xref: /openbmc/linux/arch/sparc/mm/srmmu.c (revision 12eb4683)
1 /*
2  * srmmu.c:  SRMMU specific routines for memory management.
3  *
4  * Copyright (C) 1995 David S. Miller  (davem@caip.rutgers.edu)
5  * Copyright (C) 1995,2002 Pete Zaitcev (zaitcev@yahoo.com)
6  * Copyright (C) 1996 Eddie C. Dost    (ecd@skynet.be)
7  * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
8  * Copyright (C) 1999,2000 Anton Blanchard (anton@samba.org)
9  */
10 
11 #include <linux/seq_file.h>
12 #include <linux/spinlock.h>
13 #include <linux/bootmem.h>
14 #include <linux/pagemap.h>
15 #include <linux/vmalloc.h>
16 #include <linux/kdebug.h>
17 #include <linux/kernel.h>
18 #include <linux/init.h>
19 #include <linux/log2.h>
20 #include <linux/gfp.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 
24 #include <asm/mmu_context.h>
25 #include <asm/cacheflush.h>
26 #include <asm/tlbflush.h>
27 #include <asm/io-unit.h>
28 #include <asm/pgalloc.h>
29 #include <asm/pgtable.h>
30 #include <asm/bitext.h>
31 #include <asm/vaddrs.h>
32 #include <asm/cache.h>
33 #include <asm/traps.h>
34 #include <asm/oplib.h>
35 #include <asm/mbus.h>
36 #include <asm/page.h>
37 #include <asm/asi.h>
38 #include <asm/msi.h>
39 #include <asm/smp.h>
40 #include <asm/io.h>
41 
42 /* Now the cpu specific definitions. */
43 #include <asm/turbosparc.h>
44 #include <asm/tsunami.h>
45 #include <asm/viking.h>
46 #include <asm/swift.h>
47 #include <asm/leon.h>
48 #include <asm/mxcc.h>
49 #include <asm/ross.h>
50 
51 #include "srmmu.h"
52 
53 enum mbus_module srmmu_modtype;
54 static unsigned int hwbug_bitmask;
55 int vac_cache_size;
56 int vac_line_size;
57 
58 extern struct resource sparc_iomap;
59 
60 extern unsigned long last_valid_pfn;
61 
62 static pgd_t *srmmu_swapper_pg_dir;
63 
64 const struct sparc32_cachetlb_ops *sparc32_cachetlb_ops;
65 
66 #ifdef CONFIG_SMP
67 const struct sparc32_cachetlb_ops *local_ops;
68 
69 #define FLUSH_BEGIN(mm)
70 #define FLUSH_END
71 #else
72 #define FLUSH_BEGIN(mm) if ((mm)->context != NO_CONTEXT) {
73 #define FLUSH_END	}
74 #endif
75 
76 int flush_page_for_dma_global = 1;
77 
78 char *srmmu_name;
79 
80 ctxd_t *srmmu_ctx_table_phys;
81 static ctxd_t *srmmu_context_table;
82 
83 int viking_mxcc_present;
84 static DEFINE_SPINLOCK(srmmu_context_spinlock);
85 
86 static int is_hypersparc;
87 
88 static int srmmu_cache_pagetables;
89 
90 /* these will be initialized in srmmu_nocache_calcsize() */
91 static unsigned long srmmu_nocache_size;
92 static unsigned long srmmu_nocache_end;
93 
94 /* 1 bit <=> 256 bytes of nocache <=> 64 PTEs */
95 #define SRMMU_NOCACHE_BITMAP_SHIFT (PAGE_SHIFT - 4)
96 
97 /* The context table is a nocache user with the biggest alignment needs. */
98 #define SRMMU_NOCACHE_ALIGN_MAX (sizeof(ctxd_t)*SRMMU_MAX_CONTEXTS)
99 
100 void *srmmu_nocache_pool;
101 void *srmmu_nocache_bitmap;
102 static struct bit_map srmmu_nocache_map;
103 
104 static inline int srmmu_pmd_none(pmd_t pmd)
105 { return !(pmd_val(pmd) & 0xFFFFFFF); }
106 
107 /* XXX should we hyper_flush_whole_icache here - Anton */
108 static inline void srmmu_ctxd_set(ctxd_t *ctxp, pgd_t *pgdp)
109 { set_pte((pte_t *)ctxp, (SRMMU_ET_PTD | (__nocache_pa((unsigned long) pgdp) >> 4))); }
110 
111 void pmd_set(pmd_t *pmdp, pte_t *ptep)
112 {
113 	unsigned long ptp;	/* Physical address, shifted right by 4 */
114 	int i;
115 
116 	ptp = __nocache_pa((unsigned long) ptep) >> 4;
117 	for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) {
118 		set_pte((pte_t *)&pmdp->pmdv[i], SRMMU_ET_PTD | ptp);
119 		ptp += (SRMMU_REAL_PTRS_PER_PTE*sizeof(pte_t) >> 4);
120 	}
121 }
122 
123 void pmd_populate(struct mm_struct *mm, pmd_t *pmdp, struct page *ptep)
124 {
125 	unsigned long ptp;	/* Physical address, shifted right by 4 */
126 	int i;
127 
128 	ptp = page_to_pfn(ptep) << (PAGE_SHIFT-4);	/* watch for overflow */
129 	for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) {
130 		set_pte((pte_t *)&pmdp->pmdv[i], SRMMU_ET_PTD | ptp);
131 		ptp += (SRMMU_REAL_PTRS_PER_PTE*sizeof(pte_t) >> 4);
132 	}
133 }
134 
135 /* Find an entry in the third-level page table.. */
136 pte_t *pte_offset_kernel(pmd_t *dir, unsigned long address)
137 {
138 	void *pte;
139 
140 	pte = __nocache_va((dir->pmdv[0] & SRMMU_PTD_PMASK) << 4);
141 	return (pte_t *) pte +
142 	    ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
143 }
144 
145 /*
146  * size: bytes to allocate in the nocache area.
147  * align: bytes, number to align at.
148  * Returns the virtual address of the allocated area.
149  */
150 static void *__srmmu_get_nocache(int size, int align)
151 {
152 	int offset;
153 	unsigned long addr;
154 
155 	if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
156 		printk(KERN_ERR "Size 0x%x too small for nocache request\n",
157 		       size);
158 		size = SRMMU_NOCACHE_BITMAP_SHIFT;
159 	}
160 	if (size & (SRMMU_NOCACHE_BITMAP_SHIFT - 1)) {
161 		printk(KERN_ERR "Size 0x%x unaligned int nocache request\n",
162 		       size);
163 		size += SRMMU_NOCACHE_BITMAP_SHIFT - 1;
164 	}
165 	BUG_ON(align > SRMMU_NOCACHE_ALIGN_MAX);
166 
167 	offset = bit_map_string_get(&srmmu_nocache_map,
168 				    size >> SRMMU_NOCACHE_BITMAP_SHIFT,
169 				    align >> SRMMU_NOCACHE_BITMAP_SHIFT);
170 	if (offset == -1) {
171 		printk(KERN_ERR "srmmu: out of nocache %d: %d/%d\n",
172 		       size, (int) srmmu_nocache_size,
173 		       srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
174 		return 0;
175 	}
176 
177 	addr = SRMMU_NOCACHE_VADDR + (offset << SRMMU_NOCACHE_BITMAP_SHIFT);
178 	return (void *)addr;
179 }
180 
181 void *srmmu_get_nocache(int size, int align)
182 {
183 	void *tmp;
184 
185 	tmp = __srmmu_get_nocache(size, align);
186 
187 	if (tmp)
188 		memset(tmp, 0, size);
189 
190 	return tmp;
191 }
192 
193 void srmmu_free_nocache(void *addr, int size)
194 {
195 	unsigned long vaddr;
196 	int offset;
197 
198 	vaddr = (unsigned long)addr;
199 	if (vaddr < SRMMU_NOCACHE_VADDR) {
200 		printk("Vaddr %lx is smaller than nocache base 0x%lx\n",
201 		    vaddr, (unsigned long)SRMMU_NOCACHE_VADDR);
202 		BUG();
203 	}
204 	if (vaddr + size > srmmu_nocache_end) {
205 		printk("Vaddr %lx is bigger than nocache end 0x%lx\n",
206 		    vaddr, srmmu_nocache_end);
207 		BUG();
208 	}
209 	if (!is_power_of_2(size)) {
210 		printk("Size 0x%x is not a power of 2\n", size);
211 		BUG();
212 	}
213 	if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
214 		printk("Size 0x%x is too small\n", size);
215 		BUG();
216 	}
217 	if (vaddr & (size - 1)) {
218 		printk("Vaddr %lx is not aligned to size 0x%x\n", vaddr, size);
219 		BUG();
220 	}
221 
222 	offset = (vaddr - SRMMU_NOCACHE_VADDR) >> SRMMU_NOCACHE_BITMAP_SHIFT;
223 	size = size >> SRMMU_NOCACHE_BITMAP_SHIFT;
224 
225 	bit_map_clear(&srmmu_nocache_map, offset, size);
226 }
227 
228 static void srmmu_early_allocate_ptable_skeleton(unsigned long start,
229 						 unsigned long end);
230 
231 /* Return how much physical memory we have.  */
232 static unsigned long __init probe_memory(void)
233 {
234 	unsigned long total = 0;
235 	int i;
236 
237 	for (i = 0; sp_banks[i].num_bytes; i++)
238 		total += sp_banks[i].num_bytes;
239 
240 	return total;
241 }
242 
243 /*
244  * Reserve nocache dynamically proportionally to the amount of
245  * system RAM. -- Tomas Szepe <szepe@pinerecords.com>, June 2002
246  */
247 static void __init srmmu_nocache_calcsize(void)
248 {
249 	unsigned long sysmemavail = probe_memory() / 1024;
250 	int srmmu_nocache_npages;
251 
252 	srmmu_nocache_npages =
253 		sysmemavail / SRMMU_NOCACHE_ALCRATIO / 1024 * 256;
254 
255  /* P3 XXX The 4x overuse: corroborated by /proc/meminfo. */
256 	// if (srmmu_nocache_npages < 256) srmmu_nocache_npages = 256;
257 	if (srmmu_nocache_npages < SRMMU_MIN_NOCACHE_PAGES)
258 		srmmu_nocache_npages = SRMMU_MIN_NOCACHE_PAGES;
259 
260 	/* anything above 1280 blows up */
261 	if (srmmu_nocache_npages > SRMMU_MAX_NOCACHE_PAGES)
262 		srmmu_nocache_npages = SRMMU_MAX_NOCACHE_PAGES;
263 
264 	srmmu_nocache_size = srmmu_nocache_npages * PAGE_SIZE;
265 	srmmu_nocache_end = SRMMU_NOCACHE_VADDR + srmmu_nocache_size;
266 }
267 
268 static void __init srmmu_nocache_init(void)
269 {
270 	unsigned int bitmap_bits;
271 	pgd_t *pgd;
272 	pmd_t *pmd;
273 	pte_t *pte;
274 	unsigned long paddr, vaddr;
275 	unsigned long pteval;
276 
277 	bitmap_bits = srmmu_nocache_size >> SRMMU_NOCACHE_BITMAP_SHIFT;
278 
279 	srmmu_nocache_pool = __alloc_bootmem(srmmu_nocache_size,
280 		SRMMU_NOCACHE_ALIGN_MAX, 0UL);
281 	memset(srmmu_nocache_pool, 0, srmmu_nocache_size);
282 
283 	srmmu_nocache_bitmap =
284 		__alloc_bootmem(BITS_TO_LONGS(bitmap_bits) * sizeof(long),
285 				SMP_CACHE_BYTES, 0UL);
286 	bit_map_init(&srmmu_nocache_map, srmmu_nocache_bitmap, bitmap_bits);
287 
288 	srmmu_swapper_pg_dir = __srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
289 	memset(__nocache_fix(srmmu_swapper_pg_dir), 0, SRMMU_PGD_TABLE_SIZE);
290 	init_mm.pgd = srmmu_swapper_pg_dir;
291 
292 	srmmu_early_allocate_ptable_skeleton(SRMMU_NOCACHE_VADDR, srmmu_nocache_end);
293 
294 	paddr = __pa((unsigned long)srmmu_nocache_pool);
295 	vaddr = SRMMU_NOCACHE_VADDR;
296 
297 	while (vaddr < srmmu_nocache_end) {
298 		pgd = pgd_offset_k(vaddr);
299 		pmd = pmd_offset(__nocache_fix(pgd), vaddr);
300 		pte = pte_offset_kernel(__nocache_fix(pmd), vaddr);
301 
302 		pteval = ((paddr >> 4) | SRMMU_ET_PTE | SRMMU_PRIV);
303 
304 		if (srmmu_cache_pagetables)
305 			pteval |= SRMMU_CACHE;
306 
307 		set_pte(__nocache_fix(pte), __pte(pteval));
308 
309 		vaddr += PAGE_SIZE;
310 		paddr += PAGE_SIZE;
311 	}
312 
313 	flush_cache_all();
314 	flush_tlb_all();
315 }
316 
317 pgd_t *get_pgd_fast(void)
318 {
319 	pgd_t *pgd = NULL;
320 
321 	pgd = __srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
322 	if (pgd) {
323 		pgd_t *init = pgd_offset_k(0);
324 		memset(pgd, 0, USER_PTRS_PER_PGD * sizeof(pgd_t));
325 		memcpy(pgd + USER_PTRS_PER_PGD, init + USER_PTRS_PER_PGD,
326 						(PTRS_PER_PGD - USER_PTRS_PER_PGD) * sizeof(pgd_t));
327 	}
328 
329 	return pgd;
330 }
331 
332 /*
333  * Hardware needs alignment to 256 only, but we align to whole page size
334  * to reduce fragmentation problems due to the buddy principle.
335  * XXX Provide actual fragmentation statistics in /proc.
336  *
337  * Alignments up to the page size are the same for physical and virtual
338  * addresses of the nocache area.
339  */
340 pgtable_t pte_alloc_one(struct mm_struct *mm, unsigned long address)
341 {
342 	unsigned long pte;
343 	struct page *page;
344 
345 	if ((pte = (unsigned long)pte_alloc_one_kernel(mm, address)) == 0)
346 		return NULL;
347 	page = pfn_to_page(__nocache_pa(pte) >> PAGE_SHIFT);
348 	if (!pgtable_page_ctor(page)) {
349 		__free_page(page);
350 		return NULL;
351 	}
352 	return page;
353 }
354 
355 void pte_free(struct mm_struct *mm, pgtable_t pte)
356 {
357 	unsigned long p;
358 
359 	pgtable_page_dtor(pte);
360 	p = (unsigned long)page_address(pte);	/* Cached address (for test) */
361 	if (p == 0)
362 		BUG();
363 	p = page_to_pfn(pte) << PAGE_SHIFT;	/* Physical address */
364 
365 	/* free non cached virtual address*/
366 	srmmu_free_nocache(__nocache_va(p), PTE_SIZE);
367 }
368 
369 /* context handling - a dynamically sized pool is used */
370 #define NO_CONTEXT	-1
371 
372 struct ctx_list {
373 	struct ctx_list *next;
374 	struct ctx_list *prev;
375 	unsigned int ctx_number;
376 	struct mm_struct *ctx_mm;
377 };
378 
379 static struct ctx_list *ctx_list_pool;
380 static struct ctx_list ctx_free;
381 static struct ctx_list ctx_used;
382 
383 /* At boot time we determine the number of contexts */
384 static int num_contexts;
385 
386 static inline void remove_from_ctx_list(struct ctx_list *entry)
387 {
388 	entry->next->prev = entry->prev;
389 	entry->prev->next = entry->next;
390 }
391 
392 static inline void add_to_ctx_list(struct ctx_list *head, struct ctx_list *entry)
393 {
394 	entry->next = head;
395 	(entry->prev = head->prev)->next = entry;
396 	head->prev = entry;
397 }
398 #define add_to_free_ctxlist(entry) add_to_ctx_list(&ctx_free, entry)
399 #define add_to_used_ctxlist(entry) add_to_ctx_list(&ctx_used, entry)
400 
401 
402 static inline void alloc_context(struct mm_struct *old_mm, struct mm_struct *mm)
403 {
404 	struct ctx_list *ctxp;
405 
406 	ctxp = ctx_free.next;
407 	if (ctxp != &ctx_free) {
408 		remove_from_ctx_list(ctxp);
409 		add_to_used_ctxlist(ctxp);
410 		mm->context = ctxp->ctx_number;
411 		ctxp->ctx_mm = mm;
412 		return;
413 	}
414 	ctxp = ctx_used.next;
415 	if (ctxp->ctx_mm == old_mm)
416 		ctxp = ctxp->next;
417 	if (ctxp == &ctx_used)
418 		panic("out of mmu contexts");
419 	flush_cache_mm(ctxp->ctx_mm);
420 	flush_tlb_mm(ctxp->ctx_mm);
421 	remove_from_ctx_list(ctxp);
422 	add_to_used_ctxlist(ctxp);
423 	ctxp->ctx_mm->context = NO_CONTEXT;
424 	ctxp->ctx_mm = mm;
425 	mm->context = ctxp->ctx_number;
426 }
427 
428 static inline void free_context(int context)
429 {
430 	struct ctx_list *ctx_old;
431 
432 	ctx_old = ctx_list_pool + context;
433 	remove_from_ctx_list(ctx_old);
434 	add_to_free_ctxlist(ctx_old);
435 }
436 
437 static void __init sparc_context_init(int numctx)
438 {
439 	int ctx;
440 	unsigned long size;
441 
442 	size = numctx * sizeof(struct ctx_list);
443 	ctx_list_pool = __alloc_bootmem(size, SMP_CACHE_BYTES, 0UL);
444 
445 	for (ctx = 0; ctx < numctx; ctx++) {
446 		struct ctx_list *clist;
447 
448 		clist = (ctx_list_pool + ctx);
449 		clist->ctx_number = ctx;
450 		clist->ctx_mm = NULL;
451 	}
452 	ctx_free.next = ctx_free.prev = &ctx_free;
453 	ctx_used.next = ctx_used.prev = &ctx_used;
454 	for (ctx = 0; ctx < numctx; ctx++)
455 		add_to_free_ctxlist(ctx_list_pool + ctx);
456 }
457 
458 void switch_mm(struct mm_struct *old_mm, struct mm_struct *mm,
459 	       struct task_struct *tsk)
460 {
461 	if (mm->context == NO_CONTEXT) {
462 		spin_lock(&srmmu_context_spinlock);
463 		alloc_context(old_mm, mm);
464 		spin_unlock(&srmmu_context_spinlock);
465 		srmmu_ctxd_set(&srmmu_context_table[mm->context], mm->pgd);
466 	}
467 
468 	if (sparc_cpu_model == sparc_leon)
469 		leon_switch_mm();
470 
471 	if (is_hypersparc)
472 		hyper_flush_whole_icache();
473 
474 	srmmu_set_context(mm->context);
475 }
476 
477 /* Low level IO area allocation on the SRMMU. */
478 static inline void srmmu_mapioaddr(unsigned long physaddr,
479 				   unsigned long virt_addr, int bus_type)
480 {
481 	pgd_t *pgdp;
482 	pmd_t *pmdp;
483 	pte_t *ptep;
484 	unsigned long tmp;
485 
486 	physaddr &= PAGE_MASK;
487 	pgdp = pgd_offset_k(virt_addr);
488 	pmdp = pmd_offset(pgdp, virt_addr);
489 	ptep = pte_offset_kernel(pmdp, virt_addr);
490 	tmp = (physaddr >> 4) | SRMMU_ET_PTE;
491 
492 	/* I need to test whether this is consistent over all
493 	 * sun4m's.  The bus_type represents the upper 4 bits of
494 	 * 36-bit physical address on the I/O space lines...
495 	 */
496 	tmp |= (bus_type << 28);
497 	tmp |= SRMMU_PRIV;
498 	__flush_page_to_ram(virt_addr);
499 	set_pte(ptep, __pte(tmp));
500 }
501 
502 void srmmu_mapiorange(unsigned int bus, unsigned long xpa,
503 		      unsigned long xva, unsigned int len)
504 {
505 	while (len != 0) {
506 		len -= PAGE_SIZE;
507 		srmmu_mapioaddr(xpa, xva, bus);
508 		xva += PAGE_SIZE;
509 		xpa += PAGE_SIZE;
510 	}
511 	flush_tlb_all();
512 }
513 
514 static inline void srmmu_unmapioaddr(unsigned long virt_addr)
515 {
516 	pgd_t *pgdp;
517 	pmd_t *pmdp;
518 	pte_t *ptep;
519 
520 	pgdp = pgd_offset_k(virt_addr);
521 	pmdp = pmd_offset(pgdp, virt_addr);
522 	ptep = pte_offset_kernel(pmdp, virt_addr);
523 
524 	/* No need to flush uncacheable page. */
525 	__pte_clear(ptep);
526 }
527 
528 void srmmu_unmapiorange(unsigned long virt_addr, unsigned int len)
529 {
530 	while (len != 0) {
531 		len -= PAGE_SIZE;
532 		srmmu_unmapioaddr(virt_addr);
533 		virt_addr += PAGE_SIZE;
534 	}
535 	flush_tlb_all();
536 }
537 
538 /* tsunami.S */
539 extern void tsunami_flush_cache_all(void);
540 extern void tsunami_flush_cache_mm(struct mm_struct *mm);
541 extern void tsunami_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
542 extern void tsunami_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
543 extern void tsunami_flush_page_to_ram(unsigned long page);
544 extern void tsunami_flush_page_for_dma(unsigned long page);
545 extern void tsunami_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
546 extern void tsunami_flush_tlb_all(void);
547 extern void tsunami_flush_tlb_mm(struct mm_struct *mm);
548 extern void tsunami_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
549 extern void tsunami_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
550 extern void tsunami_setup_blockops(void);
551 
552 /* swift.S */
553 extern void swift_flush_cache_all(void);
554 extern void swift_flush_cache_mm(struct mm_struct *mm);
555 extern void swift_flush_cache_range(struct vm_area_struct *vma,
556 				    unsigned long start, unsigned long end);
557 extern void swift_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
558 extern void swift_flush_page_to_ram(unsigned long page);
559 extern void swift_flush_page_for_dma(unsigned long page);
560 extern void swift_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
561 extern void swift_flush_tlb_all(void);
562 extern void swift_flush_tlb_mm(struct mm_struct *mm);
563 extern void swift_flush_tlb_range(struct vm_area_struct *vma,
564 				  unsigned long start, unsigned long end);
565 extern void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
566 
567 #if 0  /* P3: deadwood to debug precise flushes on Swift. */
568 void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
569 {
570 	int cctx, ctx1;
571 
572 	page &= PAGE_MASK;
573 	if ((ctx1 = vma->vm_mm->context) != -1) {
574 		cctx = srmmu_get_context();
575 /* Is context # ever different from current context? P3 */
576 		if (cctx != ctx1) {
577 			printk("flush ctx %02x curr %02x\n", ctx1, cctx);
578 			srmmu_set_context(ctx1);
579 			swift_flush_page(page);
580 			__asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
581 					"r" (page), "i" (ASI_M_FLUSH_PROBE));
582 			srmmu_set_context(cctx);
583 		} else {
584 			 /* Rm. prot. bits from virt. c. */
585 			/* swift_flush_cache_all(); */
586 			/* swift_flush_cache_page(vma, page); */
587 			swift_flush_page(page);
588 
589 			__asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
590 				"r" (page), "i" (ASI_M_FLUSH_PROBE));
591 			/* same as above: srmmu_flush_tlb_page() */
592 		}
593 	}
594 }
595 #endif
596 
597 /*
598  * The following are all MBUS based SRMMU modules, and therefore could
599  * be found in a multiprocessor configuration.  On the whole, these
600  * chips seems to be much more touchy about DVMA and page tables
601  * with respect to cache coherency.
602  */
603 
604 /* viking.S */
605 extern void viking_flush_cache_all(void);
606 extern void viking_flush_cache_mm(struct mm_struct *mm);
607 extern void viking_flush_cache_range(struct vm_area_struct *vma, unsigned long start,
608 				     unsigned long end);
609 extern void viking_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
610 extern void viking_flush_page_to_ram(unsigned long page);
611 extern void viking_flush_page_for_dma(unsigned long page);
612 extern void viking_flush_sig_insns(struct mm_struct *mm, unsigned long addr);
613 extern void viking_flush_page(unsigned long page);
614 extern void viking_mxcc_flush_page(unsigned long page);
615 extern void viking_flush_tlb_all(void);
616 extern void viking_flush_tlb_mm(struct mm_struct *mm);
617 extern void viking_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
618 				   unsigned long end);
619 extern void viking_flush_tlb_page(struct vm_area_struct *vma,
620 				  unsigned long page);
621 extern void sun4dsmp_flush_tlb_all(void);
622 extern void sun4dsmp_flush_tlb_mm(struct mm_struct *mm);
623 extern void sun4dsmp_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
624 				   unsigned long end);
625 extern void sun4dsmp_flush_tlb_page(struct vm_area_struct *vma,
626 				  unsigned long page);
627 
628 /* hypersparc.S */
629 extern void hypersparc_flush_cache_all(void);
630 extern void hypersparc_flush_cache_mm(struct mm_struct *mm);
631 extern void hypersparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
632 extern void hypersparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
633 extern void hypersparc_flush_page_to_ram(unsigned long page);
634 extern void hypersparc_flush_page_for_dma(unsigned long page);
635 extern void hypersparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
636 extern void hypersparc_flush_tlb_all(void);
637 extern void hypersparc_flush_tlb_mm(struct mm_struct *mm);
638 extern void hypersparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
639 extern void hypersparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
640 extern void hypersparc_setup_blockops(void);
641 
642 /*
643  * NOTE: All of this startup code assumes the low 16mb (approx.) of
644  *       kernel mappings are done with one single contiguous chunk of
645  *       ram.  On small ram machines (classics mainly) we only get
646  *       around 8mb mapped for us.
647  */
648 
649 static void __init early_pgtable_allocfail(char *type)
650 {
651 	prom_printf("inherit_prom_mappings: Cannot alloc kernel %s.\n", type);
652 	prom_halt();
653 }
654 
655 static void __init srmmu_early_allocate_ptable_skeleton(unsigned long start,
656 							unsigned long end)
657 {
658 	pgd_t *pgdp;
659 	pmd_t *pmdp;
660 	pte_t *ptep;
661 
662 	while (start < end) {
663 		pgdp = pgd_offset_k(start);
664 		if (pgd_none(*(pgd_t *)__nocache_fix(pgdp))) {
665 			pmdp = __srmmu_get_nocache(
666 			    SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
667 			if (pmdp == NULL)
668 				early_pgtable_allocfail("pmd");
669 			memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
670 			pgd_set(__nocache_fix(pgdp), pmdp);
671 		}
672 		pmdp = pmd_offset(__nocache_fix(pgdp), start);
673 		if (srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
674 			ptep = __srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
675 			if (ptep == NULL)
676 				early_pgtable_allocfail("pte");
677 			memset(__nocache_fix(ptep), 0, PTE_SIZE);
678 			pmd_set(__nocache_fix(pmdp), ptep);
679 		}
680 		if (start > (0xffffffffUL - PMD_SIZE))
681 			break;
682 		start = (start + PMD_SIZE) & PMD_MASK;
683 	}
684 }
685 
686 static void __init srmmu_allocate_ptable_skeleton(unsigned long start,
687 						  unsigned long end)
688 {
689 	pgd_t *pgdp;
690 	pmd_t *pmdp;
691 	pte_t *ptep;
692 
693 	while (start < end) {
694 		pgdp = pgd_offset_k(start);
695 		if (pgd_none(*pgdp)) {
696 			pmdp = __srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
697 			if (pmdp == NULL)
698 				early_pgtable_allocfail("pmd");
699 			memset(pmdp, 0, SRMMU_PMD_TABLE_SIZE);
700 			pgd_set(pgdp, pmdp);
701 		}
702 		pmdp = pmd_offset(pgdp, start);
703 		if (srmmu_pmd_none(*pmdp)) {
704 			ptep = __srmmu_get_nocache(PTE_SIZE,
705 							     PTE_SIZE);
706 			if (ptep == NULL)
707 				early_pgtable_allocfail("pte");
708 			memset(ptep, 0, PTE_SIZE);
709 			pmd_set(pmdp, ptep);
710 		}
711 		if (start > (0xffffffffUL - PMD_SIZE))
712 			break;
713 		start = (start + PMD_SIZE) & PMD_MASK;
714 	}
715 }
716 
717 /* These flush types are not available on all chips... */
718 static inline unsigned long srmmu_probe(unsigned long vaddr)
719 {
720 	unsigned long retval;
721 
722 	if (sparc_cpu_model != sparc_leon) {
723 
724 		vaddr &= PAGE_MASK;
725 		__asm__ __volatile__("lda [%1] %2, %0\n\t" :
726 				     "=r" (retval) :
727 				     "r" (vaddr | 0x400), "i" (ASI_M_FLUSH_PROBE));
728 	} else {
729 		retval = leon_swprobe(vaddr, 0);
730 	}
731 	return retval;
732 }
733 
734 /*
735  * This is much cleaner than poking around physical address space
736  * looking at the prom's page table directly which is what most
737  * other OS's do.  Yuck... this is much better.
738  */
739 static void __init srmmu_inherit_prom_mappings(unsigned long start,
740 					       unsigned long end)
741 {
742 	unsigned long probed;
743 	unsigned long addr;
744 	pgd_t *pgdp;
745 	pmd_t *pmdp;
746 	pte_t *ptep;
747 	int what; /* 0 = normal-pte, 1 = pmd-level pte, 2 = pgd-level pte */
748 
749 	while (start <= end) {
750 		if (start == 0)
751 			break; /* probably wrap around */
752 		if (start == 0xfef00000)
753 			start = KADB_DEBUGGER_BEGVM;
754 		probed = srmmu_probe(start);
755 		if (!probed) {
756 			/* continue probing until we find an entry */
757 			start += PAGE_SIZE;
758 			continue;
759 		}
760 
761 		/* A red snapper, see what it really is. */
762 		what = 0;
763 		addr = start - PAGE_SIZE;
764 
765 		if (!(start & ~(SRMMU_REAL_PMD_MASK))) {
766 			if (srmmu_probe(addr + SRMMU_REAL_PMD_SIZE) == probed)
767 				what = 1;
768 		}
769 
770 		if (!(start & ~(SRMMU_PGDIR_MASK))) {
771 			if (srmmu_probe(addr + SRMMU_PGDIR_SIZE) == probed)
772 				what = 2;
773 		}
774 
775 		pgdp = pgd_offset_k(start);
776 		if (what == 2) {
777 			*(pgd_t *)__nocache_fix(pgdp) = __pgd(probed);
778 			start += SRMMU_PGDIR_SIZE;
779 			continue;
780 		}
781 		if (pgd_none(*(pgd_t *)__nocache_fix(pgdp))) {
782 			pmdp = __srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE,
783 						   SRMMU_PMD_TABLE_SIZE);
784 			if (pmdp == NULL)
785 				early_pgtable_allocfail("pmd");
786 			memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
787 			pgd_set(__nocache_fix(pgdp), pmdp);
788 		}
789 		pmdp = pmd_offset(__nocache_fix(pgdp), start);
790 		if (srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
791 			ptep = __srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
792 			if (ptep == NULL)
793 				early_pgtable_allocfail("pte");
794 			memset(__nocache_fix(ptep), 0, PTE_SIZE);
795 			pmd_set(__nocache_fix(pmdp), ptep);
796 		}
797 		if (what == 1) {
798 			/* We bend the rule where all 16 PTPs in a pmd_t point
799 			 * inside the same PTE page, and we leak a perfectly
800 			 * good hardware PTE piece. Alternatives seem worse.
801 			 */
802 			unsigned int x;	/* Index of HW PMD in soft cluster */
803 			unsigned long *val;
804 			x = (start >> PMD_SHIFT) & 15;
805 			val = &pmdp->pmdv[x];
806 			*(unsigned long *)__nocache_fix(val) = probed;
807 			start += SRMMU_REAL_PMD_SIZE;
808 			continue;
809 		}
810 		ptep = pte_offset_kernel(__nocache_fix(pmdp), start);
811 		*(pte_t *)__nocache_fix(ptep) = __pte(probed);
812 		start += PAGE_SIZE;
813 	}
814 }
815 
816 #define KERNEL_PTE(page_shifted) ((page_shifted)|SRMMU_CACHE|SRMMU_PRIV|SRMMU_VALID)
817 
818 /* Create a third-level SRMMU 16MB page mapping. */
819 static void __init do_large_mapping(unsigned long vaddr, unsigned long phys_base)
820 {
821 	pgd_t *pgdp = pgd_offset_k(vaddr);
822 	unsigned long big_pte;
823 
824 	big_pte = KERNEL_PTE(phys_base >> 4);
825 	*(pgd_t *)__nocache_fix(pgdp) = __pgd(big_pte);
826 }
827 
828 /* Map sp_bank entry SP_ENTRY, starting at virtual address VBASE. */
829 static unsigned long __init map_spbank(unsigned long vbase, int sp_entry)
830 {
831 	unsigned long pstart = (sp_banks[sp_entry].base_addr & SRMMU_PGDIR_MASK);
832 	unsigned long vstart = (vbase & SRMMU_PGDIR_MASK);
833 	unsigned long vend = SRMMU_PGDIR_ALIGN(vbase + sp_banks[sp_entry].num_bytes);
834 	/* Map "low" memory only */
835 	const unsigned long min_vaddr = PAGE_OFFSET;
836 	const unsigned long max_vaddr = PAGE_OFFSET + SRMMU_MAXMEM;
837 
838 	if (vstart < min_vaddr || vstart >= max_vaddr)
839 		return vstart;
840 
841 	if (vend > max_vaddr || vend < min_vaddr)
842 		vend = max_vaddr;
843 
844 	while (vstart < vend) {
845 		do_large_mapping(vstart, pstart);
846 		vstart += SRMMU_PGDIR_SIZE; pstart += SRMMU_PGDIR_SIZE;
847 	}
848 	return vstart;
849 }
850 
851 static void __init map_kernel(void)
852 {
853 	int i;
854 
855 	if (phys_base > 0) {
856 		do_large_mapping(PAGE_OFFSET, phys_base);
857 	}
858 
859 	for (i = 0; sp_banks[i].num_bytes != 0; i++) {
860 		map_spbank((unsigned long)__va(sp_banks[i].base_addr), i);
861 	}
862 }
863 
864 void (*poke_srmmu)(void) = NULL;
865 
866 extern unsigned long bootmem_init(unsigned long *pages_avail);
867 
868 void __init srmmu_paging_init(void)
869 {
870 	int i;
871 	phandle cpunode;
872 	char node_str[128];
873 	pgd_t *pgd;
874 	pmd_t *pmd;
875 	pte_t *pte;
876 	unsigned long pages_avail;
877 
878 	init_mm.context = (unsigned long) NO_CONTEXT;
879 	sparc_iomap.start = SUN4M_IOBASE_VADDR;	/* 16MB of IOSPACE on all sun4m's. */
880 
881 	if (sparc_cpu_model == sun4d)
882 		num_contexts = 65536; /* We know it is Viking */
883 	else {
884 		/* Find the number of contexts on the srmmu. */
885 		cpunode = prom_getchild(prom_root_node);
886 		num_contexts = 0;
887 		while (cpunode != 0) {
888 			prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
889 			if (!strcmp(node_str, "cpu")) {
890 				num_contexts = prom_getintdefault(cpunode, "mmu-nctx", 0x8);
891 				break;
892 			}
893 			cpunode = prom_getsibling(cpunode);
894 		}
895 	}
896 
897 	if (!num_contexts) {
898 		prom_printf("Something wrong, can't find cpu node in paging_init.\n");
899 		prom_halt();
900 	}
901 
902 	pages_avail = 0;
903 	last_valid_pfn = bootmem_init(&pages_avail);
904 
905 	srmmu_nocache_calcsize();
906 	srmmu_nocache_init();
907 	srmmu_inherit_prom_mappings(0xfe400000, (LINUX_OPPROM_ENDVM - PAGE_SIZE));
908 	map_kernel();
909 
910 	/* ctx table has to be physically aligned to its size */
911 	srmmu_context_table = __srmmu_get_nocache(num_contexts * sizeof(ctxd_t), num_contexts * sizeof(ctxd_t));
912 	srmmu_ctx_table_phys = (ctxd_t *)__nocache_pa((unsigned long)srmmu_context_table);
913 
914 	for (i = 0; i < num_contexts; i++)
915 		srmmu_ctxd_set((ctxd_t *)__nocache_fix(&srmmu_context_table[i]), srmmu_swapper_pg_dir);
916 
917 	flush_cache_all();
918 	srmmu_set_ctable_ptr((unsigned long)srmmu_ctx_table_phys);
919 #ifdef CONFIG_SMP
920 	/* Stop from hanging here... */
921 	local_ops->tlb_all();
922 #else
923 	flush_tlb_all();
924 #endif
925 	poke_srmmu();
926 
927 	srmmu_allocate_ptable_skeleton(sparc_iomap.start, IOBASE_END);
928 	srmmu_allocate_ptable_skeleton(DVMA_VADDR, DVMA_END);
929 
930 	srmmu_allocate_ptable_skeleton(
931 		__fix_to_virt(__end_of_fixed_addresses - 1), FIXADDR_TOP);
932 	srmmu_allocate_ptable_skeleton(PKMAP_BASE, PKMAP_END);
933 
934 	pgd = pgd_offset_k(PKMAP_BASE);
935 	pmd = pmd_offset(pgd, PKMAP_BASE);
936 	pte = pte_offset_kernel(pmd, PKMAP_BASE);
937 	pkmap_page_table = pte;
938 
939 	flush_cache_all();
940 	flush_tlb_all();
941 
942 	sparc_context_init(num_contexts);
943 
944 	kmap_init();
945 
946 	{
947 		unsigned long zones_size[MAX_NR_ZONES];
948 		unsigned long zholes_size[MAX_NR_ZONES];
949 		unsigned long npages;
950 		int znum;
951 
952 		for (znum = 0; znum < MAX_NR_ZONES; znum++)
953 			zones_size[znum] = zholes_size[znum] = 0;
954 
955 		npages = max_low_pfn - pfn_base;
956 
957 		zones_size[ZONE_DMA] = npages;
958 		zholes_size[ZONE_DMA] = npages - pages_avail;
959 
960 		npages = highend_pfn - max_low_pfn;
961 		zones_size[ZONE_HIGHMEM] = npages;
962 		zholes_size[ZONE_HIGHMEM] = npages - calc_highpages();
963 
964 		free_area_init_node(0, zones_size, pfn_base, zholes_size);
965 	}
966 }
967 
968 void mmu_info(struct seq_file *m)
969 {
970 	seq_printf(m,
971 		   "MMU type\t: %s\n"
972 		   "contexts\t: %d\n"
973 		   "nocache total\t: %ld\n"
974 		   "nocache used\t: %d\n",
975 		   srmmu_name,
976 		   num_contexts,
977 		   srmmu_nocache_size,
978 		   srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
979 }
980 
981 int init_new_context(struct task_struct *tsk, struct mm_struct *mm)
982 {
983 	mm->context = NO_CONTEXT;
984 	return 0;
985 }
986 
987 void destroy_context(struct mm_struct *mm)
988 {
989 
990 	if (mm->context != NO_CONTEXT) {
991 		flush_cache_mm(mm);
992 		srmmu_ctxd_set(&srmmu_context_table[mm->context], srmmu_swapper_pg_dir);
993 		flush_tlb_mm(mm);
994 		spin_lock(&srmmu_context_spinlock);
995 		free_context(mm->context);
996 		spin_unlock(&srmmu_context_spinlock);
997 		mm->context = NO_CONTEXT;
998 	}
999 }
1000 
1001 /* Init various srmmu chip types. */
1002 static void __init srmmu_is_bad(void)
1003 {
1004 	prom_printf("Could not determine SRMMU chip type.\n");
1005 	prom_halt();
1006 }
1007 
1008 static void __init init_vac_layout(void)
1009 {
1010 	phandle nd;
1011 	int cache_lines;
1012 	char node_str[128];
1013 #ifdef CONFIG_SMP
1014 	int cpu = 0;
1015 	unsigned long max_size = 0;
1016 	unsigned long min_line_size = 0x10000000;
1017 #endif
1018 
1019 	nd = prom_getchild(prom_root_node);
1020 	while ((nd = prom_getsibling(nd)) != 0) {
1021 		prom_getstring(nd, "device_type", node_str, sizeof(node_str));
1022 		if (!strcmp(node_str, "cpu")) {
1023 			vac_line_size = prom_getint(nd, "cache-line-size");
1024 			if (vac_line_size == -1) {
1025 				prom_printf("can't determine cache-line-size, halting.\n");
1026 				prom_halt();
1027 			}
1028 			cache_lines = prom_getint(nd, "cache-nlines");
1029 			if (cache_lines == -1) {
1030 				prom_printf("can't determine cache-nlines, halting.\n");
1031 				prom_halt();
1032 			}
1033 
1034 			vac_cache_size = cache_lines * vac_line_size;
1035 #ifdef CONFIG_SMP
1036 			if (vac_cache_size > max_size)
1037 				max_size = vac_cache_size;
1038 			if (vac_line_size < min_line_size)
1039 				min_line_size = vac_line_size;
1040 			//FIXME: cpus not contiguous!!
1041 			cpu++;
1042 			if (cpu >= nr_cpu_ids || !cpu_online(cpu))
1043 				break;
1044 #else
1045 			break;
1046 #endif
1047 		}
1048 	}
1049 	if (nd == 0) {
1050 		prom_printf("No CPU nodes found, halting.\n");
1051 		prom_halt();
1052 	}
1053 #ifdef CONFIG_SMP
1054 	vac_cache_size = max_size;
1055 	vac_line_size = min_line_size;
1056 #endif
1057 	printk("SRMMU: Using VAC size of %d bytes, line size %d bytes.\n",
1058 	       (int)vac_cache_size, (int)vac_line_size);
1059 }
1060 
1061 static void poke_hypersparc(void)
1062 {
1063 	volatile unsigned long clear;
1064 	unsigned long mreg = srmmu_get_mmureg();
1065 
1066 	hyper_flush_unconditional_combined();
1067 
1068 	mreg &= ~(HYPERSPARC_CWENABLE);
1069 	mreg |= (HYPERSPARC_CENABLE | HYPERSPARC_WBENABLE);
1070 	mreg |= (HYPERSPARC_CMODE);
1071 
1072 	srmmu_set_mmureg(mreg);
1073 
1074 #if 0 /* XXX I think this is bad news... -DaveM */
1075 	hyper_clear_all_tags();
1076 #endif
1077 
1078 	put_ross_icr(HYPERSPARC_ICCR_FTD | HYPERSPARC_ICCR_ICE);
1079 	hyper_flush_whole_icache();
1080 	clear = srmmu_get_faddr();
1081 	clear = srmmu_get_fstatus();
1082 }
1083 
1084 static const struct sparc32_cachetlb_ops hypersparc_ops = {
1085 	.cache_all	= hypersparc_flush_cache_all,
1086 	.cache_mm	= hypersparc_flush_cache_mm,
1087 	.cache_page	= hypersparc_flush_cache_page,
1088 	.cache_range	= hypersparc_flush_cache_range,
1089 	.tlb_all	= hypersparc_flush_tlb_all,
1090 	.tlb_mm		= hypersparc_flush_tlb_mm,
1091 	.tlb_page	= hypersparc_flush_tlb_page,
1092 	.tlb_range	= hypersparc_flush_tlb_range,
1093 	.page_to_ram	= hypersparc_flush_page_to_ram,
1094 	.sig_insns	= hypersparc_flush_sig_insns,
1095 	.page_for_dma	= hypersparc_flush_page_for_dma,
1096 };
1097 
1098 static void __init init_hypersparc(void)
1099 {
1100 	srmmu_name = "ROSS HyperSparc";
1101 	srmmu_modtype = HyperSparc;
1102 
1103 	init_vac_layout();
1104 
1105 	is_hypersparc = 1;
1106 	sparc32_cachetlb_ops = &hypersparc_ops;
1107 
1108 	poke_srmmu = poke_hypersparc;
1109 
1110 	hypersparc_setup_blockops();
1111 }
1112 
1113 static void poke_swift(void)
1114 {
1115 	unsigned long mreg;
1116 
1117 	/* Clear any crap from the cache or else... */
1118 	swift_flush_cache_all();
1119 
1120 	/* Enable I & D caches */
1121 	mreg = srmmu_get_mmureg();
1122 	mreg |= (SWIFT_IE | SWIFT_DE);
1123 	/*
1124 	 * The Swift branch folding logic is completely broken.  At
1125 	 * trap time, if things are just right, if can mistakenly
1126 	 * think that a trap is coming from kernel mode when in fact
1127 	 * it is coming from user mode (it mis-executes the branch in
1128 	 * the trap code).  So you see things like crashme completely
1129 	 * hosing your machine which is completely unacceptable.  Turn
1130 	 * this shit off... nice job Fujitsu.
1131 	 */
1132 	mreg &= ~(SWIFT_BF);
1133 	srmmu_set_mmureg(mreg);
1134 }
1135 
1136 static const struct sparc32_cachetlb_ops swift_ops = {
1137 	.cache_all	= swift_flush_cache_all,
1138 	.cache_mm	= swift_flush_cache_mm,
1139 	.cache_page	= swift_flush_cache_page,
1140 	.cache_range	= swift_flush_cache_range,
1141 	.tlb_all	= swift_flush_tlb_all,
1142 	.tlb_mm		= swift_flush_tlb_mm,
1143 	.tlb_page	= swift_flush_tlb_page,
1144 	.tlb_range	= swift_flush_tlb_range,
1145 	.page_to_ram	= swift_flush_page_to_ram,
1146 	.sig_insns	= swift_flush_sig_insns,
1147 	.page_for_dma	= swift_flush_page_for_dma,
1148 };
1149 
1150 #define SWIFT_MASKID_ADDR  0x10003018
1151 static void __init init_swift(void)
1152 {
1153 	unsigned long swift_rev;
1154 
1155 	__asm__ __volatile__("lda [%1] %2, %0\n\t"
1156 			     "srl %0, 0x18, %0\n\t" :
1157 			     "=r" (swift_rev) :
1158 			     "r" (SWIFT_MASKID_ADDR), "i" (ASI_M_BYPASS));
1159 	srmmu_name = "Fujitsu Swift";
1160 	switch (swift_rev) {
1161 	case 0x11:
1162 	case 0x20:
1163 	case 0x23:
1164 	case 0x30:
1165 		srmmu_modtype = Swift_lots_o_bugs;
1166 		hwbug_bitmask |= (HWBUG_KERN_ACCBROKEN | HWBUG_KERN_CBITBROKEN);
1167 		/*
1168 		 * Gee george, I wonder why Sun is so hush hush about
1169 		 * this hardware bug... really braindamage stuff going
1170 		 * on here.  However I think we can find a way to avoid
1171 		 * all of the workaround overhead under Linux.  Basically,
1172 		 * any page fault can cause kernel pages to become user
1173 		 * accessible (the mmu gets confused and clears some of
1174 		 * the ACC bits in kernel ptes).  Aha, sounds pretty
1175 		 * horrible eh?  But wait, after extensive testing it appears
1176 		 * that if you use pgd_t level large kernel pte's (like the
1177 		 * 4MB pages on the Pentium) the bug does not get tripped
1178 		 * at all.  This avoids almost all of the major overhead.
1179 		 * Welcome to a world where your vendor tells you to,
1180 		 * "apply this kernel patch" instead of "sorry for the
1181 		 * broken hardware, send it back and we'll give you
1182 		 * properly functioning parts"
1183 		 */
1184 		break;
1185 	case 0x25:
1186 	case 0x31:
1187 		srmmu_modtype = Swift_bad_c;
1188 		hwbug_bitmask |= HWBUG_KERN_CBITBROKEN;
1189 		/*
1190 		 * You see Sun allude to this hardware bug but never
1191 		 * admit things directly, they'll say things like,
1192 		 * "the Swift chip cache problems" or similar.
1193 		 */
1194 		break;
1195 	default:
1196 		srmmu_modtype = Swift_ok;
1197 		break;
1198 	}
1199 
1200 	sparc32_cachetlb_ops = &swift_ops;
1201 	flush_page_for_dma_global = 0;
1202 
1203 	/*
1204 	 * Are you now convinced that the Swift is one of the
1205 	 * biggest VLSI abortions of all time?  Bravo Fujitsu!
1206 	 * Fujitsu, the !#?!%$'d up processor people.  I bet if
1207 	 * you examined the microcode of the Swift you'd find
1208 	 * XXX's all over the place.
1209 	 */
1210 	poke_srmmu = poke_swift;
1211 }
1212 
1213 static void turbosparc_flush_cache_all(void)
1214 {
1215 	flush_user_windows();
1216 	turbosparc_idflash_clear();
1217 }
1218 
1219 static void turbosparc_flush_cache_mm(struct mm_struct *mm)
1220 {
1221 	FLUSH_BEGIN(mm)
1222 	flush_user_windows();
1223 	turbosparc_idflash_clear();
1224 	FLUSH_END
1225 }
1226 
1227 static void turbosparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1228 {
1229 	FLUSH_BEGIN(vma->vm_mm)
1230 	flush_user_windows();
1231 	turbosparc_idflash_clear();
1232 	FLUSH_END
1233 }
1234 
1235 static void turbosparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
1236 {
1237 	FLUSH_BEGIN(vma->vm_mm)
1238 	flush_user_windows();
1239 	if (vma->vm_flags & VM_EXEC)
1240 		turbosparc_flush_icache();
1241 	turbosparc_flush_dcache();
1242 	FLUSH_END
1243 }
1244 
1245 /* TurboSparc is copy-back, if we turn it on, but this does not work. */
1246 static void turbosparc_flush_page_to_ram(unsigned long page)
1247 {
1248 #ifdef TURBOSPARC_WRITEBACK
1249 	volatile unsigned long clear;
1250 
1251 	if (srmmu_probe(page))
1252 		turbosparc_flush_page_cache(page);
1253 	clear = srmmu_get_fstatus();
1254 #endif
1255 }
1256 
1257 static void turbosparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
1258 {
1259 }
1260 
1261 static void turbosparc_flush_page_for_dma(unsigned long page)
1262 {
1263 	turbosparc_flush_dcache();
1264 }
1265 
1266 static void turbosparc_flush_tlb_all(void)
1267 {
1268 	srmmu_flush_whole_tlb();
1269 }
1270 
1271 static void turbosparc_flush_tlb_mm(struct mm_struct *mm)
1272 {
1273 	FLUSH_BEGIN(mm)
1274 	srmmu_flush_whole_tlb();
1275 	FLUSH_END
1276 }
1277 
1278 static void turbosparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1279 {
1280 	FLUSH_BEGIN(vma->vm_mm)
1281 	srmmu_flush_whole_tlb();
1282 	FLUSH_END
1283 }
1284 
1285 static void turbosparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
1286 {
1287 	FLUSH_BEGIN(vma->vm_mm)
1288 	srmmu_flush_whole_tlb();
1289 	FLUSH_END
1290 }
1291 
1292 
1293 static void poke_turbosparc(void)
1294 {
1295 	unsigned long mreg = srmmu_get_mmureg();
1296 	unsigned long ccreg;
1297 
1298 	/* Clear any crap from the cache or else... */
1299 	turbosparc_flush_cache_all();
1300 	/* Temporarily disable I & D caches */
1301 	mreg &= ~(TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE);
1302 	mreg &= ~(TURBOSPARC_PCENABLE);		/* Don't check parity */
1303 	srmmu_set_mmureg(mreg);
1304 
1305 	ccreg = turbosparc_get_ccreg();
1306 
1307 #ifdef TURBOSPARC_WRITEBACK
1308 	ccreg |= (TURBOSPARC_SNENABLE);		/* Do DVMA snooping in Dcache */
1309 	ccreg &= ~(TURBOSPARC_uS2 | TURBOSPARC_WTENABLE);
1310 			/* Write-back D-cache, emulate VLSI
1311 			 * abortion number three, not number one */
1312 #else
1313 	/* For now let's play safe, optimize later */
1314 	ccreg |= (TURBOSPARC_SNENABLE | TURBOSPARC_WTENABLE);
1315 			/* Do DVMA snooping in Dcache, Write-thru D-cache */
1316 	ccreg &= ~(TURBOSPARC_uS2);
1317 			/* Emulate VLSI abortion number three, not number one */
1318 #endif
1319 
1320 	switch (ccreg & 7) {
1321 	case 0: /* No SE cache */
1322 	case 7: /* Test mode */
1323 		break;
1324 	default:
1325 		ccreg |= (TURBOSPARC_SCENABLE);
1326 	}
1327 	turbosparc_set_ccreg(ccreg);
1328 
1329 	mreg |= (TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE); /* I & D caches on */
1330 	mreg |= (TURBOSPARC_ICSNOOP);		/* Icache snooping on */
1331 	srmmu_set_mmureg(mreg);
1332 }
1333 
1334 static const struct sparc32_cachetlb_ops turbosparc_ops = {
1335 	.cache_all	= turbosparc_flush_cache_all,
1336 	.cache_mm	= turbosparc_flush_cache_mm,
1337 	.cache_page	= turbosparc_flush_cache_page,
1338 	.cache_range	= turbosparc_flush_cache_range,
1339 	.tlb_all	= turbosparc_flush_tlb_all,
1340 	.tlb_mm		= turbosparc_flush_tlb_mm,
1341 	.tlb_page	= turbosparc_flush_tlb_page,
1342 	.tlb_range	= turbosparc_flush_tlb_range,
1343 	.page_to_ram	= turbosparc_flush_page_to_ram,
1344 	.sig_insns	= turbosparc_flush_sig_insns,
1345 	.page_for_dma	= turbosparc_flush_page_for_dma,
1346 };
1347 
1348 static void __init init_turbosparc(void)
1349 {
1350 	srmmu_name = "Fujitsu TurboSparc";
1351 	srmmu_modtype = TurboSparc;
1352 	sparc32_cachetlb_ops = &turbosparc_ops;
1353 	poke_srmmu = poke_turbosparc;
1354 }
1355 
1356 static void poke_tsunami(void)
1357 {
1358 	unsigned long mreg = srmmu_get_mmureg();
1359 
1360 	tsunami_flush_icache();
1361 	tsunami_flush_dcache();
1362 	mreg &= ~TSUNAMI_ITD;
1363 	mreg |= (TSUNAMI_IENAB | TSUNAMI_DENAB);
1364 	srmmu_set_mmureg(mreg);
1365 }
1366 
1367 static const struct sparc32_cachetlb_ops tsunami_ops = {
1368 	.cache_all	= tsunami_flush_cache_all,
1369 	.cache_mm	= tsunami_flush_cache_mm,
1370 	.cache_page	= tsunami_flush_cache_page,
1371 	.cache_range	= tsunami_flush_cache_range,
1372 	.tlb_all	= tsunami_flush_tlb_all,
1373 	.tlb_mm		= tsunami_flush_tlb_mm,
1374 	.tlb_page	= tsunami_flush_tlb_page,
1375 	.tlb_range	= tsunami_flush_tlb_range,
1376 	.page_to_ram	= tsunami_flush_page_to_ram,
1377 	.sig_insns	= tsunami_flush_sig_insns,
1378 	.page_for_dma	= tsunami_flush_page_for_dma,
1379 };
1380 
1381 static void __init init_tsunami(void)
1382 {
1383 	/*
1384 	 * Tsunami's pretty sane, Sun and TI actually got it
1385 	 * somewhat right this time.  Fujitsu should have
1386 	 * taken some lessons from them.
1387 	 */
1388 
1389 	srmmu_name = "TI Tsunami";
1390 	srmmu_modtype = Tsunami;
1391 	sparc32_cachetlb_ops = &tsunami_ops;
1392 	poke_srmmu = poke_tsunami;
1393 
1394 	tsunami_setup_blockops();
1395 }
1396 
1397 static void poke_viking(void)
1398 {
1399 	unsigned long mreg = srmmu_get_mmureg();
1400 	static int smp_catch;
1401 
1402 	if (viking_mxcc_present) {
1403 		unsigned long mxcc_control = mxcc_get_creg();
1404 
1405 		mxcc_control |= (MXCC_CTL_ECE | MXCC_CTL_PRE | MXCC_CTL_MCE);
1406 		mxcc_control &= ~(MXCC_CTL_RRC);
1407 		mxcc_set_creg(mxcc_control);
1408 
1409 		/*
1410 		 * We don't need memory parity checks.
1411 		 * XXX This is a mess, have to dig out later. ecd.
1412 		viking_mxcc_turn_off_parity(&mreg, &mxcc_control);
1413 		 */
1414 
1415 		/* We do cache ptables on MXCC. */
1416 		mreg |= VIKING_TCENABLE;
1417 	} else {
1418 		unsigned long bpreg;
1419 
1420 		mreg &= ~(VIKING_TCENABLE);
1421 		if (smp_catch++) {
1422 			/* Must disable mixed-cmd mode here for other cpu's. */
1423 			bpreg = viking_get_bpreg();
1424 			bpreg &= ~(VIKING_ACTION_MIX);
1425 			viking_set_bpreg(bpreg);
1426 
1427 			/* Just in case PROM does something funny. */
1428 			msi_set_sync();
1429 		}
1430 	}
1431 
1432 	mreg |= VIKING_SPENABLE;
1433 	mreg |= (VIKING_ICENABLE | VIKING_DCENABLE);
1434 	mreg |= VIKING_SBENABLE;
1435 	mreg &= ~(VIKING_ACENABLE);
1436 	srmmu_set_mmureg(mreg);
1437 }
1438 
1439 static struct sparc32_cachetlb_ops viking_ops = {
1440 	.cache_all	= viking_flush_cache_all,
1441 	.cache_mm	= viking_flush_cache_mm,
1442 	.cache_page	= viking_flush_cache_page,
1443 	.cache_range	= viking_flush_cache_range,
1444 	.tlb_all	= viking_flush_tlb_all,
1445 	.tlb_mm		= viking_flush_tlb_mm,
1446 	.tlb_page	= viking_flush_tlb_page,
1447 	.tlb_range	= viking_flush_tlb_range,
1448 	.page_to_ram	= viking_flush_page_to_ram,
1449 	.sig_insns	= viking_flush_sig_insns,
1450 	.page_for_dma	= viking_flush_page_for_dma,
1451 };
1452 
1453 #ifdef CONFIG_SMP
1454 /* On sun4d the cpu broadcasts local TLB flushes, so we can just
1455  * perform the local TLB flush and all the other cpus will see it.
1456  * But, unfortunately, there is a bug in the sun4d XBUS backplane
1457  * that requires that we add some synchronization to these flushes.
1458  *
1459  * The bug is that the fifo which keeps track of all the pending TLB
1460  * broadcasts in the system is an entry or two too small, so if we
1461  * have too many going at once we'll overflow that fifo and lose a TLB
1462  * flush resulting in corruption.
1463  *
1464  * Our workaround is to take a global spinlock around the TLB flushes,
1465  * which guarentees we won't ever have too many pending.  It's a big
1466  * hammer, but a semaphore like system to make sure we only have N TLB
1467  * flushes going at once will require SMP locking anyways so there's
1468  * no real value in trying any harder than this.
1469  */
1470 static struct sparc32_cachetlb_ops viking_sun4d_smp_ops = {
1471 	.cache_all	= viking_flush_cache_all,
1472 	.cache_mm	= viking_flush_cache_mm,
1473 	.cache_page	= viking_flush_cache_page,
1474 	.cache_range	= viking_flush_cache_range,
1475 	.tlb_all	= sun4dsmp_flush_tlb_all,
1476 	.tlb_mm		= sun4dsmp_flush_tlb_mm,
1477 	.tlb_page	= sun4dsmp_flush_tlb_page,
1478 	.tlb_range	= sun4dsmp_flush_tlb_range,
1479 	.page_to_ram	= viking_flush_page_to_ram,
1480 	.sig_insns	= viking_flush_sig_insns,
1481 	.page_for_dma	= viking_flush_page_for_dma,
1482 };
1483 #endif
1484 
1485 static void __init init_viking(void)
1486 {
1487 	unsigned long mreg = srmmu_get_mmureg();
1488 
1489 	/* Ahhh, the viking.  SRMMU VLSI abortion number two... */
1490 	if (mreg & VIKING_MMODE) {
1491 		srmmu_name = "TI Viking";
1492 		viking_mxcc_present = 0;
1493 		msi_set_sync();
1494 
1495 		/*
1496 		 * We need this to make sure old viking takes no hits
1497 		 * on it's cache for dma snoops to workaround the
1498 		 * "load from non-cacheable memory" interrupt bug.
1499 		 * This is only necessary because of the new way in
1500 		 * which we use the IOMMU.
1501 		 */
1502 		viking_ops.page_for_dma = viking_flush_page;
1503 #ifdef CONFIG_SMP
1504 		viking_sun4d_smp_ops.page_for_dma = viking_flush_page;
1505 #endif
1506 		flush_page_for_dma_global = 0;
1507 	} else {
1508 		srmmu_name = "TI Viking/MXCC";
1509 		viking_mxcc_present = 1;
1510 		srmmu_cache_pagetables = 1;
1511 	}
1512 
1513 	sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1514 		&viking_ops;
1515 #ifdef CONFIG_SMP
1516 	if (sparc_cpu_model == sun4d)
1517 		sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1518 			&viking_sun4d_smp_ops;
1519 #endif
1520 
1521 	poke_srmmu = poke_viking;
1522 }
1523 
1524 /* Probe for the srmmu chip version. */
1525 static void __init get_srmmu_type(void)
1526 {
1527 	unsigned long mreg, psr;
1528 	unsigned long mod_typ, mod_rev, psr_typ, psr_vers;
1529 
1530 	srmmu_modtype = SRMMU_INVAL_MOD;
1531 	hwbug_bitmask = 0;
1532 
1533 	mreg = srmmu_get_mmureg(); psr = get_psr();
1534 	mod_typ = (mreg & 0xf0000000) >> 28;
1535 	mod_rev = (mreg & 0x0f000000) >> 24;
1536 	psr_typ = (psr >> 28) & 0xf;
1537 	psr_vers = (psr >> 24) & 0xf;
1538 
1539 	/* First, check for sparc-leon. */
1540 	if (sparc_cpu_model == sparc_leon) {
1541 		init_leon();
1542 		return;
1543 	}
1544 
1545 	/* Second, check for HyperSparc or Cypress. */
1546 	if (mod_typ == 1) {
1547 		switch (mod_rev) {
1548 		case 7:
1549 			/* UP or MP Hypersparc */
1550 			init_hypersparc();
1551 			break;
1552 		case 0:
1553 		case 2:
1554 		case 10:
1555 		case 11:
1556 		case 12:
1557 		case 13:
1558 		case 14:
1559 		case 15:
1560 		default:
1561 			prom_printf("Sparc-Linux Cypress support does not longer exit.\n");
1562 			prom_halt();
1563 			break;
1564 		}
1565 		return;
1566 	}
1567 
1568 	/* Now Fujitsu TurboSparc. It might happen that it is
1569 	 * in Swift emulation mode, so we will check later...
1570 	 */
1571 	if (psr_typ == 0 && psr_vers == 5) {
1572 		init_turbosparc();
1573 		return;
1574 	}
1575 
1576 	/* Next check for Fujitsu Swift. */
1577 	if (psr_typ == 0 && psr_vers == 4) {
1578 		phandle cpunode;
1579 		char node_str[128];
1580 
1581 		/* Look if it is not a TurboSparc emulating Swift... */
1582 		cpunode = prom_getchild(prom_root_node);
1583 		while ((cpunode = prom_getsibling(cpunode)) != 0) {
1584 			prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
1585 			if (!strcmp(node_str, "cpu")) {
1586 				if (!prom_getintdefault(cpunode, "psr-implementation", 1) &&
1587 				    prom_getintdefault(cpunode, "psr-version", 1) == 5) {
1588 					init_turbosparc();
1589 					return;
1590 				}
1591 				break;
1592 			}
1593 		}
1594 
1595 		init_swift();
1596 		return;
1597 	}
1598 
1599 	/* Now the Viking family of srmmu. */
1600 	if (psr_typ == 4 &&
1601 	   ((psr_vers == 0) ||
1602 	    ((psr_vers == 1) && (mod_typ == 0) && (mod_rev == 0)))) {
1603 		init_viking();
1604 		return;
1605 	}
1606 
1607 	/* Finally the Tsunami. */
1608 	if (psr_typ == 4 && psr_vers == 1 && (mod_typ || mod_rev)) {
1609 		init_tsunami();
1610 		return;
1611 	}
1612 
1613 	/* Oh well */
1614 	srmmu_is_bad();
1615 }
1616 
1617 #ifdef CONFIG_SMP
1618 /* Local cross-calls. */
1619 static void smp_flush_page_for_dma(unsigned long page)
1620 {
1621 	xc1((smpfunc_t) local_ops->page_for_dma, page);
1622 	local_ops->page_for_dma(page);
1623 }
1624 
1625 static void smp_flush_cache_all(void)
1626 {
1627 	xc0((smpfunc_t) local_ops->cache_all);
1628 	local_ops->cache_all();
1629 }
1630 
1631 static void smp_flush_tlb_all(void)
1632 {
1633 	xc0((smpfunc_t) local_ops->tlb_all);
1634 	local_ops->tlb_all();
1635 }
1636 
1637 static void smp_flush_cache_mm(struct mm_struct *mm)
1638 {
1639 	if (mm->context != NO_CONTEXT) {
1640 		cpumask_t cpu_mask;
1641 		cpumask_copy(&cpu_mask, mm_cpumask(mm));
1642 		cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1643 		if (!cpumask_empty(&cpu_mask))
1644 			xc1((smpfunc_t) local_ops->cache_mm, (unsigned long) mm);
1645 		local_ops->cache_mm(mm);
1646 	}
1647 }
1648 
1649 static void smp_flush_tlb_mm(struct mm_struct *mm)
1650 {
1651 	if (mm->context != NO_CONTEXT) {
1652 		cpumask_t cpu_mask;
1653 		cpumask_copy(&cpu_mask, mm_cpumask(mm));
1654 		cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1655 		if (!cpumask_empty(&cpu_mask)) {
1656 			xc1((smpfunc_t) local_ops->tlb_mm, (unsigned long) mm);
1657 			if (atomic_read(&mm->mm_users) == 1 && current->active_mm == mm)
1658 				cpumask_copy(mm_cpumask(mm),
1659 					     cpumask_of(smp_processor_id()));
1660 		}
1661 		local_ops->tlb_mm(mm);
1662 	}
1663 }
1664 
1665 static void smp_flush_cache_range(struct vm_area_struct *vma,
1666 				  unsigned long start,
1667 				  unsigned long end)
1668 {
1669 	struct mm_struct *mm = vma->vm_mm;
1670 
1671 	if (mm->context != NO_CONTEXT) {
1672 		cpumask_t cpu_mask;
1673 		cpumask_copy(&cpu_mask, mm_cpumask(mm));
1674 		cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1675 		if (!cpumask_empty(&cpu_mask))
1676 			xc3((smpfunc_t) local_ops->cache_range,
1677 			    (unsigned long) vma, start, end);
1678 		local_ops->cache_range(vma, start, end);
1679 	}
1680 }
1681 
1682 static void smp_flush_tlb_range(struct vm_area_struct *vma,
1683 				unsigned long start,
1684 				unsigned long end)
1685 {
1686 	struct mm_struct *mm = vma->vm_mm;
1687 
1688 	if (mm->context != NO_CONTEXT) {
1689 		cpumask_t cpu_mask;
1690 		cpumask_copy(&cpu_mask, mm_cpumask(mm));
1691 		cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1692 		if (!cpumask_empty(&cpu_mask))
1693 			xc3((smpfunc_t) local_ops->tlb_range,
1694 			    (unsigned long) vma, start, end);
1695 		local_ops->tlb_range(vma, start, end);
1696 	}
1697 }
1698 
1699 static void smp_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
1700 {
1701 	struct mm_struct *mm = vma->vm_mm;
1702 
1703 	if (mm->context != NO_CONTEXT) {
1704 		cpumask_t cpu_mask;
1705 		cpumask_copy(&cpu_mask, mm_cpumask(mm));
1706 		cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1707 		if (!cpumask_empty(&cpu_mask))
1708 			xc2((smpfunc_t) local_ops->cache_page,
1709 			    (unsigned long) vma, page);
1710 		local_ops->cache_page(vma, page);
1711 	}
1712 }
1713 
1714 static void smp_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
1715 {
1716 	struct mm_struct *mm = vma->vm_mm;
1717 
1718 	if (mm->context != NO_CONTEXT) {
1719 		cpumask_t cpu_mask;
1720 		cpumask_copy(&cpu_mask, mm_cpumask(mm));
1721 		cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1722 		if (!cpumask_empty(&cpu_mask))
1723 			xc2((smpfunc_t) local_ops->tlb_page,
1724 			    (unsigned long) vma, page);
1725 		local_ops->tlb_page(vma, page);
1726 	}
1727 }
1728 
1729 static void smp_flush_page_to_ram(unsigned long page)
1730 {
1731 	/* Current theory is that those who call this are the one's
1732 	 * who have just dirtied their cache with the pages contents
1733 	 * in kernel space, therefore we only run this on local cpu.
1734 	 *
1735 	 * XXX This experiment failed, research further... -DaveM
1736 	 */
1737 #if 1
1738 	xc1((smpfunc_t) local_ops->page_to_ram, page);
1739 #endif
1740 	local_ops->page_to_ram(page);
1741 }
1742 
1743 static void smp_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
1744 {
1745 	cpumask_t cpu_mask;
1746 	cpumask_copy(&cpu_mask, mm_cpumask(mm));
1747 	cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1748 	if (!cpumask_empty(&cpu_mask))
1749 		xc2((smpfunc_t) local_ops->sig_insns,
1750 		    (unsigned long) mm, insn_addr);
1751 	local_ops->sig_insns(mm, insn_addr);
1752 }
1753 
1754 static struct sparc32_cachetlb_ops smp_cachetlb_ops = {
1755 	.cache_all	= smp_flush_cache_all,
1756 	.cache_mm	= smp_flush_cache_mm,
1757 	.cache_page	= smp_flush_cache_page,
1758 	.cache_range	= smp_flush_cache_range,
1759 	.tlb_all	= smp_flush_tlb_all,
1760 	.tlb_mm		= smp_flush_tlb_mm,
1761 	.tlb_page	= smp_flush_tlb_page,
1762 	.tlb_range	= smp_flush_tlb_range,
1763 	.page_to_ram	= smp_flush_page_to_ram,
1764 	.sig_insns	= smp_flush_sig_insns,
1765 	.page_for_dma	= smp_flush_page_for_dma,
1766 };
1767 #endif
1768 
1769 /* Load up routines and constants for sun4m and sun4d mmu */
1770 void __init load_mmu(void)
1771 {
1772 	extern void ld_mmu_iommu(void);
1773 	extern void ld_mmu_iounit(void);
1774 
1775 	/* Functions */
1776 	get_srmmu_type();
1777 
1778 #ifdef CONFIG_SMP
1779 	/* El switcheroo... */
1780 	local_ops = sparc32_cachetlb_ops;
1781 
1782 	if (sparc_cpu_model == sun4d || sparc_cpu_model == sparc_leon) {
1783 		smp_cachetlb_ops.tlb_all = local_ops->tlb_all;
1784 		smp_cachetlb_ops.tlb_mm = local_ops->tlb_mm;
1785 		smp_cachetlb_ops.tlb_range = local_ops->tlb_range;
1786 		smp_cachetlb_ops.tlb_page = local_ops->tlb_page;
1787 	}
1788 
1789 	if (poke_srmmu == poke_viking) {
1790 		/* Avoid unnecessary cross calls. */
1791 		smp_cachetlb_ops.cache_all = local_ops->cache_all;
1792 		smp_cachetlb_ops.cache_mm = local_ops->cache_mm;
1793 		smp_cachetlb_ops.cache_range = local_ops->cache_range;
1794 		smp_cachetlb_ops.cache_page = local_ops->cache_page;
1795 
1796 		smp_cachetlb_ops.page_to_ram = local_ops->page_to_ram;
1797 		smp_cachetlb_ops.sig_insns = local_ops->sig_insns;
1798 		smp_cachetlb_ops.page_for_dma = local_ops->page_for_dma;
1799 	}
1800 
1801 	/* It really is const after this point. */
1802 	sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1803 		&smp_cachetlb_ops;
1804 #endif
1805 
1806 	if (sparc_cpu_model == sun4d)
1807 		ld_mmu_iounit();
1808 	else
1809 		ld_mmu_iommu();
1810 #ifdef CONFIG_SMP
1811 	if (sparc_cpu_model == sun4d)
1812 		sun4d_init_smp();
1813 	else if (sparc_cpu_model == sparc_leon)
1814 		leon_init_smp();
1815 	else
1816 		sun4m_init_smp();
1817 #endif
1818 }
1819