xref: /openbmc/linux/arch/sparc/mm/init_64.c (revision f20c7d91)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  arch/sparc64/mm/init.c
4  *
5  *  Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu)
6  *  Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
7  */
8 
9 #include <linux/extable.h>
10 #include <linux/kernel.h>
11 #include <linux/sched.h>
12 #include <linux/string.h>
13 #include <linux/init.h>
14 #include <linux/memblock.h>
15 #include <linux/mm.h>
16 #include <linux/hugetlb.h>
17 #include <linux/initrd.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/poison.h>
21 #include <linux/fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/kprobes.h>
24 #include <linux/cache.h>
25 #include <linux/sort.h>
26 #include <linux/ioport.h>
27 #include <linux/percpu.h>
28 #include <linux/mmzone.h>
29 #include <linux/gfp.h>
30 
31 #include <asm/head.h>
32 #include <asm/page.h>
33 #include <asm/pgalloc.h>
34 #include <asm/oplib.h>
35 #include <asm/iommu.h>
36 #include <asm/io.h>
37 #include <linux/uaccess.h>
38 #include <asm/mmu_context.h>
39 #include <asm/tlbflush.h>
40 #include <asm/dma.h>
41 #include <asm/starfire.h>
42 #include <asm/tlb.h>
43 #include <asm/spitfire.h>
44 #include <asm/sections.h>
45 #include <asm/tsb.h>
46 #include <asm/hypervisor.h>
47 #include <asm/prom.h>
48 #include <asm/mdesc.h>
49 #include <asm/cpudata.h>
50 #include <asm/setup.h>
51 #include <asm/irq.h>
52 
53 #include "init_64.h"
54 
55 unsigned long kern_linear_pte_xor[4] __read_mostly;
56 static unsigned long page_cache4v_flag;
57 
58 /* A bitmap, two bits for every 256MB of physical memory.  These two
59  * bits determine what page size we use for kernel linear
60  * translations.  They form an index into kern_linear_pte_xor[].  The
61  * value in the indexed slot is XOR'd with the TLB miss virtual
62  * address to form the resulting TTE.  The mapping is:
63  *
64  *	0	==>	4MB
65  *	1	==>	256MB
66  *	2	==>	2GB
67  *	3	==>	16GB
68  *
69  * All sun4v chips support 256MB pages.  Only SPARC-T4 and later
70  * support 2GB pages, and hopefully future cpus will support the 16GB
71  * pages as well.  For slots 2 and 3, we encode a 256MB TTE xor there
72  * if these larger page sizes are not supported by the cpu.
73  *
74  * It would be nice to determine this from the machine description
75  * 'cpu' properties, but we need to have this table setup before the
76  * MDESC is initialized.
77  */
78 
79 #ifndef CONFIG_DEBUG_PAGEALLOC
80 /* A special kernel TSB for 4MB, 256MB, 2GB and 16GB linear mappings.
81  * Space is allocated for this right after the trap table in
82  * arch/sparc64/kernel/head.S
83  */
84 extern struct tsb swapper_4m_tsb[KERNEL_TSB4M_NENTRIES];
85 #endif
86 extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
87 
88 static unsigned long cpu_pgsz_mask;
89 
90 #define MAX_BANKS	1024
91 
92 static struct linux_prom64_registers pavail[MAX_BANKS];
93 static int pavail_ents;
94 
95 u64 numa_latency[MAX_NUMNODES][MAX_NUMNODES];
96 
97 static int cmp_p64(const void *a, const void *b)
98 {
99 	const struct linux_prom64_registers *x = a, *y = b;
100 
101 	if (x->phys_addr > y->phys_addr)
102 		return 1;
103 	if (x->phys_addr < y->phys_addr)
104 		return -1;
105 	return 0;
106 }
107 
108 static void __init read_obp_memory(const char *property,
109 				   struct linux_prom64_registers *regs,
110 				   int *num_ents)
111 {
112 	phandle node = prom_finddevice("/memory");
113 	int prop_size = prom_getproplen(node, property);
114 	int ents, ret, i;
115 
116 	ents = prop_size / sizeof(struct linux_prom64_registers);
117 	if (ents > MAX_BANKS) {
118 		prom_printf("The machine has more %s property entries than "
119 			    "this kernel can support (%d).\n",
120 			    property, MAX_BANKS);
121 		prom_halt();
122 	}
123 
124 	ret = prom_getproperty(node, property, (char *) regs, prop_size);
125 	if (ret == -1) {
126 		prom_printf("Couldn't get %s property from /memory.\n",
127 				property);
128 		prom_halt();
129 	}
130 
131 	/* Sanitize what we got from the firmware, by page aligning
132 	 * everything.
133 	 */
134 	for (i = 0; i < ents; i++) {
135 		unsigned long base, size;
136 
137 		base = regs[i].phys_addr;
138 		size = regs[i].reg_size;
139 
140 		size &= PAGE_MASK;
141 		if (base & ~PAGE_MASK) {
142 			unsigned long new_base = PAGE_ALIGN(base);
143 
144 			size -= new_base - base;
145 			if ((long) size < 0L)
146 				size = 0UL;
147 			base = new_base;
148 		}
149 		if (size == 0UL) {
150 			/* If it is empty, simply get rid of it.
151 			 * This simplifies the logic of the other
152 			 * functions that process these arrays.
153 			 */
154 			memmove(&regs[i], &regs[i + 1],
155 				(ents - i - 1) * sizeof(regs[0]));
156 			i--;
157 			ents--;
158 			continue;
159 		}
160 		regs[i].phys_addr = base;
161 		regs[i].reg_size = size;
162 	}
163 
164 	*num_ents = ents;
165 
166 	sort(regs, ents, sizeof(struct linux_prom64_registers),
167 	     cmp_p64, NULL);
168 }
169 
170 /* Kernel physical address base and size in bytes.  */
171 unsigned long kern_base __read_mostly;
172 unsigned long kern_size __read_mostly;
173 
174 /* Initial ramdisk setup */
175 extern unsigned long sparc_ramdisk_image64;
176 extern unsigned int sparc_ramdisk_image;
177 extern unsigned int sparc_ramdisk_size;
178 
179 struct page *mem_map_zero __read_mostly;
180 EXPORT_SYMBOL(mem_map_zero);
181 
182 unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly;
183 
184 unsigned long sparc64_kern_pri_context __read_mostly;
185 unsigned long sparc64_kern_pri_nuc_bits __read_mostly;
186 unsigned long sparc64_kern_sec_context __read_mostly;
187 
188 int num_kernel_image_mappings;
189 
190 #ifdef CONFIG_DEBUG_DCFLUSH
191 atomic_t dcpage_flushes = ATOMIC_INIT(0);
192 #ifdef CONFIG_SMP
193 atomic_t dcpage_flushes_xcall = ATOMIC_INIT(0);
194 #endif
195 #endif
196 
197 inline void flush_dcache_page_impl(struct page *page)
198 {
199 	BUG_ON(tlb_type == hypervisor);
200 #ifdef CONFIG_DEBUG_DCFLUSH
201 	atomic_inc(&dcpage_flushes);
202 #endif
203 
204 #ifdef DCACHE_ALIASING_POSSIBLE
205 	__flush_dcache_page(page_address(page),
206 			    ((tlb_type == spitfire) &&
207 			     page_mapping_file(page) != NULL));
208 #else
209 	if (page_mapping_file(page) != NULL &&
210 	    tlb_type == spitfire)
211 		__flush_icache_page(__pa(page_address(page)));
212 #endif
213 }
214 
215 #define PG_dcache_dirty		PG_arch_1
216 #define PG_dcache_cpu_shift	32UL
217 #define PG_dcache_cpu_mask	\
218 	((1UL<<ilog2(roundup_pow_of_two(NR_CPUS)))-1UL)
219 
220 #define dcache_dirty_cpu(page) \
221 	(((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask)
222 
223 static inline void set_dcache_dirty(struct page *page, int this_cpu)
224 {
225 	unsigned long mask = this_cpu;
226 	unsigned long non_cpu_bits;
227 
228 	non_cpu_bits = ~(PG_dcache_cpu_mask << PG_dcache_cpu_shift);
229 	mask = (mask << PG_dcache_cpu_shift) | (1UL << PG_dcache_dirty);
230 
231 	__asm__ __volatile__("1:\n\t"
232 			     "ldx	[%2], %%g7\n\t"
233 			     "and	%%g7, %1, %%g1\n\t"
234 			     "or	%%g1, %0, %%g1\n\t"
235 			     "casx	[%2], %%g7, %%g1\n\t"
236 			     "cmp	%%g7, %%g1\n\t"
237 			     "bne,pn	%%xcc, 1b\n\t"
238 			     " nop"
239 			     : /* no outputs */
240 			     : "r" (mask), "r" (non_cpu_bits), "r" (&page->flags)
241 			     : "g1", "g7");
242 }
243 
244 static inline void clear_dcache_dirty_cpu(struct page *page, unsigned long cpu)
245 {
246 	unsigned long mask = (1UL << PG_dcache_dirty);
247 
248 	__asm__ __volatile__("! test_and_clear_dcache_dirty\n"
249 			     "1:\n\t"
250 			     "ldx	[%2], %%g7\n\t"
251 			     "srlx	%%g7, %4, %%g1\n\t"
252 			     "and	%%g1, %3, %%g1\n\t"
253 			     "cmp	%%g1, %0\n\t"
254 			     "bne,pn	%%icc, 2f\n\t"
255 			     " andn	%%g7, %1, %%g1\n\t"
256 			     "casx	[%2], %%g7, %%g1\n\t"
257 			     "cmp	%%g7, %%g1\n\t"
258 			     "bne,pn	%%xcc, 1b\n\t"
259 			     " nop\n"
260 			     "2:"
261 			     : /* no outputs */
262 			     : "r" (cpu), "r" (mask), "r" (&page->flags),
263 			       "i" (PG_dcache_cpu_mask),
264 			       "i" (PG_dcache_cpu_shift)
265 			     : "g1", "g7");
266 }
267 
268 static inline void tsb_insert(struct tsb *ent, unsigned long tag, unsigned long pte)
269 {
270 	unsigned long tsb_addr = (unsigned long) ent;
271 
272 	if (tlb_type == cheetah_plus || tlb_type == hypervisor)
273 		tsb_addr = __pa(tsb_addr);
274 
275 	__tsb_insert(tsb_addr, tag, pte);
276 }
277 
278 unsigned long _PAGE_ALL_SZ_BITS __read_mostly;
279 
280 static void flush_dcache(unsigned long pfn)
281 {
282 	struct page *page;
283 
284 	page = pfn_to_page(pfn);
285 	if (page) {
286 		unsigned long pg_flags;
287 
288 		pg_flags = page->flags;
289 		if (pg_flags & (1UL << PG_dcache_dirty)) {
290 			int cpu = ((pg_flags >> PG_dcache_cpu_shift) &
291 				   PG_dcache_cpu_mask);
292 			int this_cpu = get_cpu();
293 
294 			/* This is just to optimize away some function calls
295 			 * in the SMP case.
296 			 */
297 			if (cpu == this_cpu)
298 				flush_dcache_page_impl(page);
299 			else
300 				smp_flush_dcache_page_impl(page, cpu);
301 
302 			clear_dcache_dirty_cpu(page, cpu);
303 
304 			put_cpu();
305 		}
306 	}
307 }
308 
309 /* mm->context.lock must be held */
310 static void __update_mmu_tsb_insert(struct mm_struct *mm, unsigned long tsb_index,
311 				    unsigned long tsb_hash_shift, unsigned long address,
312 				    unsigned long tte)
313 {
314 	struct tsb *tsb = mm->context.tsb_block[tsb_index].tsb;
315 	unsigned long tag;
316 
317 	if (unlikely(!tsb))
318 		return;
319 
320 	tsb += ((address >> tsb_hash_shift) &
321 		(mm->context.tsb_block[tsb_index].tsb_nentries - 1UL));
322 	tag = (address >> 22UL);
323 	tsb_insert(tsb, tag, tte);
324 }
325 
326 #ifdef CONFIG_HUGETLB_PAGE
327 static int __init hugetlbpage_init(void)
328 {
329 	hugetlb_add_hstate(HPAGE_64K_SHIFT - PAGE_SHIFT);
330 	hugetlb_add_hstate(HPAGE_SHIFT - PAGE_SHIFT);
331 	hugetlb_add_hstate(HPAGE_256MB_SHIFT - PAGE_SHIFT);
332 	hugetlb_add_hstate(HPAGE_2GB_SHIFT - PAGE_SHIFT);
333 
334 	return 0;
335 }
336 
337 arch_initcall(hugetlbpage_init);
338 
339 static void __init pud_huge_patch(void)
340 {
341 	struct pud_huge_patch_entry *p;
342 	unsigned long addr;
343 
344 	p = &__pud_huge_patch;
345 	addr = p->addr;
346 	*(unsigned int *)addr = p->insn;
347 
348 	__asm__ __volatile__("flush %0" : : "r" (addr));
349 }
350 
351 bool __init arch_hugetlb_valid_size(unsigned long size)
352 {
353 	unsigned int hugepage_shift = ilog2(size);
354 	unsigned short hv_pgsz_idx;
355 	unsigned int hv_pgsz_mask;
356 
357 	switch (hugepage_shift) {
358 	case HPAGE_16GB_SHIFT:
359 		hv_pgsz_mask = HV_PGSZ_MASK_16GB;
360 		hv_pgsz_idx = HV_PGSZ_IDX_16GB;
361 		pud_huge_patch();
362 		break;
363 	case HPAGE_2GB_SHIFT:
364 		hv_pgsz_mask = HV_PGSZ_MASK_2GB;
365 		hv_pgsz_idx = HV_PGSZ_IDX_2GB;
366 		break;
367 	case HPAGE_256MB_SHIFT:
368 		hv_pgsz_mask = HV_PGSZ_MASK_256MB;
369 		hv_pgsz_idx = HV_PGSZ_IDX_256MB;
370 		break;
371 	case HPAGE_SHIFT:
372 		hv_pgsz_mask = HV_PGSZ_MASK_4MB;
373 		hv_pgsz_idx = HV_PGSZ_IDX_4MB;
374 		break;
375 	case HPAGE_64K_SHIFT:
376 		hv_pgsz_mask = HV_PGSZ_MASK_64K;
377 		hv_pgsz_idx = HV_PGSZ_IDX_64K;
378 		break;
379 	default:
380 		hv_pgsz_mask = 0;
381 	}
382 
383 	if ((hv_pgsz_mask & cpu_pgsz_mask) == 0U)
384 		return false;
385 
386 	return true;
387 }
388 #endif	/* CONFIG_HUGETLB_PAGE */
389 
390 void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t *ptep)
391 {
392 	struct mm_struct *mm;
393 	unsigned long flags;
394 	bool is_huge_tsb;
395 	pte_t pte = *ptep;
396 
397 	if (tlb_type != hypervisor) {
398 		unsigned long pfn = pte_pfn(pte);
399 
400 		if (pfn_valid(pfn))
401 			flush_dcache(pfn);
402 	}
403 
404 	mm = vma->vm_mm;
405 
406 	/* Don't insert a non-valid PTE into the TSB, we'll deadlock.  */
407 	if (!pte_accessible(mm, pte))
408 		return;
409 
410 	spin_lock_irqsave(&mm->context.lock, flags);
411 
412 	is_huge_tsb = false;
413 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
414 	if (mm->context.hugetlb_pte_count || mm->context.thp_pte_count) {
415 		unsigned long hugepage_size = PAGE_SIZE;
416 
417 		if (is_vm_hugetlb_page(vma))
418 			hugepage_size = huge_page_size(hstate_vma(vma));
419 
420 		if (hugepage_size >= PUD_SIZE) {
421 			unsigned long mask = 0x1ffc00000UL;
422 
423 			/* Transfer bits [32:22] from address to resolve
424 			 * at 4M granularity.
425 			 */
426 			pte_val(pte) &= ~mask;
427 			pte_val(pte) |= (address & mask);
428 		} else if (hugepage_size >= PMD_SIZE) {
429 			/* We are fabricating 8MB pages using 4MB
430 			 * real hw pages.
431 			 */
432 			pte_val(pte) |= (address & (1UL << REAL_HPAGE_SHIFT));
433 		}
434 
435 		if (hugepage_size >= PMD_SIZE) {
436 			__update_mmu_tsb_insert(mm, MM_TSB_HUGE,
437 				REAL_HPAGE_SHIFT, address, pte_val(pte));
438 			is_huge_tsb = true;
439 		}
440 	}
441 #endif
442 	if (!is_huge_tsb)
443 		__update_mmu_tsb_insert(mm, MM_TSB_BASE, PAGE_SHIFT,
444 					address, pte_val(pte));
445 
446 	spin_unlock_irqrestore(&mm->context.lock, flags);
447 }
448 
449 void flush_dcache_page(struct page *page)
450 {
451 	struct address_space *mapping;
452 	int this_cpu;
453 
454 	if (tlb_type == hypervisor)
455 		return;
456 
457 	/* Do not bother with the expensive D-cache flush if it
458 	 * is merely the zero page.  The 'bigcore' testcase in GDB
459 	 * causes this case to run millions of times.
460 	 */
461 	if (page == ZERO_PAGE(0))
462 		return;
463 
464 	this_cpu = get_cpu();
465 
466 	mapping = page_mapping_file(page);
467 	if (mapping && !mapping_mapped(mapping)) {
468 		int dirty = test_bit(PG_dcache_dirty, &page->flags);
469 		if (dirty) {
470 			int dirty_cpu = dcache_dirty_cpu(page);
471 
472 			if (dirty_cpu == this_cpu)
473 				goto out;
474 			smp_flush_dcache_page_impl(page, dirty_cpu);
475 		}
476 		set_dcache_dirty(page, this_cpu);
477 	} else {
478 		/* We could delay the flush for the !page_mapping
479 		 * case too.  But that case is for exec env/arg
480 		 * pages and those are %99 certainly going to get
481 		 * faulted into the tlb (and thus flushed) anyways.
482 		 */
483 		flush_dcache_page_impl(page);
484 	}
485 
486 out:
487 	put_cpu();
488 }
489 EXPORT_SYMBOL(flush_dcache_page);
490 
491 void __kprobes flush_icache_range(unsigned long start, unsigned long end)
492 {
493 	/* Cheetah and Hypervisor platform cpus have coherent I-cache. */
494 	if (tlb_type == spitfire) {
495 		unsigned long kaddr;
496 
497 		/* This code only runs on Spitfire cpus so this is
498 		 * why we can assume _PAGE_PADDR_4U.
499 		 */
500 		for (kaddr = start; kaddr < end; kaddr += PAGE_SIZE) {
501 			unsigned long paddr, mask = _PAGE_PADDR_4U;
502 
503 			if (kaddr >= PAGE_OFFSET)
504 				paddr = kaddr & mask;
505 			else {
506 				pte_t *ptep = virt_to_kpte(kaddr);
507 
508 				paddr = pte_val(*ptep) & mask;
509 			}
510 			__flush_icache_page(paddr);
511 		}
512 	}
513 }
514 EXPORT_SYMBOL(flush_icache_range);
515 
516 void mmu_info(struct seq_file *m)
517 {
518 	static const char *pgsz_strings[] = {
519 		"8K", "64K", "512K", "4MB", "32MB",
520 		"256MB", "2GB", "16GB",
521 	};
522 	int i, printed;
523 
524 	if (tlb_type == cheetah)
525 		seq_printf(m, "MMU Type\t: Cheetah\n");
526 	else if (tlb_type == cheetah_plus)
527 		seq_printf(m, "MMU Type\t: Cheetah+\n");
528 	else if (tlb_type == spitfire)
529 		seq_printf(m, "MMU Type\t: Spitfire\n");
530 	else if (tlb_type == hypervisor)
531 		seq_printf(m, "MMU Type\t: Hypervisor (sun4v)\n");
532 	else
533 		seq_printf(m, "MMU Type\t: ???\n");
534 
535 	seq_printf(m, "MMU PGSZs\t: ");
536 	printed = 0;
537 	for (i = 0; i < ARRAY_SIZE(pgsz_strings); i++) {
538 		if (cpu_pgsz_mask & (1UL << i)) {
539 			seq_printf(m, "%s%s",
540 				   printed ? "," : "", pgsz_strings[i]);
541 			printed++;
542 		}
543 	}
544 	seq_putc(m, '\n');
545 
546 #ifdef CONFIG_DEBUG_DCFLUSH
547 	seq_printf(m, "DCPageFlushes\t: %d\n",
548 		   atomic_read(&dcpage_flushes));
549 #ifdef CONFIG_SMP
550 	seq_printf(m, "DCPageFlushesXC\t: %d\n",
551 		   atomic_read(&dcpage_flushes_xcall));
552 #endif /* CONFIG_SMP */
553 #endif /* CONFIG_DEBUG_DCFLUSH */
554 }
555 
556 struct linux_prom_translation prom_trans[512] __read_mostly;
557 unsigned int prom_trans_ents __read_mostly;
558 
559 unsigned long kern_locked_tte_data;
560 
561 /* The obp translations are saved based on 8k pagesize, since obp can
562  * use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS ->
563  * HI_OBP_ADDRESS range are handled in ktlb.S.
564  */
565 static inline int in_obp_range(unsigned long vaddr)
566 {
567 	return (vaddr >= LOW_OBP_ADDRESS &&
568 		vaddr < HI_OBP_ADDRESS);
569 }
570 
571 static int cmp_ptrans(const void *a, const void *b)
572 {
573 	const struct linux_prom_translation *x = a, *y = b;
574 
575 	if (x->virt > y->virt)
576 		return 1;
577 	if (x->virt < y->virt)
578 		return -1;
579 	return 0;
580 }
581 
582 /* Read OBP translations property into 'prom_trans[]'.  */
583 static void __init read_obp_translations(void)
584 {
585 	int n, node, ents, first, last, i;
586 
587 	node = prom_finddevice("/virtual-memory");
588 	n = prom_getproplen(node, "translations");
589 	if (unlikely(n == 0 || n == -1)) {
590 		prom_printf("prom_mappings: Couldn't get size.\n");
591 		prom_halt();
592 	}
593 	if (unlikely(n > sizeof(prom_trans))) {
594 		prom_printf("prom_mappings: Size %d is too big.\n", n);
595 		prom_halt();
596 	}
597 
598 	if ((n = prom_getproperty(node, "translations",
599 				  (char *)&prom_trans[0],
600 				  sizeof(prom_trans))) == -1) {
601 		prom_printf("prom_mappings: Couldn't get property.\n");
602 		prom_halt();
603 	}
604 
605 	n = n / sizeof(struct linux_prom_translation);
606 
607 	ents = n;
608 
609 	sort(prom_trans, ents, sizeof(struct linux_prom_translation),
610 	     cmp_ptrans, NULL);
611 
612 	/* Now kick out all the non-OBP entries.  */
613 	for (i = 0; i < ents; i++) {
614 		if (in_obp_range(prom_trans[i].virt))
615 			break;
616 	}
617 	first = i;
618 	for (; i < ents; i++) {
619 		if (!in_obp_range(prom_trans[i].virt))
620 			break;
621 	}
622 	last = i;
623 
624 	for (i = 0; i < (last - first); i++) {
625 		struct linux_prom_translation *src = &prom_trans[i + first];
626 		struct linux_prom_translation *dest = &prom_trans[i];
627 
628 		*dest = *src;
629 	}
630 	for (; i < ents; i++) {
631 		struct linux_prom_translation *dest = &prom_trans[i];
632 		dest->virt = dest->size = dest->data = 0x0UL;
633 	}
634 
635 	prom_trans_ents = last - first;
636 
637 	if (tlb_type == spitfire) {
638 		/* Clear diag TTE bits. */
639 		for (i = 0; i < prom_trans_ents; i++)
640 			prom_trans[i].data &= ~0x0003fe0000000000UL;
641 	}
642 
643 	/* Force execute bit on.  */
644 	for (i = 0; i < prom_trans_ents; i++)
645 		prom_trans[i].data |= (tlb_type == hypervisor ?
646 				       _PAGE_EXEC_4V : _PAGE_EXEC_4U);
647 }
648 
649 static void __init hypervisor_tlb_lock(unsigned long vaddr,
650 				       unsigned long pte,
651 				       unsigned long mmu)
652 {
653 	unsigned long ret = sun4v_mmu_map_perm_addr(vaddr, 0, pte, mmu);
654 
655 	if (ret != 0) {
656 		prom_printf("hypervisor_tlb_lock[%lx:%x:%lx:%lx]: "
657 			    "errors with %lx\n", vaddr, 0, pte, mmu, ret);
658 		prom_halt();
659 	}
660 }
661 
662 static unsigned long kern_large_tte(unsigned long paddr);
663 
664 static void __init remap_kernel(void)
665 {
666 	unsigned long phys_page, tte_vaddr, tte_data;
667 	int i, tlb_ent = sparc64_highest_locked_tlbent();
668 
669 	tte_vaddr = (unsigned long) KERNBASE;
670 	phys_page = (prom_boot_mapping_phys_low >> ILOG2_4MB) << ILOG2_4MB;
671 	tte_data = kern_large_tte(phys_page);
672 
673 	kern_locked_tte_data = tte_data;
674 
675 	/* Now lock us into the TLBs via Hypervisor or OBP. */
676 	if (tlb_type == hypervisor) {
677 		for (i = 0; i < num_kernel_image_mappings; i++) {
678 			hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU);
679 			hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU);
680 			tte_vaddr += 0x400000;
681 			tte_data += 0x400000;
682 		}
683 	} else {
684 		for (i = 0; i < num_kernel_image_mappings; i++) {
685 			prom_dtlb_load(tlb_ent - i, tte_data, tte_vaddr);
686 			prom_itlb_load(tlb_ent - i, tte_data, tte_vaddr);
687 			tte_vaddr += 0x400000;
688 			tte_data += 0x400000;
689 		}
690 		sparc64_highest_unlocked_tlb_ent = tlb_ent - i;
691 	}
692 	if (tlb_type == cheetah_plus) {
693 		sparc64_kern_pri_context = (CTX_CHEETAH_PLUS_CTX0 |
694 					    CTX_CHEETAH_PLUS_NUC);
695 		sparc64_kern_pri_nuc_bits = CTX_CHEETAH_PLUS_NUC;
696 		sparc64_kern_sec_context = CTX_CHEETAH_PLUS_CTX0;
697 	}
698 }
699 
700 
701 static void __init inherit_prom_mappings(void)
702 {
703 	/* Now fixup OBP's idea about where we really are mapped. */
704 	printk("Remapping the kernel... ");
705 	remap_kernel();
706 	printk("done.\n");
707 }
708 
709 void prom_world(int enter)
710 {
711 	if (!enter)
712 		set_fs(get_fs());
713 
714 	__asm__ __volatile__("flushw");
715 }
716 
717 void __flush_dcache_range(unsigned long start, unsigned long end)
718 {
719 	unsigned long va;
720 
721 	if (tlb_type == spitfire) {
722 		int n = 0;
723 
724 		for (va = start; va < end; va += 32) {
725 			spitfire_put_dcache_tag(va & 0x3fe0, 0x0);
726 			if (++n >= 512)
727 				break;
728 		}
729 	} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
730 		start = __pa(start);
731 		end = __pa(end);
732 		for (va = start; va < end; va += 32)
733 			__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
734 					     "membar #Sync"
735 					     : /* no outputs */
736 					     : "r" (va),
737 					       "i" (ASI_DCACHE_INVALIDATE));
738 	}
739 }
740 EXPORT_SYMBOL(__flush_dcache_range);
741 
742 /* get_new_mmu_context() uses "cache + 1".  */
743 DEFINE_SPINLOCK(ctx_alloc_lock);
744 unsigned long tlb_context_cache = CTX_FIRST_VERSION;
745 #define MAX_CTX_NR	(1UL << CTX_NR_BITS)
746 #define CTX_BMAP_SLOTS	BITS_TO_LONGS(MAX_CTX_NR)
747 DECLARE_BITMAP(mmu_context_bmap, MAX_CTX_NR);
748 DEFINE_PER_CPU(struct mm_struct *, per_cpu_secondary_mm) = {0};
749 
750 static void mmu_context_wrap(void)
751 {
752 	unsigned long old_ver = tlb_context_cache & CTX_VERSION_MASK;
753 	unsigned long new_ver, new_ctx, old_ctx;
754 	struct mm_struct *mm;
755 	int cpu;
756 
757 	bitmap_zero(mmu_context_bmap, 1 << CTX_NR_BITS);
758 
759 	/* Reserve kernel context */
760 	set_bit(0, mmu_context_bmap);
761 
762 	new_ver = (tlb_context_cache & CTX_VERSION_MASK) + CTX_FIRST_VERSION;
763 	if (unlikely(new_ver == 0))
764 		new_ver = CTX_FIRST_VERSION;
765 	tlb_context_cache = new_ver;
766 
767 	/*
768 	 * Make sure that any new mm that are added into per_cpu_secondary_mm,
769 	 * are going to go through get_new_mmu_context() path.
770 	 */
771 	mb();
772 
773 	/*
774 	 * Updated versions to current on those CPUs that had valid secondary
775 	 * contexts
776 	 */
777 	for_each_online_cpu(cpu) {
778 		/*
779 		 * If a new mm is stored after we took this mm from the array,
780 		 * it will go into get_new_mmu_context() path, because we
781 		 * already bumped the version in tlb_context_cache.
782 		 */
783 		mm = per_cpu(per_cpu_secondary_mm, cpu);
784 
785 		if (unlikely(!mm || mm == &init_mm))
786 			continue;
787 
788 		old_ctx = mm->context.sparc64_ctx_val;
789 		if (likely((old_ctx & CTX_VERSION_MASK) == old_ver)) {
790 			new_ctx = (old_ctx & ~CTX_VERSION_MASK) | new_ver;
791 			set_bit(new_ctx & CTX_NR_MASK, mmu_context_bmap);
792 			mm->context.sparc64_ctx_val = new_ctx;
793 		}
794 	}
795 }
796 
797 /* Caller does TLB context flushing on local CPU if necessary.
798  * The caller also ensures that CTX_VALID(mm->context) is false.
799  *
800  * We must be careful about boundary cases so that we never
801  * let the user have CTX 0 (nucleus) or we ever use a CTX
802  * version of zero (and thus NO_CONTEXT would not be caught
803  * by version mis-match tests in mmu_context.h).
804  *
805  * Always invoked with interrupts disabled.
806  */
807 void get_new_mmu_context(struct mm_struct *mm)
808 {
809 	unsigned long ctx, new_ctx;
810 	unsigned long orig_pgsz_bits;
811 
812 	spin_lock(&ctx_alloc_lock);
813 retry:
814 	/* wrap might have happened, test again if our context became valid */
815 	if (unlikely(CTX_VALID(mm->context)))
816 		goto out;
817 	orig_pgsz_bits = (mm->context.sparc64_ctx_val & CTX_PGSZ_MASK);
818 	ctx = (tlb_context_cache + 1) & CTX_NR_MASK;
819 	new_ctx = find_next_zero_bit(mmu_context_bmap, 1 << CTX_NR_BITS, ctx);
820 	if (new_ctx >= (1 << CTX_NR_BITS)) {
821 		new_ctx = find_next_zero_bit(mmu_context_bmap, ctx, 1);
822 		if (new_ctx >= ctx) {
823 			mmu_context_wrap();
824 			goto retry;
825 		}
826 	}
827 	if (mm->context.sparc64_ctx_val)
828 		cpumask_clear(mm_cpumask(mm));
829 	mmu_context_bmap[new_ctx>>6] |= (1UL << (new_ctx & 63));
830 	new_ctx |= (tlb_context_cache & CTX_VERSION_MASK);
831 	tlb_context_cache = new_ctx;
832 	mm->context.sparc64_ctx_val = new_ctx | orig_pgsz_bits;
833 out:
834 	spin_unlock(&ctx_alloc_lock);
835 }
836 
837 static int numa_enabled = 1;
838 static int numa_debug;
839 
840 static int __init early_numa(char *p)
841 {
842 	if (!p)
843 		return 0;
844 
845 	if (strstr(p, "off"))
846 		numa_enabled = 0;
847 
848 	if (strstr(p, "debug"))
849 		numa_debug = 1;
850 
851 	return 0;
852 }
853 early_param("numa", early_numa);
854 
855 #define numadbg(f, a...) \
856 do {	if (numa_debug) \
857 		printk(KERN_INFO f, ## a); \
858 } while (0)
859 
860 static void __init find_ramdisk(unsigned long phys_base)
861 {
862 #ifdef CONFIG_BLK_DEV_INITRD
863 	if (sparc_ramdisk_image || sparc_ramdisk_image64) {
864 		unsigned long ramdisk_image;
865 
866 		/* Older versions of the bootloader only supported a
867 		 * 32-bit physical address for the ramdisk image
868 		 * location, stored at sparc_ramdisk_image.  Newer
869 		 * SILO versions set sparc_ramdisk_image to zero and
870 		 * provide a full 64-bit physical address at
871 		 * sparc_ramdisk_image64.
872 		 */
873 		ramdisk_image = sparc_ramdisk_image;
874 		if (!ramdisk_image)
875 			ramdisk_image = sparc_ramdisk_image64;
876 
877 		/* Another bootloader quirk.  The bootloader normalizes
878 		 * the physical address to KERNBASE, so we have to
879 		 * factor that back out and add in the lowest valid
880 		 * physical page address to get the true physical address.
881 		 */
882 		ramdisk_image -= KERNBASE;
883 		ramdisk_image += phys_base;
884 
885 		numadbg("Found ramdisk at physical address 0x%lx, size %u\n",
886 			ramdisk_image, sparc_ramdisk_size);
887 
888 		initrd_start = ramdisk_image;
889 		initrd_end = ramdisk_image + sparc_ramdisk_size;
890 
891 		memblock_reserve(initrd_start, sparc_ramdisk_size);
892 
893 		initrd_start += PAGE_OFFSET;
894 		initrd_end += PAGE_OFFSET;
895 	}
896 #endif
897 }
898 
899 struct node_mem_mask {
900 	unsigned long mask;
901 	unsigned long match;
902 };
903 static struct node_mem_mask node_masks[MAX_NUMNODES];
904 static int num_node_masks;
905 
906 #ifdef CONFIG_NEED_MULTIPLE_NODES
907 
908 struct mdesc_mlgroup {
909 	u64	node;
910 	u64	latency;
911 	u64	match;
912 	u64	mask;
913 };
914 
915 static struct mdesc_mlgroup *mlgroups;
916 static int num_mlgroups;
917 
918 int numa_cpu_lookup_table[NR_CPUS];
919 cpumask_t numa_cpumask_lookup_table[MAX_NUMNODES];
920 
921 struct mdesc_mblock {
922 	u64	base;
923 	u64	size;
924 	u64	offset; /* RA-to-PA */
925 };
926 static struct mdesc_mblock *mblocks;
927 static int num_mblocks;
928 
929 static struct mdesc_mblock * __init addr_to_mblock(unsigned long addr)
930 {
931 	struct mdesc_mblock *m = NULL;
932 	int i;
933 
934 	for (i = 0; i < num_mblocks; i++) {
935 		m = &mblocks[i];
936 
937 		if (addr >= m->base &&
938 		    addr < (m->base + m->size)) {
939 			break;
940 		}
941 	}
942 
943 	return m;
944 }
945 
946 static u64 __init memblock_nid_range_sun4u(u64 start, u64 end, int *nid)
947 {
948 	int prev_nid, new_nid;
949 
950 	prev_nid = NUMA_NO_NODE;
951 	for ( ; start < end; start += PAGE_SIZE) {
952 		for (new_nid = 0; new_nid < num_node_masks; new_nid++) {
953 			struct node_mem_mask *p = &node_masks[new_nid];
954 
955 			if ((start & p->mask) == p->match) {
956 				if (prev_nid == NUMA_NO_NODE)
957 					prev_nid = new_nid;
958 				break;
959 			}
960 		}
961 
962 		if (new_nid == num_node_masks) {
963 			prev_nid = 0;
964 			WARN_ONCE(1, "addr[%Lx] doesn't match a NUMA node rule. Some memory will be owned by node 0.",
965 				  start);
966 			break;
967 		}
968 
969 		if (prev_nid != new_nid)
970 			break;
971 	}
972 	*nid = prev_nid;
973 
974 	return start > end ? end : start;
975 }
976 
977 static u64 __init memblock_nid_range(u64 start, u64 end, int *nid)
978 {
979 	u64 ret_end, pa_start, m_mask, m_match, m_end;
980 	struct mdesc_mblock *mblock;
981 	int _nid, i;
982 
983 	if (tlb_type != hypervisor)
984 		return memblock_nid_range_sun4u(start, end, nid);
985 
986 	mblock = addr_to_mblock(start);
987 	if (!mblock) {
988 		WARN_ONCE(1, "memblock_nid_range: Can't find mblock addr[%Lx]",
989 			  start);
990 
991 		_nid = 0;
992 		ret_end = end;
993 		goto done;
994 	}
995 
996 	pa_start = start + mblock->offset;
997 	m_match = 0;
998 	m_mask = 0;
999 
1000 	for (_nid = 0; _nid < num_node_masks; _nid++) {
1001 		struct node_mem_mask *const m = &node_masks[_nid];
1002 
1003 		if ((pa_start & m->mask) == m->match) {
1004 			m_match = m->match;
1005 			m_mask = m->mask;
1006 			break;
1007 		}
1008 	}
1009 
1010 	if (num_node_masks == _nid) {
1011 		/* We could not find NUMA group, so default to 0, but lets
1012 		 * search for latency group, so we could calculate the correct
1013 		 * end address that we return
1014 		 */
1015 		_nid = 0;
1016 
1017 		for (i = 0; i < num_mlgroups; i++) {
1018 			struct mdesc_mlgroup *const m = &mlgroups[i];
1019 
1020 			if ((pa_start & m->mask) == m->match) {
1021 				m_match = m->match;
1022 				m_mask = m->mask;
1023 				break;
1024 			}
1025 		}
1026 
1027 		if (i == num_mlgroups) {
1028 			WARN_ONCE(1, "memblock_nid_range: Can't find latency group addr[%Lx]",
1029 				  start);
1030 
1031 			ret_end = end;
1032 			goto done;
1033 		}
1034 	}
1035 
1036 	/*
1037 	 * Each latency group has match and mask, and each memory block has an
1038 	 * offset.  An address belongs to a latency group if its address matches
1039 	 * the following formula: ((addr + offset) & mask) == match
1040 	 * It is, however, slow to check every single page if it matches a
1041 	 * particular latency group. As optimization we calculate end value by
1042 	 * using bit arithmetics.
1043 	 */
1044 	m_end = m_match + (1ul << __ffs(m_mask)) - mblock->offset;
1045 	m_end += pa_start & ~((1ul << fls64(m_mask)) - 1);
1046 	ret_end = m_end > end ? end : m_end;
1047 
1048 done:
1049 	*nid = _nid;
1050 	return ret_end;
1051 }
1052 #endif
1053 
1054 /* This must be invoked after performing all of the necessary
1055  * memblock_set_node() calls for 'nid'.  We need to be able to get
1056  * correct data from get_pfn_range_for_nid().
1057  */
1058 static void __init allocate_node_data(int nid)
1059 {
1060 	struct pglist_data *p;
1061 	unsigned long start_pfn, end_pfn;
1062 #ifdef CONFIG_NEED_MULTIPLE_NODES
1063 
1064 	NODE_DATA(nid) = memblock_alloc_node(sizeof(struct pglist_data),
1065 					     SMP_CACHE_BYTES, nid);
1066 	if (!NODE_DATA(nid)) {
1067 		prom_printf("Cannot allocate pglist_data for nid[%d]\n", nid);
1068 		prom_halt();
1069 	}
1070 
1071 	NODE_DATA(nid)->node_id = nid;
1072 #endif
1073 
1074 	p = NODE_DATA(nid);
1075 
1076 	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
1077 	p->node_start_pfn = start_pfn;
1078 	p->node_spanned_pages = end_pfn - start_pfn;
1079 }
1080 
1081 static void init_node_masks_nonnuma(void)
1082 {
1083 #ifdef CONFIG_NEED_MULTIPLE_NODES
1084 	int i;
1085 #endif
1086 
1087 	numadbg("Initializing tables for non-numa.\n");
1088 
1089 	node_masks[0].mask = 0;
1090 	node_masks[0].match = 0;
1091 	num_node_masks = 1;
1092 
1093 #ifdef CONFIG_NEED_MULTIPLE_NODES
1094 	for (i = 0; i < NR_CPUS; i++)
1095 		numa_cpu_lookup_table[i] = 0;
1096 
1097 	cpumask_setall(&numa_cpumask_lookup_table[0]);
1098 #endif
1099 }
1100 
1101 #ifdef CONFIG_NEED_MULTIPLE_NODES
1102 struct pglist_data *node_data[MAX_NUMNODES];
1103 
1104 EXPORT_SYMBOL(numa_cpu_lookup_table);
1105 EXPORT_SYMBOL(numa_cpumask_lookup_table);
1106 EXPORT_SYMBOL(node_data);
1107 
1108 static int scan_pio_for_cfg_handle(struct mdesc_handle *md, u64 pio,
1109 				   u32 cfg_handle)
1110 {
1111 	u64 arc;
1112 
1113 	mdesc_for_each_arc(arc, md, pio, MDESC_ARC_TYPE_FWD) {
1114 		u64 target = mdesc_arc_target(md, arc);
1115 		const u64 *val;
1116 
1117 		val = mdesc_get_property(md, target,
1118 					 "cfg-handle", NULL);
1119 		if (val && *val == cfg_handle)
1120 			return 0;
1121 	}
1122 	return -ENODEV;
1123 }
1124 
1125 static int scan_arcs_for_cfg_handle(struct mdesc_handle *md, u64 grp,
1126 				    u32 cfg_handle)
1127 {
1128 	u64 arc, candidate, best_latency = ~(u64)0;
1129 
1130 	candidate = MDESC_NODE_NULL;
1131 	mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1132 		u64 target = mdesc_arc_target(md, arc);
1133 		const char *name = mdesc_node_name(md, target);
1134 		const u64 *val;
1135 
1136 		if (strcmp(name, "pio-latency-group"))
1137 			continue;
1138 
1139 		val = mdesc_get_property(md, target, "latency", NULL);
1140 		if (!val)
1141 			continue;
1142 
1143 		if (*val < best_latency) {
1144 			candidate = target;
1145 			best_latency = *val;
1146 		}
1147 	}
1148 
1149 	if (candidate == MDESC_NODE_NULL)
1150 		return -ENODEV;
1151 
1152 	return scan_pio_for_cfg_handle(md, candidate, cfg_handle);
1153 }
1154 
1155 int of_node_to_nid(struct device_node *dp)
1156 {
1157 	const struct linux_prom64_registers *regs;
1158 	struct mdesc_handle *md;
1159 	u32 cfg_handle;
1160 	int count, nid;
1161 	u64 grp;
1162 
1163 	/* This is the right thing to do on currently supported
1164 	 * SUN4U NUMA platforms as well, as the PCI controller does
1165 	 * not sit behind any particular memory controller.
1166 	 */
1167 	if (!mlgroups)
1168 		return -1;
1169 
1170 	regs = of_get_property(dp, "reg", NULL);
1171 	if (!regs)
1172 		return -1;
1173 
1174 	cfg_handle = (regs->phys_addr >> 32UL) & 0x0fffffff;
1175 
1176 	md = mdesc_grab();
1177 
1178 	count = 0;
1179 	nid = NUMA_NO_NODE;
1180 	mdesc_for_each_node_by_name(md, grp, "group") {
1181 		if (!scan_arcs_for_cfg_handle(md, grp, cfg_handle)) {
1182 			nid = count;
1183 			break;
1184 		}
1185 		count++;
1186 	}
1187 
1188 	mdesc_release(md);
1189 
1190 	return nid;
1191 }
1192 
1193 static void __init add_node_ranges(void)
1194 {
1195 	struct memblock_region *reg;
1196 	unsigned long prev_max;
1197 
1198 memblock_resized:
1199 	prev_max = memblock.memory.max;
1200 
1201 	for_each_memblock(memory, reg) {
1202 		unsigned long size = reg->size;
1203 		unsigned long start, end;
1204 
1205 		start = reg->base;
1206 		end = start + size;
1207 		while (start < end) {
1208 			unsigned long this_end;
1209 			int nid;
1210 
1211 			this_end = memblock_nid_range(start, end, &nid);
1212 
1213 			numadbg("Setting memblock NUMA node nid[%d] "
1214 				"start[%lx] end[%lx]\n",
1215 				nid, start, this_end);
1216 
1217 			memblock_set_node(start, this_end - start,
1218 					  &memblock.memory, nid);
1219 			if (memblock.memory.max != prev_max)
1220 				goto memblock_resized;
1221 			start = this_end;
1222 		}
1223 	}
1224 }
1225 
1226 static int __init grab_mlgroups(struct mdesc_handle *md)
1227 {
1228 	unsigned long paddr;
1229 	int count = 0;
1230 	u64 node;
1231 
1232 	mdesc_for_each_node_by_name(md, node, "memory-latency-group")
1233 		count++;
1234 	if (!count)
1235 		return -ENOENT;
1236 
1237 	paddr = memblock_phys_alloc(count * sizeof(struct mdesc_mlgroup),
1238 				    SMP_CACHE_BYTES);
1239 	if (!paddr)
1240 		return -ENOMEM;
1241 
1242 	mlgroups = __va(paddr);
1243 	num_mlgroups = count;
1244 
1245 	count = 0;
1246 	mdesc_for_each_node_by_name(md, node, "memory-latency-group") {
1247 		struct mdesc_mlgroup *m = &mlgroups[count++];
1248 		const u64 *val;
1249 
1250 		m->node = node;
1251 
1252 		val = mdesc_get_property(md, node, "latency", NULL);
1253 		m->latency = *val;
1254 		val = mdesc_get_property(md, node, "address-match", NULL);
1255 		m->match = *val;
1256 		val = mdesc_get_property(md, node, "address-mask", NULL);
1257 		m->mask = *val;
1258 
1259 		numadbg("MLGROUP[%d]: node[%llx] latency[%llx] "
1260 			"match[%llx] mask[%llx]\n",
1261 			count - 1, m->node, m->latency, m->match, m->mask);
1262 	}
1263 
1264 	return 0;
1265 }
1266 
1267 static int __init grab_mblocks(struct mdesc_handle *md)
1268 {
1269 	unsigned long paddr;
1270 	int count = 0;
1271 	u64 node;
1272 
1273 	mdesc_for_each_node_by_name(md, node, "mblock")
1274 		count++;
1275 	if (!count)
1276 		return -ENOENT;
1277 
1278 	paddr = memblock_phys_alloc(count * sizeof(struct mdesc_mblock),
1279 				    SMP_CACHE_BYTES);
1280 	if (!paddr)
1281 		return -ENOMEM;
1282 
1283 	mblocks = __va(paddr);
1284 	num_mblocks = count;
1285 
1286 	count = 0;
1287 	mdesc_for_each_node_by_name(md, node, "mblock") {
1288 		struct mdesc_mblock *m = &mblocks[count++];
1289 		const u64 *val;
1290 
1291 		val = mdesc_get_property(md, node, "base", NULL);
1292 		m->base = *val;
1293 		val = mdesc_get_property(md, node, "size", NULL);
1294 		m->size = *val;
1295 		val = mdesc_get_property(md, node,
1296 					 "address-congruence-offset", NULL);
1297 
1298 		/* The address-congruence-offset property is optional.
1299 		 * Explicity zero it be identifty this.
1300 		 */
1301 		if (val)
1302 			m->offset = *val;
1303 		else
1304 			m->offset = 0UL;
1305 
1306 		numadbg("MBLOCK[%d]: base[%llx] size[%llx] offset[%llx]\n",
1307 			count - 1, m->base, m->size, m->offset);
1308 	}
1309 
1310 	return 0;
1311 }
1312 
1313 static void __init numa_parse_mdesc_group_cpus(struct mdesc_handle *md,
1314 					       u64 grp, cpumask_t *mask)
1315 {
1316 	u64 arc;
1317 
1318 	cpumask_clear(mask);
1319 
1320 	mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_BACK) {
1321 		u64 target = mdesc_arc_target(md, arc);
1322 		const char *name = mdesc_node_name(md, target);
1323 		const u64 *id;
1324 
1325 		if (strcmp(name, "cpu"))
1326 			continue;
1327 		id = mdesc_get_property(md, target, "id", NULL);
1328 		if (*id < nr_cpu_ids)
1329 			cpumask_set_cpu(*id, mask);
1330 	}
1331 }
1332 
1333 static struct mdesc_mlgroup * __init find_mlgroup(u64 node)
1334 {
1335 	int i;
1336 
1337 	for (i = 0; i < num_mlgroups; i++) {
1338 		struct mdesc_mlgroup *m = &mlgroups[i];
1339 		if (m->node == node)
1340 			return m;
1341 	}
1342 	return NULL;
1343 }
1344 
1345 int __node_distance(int from, int to)
1346 {
1347 	if ((from >= MAX_NUMNODES) || (to >= MAX_NUMNODES)) {
1348 		pr_warn("Returning default NUMA distance value for %d->%d\n",
1349 			from, to);
1350 		return (from == to) ? LOCAL_DISTANCE : REMOTE_DISTANCE;
1351 	}
1352 	return numa_latency[from][to];
1353 }
1354 EXPORT_SYMBOL(__node_distance);
1355 
1356 static int __init find_best_numa_node_for_mlgroup(struct mdesc_mlgroup *grp)
1357 {
1358 	int i;
1359 
1360 	for (i = 0; i < MAX_NUMNODES; i++) {
1361 		struct node_mem_mask *n = &node_masks[i];
1362 
1363 		if ((grp->mask == n->mask) && (grp->match == n->match))
1364 			break;
1365 	}
1366 	return i;
1367 }
1368 
1369 static void __init find_numa_latencies_for_group(struct mdesc_handle *md,
1370 						 u64 grp, int index)
1371 {
1372 	u64 arc;
1373 
1374 	mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1375 		int tnode;
1376 		u64 target = mdesc_arc_target(md, arc);
1377 		struct mdesc_mlgroup *m = find_mlgroup(target);
1378 
1379 		if (!m)
1380 			continue;
1381 		tnode = find_best_numa_node_for_mlgroup(m);
1382 		if (tnode == MAX_NUMNODES)
1383 			continue;
1384 		numa_latency[index][tnode] = m->latency;
1385 	}
1386 }
1387 
1388 static int __init numa_attach_mlgroup(struct mdesc_handle *md, u64 grp,
1389 				      int index)
1390 {
1391 	struct mdesc_mlgroup *candidate = NULL;
1392 	u64 arc, best_latency = ~(u64)0;
1393 	struct node_mem_mask *n;
1394 
1395 	mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1396 		u64 target = mdesc_arc_target(md, arc);
1397 		struct mdesc_mlgroup *m = find_mlgroup(target);
1398 		if (!m)
1399 			continue;
1400 		if (m->latency < best_latency) {
1401 			candidate = m;
1402 			best_latency = m->latency;
1403 		}
1404 	}
1405 	if (!candidate)
1406 		return -ENOENT;
1407 
1408 	if (num_node_masks != index) {
1409 		printk(KERN_ERR "Inconsistent NUMA state, "
1410 		       "index[%d] != num_node_masks[%d]\n",
1411 		       index, num_node_masks);
1412 		return -EINVAL;
1413 	}
1414 
1415 	n = &node_masks[num_node_masks++];
1416 
1417 	n->mask = candidate->mask;
1418 	n->match = candidate->match;
1419 
1420 	numadbg("NUMA NODE[%d]: mask[%lx] match[%lx] (latency[%llx])\n",
1421 		index, n->mask, n->match, candidate->latency);
1422 
1423 	return 0;
1424 }
1425 
1426 static int __init numa_parse_mdesc_group(struct mdesc_handle *md, u64 grp,
1427 					 int index)
1428 {
1429 	cpumask_t mask;
1430 	int cpu;
1431 
1432 	numa_parse_mdesc_group_cpus(md, grp, &mask);
1433 
1434 	for_each_cpu(cpu, &mask)
1435 		numa_cpu_lookup_table[cpu] = index;
1436 	cpumask_copy(&numa_cpumask_lookup_table[index], &mask);
1437 
1438 	if (numa_debug) {
1439 		printk(KERN_INFO "NUMA GROUP[%d]: cpus [ ", index);
1440 		for_each_cpu(cpu, &mask)
1441 			printk("%d ", cpu);
1442 		printk("]\n");
1443 	}
1444 
1445 	return numa_attach_mlgroup(md, grp, index);
1446 }
1447 
1448 static int __init numa_parse_mdesc(void)
1449 {
1450 	struct mdesc_handle *md = mdesc_grab();
1451 	int i, j, err, count;
1452 	u64 node;
1453 
1454 	node = mdesc_node_by_name(md, MDESC_NODE_NULL, "latency-groups");
1455 	if (node == MDESC_NODE_NULL) {
1456 		mdesc_release(md);
1457 		return -ENOENT;
1458 	}
1459 
1460 	err = grab_mblocks(md);
1461 	if (err < 0)
1462 		goto out;
1463 
1464 	err = grab_mlgroups(md);
1465 	if (err < 0)
1466 		goto out;
1467 
1468 	count = 0;
1469 	mdesc_for_each_node_by_name(md, node, "group") {
1470 		err = numa_parse_mdesc_group(md, node, count);
1471 		if (err < 0)
1472 			break;
1473 		count++;
1474 	}
1475 
1476 	count = 0;
1477 	mdesc_for_each_node_by_name(md, node, "group") {
1478 		find_numa_latencies_for_group(md, node, count);
1479 		count++;
1480 	}
1481 
1482 	/* Normalize numa latency matrix according to ACPI SLIT spec. */
1483 	for (i = 0; i < MAX_NUMNODES; i++) {
1484 		u64 self_latency = numa_latency[i][i];
1485 
1486 		for (j = 0; j < MAX_NUMNODES; j++) {
1487 			numa_latency[i][j] =
1488 				(numa_latency[i][j] * LOCAL_DISTANCE) /
1489 				self_latency;
1490 		}
1491 	}
1492 
1493 	add_node_ranges();
1494 
1495 	for (i = 0; i < num_node_masks; i++) {
1496 		allocate_node_data(i);
1497 		node_set_online(i);
1498 	}
1499 
1500 	err = 0;
1501 out:
1502 	mdesc_release(md);
1503 	return err;
1504 }
1505 
1506 static int __init numa_parse_jbus(void)
1507 {
1508 	unsigned long cpu, index;
1509 
1510 	/* NUMA node id is encoded in bits 36 and higher, and there is
1511 	 * a 1-to-1 mapping from CPU ID to NUMA node ID.
1512 	 */
1513 	index = 0;
1514 	for_each_present_cpu(cpu) {
1515 		numa_cpu_lookup_table[cpu] = index;
1516 		cpumask_copy(&numa_cpumask_lookup_table[index], cpumask_of(cpu));
1517 		node_masks[index].mask = ~((1UL << 36UL) - 1UL);
1518 		node_masks[index].match = cpu << 36UL;
1519 
1520 		index++;
1521 	}
1522 	num_node_masks = index;
1523 
1524 	add_node_ranges();
1525 
1526 	for (index = 0; index < num_node_masks; index++) {
1527 		allocate_node_data(index);
1528 		node_set_online(index);
1529 	}
1530 
1531 	return 0;
1532 }
1533 
1534 static int __init numa_parse_sun4u(void)
1535 {
1536 	if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1537 		unsigned long ver;
1538 
1539 		__asm__ ("rdpr %%ver, %0" : "=r" (ver));
1540 		if ((ver >> 32UL) == __JALAPENO_ID ||
1541 		    (ver >> 32UL) == __SERRANO_ID)
1542 			return numa_parse_jbus();
1543 	}
1544 	return -1;
1545 }
1546 
1547 static int __init bootmem_init_numa(void)
1548 {
1549 	int i, j;
1550 	int err = -1;
1551 
1552 	numadbg("bootmem_init_numa()\n");
1553 
1554 	/* Some sane defaults for numa latency values */
1555 	for (i = 0; i < MAX_NUMNODES; i++) {
1556 		for (j = 0; j < MAX_NUMNODES; j++)
1557 			numa_latency[i][j] = (i == j) ?
1558 				LOCAL_DISTANCE : REMOTE_DISTANCE;
1559 	}
1560 
1561 	if (numa_enabled) {
1562 		if (tlb_type == hypervisor)
1563 			err = numa_parse_mdesc();
1564 		else
1565 			err = numa_parse_sun4u();
1566 	}
1567 	return err;
1568 }
1569 
1570 #else
1571 
1572 static int bootmem_init_numa(void)
1573 {
1574 	return -1;
1575 }
1576 
1577 #endif
1578 
1579 static void __init bootmem_init_nonnuma(void)
1580 {
1581 	unsigned long top_of_ram = memblock_end_of_DRAM();
1582 	unsigned long total_ram = memblock_phys_mem_size();
1583 
1584 	numadbg("bootmem_init_nonnuma()\n");
1585 
1586 	printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
1587 	       top_of_ram, total_ram);
1588 	printk(KERN_INFO "Memory hole size: %ldMB\n",
1589 	       (top_of_ram - total_ram) >> 20);
1590 
1591 	init_node_masks_nonnuma();
1592 	memblock_set_node(0, PHYS_ADDR_MAX, &memblock.memory, 0);
1593 	allocate_node_data(0);
1594 	node_set_online(0);
1595 }
1596 
1597 static unsigned long __init bootmem_init(unsigned long phys_base)
1598 {
1599 	unsigned long end_pfn;
1600 
1601 	end_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
1602 	max_pfn = max_low_pfn = end_pfn;
1603 	min_low_pfn = (phys_base >> PAGE_SHIFT);
1604 
1605 	if (bootmem_init_numa() < 0)
1606 		bootmem_init_nonnuma();
1607 
1608 	/* Dump memblock with node info. */
1609 	memblock_dump_all();
1610 
1611 	/* XXX cpu notifier XXX */
1612 
1613 	sparse_memory_present_with_active_regions(MAX_NUMNODES);
1614 	sparse_init();
1615 
1616 	return end_pfn;
1617 }
1618 
1619 static struct linux_prom64_registers pall[MAX_BANKS] __initdata;
1620 static int pall_ents __initdata;
1621 
1622 static unsigned long max_phys_bits = 40;
1623 
1624 bool kern_addr_valid(unsigned long addr)
1625 {
1626 	pgd_t *pgd;
1627 	p4d_t *p4d;
1628 	pud_t *pud;
1629 	pmd_t *pmd;
1630 	pte_t *pte;
1631 
1632 	if ((long)addr < 0L) {
1633 		unsigned long pa = __pa(addr);
1634 
1635 		if ((pa >> max_phys_bits) != 0UL)
1636 			return false;
1637 
1638 		return pfn_valid(pa >> PAGE_SHIFT);
1639 	}
1640 
1641 	if (addr >= (unsigned long) KERNBASE &&
1642 	    addr < (unsigned long)&_end)
1643 		return true;
1644 
1645 	pgd = pgd_offset_k(addr);
1646 	if (pgd_none(*pgd))
1647 		return false;
1648 
1649 	p4d = p4d_offset(pgd, addr);
1650 	if (p4d_none(*p4d))
1651 		return false;
1652 
1653 	pud = pud_offset(p4d, addr);
1654 	if (pud_none(*pud))
1655 		return false;
1656 
1657 	if (pud_large(*pud))
1658 		return pfn_valid(pud_pfn(*pud));
1659 
1660 	pmd = pmd_offset(pud, addr);
1661 	if (pmd_none(*pmd))
1662 		return false;
1663 
1664 	if (pmd_large(*pmd))
1665 		return pfn_valid(pmd_pfn(*pmd));
1666 
1667 	pte = pte_offset_kernel(pmd, addr);
1668 	if (pte_none(*pte))
1669 		return false;
1670 
1671 	return pfn_valid(pte_pfn(*pte));
1672 }
1673 EXPORT_SYMBOL(kern_addr_valid);
1674 
1675 static unsigned long __ref kernel_map_hugepud(unsigned long vstart,
1676 					      unsigned long vend,
1677 					      pud_t *pud)
1678 {
1679 	const unsigned long mask16gb = (1UL << 34) - 1UL;
1680 	u64 pte_val = vstart;
1681 
1682 	/* Each PUD is 8GB */
1683 	if ((vstart & mask16gb) ||
1684 	    (vend - vstart <= mask16gb)) {
1685 		pte_val ^= kern_linear_pte_xor[2];
1686 		pud_val(*pud) = pte_val | _PAGE_PUD_HUGE;
1687 
1688 		return vstart + PUD_SIZE;
1689 	}
1690 
1691 	pte_val ^= kern_linear_pte_xor[3];
1692 	pte_val |= _PAGE_PUD_HUGE;
1693 
1694 	vend = vstart + mask16gb + 1UL;
1695 	while (vstart < vend) {
1696 		pud_val(*pud) = pte_val;
1697 
1698 		pte_val += PUD_SIZE;
1699 		vstart += PUD_SIZE;
1700 		pud++;
1701 	}
1702 	return vstart;
1703 }
1704 
1705 static bool kernel_can_map_hugepud(unsigned long vstart, unsigned long vend,
1706 				   bool guard)
1707 {
1708 	if (guard && !(vstart & ~PUD_MASK) && (vend - vstart) >= PUD_SIZE)
1709 		return true;
1710 
1711 	return false;
1712 }
1713 
1714 static unsigned long __ref kernel_map_hugepmd(unsigned long vstart,
1715 					      unsigned long vend,
1716 					      pmd_t *pmd)
1717 {
1718 	const unsigned long mask256mb = (1UL << 28) - 1UL;
1719 	const unsigned long mask2gb = (1UL << 31) - 1UL;
1720 	u64 pte_val = vstart;
1721 
1722 	/* Each PMD is 8MB */
1723 	if ((vstart & mask256mb) ||
1724 	    (vend - vstart <= mask256mb)) {
1725 		pte_val ^= kern_linear_pte_xor[0];
1726 		pmd_val(*pmd) = pte_val | _PAGE_PMD_HUGE;
1727 
1728 		return vstart + PMD_SIZE;
1729 	}
1730 
1731 	if ((vstart & mask2gb) ||
1732 	    (vend - vstart <= mask2gb)) {
1733 		pte_val ^= kern_linear_pte_xor[1];
1734 		pte_val |= _PAGE_PMD_HUGE;
1735 		vend = vstart + mask256mb + 1UL;
1736 	} else {
1737 		pte_val ^= kern_linear_pte_xor[2];
1738 		pte_val |= _PAGE_PMD_HUGE;
1739 		vend = vstart + mask2gb + 1UL;
1740 	}
1741 
1742 	while (vstart < vend) {
1743 		pmd_val(*pmd) = pte_val;
1744 
1745 		pte_val += PMD_SIZE;
1746 		vstart += PMD_SIZE;
1747 		pmd++;
1748 	}
1749 
1750 	return vstart;
1751 }
1752 
1753 static bool kernel_can_map_hugepmd(unsigned long vstart, unsigned long vend,
1754 				   bool guard)
1755 {
1756 	if (guard && !(vstart & ~PMD_MASK) && (vend - vstart) >= PMD_SIZE)
1757 		return true;
1758 
1759 	return false;
1760 }
1761 
1762 static unsigned long __ref kernel_map_range(unsigned long pstart,
1763 					    unsigned long pend, pgprot_t prot,
1764 					    bool use_huge)
1765 {
1766 	unsigned long vstart = PAGE_OFFSET + pstart;
1767 	unsigned long vend = PAGE_OFFSET + pend;
1768 	unsigned long alloc_bytes = 0UL;
1769 
1770 	if ((vstart & ~PAGE_MASK) || (vend & ~PAGE_MASK)) {
1771 		prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n",
1772 			    vstart, vend);
1773 		prom_halt();
1774 	}
1775 
1776 	while (vstart < vend) {
1777 		unsigned long this_end, paddr = __pa(vstart);
1778 		pgd_t *pgd = pgd_offset_k(vstart);
1779 		p4d_t *p4d;
1780 		pud_t *pud;
1781 		pmd_t *pmd;
1782 		pte_t *pte;
1783 
1784 		if (pgd_none(*pgd)) {
1785 			pud_t *new;
1786 
1787 			new = memblock_alloc_from(PAGE_SIZE, PAGE_SIZE,
1788 						  PAGE_SIZE);
1789 			if (!new)
1790 				goto err_alloc;
1791 			alloc_bytes += PAGE_SIZE;
1792 			pgd_populate(&init_mm, pgd, new);
1793 		}
1794 
1795 		p4d = p4d_offset(pgd, vstart);
1796 		if (p4d_none(*p4d)) {
1797 			pud_t *new;
1798 
1799 			new = memblock_alloc_from(PAGE_SIZE, PAGE_SIZE,
1800 						  PAGE_SIZE);
1801 			if (!new)
1802 				goto err_alloc;
1803 			alloc_bytes += PAGE_SIZE;
1804 			p4d_populate(&init_mm, p4d, new);
1805 		}
1806 
1807 		pud = pud_offset(p4d, vstart);
1808 		if (pud_none(*pud)) {
1809 			pmd_t *new;
1810 
1811 			if (kernel_can_map_hugepud(vstart, vend, use_huge)) {
1812 				vstart = kernel_map_hugepud(vstart, vend, pud);
1813 				continue;
1814 			}
1815 			new = memblock_alloc_from(PAGE_SIZE, PAGE_SIZE,
1816 						  PAGE_SIZE);
1817 			if (!new)
1818 				goto err_alloc;
1819 			alloc_bytes += PAGE_SIZE;
1820 			pud_populate(&init_mm, pud, new);
1821 		}
1822 
1823 		pmd = pmd_offset(pud, vstart);
1824 		if (pmd_none(*pmd)) {
1825 			pte_t *new;
1826 
1827 			if (kernel_can_map_hugepmd(vstart, vend, use_huge)) {
1828 				vstart = kernel_map_hugepmd(vstart, vend, pmd);
1829 				continue;
1830 			}
1831 			new = memblock_alloc_from(PAGE_SIZE, PAGE_SIZE,
1832 						  PAGE_SIZE);
1833 			if (!new)
1834 				goto err_alloc;
1835 			alloc_bytes += PAGE_SIZE;
1836 			pmd_populate_kernel(&init_mm, pmd, new);
1837 		}
1838 
1839 		pte = pte_offset_kernel(pmd, vstart);
1840 		this_end = (vstart + PMD_SIZE) & PMD_MASK;
1841 		if (this_end > vend)
1842 			this_end = vend;
1843 
1844 		while (vstart < this_end) {
1845 			pte_val(*pte) = (paddr | pgprot_val(prot));
1846 
1847 			vstart += PAGE_SIZE;
1848 			paddr += PAGE_SIZE;
1849 			pte++;
1850 		}
1851 	}
1852 
1853 	return alloc_bytes;
1854 
1855 err_alloc:
1856 	panic("%s: Failed to allocate %lu bytes align=%lx from=%lx\n",
1857 	      __func__, PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1858 	return -ENOMEM;
1859 }
1860 
1861 static void __init flush_all_kernel_tsbs(void)
1862 {
1863 	int i;
1864 
1865 	for (i = 0; i < KERNEL_TSB_NENTRIES; i++) {
1866 		struct tsb *ent = &swapper_tsb[i];
1867 
1868 		ent->tag = (1UL << TSB_TAG_INVALID_BIT);
1869 	}
1870 #ifndef CONFIG_DEBUG_PAGEALLOC
1871 	for (i = 0; i < KERNEL_TSB4M_NENTRIES; i++) {
1872 		struct tsb *ent = &swapper_4m_tsb[i];
1873 
1874 		ent->tag = (1UL << TSB_TAG_INVALID_BIT);
1875 	}
1876 #endif
1877 }
1878 
1879 extern unsigned int kvmap_linear_patch[1];
1880 
1881 static void __init kernel_physical_mapping_init(void)
1882 {
1883 	unsigned long i, mem_alloced = 0UL;
1884 	bool use_huge = true;
1885 
1886 #ifdef CONFIG_DEBUG_PAGEALLOC
1887 	use_huge = false;
1888 #endif
1889 	for (i = 0; i < pall_ents; i++) {
1890 		unsigned long phys_start, phys_end;
1891 
1892 		phys_start = pall[i].phys_addr;
1893 		phys_end = phys_start + pall[i].reg_size;
1894 
1895 		mem_alloced += kernel_map_range(phys_start, phys_end,
1896 						PAGE_KERNEL, use_huge);
1897 	}
1898 
1899 	printk("Allocated %ld bytes for kernel page tables.\n",
1900 	       mem_alloced);
1901 
1902 	kvmap_linear_patch[0] = 0x01000000; /* nop */
1903 	flushi(&kvmap_linear_patch[0]);
1904 
1905 	flush_all_kernel_tsbs();
1906 
1907 	__flush_tlb_all();
1908 }
1909 
1910 #ifdef CONFIG_DEBUG_PAGEALLOC
1911 void __kernel_map_pages(struct page *page, int numpages, int enable)
1912 {
1913 	unsigned long phys_start = page_to_pfn(page) << PAGE_SHIFT;
1914 	unsigned long phys_end = phys_start + (numpages * PAGE_SIZE);
1915 
1916 	kernel_map_range(phys_start, phys_end,
1917 			 (enable ? PAGE_KERNEL : __pgprot(0)), false);
1918 
1919 	flush_tsb_kernel_range(PAGE_OFFSET + phys_start,
1920 			       PAGE_OFFSET + phys_end);
1921 
1922 	/* we should perform an IPI and flush all tlbs,
1923 	 * but that can deadlock->flush only current cpu.
1924 	 */
1925 	__flush_tlb_kernel_range(PAGE_OFFSET + phys_start,
1926 				 PAGE_OFFSET + phys_end);
1927 }
1928 #endif
1929 
1930 unsigned long __init find_ecache_flush_span(unsigned long size)
1931 {
1932 	int i;
1933 
1934 	for (i = 0; i < pavail_ents; i++) {
1935 		if (pavail[i].reg_size >= size)
1936 			return pavail[i].phys_addr;
1937 	}
1938 
1939 	return ~0UL;
1940 }
1941 
1942 unsigned long PAGE_OFFSET;
1943 EXPORT_SYMBOL(PAGE_OFFSET);
1944 
1945 unsigned long VMALLOC_END   = 0x0000010000000000UL;
1946 EXPORT_SYMBOL(VMALLOC_END);
1947 
1948 unsigned long sparc64_va_hole_top =    0xfffff80000000000UL;
1949 unsigned long sparc64_va_hole_bottom = 0x0000080000000000UL;
1950 
1951 static void __init setup_page_offset(void)
1952 {
1953 	if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1954 		/* Cheetah/Panther support a full 64-bit virtual
1955 		 * address, so we can use all that our page tables
1956 		 * support.
1957 		 */
1958 		sparc64_va_hole_top =    0xfff0000000000000UL;
1959 		sparc64_va_hole_bottom = 0x0010000000000000UL;
1960 
1961 		max_phys_bits = 42;
1962 	} else if (tlb_type == hypervisor) {
1963 		switch (sun4v_chip_type) {
1964 		case SUN4V_CHIP_NIAGARA1:
1965 		case SUN4V_CHIP_NIAGARA2:
1966 			/* T1 and T2 support 48-bit virtual addresses.  */
1967 			sparc64_va_hole_top =    0xffff800000000000UL;
1968 			sparc64_va_hole_bottom = 0x0000800000000000UL;
1969 
1970 			max_phys_bits = 39;
1971 			break;
1972 		case SUN4V_CHIP_NIAGARA3:
1973 			/* T3 supports 48-bit virtual addresses.  */
1974 			sparc64_va_hole_top =    0xffff800000000000UL;
1975 			sparc64_va_hole_bottom = 0x0000800000000000UL;
1976 
1977 			max_phys_bits = 43;
1978 			break;
1979 		case SUN4V_CHIP_NIAGARA4:
1980 		case SUN4V_CHIP_NIAGARA5:
1981 		case SUN4V_CHIP_SPARC64X:
1982 		case SUN4V_CHIP_SPARC_M6:
1983 			/* T4 and later support 52-bit virtual addresses.  */
1984 			sparc64_va_hole_top =    0xfff8000000000000UL;
1985 			sparc64_va_hole_bottom = 0x0008000000000000UL;
1986 			max_phys_bits = 47;
1987 			break;
1988 		case SUN4V_CHIP_SPARC_M7:
1989 		case SUN4V_CHIP_SPARC_SN:
1990 			/* M7 and later support 52-bit virtual addresses.  */
1991 			sparc64_va_hole_top =    0xfff8000000000000UL;
1992 			sparc64_va_hole_bottom = 0x0008000000000000UL;
1993 			max_phys_bits = 49;
1994 			break;
1995 		case SUN4V_CHIP_SPARC_M8:
1996 		default:
1997 			/* M8 and later support 54-bit virtual addresses.
1998 			 * However, restricting M8 and above VA bits to 53
1999 			 * as 4-level page table cannot support more than
2000 			 * 53 VA bits.
2001 			 */
2002 			sparc64_va_hole_top =    0xfff0000000000000UL;
2003 			sparc64_va_hole_bottom = 0x0010000000000000UL;
2004 			max_phys_bits = 51;
2005 			break;
2006 		}
2007 	}
2008 
2009 	if (max_phys_bits > MAX_PHYS_ADDRESS_BITS) {
2010 		prom_printf("MAX_PHYS_ADDRESS_BITS is too small, need %lu\n",
2011 			    max_phys_bits);
2012 		prom_halt();
2013 	}
2014 
2015 	PAGE_OFFSET = sparc64_va_hole_top;
2016 	VMALLOC_END = ((sparc64_va_hole_bottom >> 1) +
2017 		       (sparc64_va_hole_bottom >> 2));
2018 
2019 	pr_info("MM: PAGE_OFFSET is 0x%016lx (max_phys_bits == %lu)\n",
2020 		PAGE_OFFSET, max_phys_bits);
2021 	pr_info("MM: VMALLOC [0x%016lx --> 0x%016lx]\n",
2022 		VMALLOC_START, VMALLOC_END);
2023 	pr_info("MM: VMEMMAP [0x%016lx --> 0x%016lx]\n",
2024 		VMEMMAP_BASE, VMEMMAP_BASE << 1);
2025 }
2026 
2027 static void __init tsb_phys_patch(void)
2028 {
2029 	struct tsb_ldquad_phys_patch_entry *pquad;
2030 	struct tsb_phys_patch_entry *p;
2031 
2032 	pquad = &__tsb_ldquad_phys_patch;
2033 	while (pquad < &__tsb_ldquad_phys_patch_end) {
2034 		unsigned long addr = pquad->addr;
2035 
2036 		if (tlb_type == hypervisor)
2037 			*(unsigned int *) addr = pquad->sun4v_insn;
2038 		else
2039 			*(unsigned int *) addr = pquad->sun4u_insn;
2040 		wmb();
2041 		__asm__ __volatile__("flush	%0"
2042 				     : /* no outputs */
2043 				     : "r" (addr));
2044 
2045 		pquad++;
2046 	}
2047 
2048 	p = &__tsb_phys_patch;
2049 	while (p < &__tsb_phys_patch_end) {
2050 		unsigned long addr = p->addr;
2051 
2052 		*(unsigned int *) addr = p->insn;
2053 		wmb();
2054 		__asm__ __volatile__("flush	%0"
2055 				     : /* no outputs */
2056 				     : "r" (addr));
2057 
2058 		p++;
2059 	}
2060 }
2061 
2062 /* Don't mark as init, we give this to the Hypervisor.  */
2063 #ifndef CONFIG_DEBUG_PAGEALLOC
2064 #define NUM_KTSB_DESCR	2
2065 #else
2066 #define NUM_KTSB_DESCR	1
2067 #endif
2068 static struct hv_tsb_descr ktsb_descr[NUM_KTSB_DESCR];
2069 
2070 /* The swapper TSBs are loaded with a base sequence of:
2071  *
2072  *	sethi	%uhi(SYMBOL), REG1
2073  *	sethi	%hi(SYMBOL), REG2
2074  *	or	REG1, %ulo(SYMBOL), REG1
2075  *	or	REG2, %lo(SYMBOL), REG2
2076  *	sllx	REG1, 32, REG1
2077  *	or	REG1, REG2, REG1
2078  *
2079  * When we use physical addressing for the TSB accesses, we patch the
2080  * first four instructions in the above sequence.
2081  */
2082 
2083 static void patch_one_ktsb_phys(unsigned int *start, unsigned int *end, unsigned long pa)
2084 {
2085 	unsigned long high_bits, low_bits;
2086 
2087 	high_bits = (pa >> 32) & 0xffffffff;
2088 	low_bits = (pa >> 0) & 0xffffffff;
2089 
2090 	while (start < end) {
2091 		unsigned int *ia = (unsigned int *)(unsigned long)*start;
2092 
2093 		ia[0] = (ia[0] & ~0x3fffff) | (high_bits >> 10);
2094 		__asm__ __volatile__("flush	%0" : : "r" (ia));
2095 
2096 		ia[1] = (ia[1] & ~0x3fffff) | (low_bits >> 10);
2097 		__asm__ __volatile__("flush	%0" : : "r" (ia + 1));
2098 
2099 		ia[2] = (ia[2] & ~0x1fff) | (high_bits & 0x3ff);
2100 		__asm__ __volatile__("flush	%0" : : "r" (ia + 2));
2101 
2102 		ia[3] = (ia[3] & ~0x1fff) | (low_bits & 0x3ff);
2103 		__asm__ __volatile__("flush	%0" : : "r" (ia + 3));
2104 
2105 		start++;
2106 	}
2107 }
2108 
2109 static void ktsb_phys_patch(void)
2110 {
2111 	extern unsigned int __swapper_tsb_phys_patch;
2112 	extern unsigned int __swapper_tsb_phys_patch_end;
2113 	unsigned long ktsb_pa;
2114 
2115 	ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
2116 	patch_one_ktsb_phys(&__swapper_tsb_phys_patch,
2117 			    &__swapper_tsb_phys_patch_end, ktsb_pa);
2118 #ifndef CONFIG_DEBUG_PAGEALLOC
2119 	{
2120 	extern unsigned int __swapper_4m_tsb_phys_patch;
2121 	extern unsigned int __swapper_4m_tsb_phys_patch_end;
2122 	ktsb_pa = (kern_base +
2123 		   ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
2124 	patch_one_ktsb_phys(&__swapper_4m_tsb_phys_patch,
2125 			    &__swapper_4m_tsb_phys_patch_end, ktsb_pa);
2126 	}
2127 #endif
2128 }
2129 
2130 static void __init sun4v_ktsb_init(void)
2131 {
2132 	unsigned long ktsb_pa;
2133 
2134 	/* First KTSB for PAGE_SIZE mappings.  */
2135 	ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
2136 
2137 	switch (PAGE_SIZE) {
2138 	case 8 * 1024:
2139 	default:
2140 		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_8K;
2141 		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_8K;
2142 		break;
2143 
2144 	case 64 * 1024:
2145 		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_64K;
2146 		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_64K;
2147 		break;
2148 
2149 	case 512 * 1024:
2150 		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_512K;
2151 		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_512K;
2152 		break;
2153 
2154 	case 4 * 1024 * 1024:
2155 		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_4MB;
2156 		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_4MB;
2157 		break;
2158 	}
2159 
2160 	ktsb_descr[0].assoc = 1;
2161 	ktsb_descr[0].num_ttes = KERNEL_TSB_NENTRIES;
2162 	ktsb_descr[0].ctx_idx = 0;
2163 	ktsb_descr[0].tsb_base = ktsb_pa;
2164 	ktsb_descr[0].resv = 0;
2165 
2166 #ifndef CONFIG_DEBUG_PAGEALLOC
2167 	/* Second KTSB for 4MB/256MB/2GB/16GB mappings.  */
2168 	ktsb_pa = (kern_base +
2169 		   ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
2170 
2171 	ktsb_descr[1].pgsz_idx = HV_PGSZ_IDX_4MB;
2172 	ktsb_descr[1].pgsz_mask = ((HV_PGSZ_MASK_4MB |
2173 				    HV_PGSZ_MASK_256MB |
2174 				    HV_PGSZ_MASK_2GB |
2175 				    HV_PGSZ_MASK_16GB) &
2176 				   cpu_pgsz_mask);
2177 	ktsb_descr[1].assoc = 1;
2178 	ktsb_descr[1].num_ttes = KERNEL_TSB4M_NENTRIES;
2179 	ktsb_descr[1].ctx_idx = 0;
2180 	ktsb_descr[1].tsb_base = ktsb_pa;
2181 	ktsb_descr[1].resv = 0;
2182 #endif
2183 }
2184 
2185 void sun4v_ktsb_register(void)
2186 {
2187 	unsigned long pa, ret;
2188 
2189 	pa = kern_base + ((unsigned long)&ktsb_descr[0] - KERNBASE);
2190 
2191 	ret = sun4v_mmu_tsb_ctx0(NUM_KTSB_DESCR, pa);
2192 	if (ret != 0) {
2193 		prom_printf("hypervisor_mmu_tsb_ctx0[%lx]: "
2194 			    "errors with %lx\n", pa, ret);
2195 		prom_halt();
2196 	}
2197 }
2198 
2199 static void __init sun4u_linear_pte_xor_finalize(void)
2200 {
2201 #ifndef CONFIG_DEBUG_PAGEALLOC
2202 	/* This is where we would add Panther support for
2203 	 * 32MB and 256MB pages.
2204 	 */
2205 #endif
2206 }
2207 
2208 static void __init sun4v_linear_pte_xor_finalize(void)
2209 {
2210 	unsigned long pagecv_flag;
2211 
2212 	/* Bit 9 of TTE is no longer CV bit on M7 processor and it instead
2213 	 * enables MCD error. Do not set bit 9 on M7 processor.
2214 	 */
2215 	switch (sun4v_chip_type) {
2216 	case SUN4V_CHIP_SPARC_M7:
2217 	case SUN4V_CHIP_SPARC_M8:
2218 	case SUN4V_CHIP_SPARC_SN:
2219 		pagecv_flag = 0x00;
2220 		break;
2221 	default:
2222 		pagecv_flag = _PAGE_CV_4V;
2223 		break;
2224 	}
2225 #ifndef CONFIG_DEBUG_PAGEALLOC
2226 	if (cpu_pgsz_mask & HV_PGSZ_MASK_256MB) {
2227 		kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZ256MB_4V) ^
2228 			PAGE_OFFSET;
2229 		kern_linear_pte_xor[1] |= (_PAGE_CP_4V | pagecv_flag |
2230 					   _PAGE_P_4V | _PAGE_W_4V);
2231 	} else {
2232 		kern_linear_pte_xor[1] = kern_linear_pte_xor[0];
2233 	}
2234 
2235 	if (cpu_pgsz_mask & HV_PGSZ_MASK_2GB) {
2236 		kern_linear_pte_xor[2] = (_PAGE_VALID | _PAGE_SZ2GB_4V) ^
2237 			PAGE_OFFSET;
2238 		kern_linear_pte_xor[2] |= (_PAGE_CP_4V | pagecv_flag |
2239 					   _PAGE_P_4V | _PAGE_W_4V);
2240 	} else {
2241 		kern_linear_pte_xor[2] = kern_linear_pte_xor[1];
2242 	}
2243 
2244 	if (cpu_pgsz_mask & HV_PGSZ_MASK_16GB) {
2245 		kern_linear_pte_xor[3] = (_PAGE_VALID | _PAGE_SZ16GB_4V) ^
2246 			PAGE_OFFSET;
2247 		kern_linear_pte_xor[3] |= (_PAGE_CP_4V | pagecv_flag |
2248 					   _PAGE_P_4V | _PAGE_W_4V);
2249 	} else {
2250 		kern_linear_pte_xor[3] = kern_linear_pte_xor[2];
2251 	}
2252 #endif
2253 }
2254 
2255 /* paging_init() sets up the page tables */
2256 
2257 static unsigned long last_valid_pfn;
2258 
2259 static void sun4u_pgprot_init(void);
2260 static void sun4v_pgprot_init(void);
2261 
2262 #define _PAGE_CACHE_4U	(_PAGE_CP_4U | _PAGE_CV_4U)
2263 #define _PAGE_CACHE_4V	(_PAGE_CP_4V | _PAGE_CV_4V)
2264 #define __DIRTY_BITS_4U	 (_PAGE_MODIFIED_4U | _PAGE_WRITE_4U | _PAGE_W_4U)
2265 #define __DIRTY_BITS_4V	 (_PAGE_MODIFIED_4V | _PAGE_WRITE_4V | _PAGE_W_4V)
2266 #define __ACCESS_BITS_4U (_PAGE_ACCESSED_4U | _PAGE_READ_4U | _PAGE_R)
2267 #define __ACCESS_BITS_4V (_PAGE_ACCESSED_4V | _PAGE_READ_4V | _PAGE_R)
2268 
2269 /* We need to exclude reserved regions. This exclusion will include
2270  * vmlinux and initrd. To be more precise the initrd size could be used to
2271  * compute a new lower limit because it is freed later during initialization.
2272  */
2273 static void __init reduce_memory(phys_addr_t limit_ram)
2274 {
2275 	limit_ram += memblock_reserved_size();
2276 	memblock_enforce_memory_limit(limit_ram);
2277 }
2278 
2279 void __init paging_init(void)
2280 {
2281 	unsigned long end_pfn, shift, phys_base;
2282 	unsigned long real_end, i;
2283 
2284 	setup_page_offset();
2285 
2286 	/* These build time checkes make sure that the dcache_dirty_cpu()
2287 	 * page->flags usage will work.
2288 	 *
2289 	 * When a page gets marked as dcache-dirty, we store the
2290 	 * cpu number starting at bit 32 in the page->flags.  Also,
2291 	 * functions like clear_dcache_dirty_cpu use the cpu mask
2292 	 * in 13-bit signed-immediate instruction fields.
2293 	 */
2294 
2295 	/*
2296 	 * Page flags must not reach into upper 32 bits that are used
2297 	 * for the cpu number
2298 	 */
2299 	BUILD_BUG_ON(NR_PAGEFLAGS > 32);
2300 
2301 	/*
2302 	 * The bit fields placed in the high range must not reach below
2303 	 * the 32 bit boundary. Otherwise we cannot place the cpu field
2304 	 * at the 32 bit boundary.
2305 	 */
2306 	BUILD_BUG_ON(SECTIONS_WIDTH + NODES_WIDTH + ZONES_WIDTH +
2307 		ilog2(roundup_pow_of_two(NR_CPUS)) > 32);
2308 
2309 	BUILD_BUG_ON(NR_CPUS > 4096);
2310 
2311 	kern_base = (prom_boot_mapping_phys_low >> ILOG2_4MB) << ILOG2_4MB;
2312 	kern_size = (unsigned long)&_end - (unsigned long)KERNBASE;
2313 
2314 	/* Invalidate both kernel TSBs.  */
2315 	memset(swapper_tsb, 0x40, sizeof(swapper_tsb));
2316 #ifndef CONFIG_DEBUG_PAGEALLOC
2317 	memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
2318 #endif
2319 
2320 	/* TTE.cv bit on sparc v9 occupies the same position as TTE.mcde
2321 	 * bit on M7 processor. This is a conflicting usage of the same
2322 	 * bit. Enabling TTE.cv on M7 would turn on Memory Corruption
2323 	 * Detection error on all pages and this will lead to problems
2324 	 * later. Kernel does not run with MCD enabled and hence rest
2325 	 * of the required steps to fully configure memory corruption
2326 	 * detection are not taken. We need to ensure TTE.mcde is not
2327 	 * set on M7 processor. Compute the value of cacheability
2328 	 * flag for use later taking this into consideration.
2329 	 */
2330 	switch (sun4v_chip_type) {
2331 	case SUN4V_CHIP_SPARC_M7:
2332 	case SUN4V_CHIP_SPARC_M8:
2333 	case SUN4V_CHIP_SPARC_SN:
2334 		page_cache4v_flag = _PAGE_CP_4V;
2335 		break;
2336 	default:
2337 		page_cache4v_flag = _PAGE_CACHE_4V;
2338 		break;
2339 	}
2340 
2341 	if (tlb_type == hypervisor)
2342 		sun4v_pgprot_init();
2343 	else
2344 		sun4u_pgprot_init();
2345 
2346 	if (tlb_type == cheetah_plus ||
2347 	    tlb_type == hypervisor) {
2348 		tsb_phys_patch();
2349 		ktsb_phys_patch();
2350 	}
2351 
2352 	if (tlb_type == hypervisor)
2353 		sun4v_patch_tlb_handlers();
2354 
2355 	/* Find available physical memory...
2356 	 *
2357 	 * Read it twice in order to work around a bug in openfirmware.
2358 	 * The call to grab this table itself can cause openfirmware to
2359 	 * allocate memory, which in turn can take away some space from
2360 	 * the list of available memory.  Reading it twice makes sure
2361 	 * we really do get the final value.
2362 	 */
2363 	read_obp_translations();
2364 	read_obp_memory("reg", &pall[0], &pall_ents);
2365 	read_obp_memory("available", &pavail[0], &pavail_ents);
2366 	read_obp_memory("available", &pavail[0], &pavail_ents);
2367 
2368 	phys_base = 0xffffffffffffffffUL;
2369 	for (i = 0; i < pavail_ents; i++) {
2370 		phys_base = min(phys_base, pavail[i].phys_addr);
2371 		memblock_add(pavail[i].phys_addr, pavail[i].reg_size);
2372 	}
2373 
2374 	memblock_reserve(kern_base, kern_size);
2375 
2376 	find_ramdisk(phys_base);
2377 
2378 	if (cmdline_memory_size)
2379 		reduce_memory(cmdline_memory_size);
2380 
2381 	memblock_allow_resize();
2382 	memblock_dump_all();
2383 
2384 	set_bit(0, mmu_context_bmap);
2385 
2386 	shift = kern_base + PAGE_OFFSET - ((unsigned long)KERNBASE);
2387 
2388 	real_end = (unsigned long)_end;
2389 	num_kernel_image_mappings = DIV_ROUND_UP(real_end - KERNBASE, 1 << ILOG2_4MB);
2390 	printk("Kernel: Using %d locked TLB entries for main kernel image.\n",
2391 	       num_kernel_image_mappings);
2392 
2393 	/* Set kernel pgd to upper alias so physical page computations
2394 	 * work.
2395 	 */
2396 	init_mm.pgd += ((shift) / (sizeof(pgd_t)));
2397 
2398 	memset(swapper_pg_dir, 0, sizeof(swapper_pg_dir));
2399 
2400 	inherit_prom_mappings();
2401 
2402 	/* Ok, we can use our TLB miss and window trap handlers safely.  */
2403 	setup_tba();
2404 
2405 	__flush_tlb_all();
2406 
2407 	prom_build_devicetree();
2408 	of_populate_present_mask();
2409 #ifndef CONFIG_SMP
2410 	of_fill_in_cpu_data();
2411 #endif
2412 
2413 	if (tlb_type == hypervisor) {
2414 		sun4v_mdesc_init();
2415 		mdesc_populate_present_mask(cpu_all_mask);
2416 #ifndef CONFIG_SMP
2417 		mdesc_fill_in_cpu_data(cpu_all_mask);
2418 #endif
2419 		mdesc_get_page_sizes(cpu_all_mask, &cpu_pgsz_mask);
2420 
2421 		sun4v_linear_pte_xor_finalize();
2422 
2423 		sun4v_ktsb_init();
2424 		sun4v_ktsb_register();
2425 	} else {
2426 		unsigned long impl, ver;
2427 
2428 		cpu_pgsz_mask = (HV_PGSZ_MASK_8K | HV_PGSZ_MASK_64K |
2429 				 HV_PGSZ_MASK_512K | HV_PGSZ_MASK_4MB);
2430 
2431 		__asm__ __volatile__("rdpr %%ver, %0" : "=r" (ver));
2432 		impl = ((ver >> 32) & 0xffff);
2433 		if (impl == PANTHER_IMPL)
2434 			cpu_pgsz_mask |= (HV_PGSZ_MASK_32MB |
2435 					  HV_PGSZ_MASK_256MB);
2436 
2437 		sun4u_linear_pte_xor_finalize();
2438 	}
2439 
2440 	/* Flush the TLBs and the 4M TSB so that the updated linear
2441 	 * pte XOR settings are realized for all mappings.
2442 	 */
2443 	__flush_tlb_all();
2444 #ifndef CONFIG_DEBUG_PAGEALLOC
2445 	memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
2446 #endif
2447 	__flush_tlb_all();
2448 
2449 	/* Setup bootmem... */
2450 	last_valid_pfn = end_pfn = bootmem_init(phys_base);
2451 
2452 	kernel_physical_mapping_init();
2453 
2454 	{
2455 		unsigned long max_zone_pfns[MAX_NR_ZONES];
2456 
2457 		memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
2458 
2459 		max_zone_pfns[ZONE_NORMAL] = end_pfn;
2460 
2461 		free_area_init(max_zone_pfns);
2462 	}
2463 
2464 	printk("Booting Linux...\n");
2465 }
2466 
2467 int page_in_phys_avail(unsigned long paddr)
2468 {
2469 	int i;
2470 
2471 	paddr &= PAGE_MASK;
2472 
2473 	for (i = 0; i < pavail_ents; i++) {
2474 		unsigned long start, end;
2475 
2476 		start = pavail[i].phys_addr;
2477 		end = start + pavail[i].reg_size;
2478 
2479 		if (paddr >= start && paddr < end)
2480 			return 1;
2481 	}
2482 	if (paddr >= kern_base && paddr < (kern_base + kern_size))
2483 		return 1;
2484 #ifdef CONFIG_BLK_DEV_INITRD
2485 	if (paddr >= __pa(initrd_start) &&
2486 	    paddr < __pa(PAGE_ALIGN(initrd_end)))
2487 		return 1;
2488 #endif
2489 
2490 	return 0;
2491 }
2492 
2493 static void __init register_page_bootmem_info(void)
2494 {
2495 #ifdef CONFIG_NEED_MULTIPLE_NODES
2496 	int i;
2497 
2498 	for_each_online_node(i)
2499 		if (NODE_DATA(i)->node_spanned_pages)
2500 			register_page_bootmem_info_node(NODE_DATA(i));
2501 #endif
2502 }
2503 void __init mem_init(void)
2504 {
2505 	high_memory = __va(last_valid_pfn << PAGE_SHIFT);
2506 
2507 	memblock_free_all();
2508 
2509 	/*
2510 	 * Must be done after boot memory is put on freelist, because here we
2511 	 * might set fields in deferred struct pages that have not yet been
2512 	 * initialized, and memblock_free_all() initializes all the reserved
2513 	 * deferred pages for us.
2514 	 */
2515 	register_page_bootmem_info();
2516 
2517 	/*
2518 	 * Set up the zero page, mark it reserved, so that page count
2519 	 * is not manipulated when freeing the page from user ptes.
2520 	 */
2521 	mem_map_zero = alloc_pages(GFP_KERNEL|__GFP_ZERO, 0);
2522 	if (mem_map_zero == NULL) {
2523 		prom_printf("paging_init: Cannot alloc zero page.\n");
2524 		prom_halt();
2525 	}
2526 	mark_page_reserved(mem_map_zero);
2527 
2528 	mem_init_print_info(NULL);
2529 
2530 	if (tlb_type == cheetah || tlb_type == cheetah_plus)
2531 		cheetah_ecache_flush_init();
2532 }
2533 
2534 void free_initmem(void)
2535 {
2536 	unsigned long addr, initend;
2537 	int do_free = 1;
2538 
2539 	/* If the physical memory maps were trimmed by kernel command
2540 	 * line options, don't even try freeing this initmem stuff up.
2541 	 * The kernel image could have been in the trimmed out region
2542 	 * and if so the freeing below will free invalid page structs.
2543 	 */
2544 	if (cmdline_memory_size)
2545 		do_free = 0;
2546 
2547 	/*
2548 	 * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes.
2549 	 */
2550 	addr = PAGE_ALIGN((unsigned long)(__init_begin));
2551 	initend = (unsigned long)(__init_end) & PAGE_MASK;
2552 	for (; addr < initend; addr += PAGE_SIZE) {
2553 		unsigned long page;
2554 
2555 		page = (addr +
2556 			((unsigned long) __va(kern_base)) -
2557 			((unsigned long) KERNBASE));
2558 		memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
2559 
2560 		if (do_free)
2561 			free_reserved_page(virt_to_page(page));
2562 	}
2563 }
2564 
2565 pgprot_t PAGE_KERNEL __read_mostly;
2566 EXPORT_SYMBOL(PAGE_KERNEL);
2567 
2568 pgprot_t PAGE_KERNEL_LOCKED __read_mostly;
2569 pgprot_t PAGE_COPY __read_mostly;
2570 
2571 pgprot_t PAGE_SHARED __read_mostly;
2572 EXPORT_SYMBOL(PAGE_SHARED);
2573 
2574 unsigned long pg_iobits __read_mostly;
2575 
2576 unsigned long _PAGE_IE __read_mostly;
2577 EXPORT_SYMBOL(_PAGE_IE);
2578 
2579 unsigned long _PAGE_E __read_mostly;
2580 EXPORT_SYMBOL(_PAGE_E);
2581 
2582 unsigned long _PAGE_CACHE __read_mostly;
2583 EXPORT_SYMBOL(_PAGE_CACHE);
2584 
2585 #ifdef CONFIG_SPARSEMEM_VMEMMAP
2586 int __meminit vmemmap_populate(unsigned long vstart, unsigned long vend,
2587 			       int node, struct vmem_altmap *altmap)
2588 {
2589 	unsigned long pte_base;
2590 
2591 	pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2592 		    _PAGE_CP_4U | _PAGE_CV_4U |
2593 		    _PAGE_P_4U | _PAGE_W_4U);
2594 	if (tlb_type == hypervisor)
2595 		pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2596 			    page_cache4v_flag | _PAGE_P_4V | _PAGE_W_4V);
2597 
2598 	pte_base |= _PAGE_PMD_HUGE;
2599 
2600 	vstart = vstart & PMD_MASK;
2601 	vend = ALIGN(vend, PMD_SIZE);
2602 	for (; vstart < vend; vstart += PMD_SIZE) {
2603 		pgd_t *pgd = vmemmap_pgd_populate(vstart, node);
2604 		unsigned long pte;
2605 		p4d_t *p4d;
2606 		pud_t *pud;
2607 		pmd_t *pmd;
2608 
2609 		if (!pgd)
2610 			return -ENOMEM;
2611 
2612 		p4d = vmemmap_p4d_populate(pgd, vstart, node);
2613 		if (!p4d)
2614 			return -ENOMEM;
2615 
2616 		pud = vmemmap_pud_populate(p4d, vstart, node);
2617 		if (!pud)
2618 			return -ENOMEM;
2619 
2620 		pmd = pmd_offset(pud, vstart);
2621 		pte = pmd_val(*pmd);
2622 		if (!(pte & _PAGE_VALID)) {
2623 			void *block = vmemmap_alloc_block(PMD_SIZE, node);
2624 
2625 			if (!block)
2626 				return -ENOMEM;
2627 
2628 			pmd_val(*pmd) = pte_base | __pa(block);
2629 		}
2630 	}
2631 
2632 	return 0;
2633 }
2634 
2635 void vmemmap_free(unsigned long start, unsigned long end,
2636 		struct vmem_altmap *altmap)
2637 {
2638 }
2639 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
2640 
2641 static void prot_init_common(unsigned long page_none,
2642 			     unsigned long page_shared,
2643 			     unsigned long page_copy,
2644 			     unsigned long page_readonly,
2645 			     unsigned long page_exec_bit)
2646 {
2647 	PAGE_COPY = __pgprot(page_copy);
2648 	PAGE_SHARED = __pgprot(page_shared);
2649 
2650 	protection_map[0x0] = __pgprot(page_none);
2651 	protection_map[0x1] = __pgprot(page_readonly & ~page_exec_bit);
2652 	protection_map[0x2] = __pgprot(page_copy & ~page_exec_bit);
2653 	protection_map[0x3] = __pgprot(page_copy & ~page_exec_bit);
2654 	protection_map[0x4] = __pgprot(page_readonly);
2655 	protection_map[0x5] = __pgprot(page_readonly);
2656 	protection_map[0x6] = __pgprot(page_copy);
2657 	protection_map[0x7] = __pgprot(page_copy);
2658 	protection_map[0x8] = __pgprot(page_none);
2659 	protection_map[0x9] = __pgprot(page_readonly & ~page_exec_bit);
2660 	protection_map[0xa] = __pgprot(page_shared & ~page_exec_bit);
2661 	protection_map[0xb] = __pgprot(page_shared & ~page_exec_bit);
2662 	protection_map[0xc] = __pgprot(page_readonly);
2663 	protection_map[0xd] = __pgprot(page_readonly);
2664 	protection_map[0xe] = __pgprot(page_shared);
2665 	protection_map[0xf] = __pgprot(page_shared);
2666 }
2667 
2668 static void __init sun4u_pgprot_init(void)
2669 {
2670 	unsigned long page_none, page_shared, page_copy, page_readonly;
2671 	unsigned long page_exec_bit;
2672 	int i;
2673 
2674 	PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2675 				_PAGE_CACHE_4U | _PAGE_P_4U |
2676 				__ACCESS_BITS_4U | __DIRTY_BITS_4U |
2677 				_PAGE_EXEC_4U);
2678 	PAGE_KERNEL_LOCKED = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2679 				       _PAGE_CACHE_4U | _PAGE_P_4U |
2680 				       __ACCESS_BITS_4U | __DIRTY_BITS_4U |
2681 				       _PAGE_EXEC_4U | _PAGE_L_4U);
2682 
2683 	_PAGE_IE = _PAGE_IE_4U;
2684 	_PAGE_E = _PAGE_E_4U;
2685 	_PAGE_CACHE = _PAGE_CACHE_4U;
2686 
2687 	pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4U | __DIRTY_BITS_4U |
2688 		     __ACCESS_BITS_4U | _PAGE_E_4U);
2689 
2690 #ifdef CONFIG_DEBUG_PAGEALLOC
2691 	kern_linear_pte_xor[0] = _PAGE_VALID ^ PAGE_OFFSET;
2692 #else
2693 	kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4U) ^
2694 		PAGE_OFFSET;
2695 #endif
2696 	kern_linear_pte_xor[0] |= (_PAGE_CP_4U | _PAGE_CV_4U |
2697 				   _PAGE_P_4U | _PAGE_W_4U);
2698 
2699 	for (i = 1; i < 4; i++)
2700 		kern_linear_pte_xor[i] = kern_linear_pte_xor[0];
2701 
2702 	_PAGE_ALL_SZ_BITS =  (_PAGE_SZ4MB_4U | _PAGE_SZ512K_4U |
2703 			      _PAGE_SZ64K_4U | _PAGE_SZ8K_4U |
2704 			      _PAGE_SZ32MB_4U | _PAGE_SZ256MB_4U);
2705 
2706 
2707 	page_none = _PAGE_PRESENT_4U | _PAGE_ACCESSED_4U | _PAGE_CACHE_4U;
2708 	page_shared = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2709 		       __ACCESS_BITS_4U | _PAGE_WRITE_4U | _PAGE_EXEC_4U);
2710 	page_copy   = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2711 		       __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2712 	page_readonly   = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2713 			   __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2714 
2715 	page_exec_bit = _PAGE_EXEC_4U;
2716 
2717 	prot_init_common(page_none, page_shared, page_copy, page_readonly,
2718 			 page_exec_bit);
2719 }
2720 
2721 static void __init sun4v_pgprot_init(void)
2722 {
2723 	unsigned long page_none, page_shared, page_copy, page_readonly;
2724 	unsigned long page_exec_bit;
2725 	int i;
2726 
2727 	PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4V | _PAGE_VALID |
2728 				page_cache4v_flag | _PAGE_P_4V |
2729 				__ACCESS_BITS_4V | __DIRTY_BITS_4V |
2730 				_PAGE_EXEC_4V);
2731 	PAGE_KERNEL_LOCKED = PAGE_KERNEL;
2732 
2733 	_PAGE_IE = _PAGE_IE_4V;
2734 	_PAGE_E = _PAGE_E_4V;
2735 	_PAGE_CACHE = page_cache4v_flag;
2736 
2737 #ifdef CONFIG_DEBUG_PAGEALLOC
2738 	kern_linear_pte_xor[0] = _PAGE_VALID ^ PAGE_OFFSET;
2739 #else
2740 	kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4V) ^
2741 		PAGE_OFFSET;
2742 #endif
2743 	kern_linear_pte_xor[0] |= (page_cache4v_flag | _PAGE_P_4V |
2744 				   _PAGE_W_4V);
2745 
2746 	for (i = 1; i < 4; i++)
2747 		kern_linear_pte_xor[i] = kern_linear_pte_xor[0];
2748 
2749 	pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4V | __DIRTY_BITS_4V |
2750 		     __ACCESS_BITS_4V | _PAGE_E_4V);
2751 
2752 	_PAGE_ALL_SZ_BITS = (_PAGE_SZ16GB_4V | _PAGE_SZ2GB_4V |
2753 			     _PAGE_SZ256MB_4V | _PAGE_SZ32MB_4V |
2754 			     _PAGE_SZ4MB_4V | _PAGE_SZ512K_4V |
2755 			     _PAGE_SZ64K_4V | _PAGE_SZ8K_4V);
2756 
2757 	page_none = _PAGE_PRESENT_4V | _PAGE_ACCESSED_4V | page_cache4v_flag;
2758 	page_shared = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag |
2759 		       __ACCESS_BITS_4V | _PAGE_WRITE_4V | _PAGE_EXEC_4V);
2760 	page_copy   = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag |
2761 		       __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2762 	page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag |
2763 			 __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2764 
2765 	page_exec_bit = _PAGE_EXEC_4V;
2766 
2767 	prot_init_common(page_none, page_shared, page_copy, page_readonly,
2768 			 page_exec_bit);
2769 }
2770 
2771 unsigned long pte_sz_bits(unsigned long sz)
2772 {
2773 	if (tlb_type == hypervisor) {
2774 		switch (sz) {
2775 		case 8 * 1024:
2776 		default:
2777 			return _PAGE_SZ8K_4V;
2778 		case 64 * 1024:
2779 			return _PAGE_SZ64K_4V;
2780 		case 512 * 1024:
2781 			return _PAGE_SZ512K_4V;
2782 		case 4 * 1024 * 1024:
2783 			return _PAGE_SZ4MB_4V;
2784 		}
2785 	} else {
2786 		switch (sz) {
2787 		case 8 * 1024:
2788 		default:
2789 			return _PAGE_SZ8K_4U;
2790 		case 64 * 1024:
2791 			return _PAGE_SZ64K_4U;
2792 		case 512 * 1024:
2793 			return _PAGE_SZ512K_4U;
2794 		case 4 * 1024 * 1024:
2795 			return _PAGE_SZ4MB_4U;
2796 		}
2797 	}
2798 }
2799 
2800 pte_t mk_pte_io(unsigned long page, pgprot_t prot, int space, unsigned long page_size)
2801 {
2802 	pte_t pte;
2803 
2804 	pte_val(pte)  = page | pgprot_val(pgprot_noncached(prot));
2805 	pte_val(pte) |= (((unsigned long)space) << 32);
2806 	pte_val(pte) |= pte_sz_bits(page_size);
2807 
2808 	return pte;
2809 }
2810 
2811 static unsigned long kern_large_tte(unsigned long paddr)
2812 {
2813 	unsigned long val;
2814 
2815 	val = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2816 	       _PAGE_CP_4U | _PAGE_CV_4U | _PAGE_P_4U |
2817 	       _PAGE_EXEC_4U | _PAGE_L_4U | _PAGE_W_4U);
2818 	if (tlb_type == hypervisor)
2819 		val = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2820 		       page_cache4v_flag | _PAGE_P_4V |
2821 		       _PAGE_EXEC_4V | _PAGE_W_4V);
2822 
2823 	return val | paddr;
2824 }
2825 
2826 /* If not locked, zap it. */
2827 void __flush_tlb_all(void)
2828 {
2829 	unsigned long pstate;
2830 	int i;
2831 
2832 	__asm__ __volatile__("flushw\n\t"
2833 			     "rdpr	%%pstate, %0\n\t"
2834 			     "wrpr	%0, %1, %%pstate"
2835 			     : "=r" (pstate)
2836 			     : "i" (PSTATE_IE));
2837 	if (tlb_type == hypervisor) {
2838 		sun4v_mmu_demap_all();
2839 	} else if (tlb_type == spitfire) {
2840 		for (i = 0; i < 64; i++) {
2841 			/* Spitfire Errata #32 workaround */
2842 			/* NOTE: Always runs on spitfire, so no
2843 			 *       cheetah+ page size encodings.
2844 			 */
2845 			__asm__ __volatile__("stxa	%0, [%1] %2\n\t"
2846 					     "flush	%%g6"
2847 					     : /* No outputs */
2848 					     : "r" (0),
2849 					     "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2850 
2851 			if (!(spitfire_get_dtlb_data(i) & _PAGE_L_4U)) {
2852 				__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2853 						     "membar #Sync"
2854 						     : /* no outputs */
2855 						     : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
2856 				spitfire_put_dtlb_data(i, 0x0UL);
2857 			}
2858 
2859 			/* Spitfire Errata #32 workaround */
2860 			/* NOTE: Always runs on spitfire, so no
2861 			 *       cheetah+ page size encodings.
2862 			 */
2863 			__asm__ __volatile__("stxa	%0, [%1] %2\n\t"
2864 					     "flush	%%g6"
2865 					     : /* No outputs */
2866 					     : "r" (0),
2867 					     "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2868 
2869 			if (!(spitfire_get_itlb_data(i) & _PAGE_L_4U)) {
2870 				__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2871 						     "membar #Sync"
2872 						     : /* no outputs */
2873 						     : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU));
2874 				spitfire_put_itlb_data(i, 0x0UL);
2875 			}
2876 		}
2877 	} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
2878 		cheetah_flush_dtlb_all();
2879 		cheetah_flush_itlb_all();
2880 	}
2881 	__asm__ __volatile__("wrpr	%0, 0, %%pstate"
2882 			     : : "r" (pstate));
2883 }
2884 
2885 pte_t *pte_alloc_one_kernel(struct mm_struct *mm)
2886 {
2887 	struct page *page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2888 	pte_t *pte = NULL;
2889 
2890 	if (page)
2891 		pte = (pte_t *) page_address(page);
2892 
2893 	return pte;
2894 }
2895 
2896 pgtable_t pte_alloc_one(struct mm_struct *mm)
2897 {
2898 	struct page *page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2899 	if (!page)
2900 		return NULL;
2901 	if (!pgtable_pte_page_ctor(page)) {
2902 		free_unref_page(page);
2903 		return NULL;
2904 	}
2905 	return (pte_t *) page_address(page);
2906 }
2907 
2908 void pte_free_kernel(struct mm_struct *mm, pte_t *pte)
2909 {
2910 	free_page((unsigned long)pte);
2911 }
2912 
2913 static void __pte_free(pgtable_t pte)
2914 {
2915 	struct page *page = virt_to_page(pte);
2916 
2917 	pgtable_pte_page_dtor(page);
2918 	__free_page(page);
2919 }
2920 
2921 void pte_free(struct mm_struct *mm, pgtable_t pte)
2922 {
2923 	__pte_free(pte);
2924 }
2925 
2926 void pgtable_free(void *table, bool is_page)
2927 {
2928 	if (is_page)
2929 		__pte_free(table);
2930 	else
2931 		kmem_cache_free(pgtable_cache, table);
2932 }
2933 
2934 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2935 void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr,
2936 			  pmd_t *pmd)
2937 {
2938 	unsigned long pte, flags;
2939 	struct mm_struct *mm;
2940 	pmd_t entry = *pmd;
2941 
2942 	if (!pmd_large(entry) || !pmd_young(entry))
2943 		return;
2944 
2945 	pte = pmd_val(entry);
2946 
2947 	/* Don't insert a non-valid PMD into the TSB, we'll deadlock.  */
2948 	if (!(pte & _PAGE_VALID))
2949 		return;
2950 
2951 	/* We are fabricating 8MB pages using 4MB real hw pages.  */
2952 	pte |= (addr & (1UL << REAL_HPAGE_SHIFT));
2953 
2954 	mm = vma->vm_mm;
2955 
2956 	spin_lock_irqsave(&mm->context.lock, flags);
2957 
2958 	if (mm->context.tsb_block[MM_TSB_HUGE].tsb != NULL)
2959 		__update_mmu_tsb_insert(mm, MM_TSB_HUGE, REAL_HPAGE_SHIFT,
2960 					addr, pte);
2961 
2962 	spin_unlock_irqrestore(&mm->context.lock, flags);
2963 }
2964 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2965 
2966 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
2967 static void context_reload(void *__data)
2968 {
2969 	struct mm_struct *mm = __data;
2970 
2971 	if (mm == current->mm)
2972 		load_secondary_context(mm);
2973 }
2974 
2975 void hugetlb_setup(struct pt_regs *regs)
2976 {
2977 	struct mm_struct *mm = current->mm;
2978 	struct tsb_config *tp;
2979 
2980 	if (faulthandler_disabled() || !mm) {
2981 		const struct exception_table_entry *entry;
2982 
2983 		entry = search_exception_tables(regs->tpc);
2984 		if (entry) {
2985 			regs->tpc = entry->fixup;
2986 			regs->tnpc = regs->tpc + 4;
2987 			return;
2988 		}
2989 		pr_alert("Unexpected HugeTLB setup in atomic context.\n");
2990 		die_if_kernel("HugeTSB in atomic", regs);
2991 	}
2992 
2993 	tp = &mm->context.tsb_block[MM_TSB_HUGE];
2994 	if (likely(tp->tsb == NULL))
2995 		tsb_grow(mm, MM_TSB_HUGE, 0);
2996 
2997 	tsb_context_switch(mm);
2998 	smp_tsb_sync(mm);
2999 
3000 	/* On UltraSPARC-III+ and later, configure the second half of
3001 	 * the Data-TLB for huge pages.
3002 	 */
3003 	if (tlb_type == cheetah_plus) {
3004 		bool need_context_reload = false;
3005 		unsigned long ctx;
3006 
3007 		spin_lock_irq(&ctx_alloc_lock);
3008 		ctx = mm->context.sparc64_ctx_val;
3009 		ctx &= ~CTX_PGSZ_MASK;
3010 		ctx |= CTX_PGSZ_BASE << CTX_PGSZ0_SHIFT;
3011 		ctx |= CTX_PGSZ_HUGE << CTX_PGSZ1_SHIFT;
3012 
3013 		if (ctx != mm->context.sparc64_ctx_val) {
3014 			/* When changing the page size fields, we
3015 			 * must perform a context flush so that no
3016 			 * stale entries match.  This flush must
3017 			 * occur with the original context register
3018 			 * settings.
3019 			 */
3020 			do_flush_tlb_mm(mm);
3021 
3022 			/* Reload the context register of all processors
3023 			 * also executing in this address space.
3024 			 */
3025 			mm->context.sparc64_ctx_val = ctx;
3026 			need_context_reload = true;
3027 		}
3028 		spin_unlock_irq(&ctx_alloc_lock);
3029 
3030 		if (need_context_reload)
3031 			on_each_cpu(context_reload, mm, 0);
3032 	}
3033 }
3034 #endif
3035 
3036 static struct resource code_resource = {
3037 	.name	= "Kernel code",
3038 	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
3039 };
3040 
3041 static struct resource data_resource = {
3042 	.name	= "Kernel data",
3043 	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
3044 };
3045 
3046 static struct resource bss_resource = {
3047 	.name	= "Kernel bss",
3048 	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
3049 };
3050 
3051 static inline resource_size_t compute_kern_paddr(void *addr)
3052 {
3053 	return (resource_size_t) (addr - KERNBASE + kern_base);
3054 }
3055 
3056 static void __init kernel_lds_init(void)
3057 {
3058 	code_resource.start = compute_kern_paddr(_text);
3059 	code_resource.end   = compute_kern_paddr(_etext - 1);
3060 	data_resource.start = compute_kern_paddr(_etext);
3061 	data_resource.end   = compute_kern_paddr(_edata - 1);
3062 	bss_resource.start  = compute_kern_paddr(__bss_start);
3063 	bss_resource.end    = compute_kern_paddr(_end - 1);
3064 }
3065 
3066 static int __init report_memory(void)
3067 {
3068 	int i;
3069 	struct resource *res;
3070 
3071 	kernel_lds_init();
3072 
3073 	for (i = 0; i < pavail_ents; i++) {
3074 		res = kzalloc(sizeof(struct resource), GFP_KERNEL);
3075 
3076 		if (!res) {
3077 			pr_warn("Failed to allocate source.\n");
3078 			break;
3079 		}
3080 
3081 		res->name = "System RAM";
3082 		res->start = pavail[i].phys_addr;
3083 		res->end = pavail[i].phys_addr + pavail[i].reg_size - 1;
3084 		res->flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM;
3085 
3086 		if (insert_resource(&iomem_resource, res) < 0) {
3087 			pr_warn("Resource insertion failed.\n");
3088 			break;
3089 		}
3090 
3091 		insert_resource(res, &code_resource);
3092 		insert_resource(res, &data_resource);
3093 		insert_resource(res, &bss_resource);
3094 	}
3095 
3096 	return 0;
3097 }
3098 arch_initcall(report_memory);
3099 
3100 #ifdef CONFIG_SMP
3101 #define do_flush_tlb_kernel_range	smp_flush_tlb_kernel_range
3102 #else
3103 #define do_flush_tlb_kernel_range	__flush_tlb_kernel_range
3104 #endif
3105 
3106 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
3107 {
3108 	if (start < HI_OBP_ADDRESS && end > LOW_OBP_ADDRESS) {
3109 		if (start < LOW_OBP_ADDRESS) {
3110 			flush_tsb_kernel_range(start, LOW_OBP_ADDRESS);
3111 			do_flush_tlb_kernel_range(start, LOW_OBP_ADDRESS);
3112 		}
3113 		if (end > HI_OBP_ADDRESS) {
3114 			flush_tsb_kernel_range(HI_OBP_ADDRESS, end);
3115 			do_flush_tlb_kernel_range(HI_OBP_ADDRESS, end);
3116 		}
3117 	} else {
3118 		flush_tsb_kernel_range(start, end);
3119 		do_flush_tlb_kernel_range(start, end);
3120 	}
3121 }
3122 
3123 void copy_user_highpage(struct page *to, struct page *from,
3124 	unsigned long vaddr, struct vm_area_struct *vma)
3125 {
3126 	char *vfrom, *vto;
3127 
3128 	vfrom = kmap_atomic(from);
3129 	vto = kmap_atomic(to);
3130 	copy_user_page(vto, vfrom, vaddr, to);
3131 	kunmap_atomic(vto);
3132 	kunmap_atomic(vfrom);
3133 
3134 	/* If this page has ADI enabled, copy over any ADI tags
3135 	 * as well
3136 	 */
3137 	if (vma->vm_flags & VM_SPARC_ADI) {
3138 		unsigned long pfrom, pto, i, adi_tag;
3139 
3140 		pfrom = page_to_phys(from);
3141 		pto = page_to_phys(to);
3142 
3143 		for (i = pfrom; i < (pfrom + PAGE_SIZE); i += adi_blksize()) {
3144 			asm volatile("ldxa [%1] %2, %0\n\t"
3145 					: "=r" (adi_tag)
3146 					:  "r" (i), "i" (ASI_MCD_REAL));
3147 			asm volatile("stxa %0, [%1] %2\n\t"
3148 					:
3149 					: "r" (adi_tag), "r" (pto),
3150 					  "i" (ASI_MCD_REAL));
3151 			pto += adi_blksize();
3152 		}
3153 		asm volatile("membar #Sync\n\t");
3154 	}
3155 }
3156 EXPORT_SYMBOL(copy_user_highpage);
3157 
3158 void copy_highpage(struct page *to, struct page *from)
3159 {
3160 	char *vfrom, *vto;
3161 
3162 	vfrom = kmap_atomic(from);
3163 	vto = kmap_atomic(to);
3164 	copy_page(vto, vfrom);
3165 	kunmap_atomic(vto);
3166 	kunmap_atomic(vfrom);
3167 
3168 	/* If this platform is ADI enabled, copy any ADI tags
3169 	 * as well
3170 	 */
3171 	if (adi_capable()) {
3172 		unsigned long pfrom, pto, i, adi_tag;
3173 
3174 		pfrom = page_to_phys(from);
3175 		pto = page_to_phys(to);
3176 
3177 		for (i = pfrom; i < (pfrom + PAGE_SIZE); i += adi_blksize()) {
3178 			asm volatile("ldxa [%1] %2, %0\n\t"
3179 					: "=r" (adi_tag)
3180 					:  "r" (i), "i" (ASI_MCD_REAL));
3181 			asm volatile("stxa %0, [%1] %2\n\t"
3182 					:
3183 					: "r" (adi_tag), "r" (pto),
3184 					  "i" (ASI_MCD_REAL));
3185 			pto += adi_blksize();
3186 		}
3187 		asm volatile("membar #Sync\n\t");
3188 	}
3189 }
3190 EXPORT_SYMBOL(copy_highpage);
3191