1 /* 2 * arch/sparc64/mm/init.c 3 * 4 * Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu) 5 * Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz) 6 */ 7 8 #include <linux/module.h> 9 #include <linux/kernel.h> 10 #include <linux/sched.h> 11 #include <linux/string.h> 12 #include <linux/init.h> 13 #include <linux/bootmem.h> 14 #include <linux/mm.h> 15 #include <linux/hugetlb.h> 16 #include <linux/slab.h> 17 #include <linux/initrd.h> 18 #include <linux/swap.h> 19 #include <linux/pagemap.h> 20 #include <linux/poison.h> 21 #include <linux/fs.h> 22 #include <linux/seq_file.h> 23 #include <linux/kprobes.h> 24 #include <linux/cache.h> 25 #include <linux/sort.h> 26 #include <linux/percpu.h> 27 #include <linux/lmb.h> 28 #include <linux/mmzone.h> 29 30 #include <asm/head.h> 31 #include <asm/system.h> 32 #include <asm/page.h> 33 #include <asm/pgalloc.h> 34 #include <asm/pgtable.h> 35 #include <asm/oplib.h> 36 #include <asm/iommu.h> 37 #include <asm/io.h> 38 #include <asm/uaccess.h> 39 #include <asm/mmu_context.h> 40 #include <asm/tlbflush.h> 41 #include <asm/dma.h> 42 #include <asm/starfire.h> 43 #include <asm/tlb.h> 44 #include <asm/spitfire.h> 45 #include <asm/sections.h> 46 #include <asm/tsb.h> 47 #include <asm/hypervisor.h> 48 #include <asm/prom.h> 49 #include <asm/mdesc.h> 50 #include <asm/cpudata.h> 51 #include <asm/irq.h> 52 53 #include "init_64.h" 54 55 unsigned long kern_linear_pte_xor[2] __read_mostly; 56 57 /* A bitmap, one bit for every 256MB of physical memory. If the bit 58 * is clear, we should use a 4MB page (via kern_linear_pte_xor[0]) else 59 * if set we should use a 256MB page (via kern_linear_pte_xor[1]). 60 */ 61 unsigned long kpte_linear_bitmap[KPTE_BITMAP_BYTES / sizeof(unsigned long)]; 62 63 #ifndef CONFIG_DEBUG_PAGEALLOC 64 /* A special kernel TSB for 4MB and 256MB linear mappings. 65 * Space is allocated for this right after the trap table 66 * in arch/sparc64/kernel/head.S 67 */ 68 extern struct tsb swapper_4m_tsb[KERNEL_TSB4M_NENTRIES]; 69 #endif 70 71 #define MAX_BANKS 32 72 73 static struct linux_prom64_registers pavail[MAX_BANKS] __devinitdata; 74 static int pavail_ents __devinitdata; 75 76 static int cmp_p64(const void *a, const void *b) 77 { 78 const struct linux_prom64_registers *x = a, *y = b; 79 80 if (x->phys_addr > y->phys_addr) 81 return 1; 82 if (x->phys_addr < y->phys_addr) 83 return -1; 84 return 0; 85 } 86 87 static void __init read_obp_memory(const char *property, 88 struct linux_prom64_registers *regs, 89 int *num_ents) 90 { 91 int node = prom_finddevice("/memory"); 92 int prop_size = prom_getproplen(node, property); 93 int ents, ret, i; 94 95 ents = prop_size / sizeof(struct linux_prom64_registers); 96 if (ents > MAX_BANKS) { 97 prom_printf("The machine has more %s property entries than " 98 "this kernel can support (%d).\n", 99 property, MAX_BANKS); 100 prom_halt(); 101 } 102 103 ret = prom_getproperty(node, property, (char *) regs, prop_size); 104 if (ret == -1) { 105 prom_printf("Couldn't get %s property from /memory.\n"); 106 prom_halt(); 107 } 108 109 /* Sanitize what we got from the firmware, by page aligning 110 * everything. 111 */ 112 for (i = 0; i < ents; i++) { 113 unsigned long base, size; 114 115 base = regs[i].phys_addr; 116 size = regs[i].reg_size; 117 118 size &= PAGE_MASK; 119 if (base & ~PAGE_MASK) { 120 unsigned long new_base = PAGE_ALIGN(base); 121 122 size -= new_base - base; 123 if ((long) size < 0L) 124 size = 0UL; 125 base = new_base; 126 } 127 if (size == 0UL) { 128 /* If it is empty, simply get rid of it. 129 * This simplifies the logic of the other 130 * functions that process these arrays. 131 */ 132 memmove(®s[i], ®s[i + 1], 133 (ents - i - 1) * sizeof(regs[0])); 134 i--; 135 ents--; 136 continue; 137 } 138 regs[i].phys_addr = base; 139 regs[i].reg_size = size; 140 } 141 142 *num_ents = ents; 143 144 sort(regs, ents, sizeof(struct linux_prom64_registers), 145 cmp_p64, NULL); 146 } 147 148 unsigned long sparc64_valid_addr_bitmap[VALID_ADDR_BITMAP_BYTES / 149 sizeof(unsigned long)]; 150 EXPORT_SYMBOL(sparc64_valid_addr_bitmap); 151 152 /* Kernel physical address base and size in bytes. */ 153 unsigned long kern_base __read_mostly; 154 unsigned long kern_size __read_mostly; 155 156 /* Initial ramdisk setup */ 157 extern unsigned long sparc_ramdisk_image64; 158 extern unsigned int sparc_ramdisk_image; 159 extern unsigned int sparc_ramdisk_size; 160 161 struct page *mem_map_zero __read_mostly; 162 EXPORT_SYMBOL(mem_map_zero); 163 164 unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly; 165 166 unsigned long sparc64_kern_pri_context __read_mostly; 167 unsigned long sparc64_kern_pri_nuc_bits __read_mostly; 168 unsigned long sparc64_kern_sec_context __read_mostly; 169 170 int num_kernel_image_mappings; 171 172 #ifdef CONFIG_DEBUG_DCFLUSH 173 atomic_t dcpage_flushes = ATOMIC_INIT(0); 174 #ifdef CONFIG_SMP 175 atomic_t dcpage_flushes_xcall = ATOMIC_INIT(0); 176 #endif 177 #endif 178 179 inline void flush_dcache_page_impl(struct page *page) 180 { 181 BUG_ON(tlb_type == hypervisor); 182 #ifdef CONFIG_DEBUG_DCFLUSH 183 atomic_inc(&dcpage_flushes); 184 #endif 185 186 #ifdef DCACHE_ALIASING_POSSIBLE 187 __flush_dcache_page(page_address(page), 188 ((tlb_type == spitfire) && 189 page_mapping(page) != NULL)); 190 #else 191 if (page_mapping(page) != NULL && 192 tlb_type == spitfire) 193 __flush_icache_page(__pa(page_address(page))); 194 #endif 195 } 196 197 #define PG_dcache_dirty PG_arch_1 198 #define PG_dcache_cpu_shift 32UL 199 #define PG_dcache_cpu_mask \ 200 ((1UL<<ilog2(roundup_pow_of_two(NR_CPUS)))-1UL) 201 202 #define dcache_dirty_cpu(page) \ 203 (((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask) 204 205 static inline void set_dcache_dirty(struct page *page, int this_cpu) 206 { 207 unsigned long mask = this_cpu; 208 unsigned long non_cpu_bits; 209 210 non_cpu_bits = ~(PG_dcache_cpu_mask << PG_dcache_cpu_shift); 211 mask = (mask << PG_dcache_cpu_shift) | (1UL << PG_dcache_dirty); 212 213 __asm__ __volatile__("1:\n\t" 214 "ldx [%2], %%g7\n\t" 215 "and %%g7, %1, %%g1\n\t" 216 "or %%g1, %0, %%g1\n\t" 217 "casx [%2], %%g7, %%g1\n\t" 218 "cmp %%g7, %%g1\n\t" 219 "bne,pn %%xcc, 1b\n\t" 220 " nop" 221 : /* no outputs */ 222 : "r" (mask), "r" (non_cpu_bits), "r" (&page->flags) 223 : "g1", "g7"); 224 } 225 226 static inline void clear_dcache_dirty_cpu(struct page *page, unsigned long cpu) 227 { 228 unsigned long mask = (1UL << PG_dcache_dirty); 229 230 __asm__ __volatile__("! test_and_clear_dcache_dirty\n" 231 "1:\n\t" 232 "ldx [%2], %%g7\n\t" 233 "srlx %%g7, %4, %%g1\n\t" 234 "and %%g1, %3, %%g1\n\t" 235 "cmp %%g1, %0\n\t" 236 "bne,pn %%icc, 2f\n\t" 237 " andn %%g7, %1, %%g1\n\t" 238 "casx [%2], %%g7, %%g1\n\t" 239 "cmp %%g7, %%g1\n\t" 240 "bne,pn %%xcc, 1b\n\t" 241 " nop\n" 242 "2:" 243 : /* no outputs */ 244 : "r" (cpu), "r" (mask), "r" (&page->flags), 245 "i" (PG_dcache_cpu_mask), 246 "i" (PG_dcache_cpu_shift) 247 : "g1", "g7"); 248 } 249 250 static inline void tsb_insert(struct tsb *ent, unsigned long tag, unsigned long pte) 251 { 252 unsigned long tsb_addr = (unsigned long) ent; 253 254 if (tlb_type == cheetah_plus || tlb_type == hypervisor) 255 tsb_addr = __pa(tsb_addr); 256 257 __tsb_insert(tsb_addr, tag, pte); 258 } 259 260 unsigned long _PAGE_ALL_SZ_BITS __read_mostly; 261 unsigned long _PAGE_SZBITS __read_mostly; 262 263 static void flush_dcache(unsigned long pfn) 264 { 265 struct page *page; 266 267 page = pfn_to_page(pfn); 268 if (page && page_mapping(page)) { 269 unsigned long pg_flags; 270 271 pg_flags = page->flags; 272 if (pg_flags & (1UL << PG_dcache_dirty)) { 273 int cpu = ((pg_flags >> PG_dcache_cpu_shift) & 274 PG_dcache_cpu_mask); 275 int this_cpu = get_cpu(); 276 277 /* This is just to optimize away some function calls 278 * in the SMP case. 279 */ 280 if (cpu == this_cpu) 281 flush_dcache_page_impl(page); 282 else 283 smp_flush_dcache_page_impl(page, cpu); 284 285 clear_dcache_dirty_cpu(page, cpu); 286 287 put_cpu(); 288 } 289 } 290 } 291 292 void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t pte) 293 { 294 struct mm_struct *mm; 295 struct tsb *tsb; 296 unsigned long tag, flags; 297 unsigned long tsb_index, tsb_hash_shift; 298 299 if (tlb_type != hypervisor) { 300 unsigned long pfn = pte_pfn(pte); 301 302 if (pfn_valid(pfn)) 303 flush_dcache(pfn); 304 } 305 306 mm = vma->vm_mm; 307 308 tsb_index = MM_TSB_BASE; 309 tsb_hash_shift = PAGE_SHIFT; 310 311 spin_lock_irqsave(&mm->context.lock, flags); 312 313 #ifdef CONFIG_HUGETLB_PAGE 314 if (mm->context.tsb_block[MM_TSB_HUGE].tsb != NULL) { 315 if ((tlb_type == hypervisor && 316 (pte_val(pte) & _PAGE_SZALL_4V) == _PAGE_SZHUGE_4V) || 317 (tlb_type != hypervisor && 318 (pte_val(pte) & _PAGE_SZALL_4U) == _PAGE_SZHUGE_4U)) { 319 tsb_index = MM_TSB_HUGE; 320 tsb_hash_shift = HPAGE_SHIFT; 321 } 322 } 323 #endif 324 325 tsb = mm->context.tsb_block[tsb_index].tsb; 326 tsb += ((address >> tsb_hash_shift) & 327 (mm->context.tsb_block[tsb_index].tsb_nentries - 1UL)); 328 tag = (address >> 22UL); 329 tsb_insert(tsb, tag, pte_val(pte)); 330 331 spin_unlock_irqrestore(&mm->context.lock, flags); 332 } 333 334 void flush_dcache_page(struct page *page) 335 { 336 struct address_space *mapping; 337 int this_cpu; 338 339 if (tlb_type == hypervisor) 340 return; 341 342 /* Do not bother with the expensive D-cache flush if it 343 * is merely the zero page. The 'bigcore' testcase in GDB 344 * causes this case to run millions of times. 345 */ 346 if (page == ZERO_PAGE(0)) 347 return; 348 349 this_cpu = get_cpu(); 350 351 mapping = page_mapping(page); 352 if (mapping && !mapping_mapped(mapping)) { 353 int dirty = test_bit(PG_dcache_dirty, &page->flags); 354 if (dirty) { 355 int dirty_cpu = dcache_dirty_cpu(page); 356 357 if (dirty_cpu == this_cpu) 358 goto out; 359 smp_flush_dcache_page_impl(page, dirty_cpu); 360 } 361 set_dcache_dirty(page, this_cpu); 362 } else { 363 /* We could delay the flush for the !page_mapping 364 * case too. But that case is for exec env/arg 365 * pages and those are %99 certainly going to get 366 * faulted into the tlb (and thus flushed) anyways. 367 */ 368 flush_dcache_page_impl(page); 369 } 370 371 out: 372 put_cpu(); 373 } 374 EXPORT_SYMBOL(flush_dcache_page); 375 376 void __kprobes flush_icache_range(unsigned long start, unsigned long end) 377 { 378 /* Cheetah and Hypervisor platform cpus have coherent I-cache. */ 379 if (tlb_type == spitfire) { 380 unsigned long kaddr; 381 382 /* This code only runs on Spitfire cpus so this is 383 * why we can assume _PAGE_PADDR_4U. 384 */ 385 for (kaddr = start; kaddr < end; kaddr += PAGE_SIZE) { 386 unsigned long paddr, mask = _PAGE_PADDR_4U; 387 388 if (kaddr >= PAGE_OFFSET) 389 paddr = kaddr & mask; 390 else { 391 pgd_t *pgdp = pgd_offset_k(kaddr); 392 pud_t *pudp = pud_offset(pgdp, kaddr); 393 pmd_t *pmdp = pmd_offset(pudp, kaddr); 394 pte_t *ptep = pte_offset_kernel(pmdp, kaddr); 395 396 paddr = pte_val(*ptep) & mask; 397 } 398 __flush_icache_page(paddr); 399 } 400 } 401 } 402 EXPORT_SYMBOL(flush_icache_range); 403 404 void mmu_info(struct seq_file *m) 405 { 406 if (tlb_type == cheetah) 407 seq_printf(m, "MMU Type\t: Cheetah\n"); 408 else if (tlb_type == cheetah_plus) 409 seq_printf(m, "MMU Type\t: Cheetah+\n"); 410 else if (tlb_type == spitfire) 411 seq_printf(m, "MMU Type\t: Spitfire\n"); 412 else if (tlb_type == hypervisor) 413 seq_printf(m, "MMU Type\t: Hypervisor (sun4v)\n"); 414 else 415 seq_printf(m, "MMU Type\t: ???\n"); 416 417 #ifdef CONFIG_DEBUG_DCFLUSH 418 seq_printf(m, "DCPageFlushes\t: %d\n", 419 atomic_read(&dcpage_flushes)); 420 #ifdef CONFIG_SMP 421 seq_printf(m, "DCPageFlushesXC\t: %d\n", 422 atomic_read(&dcpage_flushes_xcall)); 423 #endif /* CONFIG_SMP */ 424 #endif /* CONFIG_DEBUG_DCFLUSH */ 425 } 426 427 struct linux_prom_translation prom_trans[512] __read_mostly; 428 unsigned int prom_trans_ents __read_mostly; 429 430 unsigned long kern_locked_tte_data; 431 432 /* The obp translations are saved based on 8k pagesize, since obp can 433 * use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS -> 434 * HI_OBP_ADDRESS range are handled in ktlb.S. 435 */ 436 static inline int in_obp_range(unsigned long vaddr) 437 { 438 return (vaddr >= LOW_OBP_ADDRESS && 439 vaddr < HI_OBP_ADDRESS); 440 } 441 442 static int cmp_ptrans(const void *a, const void *b) 443 { 444 const struct linux_prom_translation *x = a, *y = b; 445 446 if (x->virt > y->virt) 447 return 1; 448 if (x->virt < y->virt) 449 return -1; 450 return 0; 451 } 452 453 /* Read OBP translations property into 'prom_trans[]'. */ 454 static void __init read_obp_translations(void) 455 { 456 int n, node, ents, first, last, i; 457 458 node = prom_finddevice("/virtual-memory"); 459 n = prom_getproplen(node, "translations"); 460 if (unlikely(n == 0 || n == -1)) { 461 prom_printf("prom_mappings: Couldn't get size.\n"); 462 prom_halt(); 463 } 464 if (unlikely(n > sizeof(prom_trans))) { 465 prom_printf("prom_mappings: Size %Zd is too big.\n", n); 466 prom_halt(); 467 } 468 469 if ((n = prom_getproperty(node, "translations", 470 (char *)&prom_trans[0], 471 sizeof(prom_trans))) == -1) { 472 prom_printf("prom_mappings: Couldn't get property.\n"); 473 prom_halt(); 474 } 475 476 n = n / sizeof(struct linux_prom_translation); 477 478 ents = n; 479 480 sort(prom_trans, ents, sizeof(struct linux_prom_translation), 481 cmp_ptrans, NULL); 482 483 /* Now kick out all the non-OBP entries. */ 484 for (i = 0; i < ents; i++) { 485 if (in_obp_range(prom_trans[i].virt)) 486 break; 487 } 488 first = i; 489 for (; i < ents; i++) { 490 if (!in_obp_range(prom_trans[i].virt)) 491 break; 492 } 493 last = i; 494 495 for (i = 0; i < (last - first); i++) { 496 struct linux_prom_translation *src = &prom_trans[i + first]; 497 struct linux_prom_translation *dest = &prom_trans[i]; 498 499 *dest = *src; 500 } 501 for (; i < ents; i++) { 502 struct linux_prom_translation *dest = &prom_trans[i]; 503 dest->virt = dest->size = dest->data = 0x0UL; 504 } 505 506 prom_trans_ents = last - first; 507 508 if (tlb_type == spitfire) { 509 /* Clear diag TTE bits. */ 510 for (i = 0; i < prom_trans_ents; i++) 511 prom_trans[i].data &= ~0x0003fe0000000000UL; 512 } 513 } 514 515 static void __init hypervisor_tlb_lock(unsigned long vaddr, 516 unsigned long pte, 517 unsigned long mmu) 518 { 519 unsigned long ret = sun4v_mmu_map_perm_addr(vaddr, 0, pte, mmu); 520 521 if (ret != 0) { 522 prom_printf("hypervisor_tlb_lock[%lx:%lx:%lx:%lx]: " 523 "errors with %lx\n", vaddr, 0, pte, mmu, ret); 524 prom_halt(); 525 } 526 } 527 528 static unsigned long kern_large_tte(unsigned long paddr); 529 530 static void __init remap_kernel(void) 531 { 532 unsigned long phys_page, tte_vaddr, tte_data; 533 int i, tlb_ent = sparc64_highest_locked_tlbent(); 534 535 tte_vaddr = (unsigned long) KERNBASE; 536 phys_page = (prom_boot_mapping_phys_low >> 22UL) << 22UL; 537 tte_data = kern_large_tte(phys_page); 538 539 kern_locked_tte_data = tte_data; 540 541 /* Now lock us into the TLBs via Hypervisor or OBP. */ 542 if (tlb_type == hypervisor) { 543 for (i = 0; i < num_kernel_image_mappings; i++) { 544 hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU); 545 hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU); 546 tte_vaddr += 0x400000; 547 tte_data += 0x400000; 548 } 549 } else { 550 for (i = 0; i < num_kernel_image_mappings; i++) { 551 prom_dtlb_load(tlb_ent - i, tte_data, tte_vaddr); 552 prom_itlb_load(tlb_ent - i, tte_data, tte_vaddr); 553 tte_vaddr += 0x400000; 554 tte_data += 0x400000; 555 } 556 sparc64_highest_unlocked_tlb_ent = tlb_ent - i; 557 } 558 if (tlb_type == cheetah_plus) { 559 sparc64_kern_pri_context = (CTX_CHEETAH_PLUS_CTX0 | 560 CTX_CHEETAH_PLUS_NUC); 561 sparc64_kern_pri_nuc_bits = CTX_CHEETAH_PLUS_NUC; 562 sparc64_kern_sec_context = CTX_CHEETAH_PLUS_CTX0; 563 } 564 } 565 566 567 static void __init inherit_prom_mappings(void) 568 { 569 /* Now fixup OBP's idea about where we really are mapped. */ 570 printk("Remapping the kernel... "); 571 remap_kernel(); 572 printk("done.\n"); 573 } 574 575 void prom_world(int enter) 576 { 577 if (!enter) 578 set_fs((mm_segment_t) { get_thread_current_ds() }); 579 580 __asm__ __volatile__("flushw"); 581 } 582 583 void __flush_dcache_range(unsigned long start, unsigned long end) 584 { 585 unsigned long va; 586 587 if (tlb_type == spitfire) { 588 int n = 0; 589 590 for (va = start; va < end; va += 32) { 591 spitfire_put_dcache_tag(va & 0x3fe0, 0x0); 592 if (++n >= 512) 593 break; 594 } 595 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) { 596 start = __pa(start); 597 end = __pa(end); 598 for (va = start; va < end; va += 32) 599 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t" 600 "membar #Sync" 601 : /* no outputs */ 602 : "r" (va), 603 "i" (ASI_DCACHE_INVALIDATE)); 604 } 605 } 606 EXPORT_SYMBOL(__flush_dcache_range); 607 608 /* get_new_mmu_context() uses "cache + 1". */ 609 DEFINE_SPINLOCK(ctx_alloc_lock); 610 unsigned long tlb_context_cache = CTX_FIRST_VERSION - 1; 611 #define MAX_CTX_NR (1UL << CTX_NR_BITS) 612 #define CTX_BMAP_SLOTS BITS_TO_LONGS(MAX_CTX_NR) 613 DECLARE_BITMAP(mmu_context_bmap, MAX_CTX_NR); 614 615 /* Caller does TLB context flushing on local CPU if necessary. 616 * The caller also ensures that CTX_VALID(mm->context) is false. 617 * 618 * We must be careful about boundary cases so that we never 619 * let the user have CTX 0 (nucleus) or we ever use a CTX 620 * version of zero (and thus NO_CONTEXT would not be caught 621 * by version mis-match tests in mmu_context.h). 622 * 623 * Always invoked with interrupts disabled. 624 */ 625 void get_new_mmu_context(struct mm_struct *mm) 626 { 627 unsigned long ctx, new_ctx; 628 unsigned long orig_pgsz_bits; 629 unsigned long flags; 630 int new_version; 631 632 spin_lock_irqsave(&ctx_alloc_lock, flags); 633 orig_pgsz_bits = (mm->context.sparc64_ctx_val & CTX_PGSZ_MASK); 634 ctx = (tlb_context_cache + 1) & CTX_NR_MASK; 635 new_ctx = find_next_zero_bit(mmu_context_bmap, 1 << CTX_NR_BITS, ctx); 636 new_version = 0; 637 if (new_ctx >= (1 << CTX_NR_BITS)) { 638 new_ctx = find_next_zero_bit(mmu_context_bmap, ctx, 1); 639 if (new_ctx >= ctx) { 640 int i; 641 new_ctx = (tlb_context_cache & CTX_VERSION_MASK) + 642 CTX_FIRST_VERSION; 643 if (new_ctx == 1) 644 new_ctx = CTX_FIRST_VERSION; 645 646 /* Don't call memset, for 16 entries that's just 647 * plain silly... 648 */ 649 mmu_context_bmap[0] = 3; 650 mmu_context_bmap[1] = 0; 651 mmu_context_bmap[2] = 0; 652 mmu_context_bmap[3] = 0; 653 for (i = 4; i < CTX_BMAP_SLOTS; i += 4) { 654 mmu_context_bmap[i + 0] = 0; 655 mmu_context_bmap[i + 1] = 0; 656 mmu_context_bmap[i + 2] = 0; 657 mmu_context_bmap[i + 3] = 0; 658 } 659 new_version = 1; 660 goto out; 661 } 662 } 663 mmu_context_bmap[new_ctx>>6] |= (1UL << (new_ctx & 63)); 664 new_ctx |= (tlb_context_cache & CTX_VERSION_MASK); 665 out: 666 tlb_context_cache = new_ctx; 667 mm->context.sparc64_ctx_val = new_ctx | orig_pgsz_bits; 668 spin_unlock_irqrestore(&ctx_alloc_lock, flags); 669 670 if (unlikely(new_version)) 671 smp_new_mmu_context_version(); 672 } 673 674 static int numa_enabled = 1; 675 static int numa_debug; 676 677 static int __init early_numa(char *p) 678 { 679 if (!p) 680 return 0; 681 682 if (strstr(p, "off")) 683 numa_enabled = 0; 684 685 if (strstr(p, "debug")) 686 numa_debug = 1; 687 688 return 0; 689 } 690 early_param("numa", early_numa); 691 692 #define numadbg(f, a...) \ 693 do { if (numa_debug) \ 694 printk(KERN_INFO f, ## a); \ 695 } while (0) 696 697 static void __init find_ramdisk(unsigned long phys_base) 698 { 699 #ifdef CONFIG_BLK_DEV_INITRD 700 if (sparc_ramdisk_image || sparc_ramdisk_image64) { 701 unsigned long ramdisk_image; 702 703 /* Older versions of the bootloader only supported a 704 * 32-bit physical address for the ramdisk image 705 * location, stored at sparc_ramdisk_image. Newer 706 * SILO versions set sparc_ramdisk_image to zero and 707 * provide a full 64-bit physical address at 708 * sparc_ramdisk_image64. 709 */ 710 ramdisk_image = sparc_ramdisk_image; 711 if (!ramdisk_image) 712 ramdisk_image = sparc_ramdisk_image64; 713 714 /* Another bootloader quirk. The bootloader normalizes 715 * the physical address to KERNBASE, so we have to 716 * factor that back out and add in the lowest valid 717 * physical page address to get the true physical address. 718 */ 719 ramdisk_image -= KERNBASE; 720 ramdisk_image += phys_base; 721 722 numadbg("Found ramdisk at physical address 0x%lx, size %u\n", 723 ramdisk_image, sparc_ramdisk_size); 724 725 initrd_start = ramdisk_image; 726 initrd_end = ramdisk_image + sparc_ramdisk_size; 727 728 lmb_reserve(initrd_start, sparc_ramdisk_size); 729 730 initrd_start += PAGE_OFFSET; 731 initrd_end += PAGE_OFFSET; 732 } 733 #endif 734 } 735 736 struct node_mem_mask { 737 unsigned long mask; 738 unsigned long val; 739 unsigned long bootmem_paddr; 740 }; 741 static struct node_mem_mask node_masks[MAX_NUMNODES]; 742 static int num_node_masks; 743 744 int numa_cpu_lookup_table[NR_CPUS]; 745 cpumask_t numa_cpumask_lookup_table[MAX_NUMNODES]; 746 747 #ifdef CONFIG_NEED_MULTIPLE_NODES 748 749 struct mdesc_mblock { 750 u64 base; 751 u64 size; 752 u64 offset; /* RA-to-PA */ 753 }; 754 static struct mdesc_mblock *mblocks; 755 static int num_mblocks; 756 757 static unsigned long ra_to_pa(unsigned long addr) 758 { 759 int i; 760 761 for (i = 0; i < num_mblocks; i++) { 762 struct mdesc_mblock *m = &mblocks[i]; 763 764 if (addr >= m->base && 765 addr < (m->base + m->size)) { 766 addr += m->offset; 767 break; 768 } 769 } 770 return addr; 771 } 772 773 static int find_node(unsigned long addr) 774 { 775 int i; 776 777 addr = ra_to_pa(addr); 778 for (i = 0; i < num_node_masks; i++) { 779 struct node_mem_mask *p = &node_masks[i]; 780 781 if ((addr & p->mask) == p->val) 782 return i; 783 } 784 return -1; 785 } 786 787 static unsigned long long nid_range(unsigned long long start, 788 unsigned long long end, int *nid) 789 { 790 *nid = find_node(start); 791 start += PAGE_SIZE; 792 while (start < end) { 793 int n = find_node(start); 794 795 if (n != *nid) 796 break; 797 start += PAGE_SIZE; 798 } 799 800 if (start > end) 801 start = end; 802 803 return start; 804 } 805 #else 806 static unsigned long long nid_range(unsigned long long start, 807 unsigned long long end, int *nid) 808 { 809 *nid = 0; 810 return end; 811 } 812 #endif 813 814 /* This must be invoked after performing all of the necessary 815 * add_active_range() calls for 'nid'. We need to be able to get 816 * correct data from get_pfn_range_for_nid(). 817 */ 818 static void __init allocate_node_data(int nid) 819 { 820 unsigned long paddr, num_pages, start_pfn, end_pfn; 821 struct pglist_data *p; 822 823 #ifdef CONFIG_NEED_MULTIPLE_NODES 824 paddr = lmb_alloc_nid(sizeof(struct pglist_data), 825 SMP_CACHE_BYTES, nid, nid_range); 826 if (!paddr) { 827 prom_printf("Cannot allocate pglist_data for nid[%d]\n", nid); 828 prom_halt(); 829 } 830 NODE_DATA(nid) = __va(paddr); 831 memset(NODE_DATA(nid), 0, sizeof(struct pglist_data)); 832 833 NODE_DATA(nid)->bdata = &bootmem_node_data[nid]; 834 #endif 835 836 p = NODE_DATA(nid); 837 838 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); 839 p->node_start_pfn = start_pfn; 840 p->node_spanned_pages = end_pfn - start_pfn; 841 842 if (p->node_spanned_pages) { 843 num_pages = bootmem_bootmap_pages(p->node_spanned_pages); 844 845 paddr = lmb_alloc_nid(num_pages << PAGE_SHIFT, PAGE_SIZE, nid, 846 nid_range); 847 if (!paddr) { 848 prom_printf("Cannot allocate bootmap for nid[%d]\n", 849 nid); 850 prom_halt(); 851 } 852 node_masks[nid].bootmem_paddr = paddr; 853 } 854 } 855 856 static void init_node_masks_nonnuma(void) 857 { 858 int i; 859 860 numadbg("Initializing tables for non-numa.\n"); 861 862 node_masks[0].mask = node_masks[0].val = 0; 863 num_node_masks = 1; 864 865 for (i = 0; i < NR_CPUS; i++) 866 numa_cpu_lookup_table[i] = 0; 867 868 numa_cpumask_lookup_table[0] = CPU_MASK_ALL; 869 } 870 871 #ifdef CONFIG_NEED_MULTIPLE_NODES 872 struct pglist_data *node_data[MAX_NUMNODES]; 873 874 EXPORT_SYMBOL(numa_cpu_lookup_table); 875 EXPORT_SYMBOL(numa_cpumask_lookup_table); 876 EXPORT_SYMBOL(node_data); 877 878 struct mdesc_mlgroup { 879 u64 node; 880 u64 latency; 881 u64 match; 882 u64 mask; 883 }; 884 static struct mdesc_mlgroup *mlgroups; 885 static int num_mlgroups; 886 887 static int scan_pio_for_cfg_handle(struct mdesc_handle *md, u64 pio, 888 u32 cfg_handle) 889 { 890 u64 arc; 891 892 mdesc_for_each_arc(arc, md, pio, MDESC_ARC_TYPE_FWD) { 893 u64 target = mdesc_arc_target(md, arc); 894 const u64 *val; 895 896 val = mdesc_get_property(md, target, 897 "cfg-handle", NULL); 898 if (val && *val == cfg_handle) 899 return 0; 900 } 901 return -ENODEV; 902 } 903 904 static int scan_arcs_for_cfg_handle(struct mdesc_handle *md, u64 grp, 905 u32 cfg_handle) 906 { 907 u64 arc, candidate, best_latency = ~(u64)0; 908 909 candidate = MDESC_NODE_NULL; 910 mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) { 911 u64 target = mdesc_arc_target(md, arc); 912 const char *name = mdesc_node_name(md, target); 913 const u64 *val; 914 915 if (strcmp(name, "pio-latency-group")) 916 continue; 917 918 val = mdesc_get_property(md, target, "latency", NULL); 919 if (!val) 920 continue; 921 922 if (*val < best_latency) { 923 candidate = target; 924 best_latency = *val; 925 } 926 } 927 928 if (candidate == MDESC_NODE_NULL) 929 return -ENODEV; 930 931 return scan_pio_for_cfg_handle(md, candidate, cfg_handle); 932 } 933 934 int of_node_to_nid(struct device_node *dp) 935 { 936 const struct linux_prom64_registers *regs; 937 struct mdesc_handle *md; 938 u32 cfg_handle; 939 int count, nid; 940 u64 grp; 941 942 /* This is the right thing to do on currently supported 943 * SUN4U NUMA platforms as well, as the PCI controller does 944 * not sit behind any particular memory controller. 945 */ 946 if (!mlgroups) 947 return -1; 948 949 regs = of_get_property(dp, "reg", NULL); 950 if (!regs) 951 return -1; 952 953 cfg_handle = (regs->phys_addr >> 32UL) & 0x0fffffff; 954 955 md = mdesc_grab(); 956 957 count = 0; 958 nid = -1; 959 mdesc_for_each_node_by_name(md, grp, "group") { 960 if (!scan_arcs_for_cfg_handle(md, grp, cfg_handle)) { 961 nid = count; 962 break; 963 } 964 count++; 965 } 966 967 mdesc_release(md); 968 969 return nid; 970 } 971 972 static void __init add_node_ranges(void) 973 { 974 int i; 975 976 for (i = 0; i < lmb.memory.cnt; i++) { 977 unsigned long size = lmb_size_bytes(&lmb.memory, i); 978 unsigned long start, end; 979 980 start = lmb.memory.region[i].base; 981 end = start + size; 982 while (start < end) { 983 unsigned long this_end; 984 int nid; 985 986 this_end = nid_range(start, end, &nid); 987 988 numadbg("Adding active range nid[%d] " 989 "start[%lx] end[%lx]\n", 990 nid, start, this_end); 991 992 add_active_range(nid, 993 start >> PAGE_SHIFT, 994 this_end >> PAGE_SHIFT); 995 996 start = this_end; 997 } 998 } 999 } 1000 1001 static int __init grab_mlgroups(struct mdesc_handle *md) 1002 { 1003 unsigned long paddr; 1004 int count = 0; 1005 u64 node; 1006 1007 mdesc_for_each_node_by_name(md, node, "memory-latency-group") 1008 count++; 1009 if (!count) 1010 return -ENOENT; 1011 1012 paddr = lmb_alloc(count * sizeof(struct mdesc_mlgroup), 1013 SMP_CACHE_BYTES); 1014 if (!paddr) 1015 return -ENOMEM; 1016 1017 mlgroups = __va(paddr); 1018 num_mlgroups = count; 1019 1020 count = 0; 1021 mdesc_for_each_node_by_name(md, node, "memory-latency-group") { 1022 struct mdesc_mlgroup *m = &mlgroups[count++]; 1023 const u64 *val; 1024 1025 m->node = node; 1026 1027 val = mdesc_get_property(md, node, "latency", NULL); 1028 m->latency = *val; 1029 val = mdesc_get_property(md, node, "address-match", NULL); 1030 m->match = *val; 1031 val = mdesc_get_property(md, node, "address-mask", NULL); 1032 m->mask = *val; 1033 1034 numadbg("MLGROUP[%d]: node[%llx] latency[%llx] " 1035 "match[%llx] mask[%llx]\n", 1036 count - 1, m->node, m->latency, m->match, m->mask); 1037 } 1038 1039 return 0; 1040 } 1041 1042 static int __init grab_mblocks(struct mdesc_handle *md) 1043 { 1044 unsigned long paddr; 1045 int count = 0; 1046 u64 node; 1047 1048 mdesc_for_each_node_by_name(md, node, "mblock") 1049 count++; 1050 if (!count) 1051 return -ENOENT; 1052 1053 paddr = lmb_alloc(count * sizeof(struct mdesc_mblock), 1054 SMP_CACHE_BYTES); 1055 if (!paddr) 1056 return -ENOMEM; 1057 1058 mblocks = __va(paddr); 1059 num_mblocks = count; 1060 1061 count = 0; 1062 mdesc_for_each_node_by_name(md, node, "mblock") { 1063 struct mdesc_mblock *m = &mblocks[count++]; 1064 const u64 *val; 1065 1066 val = mdesc_get_property(md, node, "base", NULL); 1067 m->base = *val; 1068 val = mdesc_get_property(md, node, "size", NULL); 1069 m->size = *val; 1070 val = mdesc_get_property(md, node, 1071 "address-congruence-offset", NULL); 1072 m->offset = *val; 1073 1074 numadbg("MBLOCK[%d]: base[%llx] size[%llx] offset[%llx]\n", 1075 count - 1, m->base, m->size, m->offset); 1076 } 1077 1078 return 0; 1079 } 1080 1081 static void __init numa_parse_mdesc_group_cpus(struct mdesc_handle *md, 1082 u64 grp, cpumask_t *mask) 1083 { 1084 u64 arc; 1085 1086 cpus_clear(*mask); 1087 1088 mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_BACK) { 1089 u64 target = mdesc_arc_target(md, arc); 1090 const char *name = mdesc_node_name(md, target); 1091 const u64 *id; 1092 1093 if (strcmp(name, "cpu")) 1094 continue; 1095 id = mdesc_get_property(md, target, "id", NULL); 1096 if (*id < nr_cpu_ids) 1097 cpu_set(*id, *mask); 1098 } 1099 } 1100 1101 static struct mdesc_mlgroup * __init find_mlgroup(u64 node) 1102 { 1103 int i; 1104 1105 for (i = 0; i < num_mlgroups; i++) { 1106 struct mdesc_mlgroup *m = &mlgroups[i]; 1107 if (m->node == node) 1108 return m; 1109 } 1110 return NULL; 1111 } 1112 1113 static int __init numa_attach_mlgroup(struct mdesc_handle *md, u64 grp, 1114 int index) 1115 { 1116 struct mdesc_mlgroup *candidate = NULL; 1117 u64 arc, best_latency = ~(u64)0; 1118 struct node_mem_mask *n; 1119 1120 mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) { 1121 u64 target = mdesc_arc_target(md, arc); 1122 struct mdesc_mlgroup *m = find_mlgroup(target); 1123 if (!m) 1124 continue; 1125 if (m->latency < best_latency) { 1126 candidate = m; 1127 best_latency = m->latency; 1128 } 1129 } 1130 if (!candidate) 1131 return -ENOENT; 1132 1133 if (num_node_masks != index) { 1134 printk(KERN_ERR "Inconsistent NUMA state, " 1135 "index[%d] != num_node_masks[%d]\n", 1136 index, num_node_masks); 1137 return -EINVAL; 1138 } 1139 1140 n = &node_masks[num_node_masks++]; 1141 1142 n->mask = candidate->mask; 1143 n->val = candidate->match; 1144 1145 numadbg("NUMA NODE[%d]: mask[%lx] val[%lx] (latency[%llx])\n", 1146 index, n->mask, n->val, candidate->latency); 1147 1148 return 0; 1149 } 1150 1151 static int __init numa_parse_mdesc_group(struct mdesc_handle *md, u64 grp, 1152 int index) 1153 { 1154 cpumask_t mask; 1155 int cpu; 1156 1157 numa_parse_mdesc_group_cpus(md, grp, &mask); 1158 1159 for_each_cpu_mask(cpu, mask) 1160 numa_cpu_lookup_table[cpu] = index; 1161 numa_cpumask_lookup_table[index] = mask; 1162 1163 if (numa_debug) { 1164 printk(KERN_INFO "NUMA GROUP[%d]: cpus [ ", index); 1165 for_each_cpu_mask(cpu, mask) 1166 printk("%d ", cpu); 1167 printk("]\n"); 1168 } 1169 1170 return numa_attach_mlgroup(md, grp, index); 1171 } 1172 1173 static int __init numa_parse_mdesc(void) 1174 { 1175 struct mdesc_handle *md = mdesc_grab(); 1176 int i, err, count; 1177 u64 node; 1178 1179 node = mdesc_node_by_name(md, MDESC_NODE_NULL, "latency-groups"); 1180 if (node == MDESC_NODE_NULL) { 1181 mdesc_release(md); 1182 return -ENOENT; 1183 } 1184 1185 err = grab_mblocks(md); 1186 if (err < 0) 1187 goto out; 1188 1189 err = grab_mlgroups(md); 1190 if (err < 0) 1191 goto out; 1192 1193 count = 0; 1194 mdesc_for_each_node_by_name(md, node, "group") { 1195 err = numa_parse_mdesc_group(md, node, count); 1196 if (err < 0) 1197 break; 1198 count++; 1199 } 1200 1201 add_node_ranges(); 1202 1203 for (i = 0; i < num_node_masks; i++) { 1204 allocate_node_data(i); 1205 node_set_online(i); 1206 } 1207 1208 err = 0; 1209 out: 1210 mdesc_release(md); 1211 return err; 1212 } 1213 1214 static int __init numa_parse_jbus(void) 1215 { 1216 unsigned long cpu, index; 1217 1218 /* NUMA node id is encoded in bits 36 and higher, and there is 1219 * a 1-to-1 mapping from CPU ID to NUMA node ID. 1220 */ 1221 index = 0; 1222 for_each_present_cpu(cpu) { 1223 numa_cpu_lookup_table[cpu] = index; 1224 numa_cpumask_lookup_table[index] = cpumask_of_cpu(cpu); 1225 node_masks[index].mask = ~((1UL << 36UL) - 1UL); 1226 node_masks[index].val = cpu << 36UL; 1227 1228 index++; 1229 } 1230 num_node_masks = index; 1231 1232 add_node_ranges(); 1233 1234 for (index = 0; index < num_node_masks; index++) { 1235 allocate_node_data(index); 1236 node_set_online(index); 1237 } 1238 1239 return 0; 1240 } 1241 1242 static int __init numa_parse_sun4u(void) 1243 { 1244 if (tlb_type == cheetah || tlb_type == cheetah_plus) { 1245 unsigned long ver; 1246 1247 __asm__ ("rdpr %%ver, %0" : "=r" (ver)); 1248 if ((ver >> 32UL) == __JALAPENO_ID || 1249 (ver >> 32UL) == __SERRANO_ID) 1250 return numa_parse_jbus(); 1251 } 1252 return -1; 1253 } 1254 1255 static int __init bootmem_init_numa(void) 1256 { 1257 int err = -1; 1258 1259 numadbg("bootmem_init_numa()\n"); 1260 1261 if (numa_enabled) { 1262 if (tlb_type == hypervisor) 1263 err = numa_parse_mdesc(); 1264 else 1265 err = numa_parse_sun4u(); 1266 } 1267 return err; 1268 } 1269 1270 #else 1271 1272 static int bootmem_init_numa(void) 1273 { 1274 return -1; 1275 } 1276 1277 #endif 1278 1279 static void __init bootmem_init_nonnuma(void) 1280 { 1281 unsigned long top_of_ram = lmb_end_of_DRAM(); 1282 unsigned long total_ram = lmb_phys_mem_size(); 1283 unsigned int i; 1284 1285 numadbg("bootmem_init_nonnuma()\n"); 1286 1287 printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n", 1288 top_of_ram, total_ram); 1289 printk(KERN_INFO "Memory hole size: %ldMB\n", 1290 (top_of_ram - total_ram) >> 20); 1291 1292 init_node_masks_nonnuma(); 1293 1294 for (i = 0; i < lmb.memory.cnt; i++) { 1295 unsigned long size = lmb_size_bytes(&lmb.memory, i); 1296 unsigned long start_pfn, end_pfn; 1297 1298 if (!size) 1299 continue; 1300 1301 start_pfn = lmb.memory.region[i].base >> PAGE_SHIFT; 1302 end_pfn = start_pfn + lmb_size_pages(&lmb.memory, i); 1303 add_active_range(0, start_pfn, end_pfn); 1304 } 1305 1306 allocate_node_data(0); 1307 1308 node_set_online(0); 1309 } 1310 1311 static void __init reserve_range_in_node(int nid, unsigned long start, 1312 unsigned long end) 1313 { 1314 numadbg(" reserve_range_in_node(nid[%d],start[%lx],end[%lx]\n", 1315 nid, start, end); 1316 while (start < end) { 1317 unsigned long this_end; 1318 int n; 1319 1320 this_end = nid_range(start, end, &n); 1321 if (n == nid) { 1322 numadbg(" MATCH reserving range [%lx:%lx]\n", 1323 start, this_end); 1324 reserve_bootmem_node(NODE_DATA(nid), start, 1325 (this_end - start), BOOTMEM_DEFAULT); 1326 } else 1327 numadbg(" NO MATCH, advancing start to %lx\n", 1328 this_end); 1329 1330 start = this_end; 1331 } 1332 } 1333 1334 static void __init trim_reserved_in_node(int nid) 1335 { 1336 int i; 1337 1338 numadbg(" trim_reserved_in_node(%d)\n", nid); 1339 1340 for (i = 0; i < lmb.reserved.cnt; i++) { 1341 unsigned long start = lmb.reserved.region[i].base; 1342 unsigned long size = lmb_size_bytes(&lmb.reserved, i); 1343 unsigned long end = start + size; 1344 1345 reserve_range_in_node(nid, start, end); 1346 } 1347 } 1348 1349 static void __init bootmem_init_one_node(int nid) 1350 { 1351 struct pglist_data *p; 1352 1353 numadbg("bootmem_init_one_node(%d)\n", nid); 1354 1355 p = NODE_DATA(nid); 1356 1357 if (p->node_spanned_pages) { 1358 unsigned long paddr = node_masks[nid].bootmem_paddr; 1359 unsigned long end_pfn; 1360 1361 end_pfn = p->node_start_pfn + p->node_spanned_pages; 1362 1363 numadbg(" init_bootmem_node(%d, %lx, %lx, %lx)\n", 1364 nid, paddr >> PAGE_SHIFT, p->node_start_pfn, end_pfn); 1365 1366 init_bootmem_node(p, paddr >> PAGE_SHIFT, 1367 p->node_start_pfn, end_pfn); 1368 1369 numadbg(" free_bootmem_with_active_regions(%d, %lx)\n", 1370 nid, end_pfn); 1371 free_bootmem_with_active_regions(nid, end_pfn); 1372 1373 trim_reserved_in_node(nid); 1374 1375 numadbg(" sparse_memory_present_with_active_regions(%d)\n", 1376 nid); 1377 sparse_memory_present_with_active_regions(nid); 1378 } 1379 } 1380 1381 static unsigned long __init bootmem_init(unsigned long phys_base) 1382 { 1383 unsigned long end_pfn; 1384 int nid; 1385 1386 end_pfn = lmb_end_of_DRAM() >> PAGE_SHIFT; 1387 max_pfn = max_low_pfn = end_pfn; 1388 min_low_pfn = (phys_base >> PAGE_SHIFT); 1389 1390 if (bootmem_init_numa() < 0) 1391 bootmem_init_nonnuma(); 1392 1393 /* XXX cpu notifier XXX */ 1394 1395 for_each_online_node(nid) 1396 bootmem_init_one_node(nid); 1397 1398 sparse_init(); 1399 1400 return end_pfn; 1401 } 1402 1403 static struct linux_prom64_registers pall[MAX_BANKS] __initdata; 1404 static int pall_ents __initdata; 1405 1406 #ifdef CONFIG_DEBUG_PAGEALLOC 1407 static unsigned long __ref kernel_map_range(unsigned long pstart, 1408 unsigned long pend, pgprot_t prot) 1409 { 1410 unsigned long vstart = PAGE_OFFSET + pstart; 1411 unsigned long vend = PAGE_OFFSET + pend; 1412 unsigned long alloc_bytes = 0UL; 1413 1414 if ((vstart & ~PAGE_MASK) || (vend & ~PAGE_MASK)) { 1415 prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n", 1416 vstart, vend); 1417 prom_halt(); 1418 } 1419 1420 while (vstart < vend) { 1421 unsigned long this_end, paddr = __pa(vstart); 1422 pgd_t *pgd = pgd_offset_k(vstart); 1423 pud_t *pud; 1424 pmd_t *pmd; 1425 pte_t *pte; 1426 1427 pud = pud_offset(pgd, vstart); 1428 if (pud_none(*pud)) { 1429 pmd_t *new; 1430 1431 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE); 1432 alloc_bytes += PAGE_SIZE; 1433 pud_populate(&init_mm, pud, new); 1434 } 1435 1436 pmd = pmd_offset(pud, vstart); 1437 if (!pmd_present(*pmd)) { 1438 pte_t *new; 1439 1440 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE); 1441 alloc_bytes += PAGE_SIZE; 1442 pmd_populate_kernel(&init_mm, pmd, new); 1443 } 1444 1445 pte = pte_offset_kernel(pmd, vstart); 1446 this_end = (vstart + PMD_SIZE) & PMD_MASK; 1447 if (this_end > vend) 1448 this_end = vend; 1449 1450 while (vstart < this_end) { 1451 pte_val(*pte) = (paddr | pgprot_val(prot)); 1452 1453 vstart += PAGE_SIZE; 1454 paddr += PAGE_SIZE; 1455 pte++; 1456 } 1457 } 1458 1459 return alloc_bytes; 1460 } 1461 1462 extern unsigned int kvmap_linear_patch[1]; 1463 #endif /* CONFIG_DEBUG_PAGEALLOC */ 1464 1465 static void __init mark_kpte_bitmap(unsigned long start, unsigned long end) 1466 { 1467 const unsigned long shift_256MB = 28; 1468 const unsigned long mask_256MB = ((1UL << shift_256MB) - 1UL); 1469 const unsigned long size_256MB = (1UL << shift_256MB); 1470 1471 while (start < end) { 1472 long remains; 1473 1474 remains = end - start; 1475 if (remains < size_256MB) 1476 break; 1477 1478 if (start & mask_256MB) { 1479 start = (start + size_256MB) & ~mask_256MB; 1480 continue; 1481 } 1482 1483 while (remains >= size_256MB) { 1484 unsigned long index = start >> shift_256MB; 1485 1486 __set_bit(index, kpte_linear_bitmap); 1487 1488 start += size_256MB; 1489 remains -= size_256MB; 1490 } 1491 } 1492 } 1493 1494 static void __init init_kpte_bitmap(void) 1495 { 1496 unsigned long i; 1497 1498 for (i = 0; i < pall_ents; i++) { 1499 unsigned long phys_start, phys_end; 1500 1501 phys_start = pall[i].phys_addr; 1502 phys_end = phys_start + pall[i].reg_size; 1503 1504 mark_kpte_bitmap(phys_start, phys_end); 1505 } 1506 } 1507 1508 static void __init kernel_physical_mapping_init(void) 1509 { 1510 #ifdef CONFIG_DEBUG_PAGEALLOC 1511 unsigned long i, mem_alloced = 0UL; 1512 1513 for (i = 0; i < pall_ents; i++) { 1514 unsigned long phys_start, phys_end; 1515 1516 phys_start = pall[i].phys_addr; 1517 phys_end = phys_start + pall[i].reg_size; 1518 1519 mem_alloced += kernel_map_range(phys_start, phys_end, 1520 PAGE_KERNEL); 1521 } 1522 1523 printk("Allocated %ld bytes for kernel page tables.\n", 1524 mem_alloced); 1525 1526 kvmap_linear_patch[0] = 0x01000000; /* nop */ 1527 flushi(&kvmap_linear_patch[0]); 1528 1529 __flush_tlb_all(); 1530 #endif 1531 } 1532 1533 #ifdef CONFIG_DEBUG_PAGEALLOC 1534 void kernel_map_pages(struct page *page, int numpages, int enable) 1535 { 1536 unsigned long phys_start = page_to_pfn(page) << PAGE_SHIFT; 1537 unsigned long phys_end = phys_start + (numpages * PAGE_SIZE); 1538 1539 kernel_map_range(phys_start, phys_end, 1540 (enable ? PAGE_KERNEL : __pgprot(0))); 1541 1542 flush_tsb_kernel_range(PAGE_OFFSET + phys_start, 1543 PAGE_OFFSET + phys_end); 1544 1545 /* we should perform an IPI and flush all tlbs, 1546 * but that can deadlock->flush only current cpu. 1547 */ 1548 __flush_tlb_kernel_range(PAGE_OFFSET + phys_start, 1549 PAGE_OFFSET + phys_end); 1550 } 1551 #endif 1552 1553 unsigned long __init find_ecache_flush_span(unsigned long size) 1554 { 1555 int i; 1556 1557 for (i = 0; i < pavail_ents; i++) { 1558 if (pavail[i].reg_size >= size) 1559 return pavail[i].phys_addr; 1560 } 1561 1562 return ~0UL; 1563 } 1564 1565 static void __init tsb_phys_patch(void) 1566 { 1567 struct tsb_ldquad_phys_patch_entry *pquad; 1568 struct tsb_phys_patch_entry *p; 1569 1570 pquad = &__tsb_ldquad_phys_patch; 1571 while (pquad < &__tsb_ldquad_phys_patch_end) { 1572 unsigned long addr = pquad->addr; 1573 1574 if (tlb_type == hypervisor) 1575 *(unsigned int *) addr = pquad->sun4v_insn; 1576 else 1577 *(unsigned int *) addr = pquad->sun4u_insn; 1578 wmb(); 1579 __asm__ __volatile__("flush %0" 1580 : /* no outputs */ 1581 : "r" (addr)); 1582 1583 pquad++; 1584 } 1585 1586 p = &__tsb_phys_patch; 1587 while (p < &__tsb_phys_patch_end) { 1588 unsigned long addr = p->addr; 1589 1590 *(unsigned int *) addr = p->insn; 1591 wmb(); 1592 __asm__ __volatile__("flush %0" 1593 : /* no outputs */ 1594 : "r" (addr)); 1595 1596 p++; 1597 } 1598 } 1599 1600 /* Don't mark as init, we give this to the Hypervisor. */ 1601 #ifndef CONFIG_DEBUG_PAGEALLOC 1602 #define NUM_KTSB_DESCR 2 1603 #else 1604 #define NUM_KTSB_DESCR 1 1605 #endif 1606 static struct hv_tsb_descr ktsb_descr[NUM_KTSB_DESCR]; 1607 extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES]; 1608 1609 static void __init sun4v_ktsb_init(void) 1610 { 1611 unsigned long ktsb_pa; 1612 1613 /* First KTSB for PAGE_SIZE mappings. */ 1614 ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE); 1615 1616 switch (PAGE_SIZE) { 1617 case 8 * 1024: 1618 default: 1619 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_8K; 1620 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_8K; 1621 break; 1622 1623 case 64 * 1024: 1624 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_64K; 1625 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_64K; 1626 break; 1627 1628 case 512 * 1024: 1629 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_512K; 1630 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_512K; 1631 break; 1632 1633 case 4 * 1024 * 1024: 1634 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_4MB; 1635 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_4MB; 1636 break; 1637 }; 1638 1639 ktsb_descr[0].assoc = 1; 1640 ktsb_descr[0].num_ttes = KERNEL_TSB_NENTRIES; 1641 ktsb_descr[0].ctx_idx = 0; 1642 ktsb_descr[0].tsb_base = ktsb_pa; 1643 ktsb_descr[0].resv = 0; 1644 1645 #ifndef CONFIG_DEBUG_PAGEALLOC 1646 /* Second KTSB for 4MB/256MB mappings. */ 1647 ktsb_pa = (kern_base + 1648 ((unsigned long)&swapper_4m_tsb[0] - KERNBASE)); 1649 1650 ktsb_descr[1].pgsz_idx = HV_PGSZ_IDX_4MB; 1651 ktsb_descr[1].pgsz_mask = (HV_PGSZ_MASK_4MB | 1652 HV_PGSZ_MASK_256MB); 1653 ktsb_descr[1].assoc = 1; 1654 ktsb_descr[1].num_ttes = KERNEL_TSB4M_NENTRIES; 1655 ktsb_descr[1].ctx_idx = 0; 1656 ktsb_descr[1].tsb_base = ktsb_pa; 1657 ktsb_descr[1].resv = 0; 1658 #endif 1659 } 1660 1661 void __cpuinit sun4v_ktsb_register(void) 1662 { 1663 unsigned long pa, ret; 1664 1665 pa = kern_base + ((unsigned long)&ktsb_descr[0] - KERNBASE); 1666 1667 ret = sun4v_mmu_tsb_ctx0(NUM_KTSB_DESCR, pa); 1668 if (ret != 0) { 1669 prom_printf("hypervisor_mmu_tsb_ctx0[%lx]: " 1670 "errors with %lx\n", pa, ret); 1671 prom_halt(); 1672 } 1673 } 1674 1675 /* paging_init() sets up the page tables */ 1676 1677 static unsigned long last_valid_pfn; 1678 pgd_t swapper_pg_dir[2048]; 1679 1680 static void sun4u_pgprot_init(void); 1681 static void sun4v_pgprot_init(void); 1682 1683 void __init paging_init(void) 1684 { 1685 unsigned long end_pfn, shift, phys_base; 1686 unsigned long real_end, i; 1687 1688 /* These build time checkes make sure that the dcache_dirty_cpu() 1689 * page->flags usage will work. 1690 * 1691 * When a page gets marked as dcache-dirty, we store the 1692 * cpu number starting at bit 32 in the page->flags. Also, 1693 * functions like clear_dcache_dirty_cpu use the cpu mask 1694 * in 13-bit signed-immediate instruction fields. 1695 */ 1696 1697 /* 1698 * Page flags must not reach into upper 32 bits that are used 1699 * for the cpu number 1700 */ 1701 BUILD_BUG_ON(NR_PAGEFLAGS > 32); 1702 1703 /* 1704 * The bit fields placed in the high range must not reach below 1705 * the 32 bit boundary. Otherwise we cannot place the cpu field 1706 * at the 32 bit boundary. 1707 */ 1708 BUILD_BUG_ON(SECTIONS_WIDTH + NODES_WIDTH + ZONES_WIDTH + 1709 ilog2(roundup_pow_of_two(NR_CPUS)) > 32); 1710 1711 BUILD_BUG_ON(NR_CPUS > 4096); 1712 1713 kern_base = (prom_boot_mapping_phys_low >> 22UL) << 22UL; 1714 kern_size = (unsigned long)&_end - (unsigned long)KERNBASE; 1715 1716 /* Invalidate both kernel TSBs. */ 1717 memset(swapper_tsb, 0x40, sizeof(swapper_tsb)); 1718 #ifndef CONFIG_DEBUG_PAGEALLOC 1719 memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb)); 1720 #endif 1721 1722 if (tlb_type == hypervisor) 1723 sun4v_pgprot_init(); 1724 else 1725 sun4u_pgprot_init(); 1726 1727 if (tlb_type == cheetah_plus || 1728 tlb_type == hypervisor) 1729 tsb_phys_patch(); 1730 1731 if (tlb_type == hypervisor) { 1732 sun4v_patch_tlb_handlers(); 1733 sun4v_ktsb_init(); 1734 } 1735 1736 lmb_init(); 1737 1738 /* Find available physical memory... 1739 * 1740 * Read it twice in order to work around a bug in openfirmware. 1741 * The call to grab this table itself can cause openfirmware to 1742 * allocate memory, which in turn can take away some space from 1743 * the list of available memory. Reading it twice makes sure 1744 * we really do get the final value. 1745 */ 1746 read_obp_translations(); 1747 read_obp_memory("reg", &pall[0], &pall_ents); 1748 read_obp_memory("available", &pavail[0], &pavail_ents); 1749 read_obp_memory("available", &pavail[0], &pavail_ents); 1750 1751 phys_base = 0xffffffffffffffffUL; 1752 for (i = 0; i < pavail_ents; i++) { 1753 phys_base = min(phys_base, pavail[i].phys_addr); 1754 lmb_add(pavail[i].phys_addr, pavail[i].reg_size); 1755 } 1756 1757 lmb_reserve(kern_base, kern_size); 1758 1759 find_ramdisk(phys_base); 1760 1761 lmb_enforce_memory_limit(cmdline_memory_size); 1762 1763 lmb_analyze(); 1764 lmb_dump_all(); 1765 1766 set_bit(0, mmu_context_bmap); 1767 1768 shift = kern_base + PAGE_OFFSET - ((unsigned long)KERNBASE); 1769 1770 real_end = (unsigned long)_end; 1771 num_kernel_image_mappings = DIV_ROUND_UP(real_end - KERNBASE, 1 << 22); 1772 printk("Kernel: Using %d locked TLB entries for main kernel image.\n", 1773 num_kernel_image_mappings); 1774 1775 /* Set kernel pgd to upper alias so physical page computations 1776 * work. 1777 */ 1778 init_mm.pgd += ((shift) / (sizeof(pgd_t))); 1779 1780 memset(swapper_low_pmd_dir, 0, sizeof(swapper_low_pmd_dir)); 1781 1782 /* Now can init the kernel/bad page tables. */ 1783 pud_set(pud_offset(&swapper_pg_dir[0], 0), 1784 swapper_low_pmd_dir + (shift / sizeof(pgd_t))); 1785 1786 inherit_prom_mappings(); 1787 1788 init_kpte_bitmap(); 1789 1790 /* Ok, we can use our TLB miss and window trap handlers safely. */ 1791 setup_tba(); 1792 1793 __flush_tlb_all(); 1794 1795 if (tlb_type == hypervisor) 1796 sun4v_ktsb_register(); 1797 1798 prom_build_devicetree(); 1799 of_populate_present_mask(); 1800 #ifndef CONFIG_SMP 1801 of_fill_in_cpu_data(); 1802 #endif 1803 1804 if (tlb_type == hypervisor) { 1805 sun4v_mdesc_init(); 1806 mdesc_populate_present_mask(cpu_all_mask); 1807 #ifndef CONFIG_SMP 1808 mdesc_fill_in_cpu_data(cpu_all_mask); 1809 #endif 1810 } 1811 1812 /* Once the OF device tree and MDESC have been setup, we know 1813 * the list of possible cpus. Therefore we can allocate the 1814 * IRQ stacks. 1815 */ 1816 for_each_possible_cpu(i) { 1817 /* XXX Use node local allocations... XXX */ 1818 softirq_stack[i] = __va(lmb_alloc(THREAD_SIZE, THREAD_SIZE)); 1819 hardirq_stack[i] = __va(lmb_alloc(THREAD_SIZE, THREAD_SIZE)); 1820 } 1821 1822 /* Setup bootmem... */ 1823 last_valid_pfn = end_pfn = bootmem_init(phys_base); 1824 1825 #ifndef CONFIG_NEED_MULTIPLE_NODES 1826 max_mapnr = last_valid_pfn; 1827 #endif 1828 kernel_physical_mapping_init(); 1829 1830 { 1831 unsigned long max_zone_pfns[MAX_NR_ZONES]; 1832 1833 memset(max_zone_pfns, 0, sizeof(max_zone_pfns)); 1834 1835 max_zone_pfns[ZONE_NORMAL] = end_pfn; 1836 1837 free_area_init_nodes(max_zone_pfns); 1838 } 1839 1840 printk("Booting Linux...\n"); 1841 } 1842 1843 int __devinit page_in_phys_avail(unsigned long paddr) 1844 { 1845 int i; 1846 1847 paddr &= PAGE_MASK; 1848 1849 for (i = 0; i < pavail_ents; i++) { 1850 unsigned long start, end; 1851 1852 start = pavail[i].phys_addr; 1853 end = start + pavail[i].reg_size; 1854 1855 if (paddr >= start && paddr < end) 1856 return 1; 1857 } 1858 if (paddr >= kern_base && paddr < (kern_base + kern_size)) 1859 return 1; 1860 #ifdef CONFIG_BLK_DEV_INITRD 1861 if (paddr >= __pa(initrd_start) && 1862 paddr < __pa(PAGE_ALIGN(initrd_end))) 1863 return 1; 1864 #endif 1865 1866 return 0; 1867 } 1868 1869 static struct linux_prom64_registers pavail_rescan[MAX_BANKS] __initdata; 1870 static int pavail_rescan_ents __initdata; 1871 1872 /* Certain OBP calls, such as fetching "available" properties, can 1873 * claim physical memory. So, along with initializing the valid 1874 * address bitmap, what we do here is refetch the physical available 1875 * memory list again, and make sure it provides at least as much 1876 * memory as 'pavail' does. 1877 */ 1878 static void __init setup_valid_addr_bitmap_from_pavail(unsigned long *bitmap) 1879 { 1880 int i; 1881 1882 read_obp_memory("available", &pavail_rescan[0], &pavail_rescan_ents); 1883 1884 for (i = 0; i < pavail_ents; i++) { 1885 unsigned long old_start, old_end; 1886 1887 old_start = pavail[i].phys_addr; 1888 old_end = old_start + pavail[i].reg_size; 1889 while (old_start < old_end) { 1890 int n; 1891 1892 for (n = 0; n < pavail_rescan_ents; n++) { 1893 unsigned long new_start, new_end; 1894 1895 new_start = pavail_rescan[n].phys_addr; 1896 new_end = new_start + 1897 pavail_rescan[n].reg_size; 1898 1899 if (new_start <= old_start && 1900 new_end >= (old_start + PAGE_SIZE)) { 1901 set_bit(old_start >> 22, bitmap); 1902 goto do_next_page; 1903 } 1904 } 1905 1906 prom_printf("mem_init: Lost memory in pavail\n"); 1907 prom_printf("mem_init: OLD start[%lx] size[%lx]\n", 1908 pavail[i].phys_addr, 1909 pavail[i].reg_size); 1910 prom_printf("mem_init: NEW start[%lx] size[%lx]\n", 1911 pavail_rescan[i].phys_addr, 1912 pavail_rescan[i].reg_size); 1913 prom_printf("mem_init: Cannot continue, aborting.\n"); 1914 prom_halt(); 1915 1916 do_next_page: 1917 old_start += PAGE_SIZE; 1918 } 1919 } 1920 } 1921 1922 static void __init patch_tlb_miss_handler_bitmap(void) 1923 { 1924 extern unsigned int valid_addr_bitmap_insn[]; 1925 extern unsigned int valid_addr_bitmap_patch[]; 1926 1927 valid_addr_bitmap_insn[1] = valid_addr_bitmap_patch[1]; 1928 mb(); 1929 valid_addr_bitmap_insn[0] = valid_addr_bitmap_patch[0]; 1930 flushi(&valid_addr_bitmap_insn[0]); 1931 } 1932 1933 void __init mem_init(void) 1934 { 1935 unsigned long codepages, datapages, initpages; 1936 unsigned long addr, last; 1937 1938 addr = PAGE_OFFSET + kern_base; 1939 last = PAGE_ALIGN(kern_size) + addr; 1940 while (addr < last) { 1941 set_bit(__pa(addr) >> 22, sparc64_valid_addr_bitmap); 1942 addr += PAGE_SIZE; 1943 } 1944 1945 setup_valid_addr_bitmap_from_pavail(sparc64_valid_addr_bitmap); 1946 patch_tlb_miss_handler_bitmap(); 1947 1948 high_memory = __va(last_valid_pfn << PAGE_SHIFT); 1949 1950 #ifdef CONFIG_NEED_MULTIPLE_NODES 1951 { 1952 int i; 1953 for_each_online_node(i) { 1954 if (NODE_DATA(i)->node_spanned_pages != 0) { 1955 totalram_pages += 1956 free_all_bootmem_node(NODE_DATA(i)); 1957 } 1958 } 1959 } 1960 #else 1961 totalram_pages = free_all_bootmem(); 1962 #endif 1963 1964 /* We subtract one to account for the mem_map_zero page 1965 * allocated below. 1966 */ 1967 totalram_pages -= 1; 1968 num_physpages = totalram_pages; 1969 1970 /* 1971 * Set up the zero page, mark it reserved, so that page count 1972 * is not manipulated when freeing the page from user ptes. 1973 */ 1974 mem_map_zero = alloc_pages(GFP_KERNEL|__GFP_ZERO, 0); 1975 if (mem_map_zero == NULL) { 1976 prom_printf("paging_init: Cannot alloc zero page.\n"); 1977 prom_halt(); 1978 } 1979 SetPageReserved(mem_map_zero); 1980 1981 codepages = (((unsigned long) _etext) - ((unsigned long) _start)); 1982 codepages = PAGE_ALIGN(codepages) >> PAGE_SHIFT; 1983 datapages = (((unsigned long) _edata) - ((unsigned long) _etext)); 1984 datapages = PAGE_ALIGN(datapages) >> PAGE_SHIFT; 1985 initpages = (((unsigned long) __init_end) - ((unsigned long) __init_begin)); 1986 initpages = PAGE_ALIGN(initpages) >> PAGE_SHIFT; 1987 1988 printk("Memory: %luk available (%ldk kernel code, %ldk data, %ldk init) [%016lx,%016lx]\n", 1989 nr_free_pages() << (PAGE_SHIFT-10), 1990 codepages << (PAGE_SHIFT-10), 1991 datapages << (PAGE_SHIFT-10), 1992 initpages << (PAGE_SHIFT-10), 1993 PAGE_OFFSET, (last_valid_pfn << PAGE_SHIFT)); 1994 1995 if (tlb_type == cheetah || tlb_type == cheetah_plus) 1996 cheetah_ecache_flush_init(); 1997 } 1998 1999 void free_initmem(void) 2000 { 2001 unsigned long addr, initend; 2002 int do_free = 1; 2003 2004 /* If the physical memory maps were trimmed by kernel command 2005 * line options, don't even try freeing this initmem stuff up. 2006 * The kernel image could have been in the trimmed out region 2007 * and if so the freeing below will free invalid page structs. 2008 */ 2009 if (cmdline_memory_size) 2010 do_free = 0; 2011 2012 /* 2013 * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes. 2014 */ 2015 addr = PAGE_ALIGN((unsigned long)(__init_begin)); 2016 initend = (unsigned long)(__init_end) & PAGE_MASK; 2017 for (; addr < initend; addr += PAGE_SIZE) { 2018 unsigned long page; 2019 struct page *p; 2020 2021 page = (addr + 2022 ((unsigned long) __va(kern_base)) - 2023 ((unsigned long) KERNBASE)); 2024 memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE); 2025 2026 if (do_free) { 2027 p = virt_to_page(page); 2028 2029 ClearPageReserved(p); 2030 init_page_count(p); 2031 __free_page(p); 2032 num_physpages++; 2033 totalram_pages++; 2034 } 2035 } 2036 } 2037 2038 #ifdef CONFIG_BLK_DEV_INITRD 2039 void free_initrd_mem(unsigned long start, unsigned long end) 2040 { 2041 if (start < end) 2042 printk ("Freeing initrd memory: %ldk freed\n", (end - start) >> 10); 2043 for (; start < end; start += PAGE_SIZE) { 2044 struct page *p = virt_to_page(start); 2045 2046 ClearPageReserved(p); 2047 init_page_count(p); 2048 __free_page(p); 2049 num_physpages++; 2050 totalram_pages++; 2051 } 2052 } 2053 #endif 2054 2055 #define _PAGE_CACHE_4U (_PAGE_CP_4U | _PAGE_CV_4U) 2056 #define _PAGE_CACHE_4V (_PAGE_CP_4V | _PAGE_CV_4V) 2057 #define __DIRTY_BITS_4U (_PAGE_MODIFIED_4U | _PAGE_WRITE_4U | _PAGE_W_4U) 2058 #define __DIRTY_BITS_4V (_PAGE_MODIFIED_4V | _PAGE_WRITE_4V | _PAGE_W_4V) 2059 #define __ACCESS_BITS_4U (_PAGE_ACCESSED_4U | _PAGE_READ_4U | _PAGE_R) 2060 #define __ACCESS_BITS_4V (_PAGE_ACCESSED_4V | _PAGE_READ_4V | _PAGE_R) 2061 2062 pgprot_t PAGE_KERNEL __read_mostly; 2063 EXPORT_SYMBOL(PAGE_KERNEL); 2064 2065 pgprot_t PAGE_KERNEL_LOCKED __read_mostly; 2066 pgprot_t PAGE_COPY __read_mostly; 2067 2068 pgprot_t PAGE_SHARED __read_mostly; 2069 EXPORT_SYMBOL(PAGE_SHARED); 2070 2071 unsigned long pg_iobits __read_mostly; 2072 2073 unsigned long _PAGE_IE __read_mostly; 2074 EXPORT_SYMBOL(_PAGE_IE); 2075 2076 unsigned long _PAGE_E __read_mostly; 2077 EXPORT_SYMBOL(_PAGE_E); 2078 2079 unsigned long _PAGE_CACHE __read_mostly; 2080 EXPORT_SYMBOL(_PAGE_CACHE); 2081 2082 #ifdef CONFIG_SPARSEMEM_VMEMMAP 2083 unsigned long vmemmap_table[VMEMMAP_SIZE]; 2084 2085 int __meminit vmemmap_populate(struct page *start, unsigned long nr, int node) 2086 { 2087 unsigned long vstart = (unsigned long) start; 2088 unsigned long vend = (unsigned long) (start + nr); 2089 unsigned long phys_start = (vstart - VMEMMAP_BASE); 2090 unsigned long phys_end = (vend - VMEMMAP_BASE); 2091 unsigned long addr = phys_start & VMEMMAP_CHUNK_MASK; 2092 unsigned long end = VMEMMAP_ALIGN(phys_end); 2093 unsigned long pte_base; 2094 2095 pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4U | 2096 _PAGE_CP_4U | _PAGE_CV_4U | 2097 _PAGE_P_4U | _PAGE_W_4U); 2098 if (tlb_type == hypervisor) 2099 pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4V | 2100 _PAGE_CP_4V | _PAGE_CV_4V | 2101 _PAGE_P_4V | _PAGE_W_4V); 2102 2103 for (; addr < end; addr += VMEMMAP_CHUNK) { 2104 unsigned long *vmem_pp = 2105 vmemmap_table + (addr >> VMEMMAP_CHUNK_SHIFT); 2106 void *block; 2107 2108 if (!(*vmem_pp & _PAGE_VALID)) { 2109 block = vmemmap_alloc_block(1UL << 22, node); 2110 if (!block) 2111 return -ENOMEM; 2112 2113 *vmem_pp = pte_base | __pa(block); 2114 2115 printk(KERN_INFO "[%p-%p] page_structs=%lu " 2116 "node=%d entry=%lu/%lu\n", start, block, nr, 2117 node, 2118 addr >> VMEMMAP_CHUNK_SHIFT, 2119 VMEMMAP_SIZE >> VMEMMAP_CHUNK_SHIFT); 2120 } 2121 } 2122 return 0; 2123 } 2124 #endif /* CONFIG_SPARSEMEM_VMEMMAP */ 2125 2126 static void prot_init_common(unsigned long page_none, 2127 unsigned long page_shared, 2128 unsigned long page_copy, 2129 unsigned long page_readonly, 2130 unsigned long page_exec_bit) 2131 { 2132 PAGE_COPY = __pgprot(page_copy); 2133 PAGE_SHARED = __pgprot(page_shared); 2134 2135 protection_map[0x0] = __pgprot(page_none); 2136 protection_map[0x1] = __pgprot(page_readonly & ~page_exec_bit); 2137 protection_map[0x2] = __pgprot(page_copy & ~page_exec_bit); 2138 protection_map[0x3] = __pgprot(page_copy & ~page_exec_bit); 2139 protection_map[0x4] = __pgprot(page_readonly); 2140 protection_map[0x5] = __pgprot(page_readonly); 2141 protection_map[0x6] = __pgprot(page_copy); 2142 protection_map[0x7] = __pgprot(page_copy); 2143 protection_map[0x8] = __pgprot(page_none); 2144 protection_map[0x9] = __pgprot(page_readonly & ~page_exec_bit); 2145 protection_map[0xa] = __pgprot(page_shared & ~page_exec_bit); 2146 protection_map[0xb] = __pgprot(page_shared & ~page_exec_bit); 2147 protection_map[0xc] = __pgprot(page_readonly); 2148 protection_map[0xd] = __pgprot(page_readonly); 2149 protection_map[0xe] = __pgprot(page_shared); 2150 protection_map[0xf] = __pgprot(page_shared); 2151 } 2152 2153 static void __init sun4u_pgprot_init(void) 2154 { 2155 unsigned long page_none, page_shared, page_copy, page_readonly; 2156 unsigned long page_exec_bit; 2157 2158 PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID | 2159 _PAGE_CACHE_4U | _PAGE_P_4U | 2160 __ACCESS_BITS_4U | __DIRTY_BITS_4U | 2161 _PAGE_EXEC_4U); 2162 PAGE_KERNEL_LOCKED = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID | 2163 _PAGE_CACHE_4U | _PAGE_P_4U | 2164 __ACCESS_BITS_4U | __DIRTY_BITS_4U | 2165 _PAGE_EXEC_4U | _PAGE_L_4U); 2166 2167 _PAGE_IE = _PAGE_IE_4U; 2168 _PAGE_E = _PAGE_E_4U; 2169 _PAGE_CACHE = _PAGE_CACHE_4U; 2170 2171 pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4U | __DIRTY_BITS_4U | 2172 __ACCESS_BITS_4U | _PAGE_E_4U); 2173 2174 #ifdef CONFIG_DEBUG_PAGEALLOC 2175 kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZBITS_4U) ^ 2176 0xfffff80000000000UL; 2177 #else 2178 kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4U) ^ 2179 0xfffff80000000000UL; 2180 #endif 2181 kern_linear_pte_xor[0] |= (_PAGE_CP_4U | _PAGE_CV_4U | 2182 _PAGE_P_4U | _PAGE_W_4U); 2183 2184 /* XXX Should use 256MB on Panther. XXX */ 2185 kern_linear_pte_xor[1] = kern_linear_pte_xor[0]; 2186 2187 _PAGE_SZBITS = _PAGE_SZBITS_4U; 2188 _PAGE_ALL_SZ_BITS = (_PAGE_SZ4MB_4U | _PAGE_SZ512K_4U | 2189 _PAGE_SZ64K_4U | _PAGE_SZ8K_4U | 2190 _PAGE_SZ32MB_4U | _PAGE_SZ256MB_4U); 2191 2192 2193 page_none = _PAGE_PRESENT_4U | _PAGE_ACCESSED_4U | _PAGE_CACHE_4U; 2194 page_shared = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U | 2195 __ACCESS_BITS_4U | _PAGE_WRITE_4U | _PAGE_EXEC_4U); 2196 page_copy = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U | 2197 __ACCESS_BITS_4U | _PAGE_EXEC_4U); 2198 page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U | 2199 __ACCESS_BITS_4U | _PAGE_EXEC_4U); 2200 2201 page_exec_bit = _PAGE_EXEC_4U; 2202 2203 prot_init_common(page_none, page_shared, page_copy, page_readonly, 2204 page_exec_bit); 2205 } 2206 2207 static void __init sun4v_pgprot_init(void) 2208 { 2209 unsigned long page_none, page_shared, page_copy, page_readonly; 2210 unsigned long page_exec_bit; 2211 2212 PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4V | _PAGE_VALID | 2213 _PAGE_CACHE_4V | _PAGE_P_4V | 2214 __ACCESS_BITS_4V | __DIRTY_BITS_4V | 2215 _PAGE_EXEC_4V); 2216 PAGE_KERNEL_LOCKED = PAGE_KERNEL; 2217 2218 _PAGE_IE = _PAGE_IE_4V; 2219 _PAGE_E = _PAGE_E_4V; 2220 _PAGE_CACHE = _PAGE_CACHE_4V; 2221 2222 #ifdef CONFIG_DEBUG_PAGEALLOC 2223 kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZBITS_4V) ^ 2224 0xfffff80000000000UL; 2225 #else 2226 kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4V) ^ 2227 0xfffff80000000000UL; 2228 #endif 2229 kern_linear_pte_xor[0] |= (_PAGE_CP_4V | _PAGE_CV_4V | 2230 _PAGE_P_4V | _PAGE_W_4V); 2231 2232 #ifdef CONFIG_DEBUG_PAGEALLOC 2233 kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZBITS_4V) ^ 2234 0xfffff80000000000UL; 2235 #else 2236 kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZ256MB_4V) ^ 2237 0xfffff80000000000UL; 2238 #endif 2239 kern_linear_pte_xor[1] |= (_PAGE_CP_4V | _PAGE_CV_4V | 2240 _PAGE_P_4V | _PAGE_W_4V); 2241 2242 pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4V | __DIRTY_BITS_4V | 2243 __ACCESS_BITS_4V | _PAGE_E_4V); 2244 2245 _PAGE_SZBITS = _PAGE_SZBITS_4V; 2246 _PAGE_ALL_SZ_BITS = (_PAGE_SZ16GB_4V | _PAGE_SZ2GB_4V | 2247 _PAGE_SZ256MB_4V | _PAGE_SZ32MB_4V | 2248 _PAGE_SZ4MB_4V | _PAGE_SZ512K_4V | 2249 _PAGE_SZ64K_4V | _PAGE_SZ8K_4V); 2250 2251 page_none = _PAGE_PRESENT_4V | _PAGE_ACCESSED_4V | _PAGE_CACHE_4V; 2252 page_shared = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V | 2253 __ACCESS_BITS_4V | _PAGE_WRITE_4V | _PAGE_EXEC_4V); 2254 page_copy = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V | 2255 __ACCESS_BITS_4V | _PAGE_EXEC_4V); 2256 page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V | 2257 __ACCESS_BITS_4V | _PAGE_EXEC_4V); 2258 2259 page_exec_bit = _PAGE_EXEC_4V; 2260 2261 prot_init_common(page_none, page_shared, page_copy, page_readonly, 2262 page_exec_bit); 2263 } 2264 2265 unsigned long pte_sz_bits(unsigned long sz) 2266 { 2267 if (tlb_type == hypervisor) { 2268 switch (sz) { 2269 case 8 * 1024: 2270 default: 2271 return _PAGE_SZ8K_4V; 2272 case 64 * 1024: 2273 return _PAGE_SZ64K_4V; 2274 case 512 * 1024: 2275 return _PAGE_SZ512K_4V; 2276 case 4 * 1024 * 1024: 2277 return _PAGE_SZ4MB_4V; 2278 }; 2279 } else { 2280 switch (sz) { 2281 case 8 * 1024: 2282 default: 2283 return _PAGE_SZ8K_4U; 2284 case 64 * 1024: 2285 return _PAGE_SZ64K_4U; 2286 case 512 * 1024: 2287 return _PAGE_SZ512K_4U; 2288 case 4 * 1024 * 1024: 2289 return _PAGE_SZ4MB_4U; 2290 }; 2291 } 2292 } 2293 2294 pte_t mk_pte_io(unsigned long page, pgprot_t prot, int space, unsigned long page_size) 2295 { 2296 pte_t pte; 2297 2298 pte_val(pte) = page | pgprot_val(pgprot_noncached(prot)); 2299 pte_val(pte) |= (((unsigned long)space) << 32); 2300 pte_val(pte) |= pte_sz_bits(page_size); 2301 2302 return pte; 2303 } 2304 2305 static unsigned long kern_large_tte(unsigned long paddr) 2306 { 2307 unsigned long val; 2308 2309 val = (_PAGE_VALID | _PAGE_SZ4MB_4U | 2310 _PAGE_CP_4U | _PAGE_CV_4U | _PAGE_P_4U | 2311 _PAGE_EXEC_4U | _PAGE_L_4U | _PAGE_W_4U); 2312 if (tlb_type == hypervisor) 2313 val = (_PAGE_VALID | _PAGE_SZ4MB_4V | 2314 _PAGE_CP_4V | _PAGE_CV_4V | _PAGE_P_4V | 2315 _PAGE_EXEC_4V | _PAGE_W_4V); 2316 2317 return val | paddr; 2318 } 2319 2320 /* If not locked, zap it. */ 2321 void __flush_tlb_all(void) 2322 { 2323 unsigned long pstate; 2324 int i; 2325 2326 __asm__ __volatile__("flushw\n\t" 2327 "rdpr %%pstate, %0\n\t" 2328 "wrpr %0, %1, %%pstate" 2329 : "=r" (pstate) 2330 : "i" (PSTATE_IE)); 2331 if (tlb_type == hypervisor) { 2332 sun4v_mmu_demap_all(); 2333 } else if (tlb_type == spitfire) { 2334 for (i = 0; i < 64; i++) { 2335 /* Spitfire Errata #32 workaround */ 2336 /* NOTE: Always runs on spitfire, so no 2337 * cheetah+ page size encodings. 2338 */ 2339 __asm__ __volatile__("stxa %0, [%1] %2\n\t" 2340 "flush %%g6" 2341 : /* No outputs */ 2342 : "r" (0), 2343 "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU)); 2344 2345 if (!(spitfire_get_dtlb_data(i) & _PAGE_L_4U)) { 2346 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t" 2347 "membar #Sync" 2348 : /* no outputs */ 2349 : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU)); 2350 spitfire_put_dtlb_data(i, 0x0UL); 2351 } 2352 2353 /* Spitfire Errata #32 workaround */ 2354 /* NOTE: Always runs on spitfire, so no 2355 * cheetah+ page size encodings. 2356 */ 2357 __asm__ __volatile__("stxa %0, [%1] %2\n\t" 2358 "flush %%g6" 2359 : /* No outputs */ 2360 : "r" (0), 2361 "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU)); 2362 2363 if (!(spitfire_get_itlb_data(i) & _PAGE_L_4U)) { 2364 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t" 2365 "membar #Sync" 2366 : /* no outputs */ 2367 : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU)); 2368 spitfire_put_itlb_data(i, 0x0UL); 2369 } 2370 } 2371 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) { 2372 cheetah_flush_dtlb_all(); 2373 cheetah_flush_itlb_all(); 2374 } 2375 __asm__ __volatile__("wrpr %0, 0, %%pstate" 2376 : : "r" (pstate)); 2377 } 2378