctx", 0x8);
918 				break;
919 			}
920 			cpunode = prom_getsibling(cpunode);
921 		}
922 	}
923 
924 	if (!num_contexts) {
925 		prom_printf("Something wrong, can't find cpu node in paging_init.\n");
926 		prom_halt();
927 	}
928 
929 	pages_avail = 0;
930 	last_valid_pfn = bootmem_init(&pages_avail);
931 
932 	srmmu_nocache_calcsize();
933 	srmmu_nocache_init();
934 	srmmu_inherit_prom_mappings(0xfe400000, (LINUX_OPPROM_ENDVM - PAGE_SIZE));
935 	map_kernel();
936 
937 	/* ctx table has to be physically aligned to its size */
938 	srmmu_context_table = __srmmu_get_nocache(num_contexts * sizeof(ctxd_t), num_contexts * sizeof(ctxd_t));
939 	srmmu_ctx_table_phys = (ctxd_t *)__nocache_pa(srmmu_context_table);
940 
941 	for (i = 0; i < num_contexts; i++)
942 		srmmu_ctxd_set((ctxd_t *)__nocache_fix(&srmmu_context_table[i]), srmmu_swapper_pg_dir);
943 
944 	flush_cache_all();
945 	srmmu_set_ctable_ptr((unsigned long)srmmu_ctx_table_phys);
946 #ifdef CONFIG_SMP
947 	/* Stop from hanging here... */
948 	local_ops->tlb_all();
949 #else
950 	flush_tlb_all();
951 #endif
952 	poke_srmmu();
953 
954 	srmmu_allocate_ptable_skeleton(sparc_iomap.start, IOBASE_END);
955 	srmmu_allocate_ptable_skeleton(DVMA_VADDR, DVMA_END);
956 
957 	srmmu_allocate_ptable_skeleton(
958 		__fix_to_virt(__end_of_fixed_addresses - 1), FIXADDR_TOP);
959 	srmmu_allocate_ptable_skeleton(PKMAP_BASE, PKMAP_END);
960 
961 	pgd = pgd_offset_k(PKMAP_BASE);
962 	pmd = pmd_offset(pgd, PKMAP_BASE);
963 	pte = pte_offset_kernel(pmd, PKMAP_BASE);
964 	pkmap_page_table = pte;
965 
966 	flush_cache_all();
967 	flush_tlb_all();
968 
969 	sparc_context_init(num_contexts);
970 
971 	kmap_init();
972 
973 	{
974 		unsigned long zones_size[MAX_NR_ZONES];
975 		unsigned long zholes_size[MAX_NR_ZONES];
976 		unsigned long npages;
977 		int znum;
978 
979 		for (znum = 0; znum < MAX_NR_ZONES; znum++)
980 			zones_size[znum] = zholes_size[znum] = 0;
981 
982 		npages = max_low_pfn - pfn_base;
983 
984 		zones_size[ZONE_DMA] = npages;
985 		zholes_size[ZONE_DMA] = npages - pages_avail;
986 
987 		npages = highend_pfn - max_low_pfn;
988 		zones_size[ZONE_HIGHMEM] = npages;
989 		zholes_size[ZONE_HIGHMEM] = npages - calc_highpages();
990 
991 		free_area_init_node(0, zones_size, pfn_base, zholes_size);
992 	}
993 }
994 
995 void mmu_info(struct seq_file *m)
996 {
997 	seq_printf(m,
998 		   "MMU type\t: %s\n"
999 		   "contexts\t: %d\n"
1000 		   "nocache total\t: %ld\n"
1001 		   "nocache used\t: %d\n",
1002 		   srmmu_name,
1003 		   num_contexts,
1004 		   srmmu_nocache_size,
1005 		   srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
1006 }
1007 
1008 int init_new_context(struct task_struct *tsk, struct mm_struct *mm)
1009 {
1010 	mm->context = NO_CONTEXT;
1011 	return 0;
1012 }
1013 
1014 void destroy_context(struct mm_struct *mm)
1015 {
1016 	unsigned long flags;
1017 
1018 	if (mm->context != NO_CONTEXT) {
1019 		flush_cache_mm(mm);
1020 		srmmu_ctxd_set(&srmmu_context_table[mm->context], srmmu_swapper_pg_dir);
1021 		flush_tlb_mm(mm);
1022 		spin_lock_irqsave(&srmmu_context_spinlock, flags);
1023 		free_context(mm->context);
1024 		spin_unlock_irqrestore(&srmmu_context_spinlock, flags);
1025 		mm->context = NO_CONTEXT;
1026 	}
1027 }
1028 
1029 /* Init various srmmu chip types. */
1030 static void __init srmmu_is_bad(void)
1031 {
1032 	prom_printf("Could not determine SRMMU chip type.\n");
1033 	prom_halt();
1034 }
1035 
1036 static void __init init_vac_layout(void)
1037 {
1038 	phandle nd;
1039 	int cache_lines;
1040 	char node_str[128];
1041 #ifdef CONFIG_SMP
1042 	int cpu = 0;
1043 	unsigned long max_size = 0;
1044 	unsigned long min_line_size = 0x10000000;
1045 #endif
1046 
1047 	nd = prom_getchild(prom_root_node);
1048 	while ((nd = prom_getsibling(nd)) != 0) {
1049 		prom_getstring(nd, "device_type", node_str, sizeof(node_str));
1050 		if (!strcmp(node_str, "cpu")) {
1051 			vac_line_size = prom_getint(nd, "cache-line-size");
1052 			if (vac_line_size == -1) {
1053 				prom_printf("can't determine cache-line-size, halting.\n");
1054 				prom_halt();
1055 			}
1056 			cache_lines = prom_getint(nd, "cache-nlines");
1057 			if (cache_lines == -1) {
1058 				prom_printf("can't determine cache-nlines, halting.\n");
1059 				prom_halt();
1060 			}
1061 
1062 			vac_cache_size = cache_lines * vac_line_size;
1063 #ifdef CONFIG_SMP
1064 			if (vac_cache_size > max_size)
1065 				max_size = vac_cache_size;
1066 			if (vac_line_size < min_line_size)
1067 				min_line_size = vac_line_size;
1068 			//FIXME: cpus not contiguous!!
1069 			cpu++;
1070 			if (cpu >= nr_cpu_ids || !cpu_online(cpu))
1071 				break;
1072 #else
1073 			break;
1074 #endif
1075 		}
1076 	}
1077 	if (nd == 0) {
1078 		prom_printf("No CPU nodes found, halting.\n");
1079 		prom_halt();
1080 	}
1081 #ifdef CONFIG_SMP
1082 	vac_cache_size = max_size;
1083 	vac_line_size = min_line_size;
1084 #endif
1085 	printk("SRMMU: Using VAC size of %d bytes, line size %d bytes.\n",
1086 	       (int)vac_cache_size, (int)vac_line_size);
1087 }
1088 
1089 static void poke_hypersparc(void)
1090 {
1091 	volatile unsigned long clear;
1092 	unsigned long mreg = srmmu_get_mmureg();
1093 
1094 	hyper_flush_unconditional_combined();
1095 
1096 	mreg &= ~(HYPERSPARC_CWENABLE);
1097 	mreg |= (HYPERSPARC_CENABLE | HYPERSPARC_WBENABLE);
1098 	mreg |= (HYPERSPARC_CMODE);
1099 
1100 	srmmu_set_mmureg(mreg);
1101 
1102 #if 0 /* XXX I think this is bad news... -DaveM */
1103 	hyper_clear_all_tags();
1104 #endif
1105 
1106 	put_ross_icr(HYPERSPARC_ICCR_FTD | HYPERSPARC_ICCR_ICE);
1107 	hyper_flush_whole_icache();
1108 	clear = srmmu_get_faddr();
1109 	clear = srmmu_get_fstatus();
1110 }
1111 
1112 static const struct sparc32_cachetlb_ops hypersparc_ops = {
1113 	.cache_all	= hypersparc_flush_cache_all,
1114 	.cache_mm	= hypersparc_flush_cache_mm,
1115 	.cache_page	= hypersparc_flush_cache_page,
1116 	.cache_range	= hypersparc_flush_cache_range,
1117 	.tlb_all	= hypersparc_flush_tlb_all,
1118 	.tlb_mm		= hypersparc_flush_tlb_mm,
1119 	.tlb_page	= hypersparc_flush_tlb_page,
1120 	.tlb_range	= hypersparc_flush_tlb_range,
1121 	.page_to_ram	= hypersparc_flush_page_to_ram,
1122 	.sig_insns	= hypersparc_flush_sig_insns,
1123 	.page_for_dma	= hypersparc_flush_page_for_dma,
1124 };
1125 
1126 static void __init init_hypersparc(void)
1127 {
1128 	srmmu_name = "ROSS HyperSparc";
1129 	srmmu_modtype = HyperSparc;
1130 
1131 	init_vac_layout();
1132 
1133 	is_hypersparc = 1;
1134 	sparc32_cachetlb_ops = &hypersparc_ops;
1135 
1136 	poke_srmmu = poke_hypersparc;
1137 
1138 	hypersparc_setup_blockops();
1139 }
1140 
1141 static void poke_swift(void)
1142 {
1143 	unsigned long mreg;
1144 
1145 	/* Clear any crap from the cache or else... */
1146 	swift_flush_cache_all();
1147 
1148 	/* Enable I & D caches */
1149 	mreg = srmmu_get_mmureg();
1150 	mreg |= (SWIFT_IE | SWIFT_DE);
1151 	/*
1152 	 * The Swift branch folding logic is completely broken.  At
1153 	 * trap time, if things are just right, if can mistakenly
1154 	 * think that a trap is coming from kernel mode when in fact
1155 	 * it is coming from user mode (it mis-executes the branch in
1156 	 * the trap code).  So you see things like crashme completely
1157 	 * hosing your machine which is completely unacceptable.  Turn
1158 	 * this shit off... nice job Fujitsu.
1159 	 */
1160 	mreg &= ~(SWIFT_BF);
1161 	srmmu_set_mmureg(mreg);
1162 }
1163 
1164 static const struct sparc32_cachetlb_ops swift_ops = {
1165 	.cache_all	= swift_flush_cache_all,
1166 	.cache_mm	= swift_flush_cache_mm,
1167 	.cache_page	= swift_flush_cache_page,
1168 	.cache_range	= swift_flush_cache_range,
1169 	.tlb_all	= swift_flush_tlb_all,
1170 	.tlb_mm		= swift_flush_tlb_mm,
1171 	.tlb_page	= swift_flush_tlb_page,
1172 	.tlb_range	= swift_flush_tlb_range,
1173 	.page_to_ram	= swift_flush_page_to_ram,
1174 	.sig_insns	= swift_flush_sig_insns,
1175 	.page_for_dma	= swift_flush_page_for_dma,
1176 };
1177 
1178 #define SWIFT_MASKID_ADDR  0x10003018
1179 static void __init init_swift(void)
1180 {
1181 	unsigned long swift_rev;
1182 
1183 	__asm__ __volatile__("lda [%1] %2, %0\n\t"
1184 			     "srl %0, 0x18, %0\n\t" :
1185 			     "=r" (swift_rev) :
1186 			     "r" (SWIFT_MASKID_ADDR), "i" (ASI_M_BYPASS));
1187 	srmmu_name = "Fujitsu Swift";
1188 	switch (swift_rev) {
1189 	case 0x11:
1190 	case 0x20:
1191 	case 0x23:
1192 	case 0x30:
1193 		srmmu_modtype = Swift_lots_o_bugs;
1194 		hwbug_bitmask |= (HWBUG_KERN_ACCBROKEN | HWBUG_KERN_CBITBROKEN);
1195 		/*
1196 		 * Gee george, I wonder why Sun is so hush hush about
1197 		 * this hardware bug... really braindamage stuff going
1198 		 * on here.  However I think we can find a way to avoid
1199 		 * all of the workaround overhead under Linux.  Basically,
1200 		 * any page fault can cause kernel pages to become user
1201 		 * accessible (the mmu gets confused and clears some of
1202 		 * the ACC bits in kernel ptes).  Aha, sounds pretty
1203 		 * horrible eh?  But wait, after extensive testing it appears
1204 		 * that if you use pgd_t level large kernel pte's (like the
1205 		 * 4MB pages on the Pentium) the bug does not get tripped
1206 		 * at all.  This avoids almost all of the major overhead.
1207 		 * Welcome to a world where your vendor tells you to,
1208 		 * "apply this kernel patch" instead of "sorry for the
1209 		 * broken hardware, send it back and we'll give you
1210 		 * properly functioning parts"
1211 		 */
1212 		break;
1213 	case 0x25:
1214 	case 0x31:
1215 		srmmu_modtype = Swift_bad_c;
1216 		hwbug_bitmask |= HWBUG_KERN_CBITBROKEN;
1217 		/*
1218 		 * You see Sun allude to this hardware bug but never
1219 		 * admit things directly, they'll say things like,
1220 		 * "the Swift chip cache problems" or similar.
1221 		 */
1222 		break;
1223 	default:
1224 		srmmu_modtype = Swift_ok;
1225 		break;
1226 	}
1227 
1228 	sparc32_cachetlb_ops = &swift_ops;
1229 	flush_page_for_dma_global = 0;
1230 
1231 	/*
1232 	 * Are you now convinced that the Swift is one of the
1233 	 * biggest VLSI abortions of all time?  Bravo Fujitsu!
1234 	 * Fujitsu, the !#?!%$'d up processor people.  I bet if
1235 	 * you examined the microcode of the Swift you'd find
1236 	 * XXX's all over the place.
1237 	 */
1238 	poke_srmmu = poke_swift;
1239 }
1240 
1241 static void turbosparc_flush_cache_all(void)
1242 {
1243 	flush_user_windows();
1244 	turbosparc_idflash_clear();
1245 }
1246 
1247 static void turbosparc_flush_cache_mm(struct mm_struct *mm)
1248 {
1249 	FLUSH_BEGIN(mm)
1250 	flush_user_windows();
1251 	turbosparc_idflash_clear();
1252 	FLUSH_END
1253 }
1254 
1255 static void turbosparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1256 {
1257 	FLUSH_BEGIN(vma->vm_mm)
1258 	flush_user_windows();
1259 	turbosparc_idflash_clear();
1260 	FLUSH_END
1261 }
1262 
1263 static void turbosparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
1264 {
1265 	FLUSH_BEGIN(vma->vm_mm)
1266 	flush_user_windows();
1267 	if (vma->vm_flags & VM_EXEC)
1268 		turbosparc_flush_icache();
1269 	turbosparc_flush_dcache();
1270 	FLUSH_END
1271 }
1272 
1273 /* TurboSparc is copy-back, if we turn it on, but this does not work. */
1274 static void turbosparc_flush_page_to_ram(unsigned long page)
1275 {
1276 #ifdef TURBOSPARC_WRITEBACK
1277 	volatile unsigned long clear;
1278 
1279 	if (srmmu_probe(page))
1280 		turbosparc_flush_page_cache(page);
1281 	clear = srmmu_get_fstatus();
1282 #endif
1283 }
1284 
1285 static void turbosparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
1286 {
1287 }
1288 
1289 static void turbosparc_flush_page_for_dma(unsigned long page)
1290 {
1291 	turbosparc_flush_dcache();
1292 }
1293 
1294 static void turbosparc_flush_tlb_all(void)
1295 {
1296 	srmmu_flush_whole_tlb();
1297 }
1298 
1299 static void turbosparc_flush_tlb_mm(struct mm_struct *mm)
1300 {
1301 	FLUSH_BEGIN(mm)
1302 	srmmu_flush_whole_tlb();
1303 	FLUSH_END
1304 }
1305 
1306 static void turbosparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1307 {
1308 	FLUSH_BEGIN(vma->vm_mm)
1309 	srmmu_flush_whole_tlb();
1310 	FLUSH_END
1311 }
1312 
1313 static void turbosparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
1314 {
1315 	FLUSH_BEGIN(vma->vm_mm)
1316 	srmmu_flush_whole_tlb();
1317 	FLUSH_END
1318 }
1319 
1320 
1321 static void poke_turbosparc(void)
1322 {
1323 	unsigned long mreg = srmmu_get_mmureg();
1324 	unsigned long ccreg;
1325 
1326 	/* Clear any crap from the cache or else... */
1327 	turbosparc_flush_cache_all();
1328 	/* Temporarily disable I & D caches */
1329 	mreg &= ~(TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE);
1330 	mreg &= ~(TURBOSPARC_PCENABLE);		/* Don't check parity */
1331 	srmmu_set_mmureg(mreg);
1332 
1333 	ccreg = turbosparc_get_ccreg();
1334 
1335 #ifdef TURBOSPARC_WRITEBACK
1336 	ccreg |= (TURBOSPARC_SNENABLE);		/* Do DVMA snooping in Dcache */
1337 	ccreg &= ~(TURBOSPARC_uS2 | TURBOSPARC_WTENABLE);
1338 			/* Write-back D-cache, emulate VLSI
1339 			 * abortion number three, not number one */
1340 #else
1341 	/* For now let's play safe, optimize later */
1342 	ccreg |= (TURBOSPARC_SNENABLE | TURBOSPARC_WTENABLE);
1343 			/* Do DVMA snooping in Dcache, Write-thru D-cache */
1344 	ccreg &= ~(TURBOSPARC_uS2);
1345 			/* Emulate VLSI abortion number three, not number one */
1346 #endif
1347 
1348 	switch (ccreg & 7) {
1349 	case 0: /* No SE cache */
1350 	case 7: /* Test mode */
1351 		break;
1352 	default:
1353 		ccreg |= (TURBOSPARC_SCENABLE);
1354 	}
1355 	turbosparc_set_ccreg(ccreg);
1356 
1357 	mreg |= (TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE); /* I & D caches on */
1358 	mreg |= (TURBOSPARC_ICSNOOP);		/* Icache snooping on */
1359 	srmmu_set_mmureg(mreg);
1360 }
1361 
1362 static const struct sparc32_cachetlb_ops turbosparc_ops = {
1363 	.cache_all	= turbosparc_flush_cache_all,
1364 	.cache_mm	= turbosparc_flush_cache_mm,
1365 	.cache_page	= turbosparc_flush_cache_page,
1366 	.cache_range	= turbosparc_flush_cache_range,
1367 	.tlb_all	= turbosparc_flush_tlb_all,
1368 	.tlb_mm		= turbosparc_flush_tlb_mm,
1369 	.tlb_page	= turbosparc_flush_tlb_page,
1370 	.tlb_range	= turbosparc_flush_tlb_range,
1371 	.page_to_ram	= turbosparc_flush_page_to_ram,
1372 	.sig_insns	= turbosparc_flush_sig_insns,
1373 	.page_for_dma	= turbosparc_flush_page_for_dma,
1374 };
1375 
1376 static void __init init_turbosparc(void)
1377 {
1378 	srmmu_name = "Fujitsu TurboSparc";
1379 	srmmu_modtype = TurboSparc;
1380 	sparc32_cachetlb_ops = &turbosparc_ops;
1381 	poke_srmmu = poke_turbosparc;
1382 }
1383 
1384 static void poke_tsunami(void)
1385 {
1386 	unsigned long mreg = srmmu_get_mmureg();
1387 
1388 	tsunami_flush_icache();
1389 	tsunami_flush_dcache();
1390 	mreg &= ~TSUNAMI_ITD;
1391 	mreg |= (TSUNAMI_IENAB | TSUNAMI_DENAB);
1392 	srmmu_set_mmureg(mreg);
1393 }
1394 
1395 static const struct sparc32_cachetlb_ops tsunami_ops = {
1396 	.cache_all	= tsunami_flush_cache_all,
1397 	.cache_mm	= tsunami_flush_cache_mm,
1398 	.cache_page	= tsunami_flush_cache_page,
1399 	.cache_range	= tsunami_flush_cache_range,
1400 	.tlb_all	= tsunami_flush_tlb_all,
1401 	.tlb_mm		= tsunami_flush_tlb_mm,
1402 	.tlb_page	= tsunami_flush_tlb_page,
1403 	.tlb_range	= tsunami_flush_tlb_range,
1404 	.page_to_ram	= tsunami_flush_page_to_ram,
1405 	.sig_insns	= tsunami_flush_sig_insns,
1406 	.page_for_dma	= tsunami_flush_page_for_dma,
1407 };
1408 
1409 static void __init init_tsunami(void)
1410 {
1411 	/*
1412 	 * Tsunami's pretty sane, Sun and TI actually got it
1413 	 * somewhat right this time.  Fujitsu should have
1414 	 * taken some lessons from them.
1415 	 */
1416 
1417 	srmmu_name = "TI Tsunami";
1418 	srmmu_modtype = Tsunami;
1419 	sparc32_cachetlb_ops = &tsunami_ops;
1420 	poke_srmmu = poke_tsunami;
1421 
1422 	tsunami_setup_blockops();
1423 }
1424 
1425 static void poke_viking(void)
1426 {
1427 	unsigned long mreg = srmmu_get_mmureg();
1428 	static int smp_catch;
1429 
1430 	if (viking_mxcc_present) {
1431 		unsigned long mxcc_control = mxcc_get_creg();
1432 
1433 		mxcc_control |= (MXCC_CTL_ECE | MXCC_CTL_PRE | MXCC_CTL_MCE);
1434 		mxcc_control &= ~(MXCC_CTL_RRC);
1435 		mxcc_set_creg(mxcc_control);
1436 
1437 		/*
1438 		 * We don't need memory parity checks.
1439 		 * XXX This is a mess, have to dig out later. ecd.
1440 		viking_mxcc_turn_off_parity(&mreg, &mxcc_control);
1441 		 */
1442 
1443 		/* We do cache ptables on MXCC. */
1444 		mreg |= VIKING_TCENABLE;
1445 	} else {
1446 		unsigned long bpreg;
1447 
1448 		mreg &= ~(VIKING_TCENABLE);
1449 		if (smp_catch++) {
1450 			/* Must disable mixed-cmd mode here for other cpu's. */
1451 			bpreg = viking_get_bpreg();
1452 			bpreg &= ~(VIKING_ACTION_MIX);
1453 			viking_set_bpreg(bpreg);
1454 
1455 			/* Just in case PROM does something funny. */
1456 			msi_set_sync();
1457 		}
1458 	}
1459 
1460 	mreg |= VIKING_SPENABLE;
1461 	mreg |= (VIKING_ICENABLE | VIKING_DCENABLE);
1462 	mreg |= VIKING_SBENABLE;
1463 	mreg &= ~(VIKING_ACENABLE);
1464 	srmmu_set_mmureg(mreg);
1465 }
1466 
1467 static struct sparc32_cachetlb_ops viking_ops __ro_after_init = {
1468 	.cache_all	= viking_flush_cache_all,
1469 	.cache_mm	= viking_flush_cache_mm,
1470 	.cache_page	= viking_flush_cache_page,
1471 	.cache_range	= viking_flush_cache_range,
1472 	.tlb_all	= viking_flush_tlb_all,
1473 	.tlb_mm		= viking_flush_tlb_mm,
1474 	.tlb_page	= viking_flush_tlb_page,
1475 	.tlb_range	= viking_flush_tlb_range,
1476 	.page_to_ram	= viking_flush_page_to_ram,
1477 	.sig_insns	= viking_flush_sig_insns,
1478 	.page_for_dma	= viking_flush_page_for_dma,
1479 };
1480 
1481 #ifdef CONFIG_SMP
1482 /* On sun4d the cpu broadcasts local TLB flushes, so we can just
1483  * perform the local TLB flush and all the other cpus will see it.
1484  * But, unfortunately, there is a bug in the sun4d XBUS backplane
1485  * that requires that we add some synchronization to these flushes.
1486  *
1487  * The bug is that the fifo which keeps track of all the pending TLB
1488  * broadcasts in the system is an entry or two too small, so if we
1489  * have too many going at once we'll overflow that fifo and lose a TLB
1490  * flush resulting in corruption.
1491  *
1492  * Our workaround is to take a global spinlock around the TLB flushes,
1493  * which guarentees we won't ever have too many pending.  It's a big
1494  * hammer, but a semaphore like system to make sure we only have N TLB
1495  * flushes going at once will require SMP locking anyways so there's
1496  * no real value in trying any harder than this.
1497  */
1498 static struct sparc32_cachetlb_ops viking_sun4d_smp_ops __ro_after_init = {
1499 	.cache_all	= viking_flush_cache_all,
1500 	.cache_mm	= viking_flush_cache_mm,
1501 	.cache_page	= viking_flush_cache_page,
1502 	.cache_range	= viking_flush_cache_range,
1503 	.tlb_all	= sun4dsmp_flush_tlb_all,
1504 	.tlb_mm		= sun4dsmp_flush_tlb_mm,
1505 	.tlb_page	= sun4dsmp_flush_tlb_page,
1506 	.tlb_range	= sun4dsmp_flush_tlb_range,
1507 	.page_to_ram	= viking_flush_page_to_ram,
1508 	.sig_insns	= viking_flush_sig_insns,
1509 	.page_for_dma	= viking_flush_page_for_dma,
1510 };
1511 #endif
1512 
1513 static void __init init_viking(void)
1514 {
1515 	unsigned long mreg = srmmu_get_mmureg();
1516 
1517 	/* Ahhh, the viking.  SRMMU VLSI abortion number two... */
1518 	if (mreg & VIKING_MMODE) {
1519 		srmmu_name = "TI Viking";
1520 		viking_mxcc_present = 0;
1521 		msi_set_sync();
1522 
1523 		/*
1524 		 * We need this to make sure old viking takes no hits
1525 		 * on it's cache for dma snoops to workaround the
1526 		 * "load from non-cacheable memory" interrupt bug.
1527 		 * This is only necessary because of the new way in
1528 		 * which we use the IOMMU.
1529 		 */
1530 		viking_ops.page_for_dma = viking_flush_page;
1531 #ifdef CONFIG_SMP
1532 		viking_sun4d_smp_ops.page_for_dma = viking_flush_page;
1533 #endif
1534 		flush_page_for_dma_global = 0;
1535 	} else {
1536 		srmmu_name = "TI Viking/MXCC";
1537 		viking_mxcc_present = 1;
1538 		srmmu_cache_pagetables = 1;
1539 	}
1540 
1541 	sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1542 		&viking_ops;
1543 #ifdef CONFIG_SMP
1544 	if (sparc_cpu_model == sun4d)
1545 		sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1546 			&viking_sun4d_smp_ops;
1547 #endif
1548 
1549 	poke_srmmu = poke_viking;
1550 }
1551 
1552 /* Probe for the srmmu chip version. */
1553 static void __init get_srmmu_type(void)
1554 {
1555 	unsigned long mreg, psr;
1556 	unsigned long mod_typ, mod_rev, psr_typ, psr_vers;
1557 
1558 	srmmu_modtype = SRMMU_INVAL_MOD;
1559 	hwbug_bitmask = 0;
1560 
1561 	mreg = srmmu_get_mmureg(); psr = get_psr();
1562 	mod_typ = (mreg & 0xf0000000) >> 28;
1563 	mod_rev = (mreg & 0x0f000000) >> 24;
1564 	psr_typ = (psr >> 28) & 0xf;
1565 	psr_vers = (psr >> 24) & 0xf;
1566 
1567 	/* First, check for sparc-leon. */
1568 	if (sparc_cpu_model == sparc_leon) {
1569 		init_leon();
1570 		return;
1571 	}
1572 
1573 	/* Second, check for HyperSparc or Cypress. */
1574 	if (mod_typ == 1) {
1575 		switch (mod_rev) {
1576 		case 7:
1577 			/* UP or MP Hypersparc */
1578 			init_hypersparc();
1579 			break;
1580 		case 0:
1581 		case 2:
1582 		case 10:
1583 		case 11:
1584 		case 12:
1585 		case 13:
1586 		case 14:
1587 		case 15:
1588 		default:
1589 			prom_printf("Sparc-Linux Cypress support does not longer exit.\n");
1590 			prom_halt();
1591 			break;
1592 		}
1593 		return;
1594 	}
1595 
1596 	/* Now Fujitsu TurboSparc. It might happen that it is
1597 	 * in Swift emulation mode, so we will check later...
1598 	 */
1599 	if (psr_typ == 0 && psr_vers == 5) {
1600 		init_turbosparc();
1601 		return;
1602 	}
1603 
1604 	/* Next check for Fujitsu Swift. */
1605 	if (psr_typ == 0 && psr_vers == 4) {
1606 		phandle cpunode;
1607 		char node_str[128];
1608 
1609 		/* Look if it is not a TurboSparc emulating Swift... */
1610 		cpunode = prom_getchild(prom_root_node);
1611 		while ((cpunode = prom_getsibling(cpunode)) != 0) {
1612 			prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
1613 			if (!strcmp(node_str, "cpu")) {
1614 				if (!prom_getintdefault(cpunode, "psr-implementation", 1) &&
1615 				    prom_getintdefault(cpunode, "psr-version", 1) == 5) {
1616 					init_turbosparc();
1617 					return;
1618 				}
1619 				break;
1620 			}
1621 		}
1622 
1623 		init_swift();
1624 		return;
1625 	}
1626 
1627 	/* Now the Viking family of srmmu. */
1628 	if (psr_typ == 4 &&
1629 	   ((psr_vers == 0) ||
1630 	    ((psr_vers == 1) && (mod_typ == 0) && (mod_rev == 0)))) {
1631 		init_viking();
1632 		return;
1633 	}
1634 
1635 	/* Finally the Tsunami. */
1636 	if (psr_typ == 4 && psr_vers == 1 && (mod_typ || mod_rev)) {
1637 		init_tsunami();
1638 		return;
1639 	}
1640 
1641 	/* Oh well */
1642 	srmmu_is_bad();
1643 }
1644 
1645 #ifdef CONFIG_SMP
1646 /* Local cross-calls. */
1647 static void smp_flush_page_for_dma(unsigned long page)
1648 {
1649 	xc1((smpfunc_t) local_ops->page_for_dma, page);
1650 	local_ops->page_for_dma(page);
1651 }
1652 
1653 static void smp_flush_cache_all(void)
1654 {
1655 	xc0((smpfunc_t) local_ops->cache_all);
1656 	local_ops->cache_all();
1657 }
1658 
1659 static void smp_flush_tlb_all(void)
1660 {
1661 	xc0((smpfunc_t) local_ops->tlb_all);
1662 	local_ops->tlb_all();
1663 }
1664 
1665 static void smp_flush_cache_mm(struct mm_struct *mm)
1666 {
1667 	if (mm->context != NO_CONTEXT) {
1668 		cpumask_t cpu_mask;
1669 		cpumask_copy(&cpu_mask, mm_cpumask(mm));
1670 		cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1671 		if (!cpumask_empty(&cpu_mask))
1672 			xc1((smpfunc_t) local_ops->cache_mm, (unsigned long) mm);
1673 		local_ops->cache_mm(mm);
1674 	}
1675 }
1676 
1677 static void smp_flush_tlb_mm(struct mm_struct *mm)
1678 {
1679 	if (mm->context != NO_CONTEXT) {
1680 		cpumask_t cpu_mask;
1681 		cpumask_copy(&cpu_mask, mm_cpumask(mm));
1682 		cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1683 		if (!cpumask_empty(&cpu_mask)) {
1684 			xc1((smpfunc_t) local_ops->tlb_mm, (unsigned long) mm);
1685 			if (atomic_read(&mm->mm_users) == 1 && current->active_mm == mm)
1686 				cpumask_copy(mm_cpumask(mm),
1687 					     cpumask_of(smp_processor_id()));
1688 		}
1689 		local_ops->tlb_mm(mm);
1690 	}
1691 }
1692 
1693 static void smp_flush_cache_range(struct vm_area_struct *vma,
1694 				  unsigned long start,
1695 				  unsigned long end)
1696 {
1697 	struct mm_struct *mm = vma->vm_mm;
1698 
1699 	if (mm->context != NO_CONTEXT) {
1700 		cpumask_t cpu_mask;
1701 		cpumask_copy(&cpu_mask, mm_cpumask(mm));
1702 		cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1703 		if (!cpumask_empty(&cpu_mask))
1704 			xc3((smpfunc_t) local_ops->cache_range,
1705 			    (unsigned long) vma, start, end);
1706 		local_ops->cache_range(vma, start, end);
1707 	}
1708 }
1709 
1710 static void smp_flush_tlb_range(struct vm_area_struct *vma,
1711 				unsigned long start,
1712 				unsigned long end)
1713 {
1714 	struct mm_struct *mm = vma->vm_mm;
1715 
1716 	if (mm->context != NO_CONTEXT) {
1717 		cpumask_t cpu_mask;
1718 		cpumask_copy(&cpu_mask, mm_cpumask(mm));
1719 		cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1720 		if (!cpumask_empty(&cpu_mask))
1721 			xc3((smpfunc_t) local_ops->tlb_range,
1722 			    (unsigned long) vma, start, end);
1723 		local_ops->tlb_range(vma, start, end);
1724 	}
1725 }
1726 
1727 static void smp_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
1728 {
1729 	struct mm_struct *mm = vma->vm_mm;
1730 
1731 	if (mm->context != NO_CONTEXT) {
1732 		cpumask_t cpu_mask;
1733 		cpumask_copy(&cpu_mask, mm_cpumask(mm));
1734 		cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1735 		if (!cpumask_empty(&cpu_mask))
1736 			xc2((smpfunc_t) local_ops->cache_page,
1737 			    (unsigned long) vma, page);
1738 		local_ops->cache_page(vma, page);
1739 	}
1740 }
1741 
1742 static void smp_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
1743 {
1744 	struct mm_struct *mm = vma->vm_mm;
1745 
1746 	if (mm->context != NO_CONTEXT) {
1747 		cpumask_t cpu_mask;
1748 		cpumask_copy(&cpu_mask, mm_cpumask(mm));
1749 		cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1750 		if (!cpumask_empty(&cpu_mask))
1751 			xc2((smpfunc_t) local_ops->tlb_page,
1752 			    (unsigned long) vma, page);
1753 		local_ops->tlb_page(vma, page);
1754 	}
1755 }
1756 
1757 static void smp_flush_page_to_ram(unsigned long page)
1758 {
1759 	/* Current theory is that those who call this are the one's
1760 	 * who have just dirtied their cache with the pages contents
1761 	 * in kernel space, therefore we only run this on local cpu.
1762 	 *
1763 	 * XXX This experiment failed, research further... -DaveM
1764 	 */
1765 #if 1
1766 	xc1((smpfunc_t) local_ops->page_to_ram, page);
1767 #endif
1768 	local_ops->page_to_ram(page);
1769 }
1770 
1771 static void smp_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
1772 {
1773 	cpumask_t cpu_mask;
1774 	cpumask_copy(&cpu_mask, mm_cpumask(mm));
1775 	cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1776 	if (!cpumask_empty(&cpu_mask))
1777 		xc2((smpfunc_t) local_ops->sig_insns,
1778 		    (unsigned long) mm, insn_addr);
1779 	local_ops->sig_insns(mm, insn_addr);
1780 }
1781 
1782 static struct sparc32_cachetlb_ops smp_cachetlb_ops __ro_after_init = {
1783 	.cache_all	= smp_flush_cache_all,
1784 	.cache_mm	= smp_flush_cache_mm,
1785 	.cache_page	= smp_flush_cache_page,
1786 	.cache_range	= smp_flush_cache_range,
1787 	.tlb_all	= smp_flush_tlb_all,
1788 	.tlb_mm		= smp_flush_tlb_mm,
1789 	.tlb_page	= smp_flush_tlb_page,
1790 	.tlb_range	= smp_flush_tlb_range,
1791 	.page_to_ram	= smp_flush_page_to_ram,
1792 	.sig_insns	= smp_flush_sig_insns,
1793 	.page_for_dma	= smp_flush_page_for_dma,
1794 };
1795 #endif
1796 
1797 /* Load up routines and constants for sun4m and sun4d mmu */
1798 void __init load_mmu(void)
1799 {
1800 	/* Functions */
1801 	get_srmmu_type();
1802 
1803 #ifdef CONFIG_SMP
1804 	/* El switcheroo... */
1805 	local_ops = sparc32_cachetlb_ops;
1806 
1807 	if (sparc_cpu_model == sun4d || sparc_cpu_model == sparc_leon) {
1808 		smp_cachetlb_ops.tlb_all = local_ops->tlb_all;
1809 		smp_cachetlb_ops.tlb_mm = local_ops->tlb_mm;
1810 		smp_cachetlb_ops.tlb_range = local_ops->tlb_range;
1811 		smp_cachetlb_ops.tlb_page = local_ops->tlb_page;
1812 	}
1813 
1814 	if (poke_srmmu == poke_viking) {
1815 		/* Avoid unnecessary cross calls. */
1816 		smp_cachetlb_ops.cache_all = local_ops->cache_all;
1817 		smp_cachetlb_ops.cache_mm = local_ops->cache_mm;
1818 		smp_cachetlb_ops.cache_range = local_ops->cache_range;
1819 		smp_cachetlb_ops.cache_page = local_ops->cache_page;
1820 
1821 		smp_cachetlb_ops.page_to_ram = local_ops->page_to_ram;
1822 		smp_cachetlb_ops.sig_insns = local_ops->sig_insns;
1823 		smp_cachetlb_ops.page_for_dma = local_ops->page_for_dma;
1824 	}
1825 
1826 	/* It really is const after this point. */
1827 	sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1828 		&smp_cachetlb_ops;
1829 #endif
1830 
1831 	if (sparc_cpu_model == sun4d)
1832 		ld_mmu_iounit();
1833 	else
1834 		ld_mmu_iommu();
1835 #ifdef CONFIG_SMP
1836 	if (sparc_cpu_model == sun4d)
1837 		sun4d_init_smp();
1838 	else if (sparc_cpu_model == sparc_leon)
1839 		leon_init_smp();
1840 	else
1841 		sun4m_init_smp();
1842 #endif
1843 }
1844