xref: /openbmc/linux/arch/sparc/mm/init_64.c (revision ccb01374)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  arch/sparc64/mm/init.c
4  *
5  *  Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu)
6  *  Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
7  */
8 
9 #include <linux/extable.h>
10 #include <linux/kernel.h>
11 #include <linux/sched.h>
12 #include <linux/string.h>
13 #include <linux/init.h>
14 #include <linux/memblock.h>
15 #include <linux/mm.h>
16 #include <linux/hugetlb.h>
17 #include <linux/initrd.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/poison.h>
21 #include <linux/fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/kprobes.h>
24 #include <linux/cache.h>
25 #include <linux/sort.h>
26 #include <linux/ioport.h>
27 #include <linux/percpu.h>
28 #include <linux/mmzone.h>
29 #include <linux/gfp.h>
30 
31 #include <asm/head.h>
32 #include <asm/page.h>
33 #include <asm/pgalloc.h>
34 #include <asm/pgtable.h>
35 #include <asm/oplib.h>
36 #include <asm/iommu.h>
37 #include <asm/io.h>
38 #include <linux/uaccess.h>
39 #include <asm/mmu_context.h>
40 #include <asm/tlbflush.h>
41 #include <asm/dma.h>
42 #include <asm/starfire.h>
43 #include <asm/tlb.h>
44 #include <asm/spitfire.h>
45 #include <asm/sections.h>
46 #include <asm/tsb.h>
47 #include <asm/hypervisor.h>
48 #include <asm/prom.h>
49 #include <asm/mdesc.h>
50 #include <asm/cpudata.h>
51 #include <asm/setup.h>
52 #include <asm/irq.h>
53 
54 #include "init_64.h"
55 
56 unsigned long kern_linear_pte_xor[4] __read_mostly;
57 static unsigned long page_cache4v_flag;
58 
59 /* A bitmap, two bits for every 256MB of physical memory.  These two
60  * bits determine what page size we use for kernel linear
61  * translations.  They form an index into kern_linear_pte_xor[].  The
62  * value in the indexed slot is XOR'd with the TLB miss virtual
63  * address to form the resulting TTE.  The mapping is:
64  *
65  *	0	==>	4MB
66  *	1	==>	256MB
67  *	2	==>	2GB
68  *	3	==>	16GB
69  *
70  * All sun4v chips support 256MB pages.  Only SPARC-T4 and later
71  * support 2GB pages, and hopefully future cpus will support the 16GB
72  * pages as well.  For slots 2 and 3, we encode a 256MB TTE xor there
73  * if these larger page sizes are not supported by the cpu.
74  *
75  * It would be nice to determine this from the machine description
76  * 'cpu' properties, but we need to have this table setup before the
77  * MDESC is initialized.
78  */
79 
80 #ifndef CONFIG_DEBUG_PAGEALLOC
81 /* A special kernel TSB for 4MB, 256MB, 2GB and 16GB linear mappings.
82  * Space is allocated for this right after the trap table in
83  * arch/sparc64/kernel/head.S
84  */
85 extern struct tsb swapper_4m_tsb[KERNEL_TSB4M_NENTRIES];
86 #endif
87 extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
88 
89 static unsigned long cpu_pgsz_mask;
90 
91 #define MAX_BANKS	1024
92 
93 static struct linux_prom64_registers pavail[MAX_BANKS];
94 static int pavail_ents;
95 
96 u64 numa_latency[MAX_NUMNODES][MAX_NUMNODES];
97 
98 static int cmp_p64(const void *a, const void *b)
99 {
100 	const struct linux_prom64_registers *x = a, *y = b;
101 
102 	if (x->phys_addr > y->phys_addr)
103 		return 1;
104 	if (x->phys_addr < y->phys_addr)
105 		return -1;
106 	return 0;
107 }
108 
109 static void __init read_obp_memory(const char *property,
110 				   struct linux_prom64_registers *regs,
111 				   int *num_ents)
112 {
113 	phandle node = prom_finddevice("/memory");
114 	int prop_size = prom_getproplen(node, property);
115 	int ents, ret, i;
116 
117 	ents = prop_size / sizeof(struct linux_prom64_registers);
118 	if (ents > MAX_BANKS) {
119 		prom_printf("The machine has more %s property entries than "
120 			    "this kernel can support (%d).\n",
121 			    property, MAX_BANKS);
122 		prom_halt();
123 	}
124 
125 	ret = prom_getproperty(node, property, (char *) regs, prop_size);
126 	if (ret == -1) {
127 		prom_printf("Couldn't get %s property from /memory.\n",
128 				property);
129 		prom_halt();
130 	}
131 
132 	/* Sanitize what we got from the firmware, by page aligning
133 	 * everything.
134 	 */
135 	for (i = 0; i < ents; i++) {
136 		unsigned long base, size;
137 
138 		base = regs[i].phys_addr;
139 		size = regs[i].reg_size;
140 
141 		size &= PAGE_MASK;
142 		if (base & ~PAGE_MASK) {
143 			unsigned long new_base = PAGE_ALIGN(base);
144 
145 			size -= new_base - base;
146 			if ((long) size < 0L)
147 				size = 0UL;
148 			base = new_base;
149 		}
150 		if (size == 0UL) {
151 			/* If it is empty, simply get rid of it.
152 			 * This simplifies the logic of the other
153 			 * functions that process these arrays.
154 			 */
155 			memmove(&regs[i], &regs[i + 1],
156 				(ents - i - 1) * sizeof(regs[0]));
157 			i--;
158 			ents--;
159 			continue;
160 		}
161 		regs[i].phys_addr = base;
162 		regs[i].reg_size = size;
163 	}
164 
165 	*num_ents = ents;
166 
167 	sort(regs, ents, sizeof(struct linux_prom64_registers),
168 	     cmp_p64, NULL);
169 }
170 
171 /* Kernel physical address base and size in bytes.  */
172 unsigned long kern_base __read_mostly;
173 unsigned long kern_size __read_mostly;
174 
175 /* Initial ramdisk setup */
176 extern unsigned long sparc_ramdisk_image64;
177 extern unsigned int sparc_ramdisk_image;
178 extern unsigned int sparc_ramdisk_size;
179 
180 struct page *mem_map_zero __read_mostly;
181 EXPORT_SYMBOL(mem_map_zero);
182 
183 unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly;
184 
185 unsigned long sparc64_kern_pri_context __read_mostly;
186 unsigned long sparc64_kern_pri_nuc_bits __read_mostly;
187 unsigned long sparc64_kern_sec_context __read_mostly;
188 
189 int num_kernel_image_mappings;
190 
191 #ifdef CONFIG_DEBUG_DCFLUSH
192 atomic_t dcpage_flushes = ATOMIC_INIT(0);
193 #ifdef CONFIG_SMP
194 atomic_t dcpage_flushes_xcall = ATOMIC_INIT(0);
195 #endif
196 #endif
197 
198 inline void flush_dcache_page_impl(struct page *page)
199 {
200 	BUG_ON(tlb_type == hypervisor);
201 #ifdef CONFIG_DEBUG_DCFLUSH
202 	atomic_inc(&dcpage_flushes);
203 #endif
204 
205 #ifdef DCACHE_ALIASING_POSSIBLE
206 	__flush_dcache_page(page_address(page),
207 			    ((tlb_type == spitfire) &&
208 			     page_mapping_file(page) != NULL));
209 #else
210 	if (page_mapping_file(page) != NULL &&
211 	    tlb_type == spitfire)
212 		__flush_icache_page(__pa(page_address(page)));
213 #endif
214 }
215 
216 #define PG_dcache_dirty		PG_arch_1
217 #define PG_dcache_cpu_shift	32UL
218 #define PG_dcache_cpu_mask	\
219 	((1UL<<ilog2(roundup_pow_of_two(NR_CPUS)))-1UL)
220 
221 #define dcache_dirty_cpu(page) \
222 	(((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask)
223 
224 static inline void set_dcache_dirty(struct page *page, int this_cpu)
225 {
226 	unsigned long mask = this_cpu;
227 	unsigned long non_cpu_bits;
228 
229 	non_cpu_bits = ~(PG_dcache_cpu_mask << PG_dcache_cpu_shift);
230 	mask = (mask << PG_dcache_cpu_shift) | (1UL << PG_dcache_dirty);
231 
232 	__asm__ __volatile__("1:\n\t"
233 			     "ldx	[%2], %%g7\n\t"
234 			     "and	%%g7, %1, %%g1\n\t"
235 			     "or	%%g1, %0, %%g1\n\t"
236 			     "casx	[%2], %%g7, %%g1\n\t"
237 			     "cmp	%%g7, %%g1\n\t"
238 			     "bne,pn	%%xcc, 1b\n\t"
239 			     " nop"
240 			     : /* no outputs */
241 			     : "r" (mask), "r" (non_cpu_bits), "r" (&page->flags)
242 			     : "g1", "g7");
243 }
244 
245 static inline void clear_dcache_dirty_cpu(struct page *page, unsigned long cpu)
246 {
247 	unsigned long mask = (1UL << PG_dcache_dirty);
248 
249 	__asm__ __volatile__("! test_and_clear_dcache_dirty\n"
250 			     "1:\n\t"
251 			     "ldx	[%2], %%g7\n\t"
252 			     "srlx	%%g7, %4, %%g1\n\t"
253 			     "and	%%g1, %3, %%g1\n\t"
254 			     "cmp	%%g1, %0\n\t"
255 			     "bne,pn	%%icc, 2f\n\t"
256 			     " andn	%%g7, %1, %%g1\n\t"
257 			     "casx	[%2], %%g7, %%g1\n\t"
258 			     "cmp	%%g7, %%g1\n\t"
259 			     "bne,pn	%%xcc, 1b\n\t"
260 			     " nop\n"
261 			     "2:"
262 			     : /* no outputs */
263 			     : "r" (cpu), "r" (mask), "r" (&page->flags),
264 			       "i" (PG_dcache_cpu_mask),
265 			       "i" (PG_dcache_cpu_shift)
266 			     : "g1", "g7");
267 }
268 
269 static inline void tsb_insert(struct tsb *ent, unsigned long tag, unsigned long pte)
270 {
271 	unsigned long tsb_addr = (unsigned long) ent;
272 
273 	if (tlb_type == cheetah_plus || tlb_type == hypervisor)
274 		tsb_addr = __pa(tsb_addr);
275 
276 	__tsb_insert(tsb_addr, tag, pte);
277 }
278 
279 unsigned long _PAGE_ALL_SZ_BITS __read_mostly;
280 
281 static void flush_dcache(unsigned long pfn)
282 {
283 	struct page *page;
284 
285 	page = pfn_to_page(pfn);
286 	if (page) {
287 		unsigned long pg_flags;
288 
289 		pg_flags = page->flags;
290 		if (pg_flags & (1UL << PG_dcache_dirty)) {
291 			int cpu = ((pg_flags >> PG_dcache_cpu_shift) &
292 				   PG_dcache_cpu_mask);
293 			int this_cpu = get_cpu();
294 
295 			/* This is just to optimize away some function calls
296 			 * in the SMP case.
297 			 */
298 			if (cpu == this_cpu)
299 				flush_dcache_page_impl(page);
300 			else
301 				smp_flush_dcache_page_impl(page, cpu);
302 
303 			clear_dcache_dirty_cpu(page, cpu);
304 
305 			put_cpu();
306 		}
307 	}
308 }
309 
310 /* mm->context.lock must be held */
311 static void __update_mmu_tsb_insert(struct mm_struct *mm, unsigned long tsb_index,
312 				    unsigned long tsb_hash_shift, unsigned long address,
313 				    unsigned long tte)
314 {
315 	struct tsb *tsb = mm->context.tsb_block[tsb_index].tsb;
316 	unsigned long tag;
317 
318 	if (unlikely(!tsb))
319 		return;
320 
321 	tsb += ((address >> tsb_hash_shift) &
322 		(mm->context.tsb_block[tsb_index].tsb_nentries - 1UL));
323 	tag = (address >> 22UL);
324 	tsb_insert(tsb, tag, tte);
325 }
326 
327 #ifdef CONFIG_HUGETLB_PAGE
328 static void __init add_huge_page_size(unsigned long size)
329 {
330 	unsigned int order;
331 
332 	if (size_to_hstate(size))
333 		return;
334 
335 	order = ilog2(size) - PAGE_SHIFT;
336 	hugetlb_add_hstate(order);
337 }
338 
339 static int __init hugetlbpage_init(void)
340 {
341 	add_huge_page_size(1UL << HPAGE_64K_SHIFT);
342 	add_huge_page_size(1UL << HPAGE_SHIFT);
343 	add_huge_page_size(1UL << HPAGE_256MB_SHIFT);
344 	add_huge_page_size(1UL << HPAGE_2GB_SHIFT);
345 
346 	return 0;
347 }
348 
349 arch_initcall(hugetlbpage_init);
350 
351 static void __init pud_huge_patch(void)
352 {
353 	struct pud_huge_patch_entry *p;
354 	unsigned long addr;
355 
356 	p = &__pud_huge_patch;
357 	addr = p->addr;
358 	*(unsigned int *)addr = p->insn;
359 
360 	__asm__ __volatile__("flush %0" : : "r" (addr));
361 }
362 
363 static int __init setup_hugepagesz(char *string)
364 {
365 	unsigned long long hugepage_size;
366 	unsigned int hugepage_shift;
367 	unsigned short hv_pgsz_idx;
368 	unsigned int hv_pgsz_mask;
369 	int rc = 0;
370 
371 	hugepage_size = memparse(string, &string);
372 	hugepage_shift = ilog2(hugepage_size);
373 
374 	switch (hugepage_shift) {
375 	case HPAGE_16GB_SHIFT:
376 		hv_pgsz_mask = HV_PGSZ_MASK_16GB;
377 		hv_pgsz_idx = HV_PGSZ_IDX_16GB;
378 		pud_huge_patch();
379 		break;
380 	case HPAGE_2GB_SHIFT:
381 		hv_pgsz_mask = HV_PGSZ_MASK_2GB;
382 		hv_pgsz_idx = HV_PGSZ_IDX_2GB;
383 		break;
384 	case HPAGE_256MB_SHIFT:
385 		hv_pgsz_mask = HV_PGSZ_MASK_256MB;
386 		hv_pgsz_idx = HV_PGSZ_IDX_256MB;
387 		break;
388 	case HPAGE_SHIFT:
389 		hv_pgsz_mask = HV_PGSZ_MASK_4MB;
390 		hv_pgsz_idx = HV_PGSZ_IDX_4MB;
391 		break;
392 	case HPAGE_64K_SHIFT:
393 		hv_pgsz_mask = HV_PGSZ_MASK_64K;
394 		hv_pgsz_idx = HV_PGSZ_IDX_64K;
395 		break;
396 	default:
397 		hv_pgsz_mask = 0;
398 	}
399 
400 	if ((hv_pgsz_mask & cpu_pgsz_mask) == 0U) {
401 		hugetlb_bad_size();
402 		pr_err("hugepagesz=%llu not supported by MMU.\n",
403 			hugepage_size);
404 		goto out;
405 	}
406 
407 	add_huge_page_size(hugepage_size);
408 	rc = 1;
409 
410 out:
411 	return rc;
412 }
413 __setup("hugepagesz=", setup_hugepagesz);
414 #endif	/* CONFIG_HUGETLB_PAGE */
415 
416 void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t *ptep)
417 {
418 	struct mm_struct *mm;
419 	unsigned long flags;
420 	bool is_huge_tsb;
421 	pte_t pte = *ptep;
422 
423 	if (tlb_type != hypervisor) {
424 		unsigned long pfn = pte_pfn(pte);
425 
426 		if (pfn_valid(pfn))
427 			flush_dcache(pfn);
428 	}
429 
430 	mm = vma->vm_mm;
431 
432 	/* Don't insert a non-valid PTE into the TSB, we'll deadlock.  */
433 	if (!pte_accessible(mm, pte))
434 		return;
435 
436 	spin_lock_irqsave(&mm->context.lock, flags);
437 
438 	is_huge_tsb = false;
439 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
440 	if (mm->context.hugetlb_pte_count || mm->context.thp_pte_count) {
441 		unsigned long hugepage_size = PAGE_SIZE;
442 
443 		if (is_vm_hugetlb_page(vma))
444 			hugepage_size = huge_page_size(hstate_vma(vma));
445 
446 		if (hugepage_size >= PUD_SIZE) {
447 			unsigned long mask = 0x1ffc00000UL;
448 
449 			/* Transfer bits [32:22] from address to resolve
450 			 * at 4M granularity.
451 			 */
452 			pte_val(pte) &= ~mask;
453 			pte_val(pte) |= (address & mask);
454 		} else if (hugepage_size >= PMD_SIZE) {
455 			/* We are fabricating 8MB pages using 4MB
456 			 * real hw pages.
457 			 */
458 			pte_val(pte) |= (address & (1UL << REAL_HPAGE_SHIFT));
459 		}
460 
461 		if (hugepage_size >= PMD_SIZE) {
462 			__update_mmu_tsb_insert(mm, MM_TSB_HUGE,
463 				REAL_HPAGE_SHIFT, address, pte_val(pte));
464 			is_huge_tsb = true;
465 		}
466 	}
467 #endif
468 	if (!is_huge_tsb)
469 		__update_mmu_tsb_insert(mm, MM_TSB_BASE, PAGE_SHIFT,
470 					address, pte_val(pte));
471 
472 	spin_unlock_irqrestore(&mm->context.lock, flags);
473 }
474 
475 void flush_dcache_page(struct page *page)
476 {
477 	struct address_space *mapping;
478 	int this_cpu;
479 
480 	if (tlb_type == hypervisor)
481 		return;
482 
483 	/* Do not bother with the expensive D-cache flush if it
484 	 * is merely the zero page.  The 'bigcore' testcase in GDB
485 	 * causes this case to run millions of times.
486 	 */
487 	if (page == ZERO_PAGE(0))
488 		return;
489 
490 	this_cpu = get_cpu();
491 
492 	mapping = page_mapping_file(page);
493 	if (mapping && !mapping_mapped(mapping)) {
494 		int dirty = test_bit(PG_dcache_dirty, &page->flags);
495 		if (dirty) {
496 			int dirty_cpu = dcache_dirty_cpu(page);
497 
498 			if (dirty_cpu == this_cpu)
499 				goto out;
500 			smp_flush_dcache_page_impl(page, dirty_cpu);
501 		}
502 		set_dcache_dirty(page, this_cpu);
503 	} else {
504 		/* We could delay the flush for the !page_mapping
505 		 * case too.  But that case is for exec env/arg
506 		 * pages and those are %99 certainly going to get
507 		 * faulted into the tlb (and thus flushed) anyways.
508 		 */
509 		flush_dcache_page_impl(page);
510 	}
511 
512 out:
513 	put_cpu();
514 }
515 EXPORT_SYMBOL(flush_dcache_page);
516 
517 void __kprobes flush_icache_range(unsigned long start, unsigned long end)
518 {
519 	/* Cheetah and Hypervisor platform cpus have coherent I-cache. */
520 	if (tlb_type == spitfire) {
521 		unsigned long kaddr;
522 
523 		/* This code only runs on Spitfire cpus so this is
524 		 * why we can assume _PAGE_PADDR_4U.
525 		 */
526 		for (kaddr = start; kaddr < end; kaddr += PAGE_SIZE) {
527 			unsigned long paddr, mask = _PAGE_PADDR_4U;
528 
529 			if (kaddr >= PAGE_OFFSET)
530 				paddr = kaddr & mask;
531 			else {
532 				pgd_t *pgdp = pgd_offset_k(kaddr);
533 				pud_t *pudp = pud_offset(pgdp, kaddr);
534 				pmd_t *pmdp = pmd_offset(pudp, kaddr);
535 				pte_t *ptep = pte_offset_kernel(pmdp, kaddr);
536 
537 				paddr = pte_val(*ptep) & mask;
538 			}
539 			__flush_icache_page(paddr);
540 		}
541 	}
542 }
543 EXPORT_SYMBOL(flush_icache_range);
544 
545 void mmu_info(struct seq_file *m)
546 {
547 	static const char *pgsz_strings[] = {
548 		"8K", "64K", "512K", "4MB", "32MB",
549 		"256MB", "2GB", "16GB",
550 	};
551 	int i, printed;
552 
553 	if (tlb_type == cheetah)
554 		seq_printf(m, "MMU Type\t: Cheetah\n");
555 	else if (tlb_type == cheetah_plus)
556 		seq_printf(m, "MMU Type\t: Cheetah+\n");
557 	else if (tlb_type == spitfire)
558 		seq_printf(m, "MMU Type\t: Spitfire\n");
559 	else if (tlb_type == hypervisor)
560 		seq_printf(m, "MMU Type\t: Hypervisor (sun4v)\n");
561 	else
562 		seq_printf(m, "MMU Type\t: ???\n");
563 
564 	seq_printf(m, "MMU PGSZs\t: ");
565 	printed = 0;
566 	for (i = 0; i < ARRAY_SIZE(pgsz_strings); i++) {
567 		if (cpu_pgsz_mask & (1UL << i)) {
568 			seq_printf(m, "%s%s",
569 				   printed ? "," : "", pgsz_strings[i]);
570 			printed++;
571 		}
572 	}
573 	seq_putc(m, '\n');
574 
575 #ifdef CONFIG_DEBUG_DCFLUSH
576 	seq_printf(m, "DCPageFlushes\t: %d\n",
577 		   atomic_read(&dcpage_flushes));
578 #ifdef CONFIG_SMP
579 	seq_printf(m, "DCPageFlushesXC\t: %d\n",
580 		   atomic_read(&dcpage_flushes_xcall));
581 #endif /* CONFIG_SMP */
582 #endif /* CONFIG_DEBUG_DCFLUSH */
583 }
584 
585 struct linux_prom_translation prom_trans[512] __read_mostly;
586 unsigned int prom_trans_ents __read_mostly;
587 
588 unsigned long kern_locked_tte_data;
589 
590 /* The obp translations are saved based on 8k pagesize, since obp can
591  * use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS ->
592  * HI_OBP_ADDRESS range are handled in ktlb.S.
593  */
594 static inline int in_obp_range(unsigned long vaddr)
595 {
596 	return (vaddr >= LOW_OBP_ADDRESS &&
597 		vaddr < HI_OBP_ADDRESS);
598 }
599 
600 static int cmp_ptrans(const void *a, const void *b)
601 {
602 	const struct linux_prom_translation *x = a, *y = b;
603 
604 	if (x->virt > y->virt)
605 		return 1;
606 	if (x->virt < y->virt)
607 		return -1;
608 	return 0;
609 }
610 
611 /* Read OBP translations property into 'prom_trans[]'.  */
612 static void __init read_obp_translations(void)
613 {
614 	int n, node, ents, first, last, i;
615 
616 	node = prom_finddevice("/virtual-memory");
617 	n = prom_getproplen(node, "translations");
618 	if (unlikely(n == 0 || n == -1)) {
619 		prom_printf("prom_mappings: Couldn't get size.\n");
620 		prom_halt();
621 	}
622 	if (unlikely(n > sizeof(prom_trans))) {
623 		prom_printf("prom_mappings: Size %d is too big.\n", n);
624 		prom_halt();
625 	}
626 
627 	if ((n = prom_getproperty(node, "translations",
628 				  (char *)&prom_trans[0],
629 				  sizeof(prom_trans))) == -1) {
630 		prom_printf("prom_mappings: Couldn't get property.\n");
631 		prom_halt();
632 	}
633 
634 	n = n / sizeof(struct linux_prom_translation);
635 
636 	ents = n;
637 
638 	sort(prom_trans, ents, sizeof(struct linux_prom_translation),
639 	     cmp_ptrans, NULL);
640 
641 	/* Now kick out all the non-OBP entries.  */
642 	for (i = 0; i < ents; i++) {
643 		if (in_obp_range(prom_trans[i].virt))
644 			break;
645 	}
646 	first = i;
647 	for (; i < ents; i++) {
648 		if (!in_obp_range(prom_trans[i].virt))
649 			break;
650 	}
651 	last = i;
652 
653 	for (i = 0; i < (last - first); i++) {
654 		struct linux_prom_translation *src = &prom_trans[i + first];
655 		struct linux_prom_translation *dest = &prom_trans[i];
656 
657 		*dest = *src;
658 	}
659 	for (; i < ents; i++) {
660 		struct linux_prom_translation *dest = &prom_trans[i];
661 		dest->virt = dest->size = dest->data = 0x0UL;
662 	}
663 
664 	prom_trans_ents = last - first;
665 
666 	if (tlb_type == spitfire) {
667 		/* Clear diag TTE bits. */
668 		for (i = 0; i < prom_trans_ents; i++)
669 			prom_trans[i].data &= ~0x0003fe0000000000UL;
670 	}
671 
672 	/* Force execute bit on.  */
673 	for (i = 0; i < prom_trans_ents; i++)
674 		prom_trans[i].data |= (tlb_type == hypervisor ?
675 				       _PAGE_EXEC_4V : _PAGE_EXEC_4U);
676 }
677 
678 static void __init hypervisor_tlb_lock(unsigned long vaddr,
679 				       unsigned long pte,
680 				       unsigned long mmu)
681 {
682 	unsigned long ret = sun4v_mmu_map_perm_addr(vaddr, 0, pte, mmu);
683 
684 	if (ret != 0) {
685 		prom_printf("hypervisor_tlb_lock[%lx:%x:%lx:%lx]: "
686 			    "errors with %lx\n", vaddr, 0, pte, mmu, ret);
687 		prom_halt();
688 	}
689 }
690 
691 static unsigned long kern_large_tte(unsigned long paddr);
692 
693 static void __init remap_kernel(void)
694 {
695 	unsigned long phys_page, tte_vaddr, tte_data;
696 	int i, tlb_ent = sparc64_highest_locked_tlbent();
697 
698 	tte_vaddr = (unsigned long) KERNBASE;
699 	phys_page = (prom_boot_mapping_phys_low >> ILOG2_4MB) << ILOG2_4MB;
700 	tte_data = kern_large_tte(phys_page);
701 
702 	kern_locked_tte_data = tte_data;
703 
704 	/* Now lock us into the TLBs via Hypervisor or OBP. */
705 	if (tlb_type == hypervisor) {
706 		for (i = 0; i < num_kernel_image_mappings; i++) {
707 			hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU);
708 			hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU);
709 			tte_vaddr += 0x400000;
710 			tte_data += 0x400000;
711 		}
712 	} else {
713 		for (i = 0; i < num_kernel_image_mappings; i++) {
714 			prom_dtlb_load(tlb_ent - i, tte_data, tte_vaddr);
715 			prom_itlb_load(tlb_ent - i, tte_data, tte_vaddr);
716 			tte_vaddr += 0x400000;
717 			tte_data += 0x400000;
718 		}
719 		sparc64_highest_unlocked_tlb_ent = tlb_ent - i;
720 	}
721 	if (tlb_type == cheetah_plus) {
722 		sparc64_kern_pri_context = (CTX_CHEETAH_PLUS_CTX0 |
723 					    CTX_CHEETAH_PLUS_NUC);
724 		sparc64_kern_pri_nuc_bits = CTX_CHEETAH_PLUS_NUC;
725 		sparc64_kern_sec_context = CTX_CHEETAH_PLUS_CTX0;
726 	}
727 }
728 
729 
730 static void __init inherit_prom_mappings(void)
731 {
732 	/* Now fixup OBP's idea about where we really are mapped. */
733 	printk("Remapping the kernel... ");
734 	remap_kernel();
735 	printk("done.\n");
736 }
737 
738 void prom_world(int enter)
739 {
740 	if (!enter)
741 		set_fs(get_fs());
742 
743 	__asm__ __volatile__("flushw");
744 }
745 
746 void __flush_dcache_range(unsigned long start, unsigned long end)
747 {
748 	unsigned long va;
749 
750 	if (tlb_type == spitfire) {
751 		int n = 0;
752 
753 		for (va = start; va < end; va += 32) {
754 			spitfire_put_dcache_tag(va & 0x3fe0, 0x0);
755 			if (++n >= 512)
756 				break;
757 		}
758 	} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
759 		start = __pa(start);
760 		end = __pa(end);
761 		for (va = start; va < end; va += 32)
762 			__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
763 					     "membar #Sync"
764 					     : /* no outputs */
765 					     : "r" (va),
766 					       "i" (ASI_DCACHE_INVALIDATE));
767 	}
768 }
769 EXPORT_SYMBOL(__flush_dcache_range);
770 
771 /* get_new_mmu_context() uses "cache + 1".  */
772 DEFINE_SPINLOCK(ctx_alloc_lock);
773 unsigned long tlb_context_cache = CTX_FIRST_VERSION;
774 #define MAX_CTX_NR	(1UL << CTX_NR_BITS)
775 #define CTX_BMAP_SLOTS	BITS_TO_LONGS(MAX_CTX_NR)
776 DECLARE_BITMAP(mmu_context_bmap, MAX_CTX_NR);
777 DEFINE_PER_CPU(struct mm_struct *, per_cpu_secondary_mm) = {0};
778 
779 static void mmu_context_wrap(void)
780 {
781 	unsigned long old_ver = tlb_context_cache & CTX_VERSION_MASK;
782 	unsigned long new_ver, new_ctx, old_ctx;
783 	struct mm_struct *mm;
784 	int cpu;
785 
786 	bitmap_zero(mmu_context_bmap, 1 << CTX_NR_BITS);
787 
788 	/* Reserve kernel context */
789 	set_bit(0, mmu_context_bmap);
790 
791 	new_ver = (tlb_context_cache & CTX_VERSION_MASK) + CTX_FIRST_VERSION;
792 	if (unlikely(new_ver == 0))
793 		new_ver = CTX_FIRST_VERSION;
794 	tlb_context_cache = new_ver;
795 
796 	/*
797 	 * Make sure that any new mm that are added into per_cpu_secondary_mm,
798 	 * are going to go through get_new_mmu_context() path.
799 	 */
800 	mb();
801 
802 	/*
803 	 * Updated versions to current on those CPUs that had valid secondary
804 	 * contexts
805 	 */
806 	for_each_online_cpu(cpu) {
807 		/*
808 		 * If a new mm is stored after we took this mm from the array,
809 		 * it will go into get_new_mmu_context() path, because we
810 		 * already bumped the version in tlb_context_cache.
811 		 */
812 		mm = per_cpu(per_cpu_secondary_mm, cpu);
813 
814 		if (unlikely(!mm || mm == &init_mm))
815 			continue;
816 
817 		old_ctx = mm->context.sparc64_ctx_val;
818 		if (likely((old_ctx & CTX_VERSION_MASK) == old_ver)) {
819 			new_ctx = (old_ctx & ~CTX_VERSION_MASK) | new_ver;
820 			set_bit(new_ctx & CTX_NR_MASK, mmu_context_bmap);
821 			mm->context.sparc64_ctx_val = new_ctx;
822 		}
823 	}
824 }
825 
826 /* Caller does TLB context flushing on local CPU if necessary.
827  * The caller also ensures that CTX_VALID(mm->context) is false.
828  *
829  * We must be careful about boundary cases so that we never
830  * let the user have CTX 0 (nucleus) or we ever use a CTX
831  * version of zero (and thus NO_CONTEXT would not be caught
832  * by version mis-match tests in mmu_context.h).
833  *
834  * Always invoked with interrupts disabled.
835  */
836 void get_new_mmu_context(struct mm_struct *mm)
837 {
838 	unsigned long ctx, new_ctx;
839 	unsigned long orig_pgsz_bits;
840 
841 	spin_lock(&ctx_alloc_lock);
842 retry:
843 	/* wrap might have happened, test again if our context became valid */
844 	if (unlikely(CTX_VALID(mm->context)))
845 		goto out;
846 	orig_pgsz_bits = (mm->context.sparc64_ctx_val & CTX_PGSZ_MASK);
847 	ctx = (tlb_context_cache + 1) & CTX_NR_MASK;
848 	new_ctx = find_next_zero_bit(mmu_context_bmap, 1 << CTX_NR_BITS, ctx);
849 	if (new_ctx >= (1 << CTX_NR_BITS)) {
850 		new_ctx = find_next_zero_bit(mmu_context_bmap, ctx, 1);
851 		if (new_ctx >= ctx) {
852 			mmu_context_wrap();
853 			goto retry;
854 		}
855 	}
856 	if (mm->context.sparc64_ctx_val)
857 		cpumask_clear(mm_cpumask(mm));
858 	mmu_context_bmap[new_ctx>>6] |= (1UL << (new_ctx & 63));
859 	new_ctx |= (tlb_context_cache & CTX_VERSION_MASK);
860 	tlb_context_cache = new_ctx;
861 	mm->context.sparc64_ctx_val = new_ctx | orig_pgsz_bits;
862 out:
863 	spin_unlock(&ctx_alloc_lock);
864 }
865 
866 static int numa_enabled = 1;
867 static int numa_debug;
868 
869 static int __init early_numa(char *p)
870 {
871 	if (!p)
872 		return 0;
873 
874 	if (strstr(p, "off"))
875 		numa_enabled = 0;
876 
877 	if (strstr(p, "debug"))
878 		numa_debug = 1;
879 
880 	return 0;
881 }
882 early_param("numa", early_numa);
883 
884 #define numadbg(f, a...) \
885 do {	if (numa_debug) \
886 		printk(KERN_INFO f, ## a); \
887 } while (0)
888 
889 static void __init find_ramdisk(unsigned long phys_base)
890 {
891 #ifdef CONFIG_BLK_DEV_INITRD
892 	if (sparc_ramdisk_image || sparc_ramdisk_image64) {
893 		unsigned long ramdisk_image;
894 
895 		/* Older versions of the bootloader only supported a
896 		 * 32-bit physical address for the ramdisk image
897 		 * location, stored at sparc_ramdisk_image.  Newer
898 		 * SILO versions set sparc_ramdisk_image to zero and
899 		 * provide a full 64-bit physical address at
900 		 * sparc_ramdisk_image64.
901 		 */
902 		ramdisk_image = sparc_ramdisk_image;
903 		if (!ramdisk_image)
904 			ramdisk_image = sparc_ramdisk_image64;
905 
906 		/* Another bootloader quirk.  The bootloader normalizes
907 		 * the physical address to KERNBASE, so we have to
908 		 * factor that back out and add in the lowest valid
909 		 * physical page address to get the true physical address.
910 		 */
911 		ramdisk_image -= KERNBASE;
912 		ramdisk_image += phys_base;
913 
914 		numadbg("Found ramdisk at physical address 0x%lx, size %u\n",
915 			ramdisk_image, sparc_ramdisk_size);
916 
917 		initrd_start = ramdisk_image;
918 		initrd_end = ramdisk_image + sparc_ramdisk_size;
919 
920 		memblock_reserve(initrd_start, sparc_ramdisk_size);
921 
922 		initrd_start += PAGE_OFFSET;
923 		initrd_end += PAGE_OFFSET;
924 	}
925 #endif
926 }
927 
928 struct node_mem_mask {
929 	unsigned long mask;
930 	unsigned long match;
931 };
932 static struct node_mem_mask node_masks[MAX_NUMNODES];
933 static int num_node_masks;
934 
935 #ifdef CONFIG_NEED_MULTIPLE_NODES
936 
937 struct mdesc_mlgroup {
938 	u64	node;
939 	u64	latency;
940 	u64	match;
941 	u64	mask;
942 };
943 
944 static struct mdesc_mlgroup *mlgroups;
945 static int num_mlgroups;
946 
947 int numa_cpu_lookup_table[NR_CPUS];
948 cpumask_t numa_cpumask_lookup_table[MAX_NUMNODES];
949 
950 struct mdesc_mblock {
951 	u64	base;
952 	u64	size;
953 	u64	offset; /* RA-to-PA */
954 };
955 static struct mdesc_mblock *mblocks;
956 static int num_mblocks;
957 
958 static struct mdesc_mblock * __init addr_to_mblock(unsigned long addr)
959 {
960 	struct mdesc_mblock *m = NULL;
961 	int i;
962 
963 	for (i = 0; i < num_mblocks; i++) {
964 		m = &mblocks[i];
965 
966 		if (addr >= m->base &&
967 		    addr < (m->base + m->size)) {
968 			break;
969 		}
970 	}
971 
972 	return m;
973 }
974 
975 static u64 __init memblock_nid_range_sun4u(u64 start, u64 end, int *nid)
976 {
977 	int prev_nid, new_nid;
978 
979 	prev_nid = -1;
980 	for ( ; start < end; start += PAGE_SIZE) {
981 		for (new_nid = 0; new_nid < num_node_masks; new_nid++) {
982 			struct node_mem_mask *p = &node_masks[new_nid];
983 
984 			if ((start & p->mask) == p->match) {
985 				if (prev_nid == -1)
986 					prev_nid = new_nid;
987 				break;
988 			}
989 		}
990 
991 		if (new_nid == num_node_masks) {
992 			prev_nid = 0;
993 			WARN_ONCE(1, "addr[%Lx] doesn't match a NUMA node rule. Some memory will be owned by node 0.",
994 				  start);
995 			break;
996 		}
997 
998 		if (prev_nid != new_nid)
999 			break;
1000 	}
1001 	*nid = prev_nid;
1002 
1003 	return start > end ? end : start;
1004 }
1005 
1006 static u64 __init memblock_nid_range(u64 start, u64 end, int *nid)
1007 {
1008 	u64 ret_end, pa_start, m_mask, m_match, m_end;
1009 	struct mdesc_mblock *mblock;
1010 	int _nid, i;
1011 
1012 	if (tlb_type != hypervisor)
1013 		return memblock_nid_range_sun4u(start, end, nid);
1014 
1015 	mblock = addr_to_mblock(start);
1016 	if (!mblock) {
1017 		WARN_ONCE(1, "memblock_nid_range: Can't find mblock addr[%Lx]",
1018 			  start);
1019 
1020 		_nid = 0;
1021 		ret_end = end;
1022 		goto done;
1023 	}
1024 
1025 	pa_start = start + mblock->offset;
1026 	m_match = 0;
1027 	m_mask = 0;
1028 
1029 	for (_nid = 0; _nid < num_node_masks; _nid++) {
1030 		struct node_mem_mask *const m = &node_masks[_nid];
1031 
1032 		if ((pa_start & m->mask) == m->match) {
1033 			m_match = m->match;
1034 			m_mask = m->mask;
1035 			break;
1036 		}
1037 	}
1038 
1039 	if (num_node_masks == _nid) {
1040 		/* We could not find NUMA group, so default to 0, but lets
1041 		 * search for latency group, so we could calculate the correct
1042 		 * end address that we return
1043 		 */
1044 		_nid = 0;
1045 
1046 		for (i = 0; i < num_mlgroups; i++) {
1047 			struct mdesc_mlgroup *const m = &mlgroups[i];
1048 
1049 			if ((pa_start & m->mask) == m->match) {
1050 				m_match = m->match;
1051 				m_mask = m->mask;
1052 				break;
1053 			}
1054 		}
1055 
1056 		if (i == num_mlgroups) {
1057 			WARN_ONCE(1, "memblock_nid_range: Can't find latency group addr[%Lx]",
1058 				  start);
1059 
1060 			ret_end = end;
1061 			goto done;
1062 		}
1063 	}
1064 
1065 	/*
1066 	 * Each latency group has match and mask, and each memory block has an
1067 	 * offset.  An address belongs to a latency group if its address matches
1068 	 * the following formula: ((addr + offset) & mask) == match
1069 	 * It is, however, slow to check every single page if it matches a
1070 	 * particular latency group. As optimization we calculate end value by
1071 	 * using bit arithmetics.
1072 	 */
1073 	m_end = m_match + (1ul << __ffs(m_mask)) - mblock->offset;
1074 	m_end += pa_start & ~((1ul << fls64(m_mask)) - 1);
1075 	ret_end = m_end > end ? end : m_end;
1076 
1077 done:
1078 	*nid = _nid;
1079 	return ret_end;
1080 }
1081 #endif
1082 
1083 /* This must be invoked after performing all of the necessary
1084  * memblock_set_node() calls for 'nid'.  We need to be able to get
1085  * correct data from get_pfn_range_for_nid().
1086  */
1087 static void __init allocate_node_data(int nid)
1088 {
1089 	struct pglist_data *p;
1090 	unsigned long start_pfn, end_pfn;
1091 #ifdef CONFIG_NEED_MULTIPLE_NODES
1092 	unsigned long paddr;
1093 
1094 	paddr = memblock_phys_alloc_try_nid(sizeof(struct pglist_data),
1095 					    SMP_CACHE_BYTES, nid);
1096 	if (!paddr) {
1097 		prom_printf("Cannot allocate pglist_data for nid[%d]\n", nid);
1098 		prom_halt();
1099 	}
1100 	NODE_DATA(nid) = __va(paddr);
1101 	memset(NODE_DATA(nid), 0, sizeof(struct pglist_data));
1102 
1103 	NODE_DATA(nid)->node_id = nid;
1104 #endif
1105 
1106 	p = NODE_DATA(nid);
1107 
1108 	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
1109 	p->node_start_pfn = start_pfn;
1110 	p->node_spanned_pages = end_pfn - start_pfn;
1111 }
1112 
1113 static void init_node_masks_nonnuma(void)
1114 {
1115 #ifdef CONFIG_NEED_MULTIPLE_NODES
1116 	int i;
1117 #endif
1118 
1119 	numadbg("Initializing tables for non-numa.\n");
1120 
1121 	node_masks[0].mask = 0;
1122 	node_masks[0].match = 0;
1123 	num_node_masks = 1;
1124 
1125 #ifdef CONFIG_NEED_MULTIPLE_NODES
1126 	for (i = 0; i < NR_CPUS; i++)
1127 		numa_cpu_lookup_table[i] = 0;
1128 
1129 	cpumask_setall(&numa_cpumask_lookup_table[0]);
1130 #endif
1131 }
1132 
1133 #ifdef CONFIG_NEED_MULTIPLE_NODES
1134 struct pglist_data *node_data[MAX_NUMNODES];
1135 
1136 EXPORT_SYMBOL(numa_cpu_lookup_table);
1137 EXPORT_SYMBOL(numa_cpumask_lookup_table);
1138 EXPORT_SYMBOL(node_data);
1139 
1140 static int scan_pio_for_cfg_handle(struct mdesc_handle *md, u64 pio,
1141 				   u32 cfg_handle)
1142 {
1143 	u64 arc;
1144 
1145 	mdesc_for_each_arc(arc, md, pio, MDESC_ARC_TYPE_FWD) {
1146 		u64 target = mdesc_arc_target(md, arc);
1147 		const u64 *val;
1148 
1149 		val = mdesc_get_property(md, target,
1150 					 "cfg-handle", NULL);
1151 		if (val && *val == cfg_handle)
1152 			return 0;
1153 	}
1154 	return -ENODEV;
1155 }
1156 
1157 static int scan_arcs_for_cfg_handle(struct mdesc_handle *md, u64 grp,
1158 				    u32 cfg_handle)
1159 {
1160 	u64 arc, candidate, best_latency = ~(u64)0;
1161 
1162 	candidate = MDESC_NODE_NULL;
1163 	mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1164 		u64 target = mdesc_arc_target(md, arc);
1165 		const char *name = mdesc_node_name(md, target);
1166 		const u64 *val;
1167 
1168 		if (strcmp(name, "pio-latency-group"))
1169 			continue;
1170 
1171 		val = mdesc_get_property(md, target, "latency", NULL);
1172 		if (!val)
1173 			continue;
1174 
1175 		if (*val < best_latency) {
1176 			candidate = target;
1177 			best_latency = *val;
1178 		}
1179 	}
1180 
1181 	if (candidate == MDESC_NODE_NULL)
1182 		return -ENODEV;
1183 
1184 	return scan_pio_for_cfg_handle(md, candidate, cfg_handle);
1185 }
1186 
1187 int of_node_to_nid(struct device_node *dp)
1188 {
1189 	const struct linux_prom64_registers *regs;
1190 	struct mdesc_handle *md;
1191 	u32 cfg_handle;
1192 	int count, nid;
1193 	u64 grp;
1194 
1195 	/* This is the right thing to do on currently supported
1196 	 * SUN4U NUMA platforms as well, as the PCI controller does
1197 	 * not sit behind any particular memory controller.
1198 	 */
1199 	if (!mlgroups)
1200 		return -1;
1201 
1202 	regs = of_get_property(dp, "reg", NULL);
1203 	if (!regs)
1204 		return -1;
1205 
1206 	cfg_handle = (regs->phys_addr >> 32UL) & 0x0fffffff;
1207 
1208 	md = mdesc_grab();
1209 
1210 	count = 0;
1211 	nid = -1;
1212 	mdesc_for_each_node_by_name(md, grp, "group") {
1213 		if (!scan_arcs_for_cfg_handle(md, grp, cfg_handle)) {
1214 			nid = count;
1215 			break;
1216 		}
1217 		count++;
1218 	}
1219 
1220 	mdesc_release(md);
1221 
1222 	return nid;
1223 }
1224 
1225 static void __init add_node_ranges(void)
1226 {
1227 	struct memblock_region *reg;
1228 	unsigned long prev_max;
1229 
1230 memblock_resized:
1231 	prev_max = memblock.memory.max;
1232 
1233 	for_each_memblock(memory, reg) {
1234 		unsigned long size = reg->size;
1235 		unsigned long start, end;
1236 
1237 		start = reg->base;
1238 		end = start + size;
1239 		while (start < end) {
1240 			unsigned long this_end;
1241 			int nid;
1242 
1243 			this_end = memblock_nid_range(start, end, &nid);
1244 
1245 			numadbg("Setting memblock NUMA node nid[%d] "
1246 				"start[%lx] end[%lx]\n",
1247 				nid, start, this_end);
1248 
1249 			memblock_set_node(start, this_end - start,
1250 					  &memblock.memory, nid);
1251 			if (memblock.memory.max != prev_max)
1252 				goto memblock_resized;
1253 			start = this_end;
1254 		}
1255 	}
1256 }
1257 
1258 static int __init grab_mlgroups(struct mdesc_handle *md)
1259 {
1260 	unsigned long paddr;
1261 	int count = 0;
1262 	u64 node;
1263 
1264 	mdesc_for_each_node_by_name(md, node, "memory-latency-group")
1265 		count++;
1266 	if (!count)
1267 		return -ENOENT;
1268 
1269 	paddr = memblock_phys_alloc(count * sizeof(struct mdesc_mlgroup),
1270 				    SMP_CACHE_BYTES);
1271 	if (!paddr)
1272 		return -ENOMEM;
1273 
1274 	mlgroups = __va(paddr);
1275 	num_mlgroups = count;
1276 
1277 	count = 0;
1278 	mdesc_for_each_node_by_name(md, node, "memory-latency-group") {
1279 		struct mdesc_mlgroup *m = &mlgroups[count++];
1280 		const u64 *val;
1281 
1282 		m->node = node;
1283 
1284 		val = mdesc_get_property(md, node, "latency", NULL);
1285 		m->latency = *val;
1286 		val = mdesc_get_property(md, node, "address-match", NULL);
1287 		m->match = *val;
1288 		val = mdesc_get_property(md, node, "address-mask", NULL);
1289 		m->mask = *val;
1290 
1291 		numadbg("MLGROUP[%d]: node[%llx] latency[%llx] "
1292 			"match[%llx] mask[%llx]\n",
1293 			count - 1, m->node, m->latency, m->match, m->mask);
1294 	}
1295 
1296 	return 0;
1297 }
1298 
1299 static int __init grab_mblocks(struct mdesc_handle *md)
1300 {
1301 	unsigned long paddr;
1302 	int count = 0;
1303 	u64 node;
1304 
1305 	mdesc_for_each_node_by_name(md, node, "mblock")
1306 		count++;
1307 	if (!count)
1308 		return -ENOENT;
1309 
1310 	paddr = memblock_phys_alloc(count * sizeof(struct mdesc_mblock),
1311 				    SMP_CACHE_BYTES);
1312 	if (!paddr)
1313 		return -ENOMEM;
1314 
1315 	mblocks = __va(paddr);
1316 	num_mblocks = count;
1317 
1318 	count = 0;
1319 	mdesc_for_each_node_by_name(md, node, "mblock") {
1320 		struct mdesc_mblock *m = &mblocks[count++];
1321 		const u64 *val;
1322 
1323 		val = mdesc_get_property(md, node, "base", NULL);
1324 		m->base = *val;
1325 		val = mdesc_get_property(md, node, "size", NULL);
1326 		m->size = *val;
1327 		val = mdesc_get_property(md, node,
1328 					 "address-congruence-offset", NULL);
1329 
1330 		/* The address-congruence-offset property is optional.
1331 		 * Explicity zero it be identifty this.
1332 		 */
1333 		if (val)
1334 			m->offset = *val;
1335 		else
1336 			m->offset = 0UL;
1337 
1338 		numadbg("MBLOCK[%d]: base[%llx] size[%llx] offset[%llx]\n",
1339 			count - 1, m->base, m->size, m->offset);
1340 	}
1341 
1342 	return 0;
1343 }
1344 
1345 static void __init numa_parse_mdesc_group_cpus(struct mdesc_handle *md,
1346 					       u64 grp, cpumask_t *mask)
1347 {
1348 	u64 arc;
1349 
1350 	cpumask_clear(mask);
1351 
1352 	mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_BACK) {
1353 		u64 target = mdesc_arc_target(md, arc);
1354 		const char *name = mdesc_node_name(md, target);
1355 		const u64 *id;
1356 
1357 		if (strcmp(name, "cpu"))
1358 			continue;
1359 		id = mdesc_get_property(md, target, "id", NULL);
1360 		if (*id < nr_cpu_ids)
1361 			cpumask_set_cpu(*id, mask);
1362 	}
1363 }
1364 
1365 static struct mdesc_mlgroup * __init find_mlgroup(u64 node)
1366 {
1367 	int i;
1368 
1369 	for (i = 0; i < num_mlgroups; i++) {
1370 		struct mdesc_mlgroup *m = &mlgroups[i];
1371 		if (m->node == node)
1372 			return m;
1373 	}
1374 	return NULL;
1375 }
1376 
1377 int __node_distance(int from, int to)
1378 {
1379 	if ((from >= MAX_NUMNODES) || (to >= MAX_NUMNODES)) {
1380 		pr_warn("Returning default NUMA distance value for %d->%d\n",
1381 			from, to);
1382 		return (from == to) ? LOCAL_DISTANCE : REMOTE_DISTANCE;
1383 	}
1384 	return numa_latency[from][to];
1385 }
1386 EXPORT_SYMBOL(__node_distance);
1387 
1388 static int __init find_best_numa_node_for_mlgroup(struct mdesc_mlgroup *grp)
1389 {
1390 	int i;
1391 
1392 	for (i = 0; i < MAX_NUMNODES; i++) {
1393 		struct node_mem_mask *n = &node_masks[i];
1394 
1395 		if ((grp->mask == n->mask) && (grp->match == n->match))
1396 			break;
1397 	}
1398 	return i;
1399 }
1400 
1401 static void __init find_numa_latencies_for_group(struct mdesc_handle *md,
1402 						 u64 grp, int index)
1403 {
1404 	u64 arc;
1405 
1406 	mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1407 		int tnode;
1408 		u64 target = mdesc_arc_target(md, arc);
1409 		struct mdesc_mlgroup *m = find_mlgroup(target);
1410 
1411 		if (!m)
1412 			continue;
1413 		tnode = find_best_numa_node_for_mlgroup(m);
1414 		if (tnode == MAX_NUMNODES)
1415 			continue;
1416 		numa_latency[index][tnode] = m->latency;
1417 	}
1418 }
1419 
1420 static int __init numa_attach_mlgroup(struct mdesc_handle *md, u64 grp,
1421 				      int index)
1422 {
1423 	struct mdesc_mlgroup *candidate = NULL;
1424 	u64 arc, best_latency = ~(u64)0;
1425 	struct node_mem_mask *n;
1426 
1427 	mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1428 		u64 target = mdesc_arc_target(md, arc);
1429 		struct mdesc_mlgroup *m = find_mlgroup(target);
1430 		if (!m)
1431 			continue;
1432 		if (m->latency < best_latency) {
1433 			candidate = m;
1434 			best_latency = m->latency;
1435 		}
1436 	}
1437 	if (!candidate)
1438 		return -ENOENT;
1439 
1440 	if (num_node_masks != index) {
1441 		printk(KERN_ERR "Inconsistent NUMA state, "
1442 		       "index[%d] != num_node_masks[%d]\n",
1443 		       index, num_node_masks);
1444 		return -EINVAL;
1445 	}
1446 
1447 	n = &node_masks[num_node_masks++];
1448 
1449 	n->mask = candidate->mask;
1450 	n->match = candidate->match;
1451 
1452 	numadbg("NUMA NODE[%d]: mask[%lx] match[%lx] (latency[%llx])\n",
1453 		index, n->mask, n->match, candidate->latency);
1454 
1455 	return 0;
1456 }
1457 
1458 static int __init numa_parse_mdesc_group(struct mdesc_handle *md, u64 grp,
1459 					 int index)
1460 {
1461 	cpumask_t mask;
1462 	int cpu;
1463 
1464 	numa_parse_mdesc_group_cpus(md, grp, &mask);
1465 
1466 	for_each_cpu(cpu, &mask)
1467 		numa_cpu_lookup_table[cpu] = index;
1468 	cpumask_copy(&numa_cpumask_lookup_table[index], &mask);
1469 
1470 	if (numa_debug) {
1471 		printk(KERN_INFO "NUMA GROUP[%d]: cpus [ ", index);
1472 		for_each_cpu(cpu, &mask)
1473 			printk("%d ", cpu);
1474 		printk("]\n");
1475 	}
1476 
1477 	return numa_attach_mlgroup(md, grp, index);
1478 }
1479 
1480 static int __init numa_parse_mdesc(void)
1481 {
1482 	struct mdesc_handle *md = mdesc_grab();
1483 	int i, j, err, count;
1484 	u64 node;
1485 
1486 	node = mdesc_node_by_name(md, MDESC_NODE_NULL, "latency-groups");
1487 	if (node == MDESC_NODE_NULL) {
1488 		mdesc_release(md);
1489 		return -ENOENT;
1490 	}
1491 
1492 	err = grab_mblocks(md);
1493 	if (err < 0)
1494 		goto out;
1495 
1496 	err = grab_mlgroups(md);
1497 	if (err < 0)
1498 		goto out;
1499 
1500 	count = 0;
1501 	mdesc_for_each_node_by_name(md, node, "group") {
1502 		err = numa_parse_mdesc_group(md, node, count);
1503 		if (err < 0)
1504 			break;
1505 		count++;
1506 	}
1507 
1508 	count = 0;
1509 	mdesc_for_each_node_by_name(md, node, "group") {
1510 		find_numa_latencies_for_group(md, node, count);
1511 		count++;
1512 	}
1513 
1514 	/* Normalize numa latency matrix according to ACPI SLIT spec. */
1515 	for (i = 0; i < MAX_NUMNODES; i++) {
1516 		u64 self_latency = numa_latency[i][i];
1517 
1518 		for (j = 0; j < MAX_NUMNODES; j++) {
1519 			numa_latency[i][j] =
1520 				(numa_latency[i][j] * LOCAL_DISTANCE) /
1521 				self_latency;
1522 		}
1523 	}
1524 
1525 	add_node_ranges();
1526 
1527 	for (i = 0; i < num_node_masks; i++) {
1528 		allocate_node_data(i);
1529 		node_set_online(i);
1530 	}
1531 
1532 	err = 0;
1533 out:
1534 	mdesc_release(md);
1535 	return err;
1536 }
1537 
1538 static int __init numa_parse_jbus(void)
1539 {
1540 	unsigned long cpu, index;
1541 
1542 	/* NUMA node id is encoded in bits 36 and higher, and there is
1543 	 * a 1-to-1 mapping from CPU ID to NUMA node ID.
1544 	 */
1545 	index = 0;
1546 	for_each_present_cpu(cpu) {
1547 		numa_cpu_lookup_table[cpu] = index;
1548 		cpumask_copy(&numa_cpumask_lookup_table[index], cpumask_of(cpu));
1549 		node_masks[index].mask = ~((1UL << 36UL) - 1UL);
1550 		node_masks[index].match = cpu << 36UL;
1551 
1552 		index++;
1553 	}
1554 	num_node_masks = index;
1555 
1556 	add_node_ranges();
1557 
1558 	for (index = 0; index < num_node_masks; index++) {
1559 		allocate_node_data(index);
1560 		node_set_online(index);
1561 	}
1562 
1563 	return 0;
1564 }
1565 
1566 static int __init numa_parse_sun4u(void)
1567 {
1568 	if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1569 		unsigned long ver;
1570 
1571 		__asm__ ("rdpr %%ver, %0" : "=r" (ver));
1572 		if ((ver >> 32UL) == __JALAPENO_ID ||
1573 		    (ver >> 32UL) == __SERRANO_ID)
1574 			return numa_parse_jbus();
1575 	}
1576 	return -1;
1577 }
1578 
1579 static int __init bootmem_init_numa(void)
1580 {
1581 	int i, j;
1582 	int err = -1;
1583 
1584 	numadbg("bootmem_init_numa()\n");
1585 
1586 	/* Some sane defaults for numa latency values */
1587 	for (i = 0; i < MAX_NUMNODES; i++) {
1588 		for (j = 0; j < MAX_NUMNODES; j++)
1589 			numa_latency[i][j] = (i == j) ?
1590 				LOCAL_DISTANCE : REMOTE_DISTANCE;
1591 	}
1592 
1593 	if (numa_enabled) {
1594 		if (tlb_type == hypervisor)
1595 			err = numa_parse_mdesc();
1596 		else
1597 			err = numa_parse_sun4u();
1598 	}
1599 	return err;
1600 }
1601 
1602 #else
1603 
1604 static int bootmem_init_numa(void)
1605 {
1606 	return -1;
1607 }
1608 
1609 #endif
1610 
1611 static void __init bootmem_init_nonnuma(void)
1612 {
1613 	unsigned long top_of_ram = memblock_end_of_DRAM();
1614 	unsigned long total_ram = memblock_phys_mem_size();
1615 
1616 	numadbg("bootmem_init_nonnuma()\n");
1617 
1618 	printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
1619 	       top_of_ram, total_ram);
1620 	printk(KERN_INFO "Memory hole size: %ldMB\n",
1621 	       (top_of_ram - total_ram) >> 20);
1622 
1623 	init_node_masks_nonnuma();
1624 	memblock_set_node(0, PHYS_ADDR_MAX, &memblock.memory, 0);
1625 	allocate_node_data(0);
1626 	node_set_online(0);
1627 }
1628 
1629 static unsigned long __init bootmem_init(unsigned long phys_base)
1630 {
1631 	unsigned long end_pfn;
1632 
1633 	end_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
1634 	max_pfn = max_low_pfn = end_pfn;
1635 	min_low_pfn = (phys_base >> PAGE_SHIFT);
1636 
1637 	if (bootmem_init_numa() < 0)
1638 		bootmem_init_nonnuma();
1639 
1640 	/* Dump memblock with node info. */
1641 	memblock_dump_all();
1642 
1643 	/* XXX cpu notifier XXX */
1644 
1645 	sparse_memory_present_with_active_regions(MAX_NUMNODES);
1646 	sparse_init();
1647 
1648 	return end_pfn;
1649 }
1650 
1651 static struct linux_prom64_registers pall[MAX_BANKS] __initdata;
1652 static int pall_ents __initdata;
1653 
1654 static unsigned long max_phys_bits = 40;
1655 
1656 bool kern_addr_valid(unsigned long addr)
1657 {
1658 	pgd_t *pgd;
1659 	pud_t *pud;
1660 	pmd_t *pmd;
1661 	pte_t *pte;
1662 
1663 	if ((long)addr < 0L) {
1664 		unsigned long pa = __pa(addr);
1665 
1666 		if ((pa >> max_phys_bits) != 0UL)
1667 			return false;
1668 
1669 		return pfn_valid(pa >> PAGE_SHIFT);
1670 	}
1671 
1672 	if (addr >= (unsigned long) KERNBASE &&
1673 	    addr < (unsigned long)&_end)
1674 		return true;
1675 
1676 	pgd = pgd_offset_k(addr);
1677 	if (pgd_none(*pgd))
1678 		return 0;
1679 
1680 	pud = pud_offset(pgd, addr);
1681 	if (pud_none(*pud))
1682 		return 0;
1683 
1684 	if (pud_large(*pud))
1685 		return pfn_valid(pud_pfn(*pud));
1686 
1687 	pmd = pmd_offset(pud, addr);
1688 	if (pmd_none(*pmd))
1689 		return 0;
1690 
1691 	if (pmd_large(*pmd))
1692 		return pfn_valid(pmd_pfn(*pmd));
1693 
1694 	pte = pte_offset_kernel(pmd, addr);
1695 	if (pte_none(*pte))
1696 		return 0;
1697 
1698 	return pfn_valid(pte_pfn(*pte));
1699 }
1700 EXPORT_SYMBOL(kern_addr_valid);
1701 
1702 static unsigned long __ref kernel_map_hugepud(unsigned long vstart,
1703 					      unsigned long vend,
1704 					      pud_t *pud)
1705 {
1706 	const unsigned long mask16gb = (1UL << 34) - 1UL;
1707 	u64 pte_val = vstart;
1708 
1709 	/* Each PUD is 8GB */
1710 	if ((vstart & mask16gb) ||
1711 	    (vend - vstart <= mask16gb)) {
1712 		pte_val ^= kern_linear_pte_xor[2];
1713 		pud_val(*pud) = pte_val | _PAGE_PUD_HUGE;
1714 
1715 		return vstart + PUD_SIZE;
1716 	}
1717 
1718 	pte_val ^= kern_linear_pte_xor[3];
1719 	pte_val |= _PAGE_PUD_HUGE;
1720 
1721 	vend = vstart + mask16gb + 1UL;
1722 	while (vstart < vend) {
1723 		pud_val(*pud) = pte_val;
1724 
1725 		pte_val += PUD_SIZE;
1726 		vstart += PUD_SIZE;
1727 		pud++;
1728 	}
1729 	return vstart;
1730 }
1731 
1732 static bool kernel_can_map_hugepud(unsigned long vstart, unsigned long vend,
1733 				   bool guard)
1734 {
1735 	if (guard && !(vstart & ~PUD_MASK) && (vend - vstart) >= PUD_SIZE)
1736 		return true;
1737 
1738 	return false;
1739 }
1740 
1741 static unsigned long __ref kernel_map_hugepmd(unsigned long vstart,
1742 					      unsigned long vend,
1743 					      pmd_t *pmd)
1744 {
1745 	const unsigned long mask256mb = (1UL << 28) - 1UL;
1746 	const unsigned long mask2gb = (1UL << 31) - 1UL;
1747 	u64 pte_val = vstart;
1748 
1749 	/* Each PMD is 8MB */
1750 	if ((vstart & mask256mb) ||
1751 	    (vend - vstart <= mask256mb)) {
1752 		pte_val ^= kern_linear_pte_xor[0];
1753 		pmd_val(*pmd) = pte_val | _PAGE_PMD_HUGE;
1754 
1755 		return vstart + PMD_SIZE;
1756 	}
1757 
1758 	if ((vstart & mask2gb) ||
1759 	    (vend - vstart <= mask2gb)) {
1760 		pte_val ^= kern_linear_pte_xor[1];
1761 		pte_val |= _PAGE_PMD_HUGE;
1762 		vend = vstart + mask256mb + 1UL;
1763 	} else {
1764 		pte_val ^= kern_linear_pte_xor[2];
1765 		pte_val |= _PAGE_PMD_HUGE;
1766 		vend = vstart + mask2gb + 1UL;
1767 	}
1768 
1769 	while (vstart < vend) {
1770 		pmd_val(*pmd) = pte_val;
1771 
1772 		pte_val += PMD_SIZE;
1773 		vstart += PMD_SIZE;
1774 		pmd++;
1775 	}
1776 
1777 	return vstart;
1778 }
1779 
1780 static bool kernel_can_map_hugepmd(unsigned long vstart, unsigned long vend,
1781 				   bool guard)
1782 {
1783 	if (guard && !(vstart & ~PMD_MASK) && (vend - vstart) >= PMD_SIZE)
1784 		return true;
1785 
1786 	return false;
1787 }
1788 
1789 static unsigned long __ref kernel_map_range(unsigned long pstart,
1790 					    unsigned long pend, pgprot_t prot,
1791 					    bool use_huge)
1792 {
1793 	unsigned long vstart = PAGE_OFFSET + pstart;
1794 	unsigned long vend = PAGE_OFFSET + pend;
1795 	unsigned long alloc_bytes = 0UL;
1796 
1797 	if ((vstart & ~PAGE_MASK) || (vend & ~PAGE_MASK)) {
1798 		prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n",
1799 			    vstart, vend);
1800 		prom_halt();
1801 	}
1802 
1803 	while (vstart < vend) {
1804 		unsigned long this_end, paddr = __pa(vstart);
1805 		pgd_t *pgd = pgd_offset_k(vstart);
1806 		pud_t *pud;
1807 		pmd_t *pmd;
1808 		pte_t *pte;
1809 
1810 		if (pgd_none(*pgd)) {
1811 			pud_t *new;
1812 
1813 			new = memblock_alloc_from(PAGE_SIZE, PAGE_SIZE,
1814 						  PAGE_SIZE);
1815 			alloc_bytes += PAGE_SIZE;
1816 			pgd_populate(&init_mm, pgd, new);
1817 		}
1818 		pud = pud_offset(pgd, vstart);
1819 		if (pud_none(*pud)) {
1820 			pmd_t *new;
1821 
1822 			if (kernel_can_map_hugepud(vstart, vend, use_huge)) {
1823 				vstart = kernel_map_hugepud(vstart, vend, pud);
1824 				continue;
1825 			}
1826 			new = memblock_alloc_from(PAGE_SIZE, PAGE_SIZE,
1827 						  PAGE_SIZE);
1828 			alloc_bytes += PAGE_SIZE;
1829 			pud_populate(&init_mm, pud, new);
1830 		}
1831 
1832 		pmd = pmd_offset(pud, vstart);
1833 		if (pmd_none(*pmd)) {
1834 			pte_t *new;
1835 
1836 			if (kernel_can_map_hugepmd(vstart, vend, use_huge)) {
1837 				vstart = kernel_map_hugepmd(vstart, vend, pmd);
1838 				continue;
1839 			}
1840 			new = memblock_alloc_from(PAGE_SIZE, PAGE_SIZE,
1841 						  PAGE_SIZE);
1842 			alloc_bytes += PAGE_SIZE;
1843 			pmd_populate_kernel(&init_mm, pmd, new);
1844 		}
1845 
1846 		pte = pte_offset_kernel(pmd, vstart);
1847 		this_end = (vstart + PMD_SIZE) & PMD_MASK;
1848 		if (this_end > vend)
1849 			this_end = vend;
1850 
1851 		while (vstart < this_end) {
1852 			pte_val(*pte) = (paddr | pgprot_val(prot));
1853 
1854 			vstart += PAGE_SIZE;
1855 			paddr += PAGE_SIZE;
1856 			pte++;
1857 		}
1858 	}
1859 
1860 	return alloc_bytes;
1861 }
1862 
1863 static void __init flush_all_kernel_tsbs(void)
1864 {
1865 	int i;
1866 
1867 	for (i = 0; i < KERNEL_TSB_NENTRIES; i++) {
1868 		struct tsb *ent = &swapper_tsb[i];
1869 
1870 		ent->tag = (1UL << TSB_TAG_INVALID_BIT);
1871 	}
1872 #ifndef CONFIG_DEBUG_PAGEALLOC
1873 	for (i = 0; i < KERNEL_TSB4M_NENTRIES; i++) {
1874 		struct tsb *ent = &swapper_4m_tsb[i];
1875 
1876 		ent->tag = (1UL << TSB_TAG_INVALID_BIT);
1877 	}
1878 #endif
1879 }
1880 
1881 extern unsigned int kvmap_linear_patch[1];
1882 
1883 static void __init kernel_physical_mapping_init(void)
1884 {
1885 	unsigned long i, mem_alloced = 0UL;
1886 	bool use_huge = true;
1887 
1888 #ifdef CONFIG_DEBUG_PAGEALLOC
1889 	use_huge = false;
1890 #endif
1891 	for (i = 0; i < pall_ents; i++) {
1892 		unsigned long phys_start, phys_end;
1893 
1894 		phys_start = pall[i].phys_addr;
1895 		phys_end = phys_start + pall[i].reg_size;
1896 
1897 		mem_alloced += kernel_map_range(phys_start, phys_end,
1898 						PAGE_KERNEL, use_huge);
1899 	}
1900 
1901 	printk("Allocated %ld bytes for kernel page tables.\n",
1902 	       mem_alloced);
1903 
1904 	kvmap_linear_patch[0] = 0x01000000; /* nop */
1905 	flushi(&kvmap_linear_patch[0]);
1906 
1907 	flush_all_kernel_tsbs();
1908 
1909 	__flush_tlb_all();
1910 }
1911 
1912 #ifdef CONFIG_DEBUG_PAGEALLOC
1913 void __kernel_map_pages(struct page *page, int numpages, int enable)
1914 {
1915 	unsigned long phys_start = page_to_pfn(page) << PAGE_SHIFT;
1916 	unsigned long phys_end = phys_start + (numpages * PAGE_SIZE);
1917 
1918 	kernel_map_range(phys_start, phys_end,
1919 			 (enable ? PAGE_KERNEL : __pgprot(0)), false);
1920 
1921 	flush_tsb_kernel_range(PAGE_OFFSET + phys_start,
1922 			       PAGE_OFFSET + phys_end);
1923 
1924 	/* we should perform an IPI and flush all tlbs,
1925 	 * but that can deadlock->flush only current cpu.
1926 	 */
1927 	__flush_tlb_kernel_range(PAGE_OFFSET + phys_start,
1928 				 PAGE_OFFSET + phys_end);
1929 }
1930 #endif
1931 
1932 unsigned long __init find_ecache_flush_span(unsigned long size)
1933 {
1934 	int i;
1935 
1936 	for (i = 0; i < pavail_ents; i++) {
1937 		if (pavail[i].reg_size >= size)
1938 			return pavail[i].phys_addr;
1939 	}
1940 
1941 	return ~0UL;
1942 }
1943 
1944 unsigned long PAGE_OFFSET;
1945 EXPORT_SYMBOL(PAGE_OFFSET);
1946 
1947 unsigned long VMALLOC_END   = 0x0000010000000000UL;
1948 EXPORT_SYMBOL(VMALLOC_END);
1949 
1950 unsigned long sparc64_va_hole_top =    0xfffff80000000000UL;
1951 unsigned long sparc64_va_hole_bottom = 0x0000080000000000UL;
1952 
1953 static void __init setup_page_offset(void)
1954 {
1955 	if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1956 		/* Cheetah/Panther support a full 64-bit virtual
1957 		 * address, so we can use all that our page tables
1958 		 * support.
1959 		 */
1960 		sparc64_va_hole_top =    0xfff0000000000000UL;
1961 		sparc64_va_hole_bottom = 0x0010000000000000UL;
1962 
1963 		max_phys_bits = 42;
1964 	} else if (tlb_type == hypervisor) {
1965 		switch (sun4v_chip_type) {
1966 		case SUN4V_CHIP_NIAGARA1:
1967 		case SUN4V_CHIP_NIAGARA2:
1968 			/* T1 and T2 support 48-bit virtual addresses.  */
1969 			sparc64_va_hole_top =    0xffff800000000000UL;
1970 			sparc64_va_hole_bottom = 0x0000800000000000UL;
1971 
1972 			max_phys_bits = 39;
1973 			break;
1974 		case SUN4V_CHIP_NIAGARA3:
1975 			/* T3 supports 48-bit virtual addresses.  */
1976 			sparc64_va_hole_top =    0xffff800000000000UL;
1977 			sparc64_va_hole_bottom = 0x0000800000000000UL;
1978 
1979 			max_phys_bits = 43;
1980 			break;
1981 		case SUN4V_CHIP_NIAGARA4:
1982 		case SUN4V_CHIP_NIAGARA5:
1983 		case SUN4V_CHIP_SPARC64X:
1984 		case SUN4V_CHIP_SPARC_M6:
1985 			/* T4 and later support 52-bit virtual addresses.  */
1986 			sparc64_va_hole_top =    0xfff8000000000000UL;
1987 			sparc64_va_hole_bottom = 0x0008000000000000UL;
1988 			max_phys_bits = 47;
1989 			break;
1990 		case SUN4V_CHIP_SPARC_M7:
1991 		case SUN4V_CHIP_SPARC_SN:
1992 			/* M7 and later support 52-bit virtual addresses.  */
1993 			sparc64_va_hole_top =    0xfff8000000000000UL;
1994 			sparc64_va_hole_bottom = 0x0008000000000000UL;
1995 			max_phys_bits = 49;
1996 			break;
1997 		case SUN4V_CHIP_SPARC_M8:
1998 		default:
1999 			/* M8 and later support 54-bit virtual addresses.
2000 			 * However, restricting M8 and above VA bits to 53
2001 			 * as 4-level page table cannot support more than
2002 			 * 53 VA bits.
2003 			 */
2004 			sparc64_va_hole_top =    0xfff0000000000000UL;
2005 			sparc64_va_hole_bottom = 0x0010000000000000UL;
2006 			max_phys_bits = 51;
2007 			break;
2008 		}
2009 	}
2010 
2011 	if (max_phys_bits > MAX_PHYS_ADDRESS_BITS) {
2012 		prom_printf("MAX_PHYS_ADDRESS_BITS is too small, need %lu\n",
2013 			    max_phys_bits);
2014 		prom_halt();
2015 	}
2016 
2017 	PAGE_OFFSET = sparc64_va_hole_top;
2018 	VMALLOC_END = ((sparc64_va_hole_bottom >> 1) +
2019 		       (sparc64_va_hole_bottom >> 2));
2020 
2021 	pr_info("MM: PAGE_OFFSET is 0x%016lx (max_phys_bits == %lu)\n",
2022 		PAGE_OFFSET, max_phys_bits);
2023 	pr_info("MM: VMALLOC [0x%016lx --> 0x%016lx]\n",
2024 		VMALLOC_START, VMALLOC_END);
2025 	pr_info("MM: VMEMMAP [0x%016lx --> 0x%016lx]\n",
2026 		VMEMMAP_BASE, VMEMMAP_BASE << 1);
2027 }
2028 
2029 static void __init tsb_phys_patch(void)
2030 {
2031 	struct tsb_ldquad_phys_patch_entry *pquad;
2032 	struct tsb_phys_patch_entry *p;
2033 
2034 	pquad = &__tsb_ldquad_phys_patch;
2035 	while (pquad < &__tsb_ldquad_phys_patch_end) {
2036 		unsigned long addr = pquad->addr;
2037 
2038 		if (tlb_type == hypervisor)
2039 			*(unsigned int *) addr = pquad->sun4v_insn;
2040 		else
2041 			*(unsigned int *) addr = pquad->sun4u_insn;
2042 		wmb();
2043 		__asm__ __volatile__("flush	%0"
2044 				     : /* no outputs */
2045 				     : "r" (addr));
2046 
2047 		pquad++;
2048 	}
2049 
2050 	p = &__tsb_phys_patch;
2051 	while (p < &__tsb_phys_patch_end) {
2052 		unsigned long addr = p->addr;
2053 
2054 		*(unsigned int *) addr = p->insn;
2055 		wmb();
2056 		__asm__ __volatile__("flush	%0"
2057 				     : /* no outputs */
2058 				     : "r" (addr));
2059 
2060 		p++;
2061 	}
2062 }
2063 
2064 /* Don't mark as init, we give this to the Hypervisor.  */
2065 #ifndef CONFIG_DEBUG_PAGEALLOC
2066 #define NUM_KTSB_DESCR	2
2067 #else
2068 #define NUM_KTSB_DESCR	1
2069 #endif
2070 static struct hv_tsb_descr ktsb_descr[NUM_KTSB_DESCR];
2071 
2072 /* The swapper TSBs are loaded with a base sequence of:
2073  *
2074  *	sethi	%uhi(SYMBOL), REG1
2075  *	sethi	%hi(SYMBOL), REG2
2076  *	or	REG1, %ulo(SYMBOL), REG1
2077  *	or	REG2, %lo(SYMBOL), REG2
2078  *	sllx	REG1, 32, REG1
2079  *	or	REG1, REG2, REG1
2080  *
2081  * When we use physical addressing for the TSB accesses, we patch the
2082  * first four instructions in the above sequence.
2083  */
2084 
2085 static void patch_one_ktsb_phys(unsigned int *start, unsigned int *end, unsigned long pa)
2086 {
2087 	unsigned long high_bits, low_bits;
2088 
2089 	high_bits = (pa >> 32) & 0xffffffff;
2090 	low_bits = (pa >> 0) & 0xffffffff;
2091 
2092 	while (start < end) {
2093 		unsigned int *ia = (unsigned int *)(unsigned long)*start;
2094 
2095 		ia[0] = (ia[0] & ~0x3fffff) | (high_bits >> 10);
2096 		__asm__ __volatile__("flush	%0" : : "r" (ia));
2097 
2098 		ia[1] = (ia[1] & ~0x3fffff) | (low_bits >> 10);
2099 		__asm__ __volatile__("flush	%0" : : "r" (ia + 1));
2100 
2101 		ia[2] = (ia[2] & ~0x1fff) | (high_bits & 0x3ff);
2102 		__asm__ __volatile__("flush	%0" : : "r" (ia + 2));
2103 
2104 		ia[3] = (ia[3] & ~0x1fff) | (low_bits & 0x3ff);
2105 		__asm__ __volatile__("flush	%0" : : "r" (ia + 3));
2106 
2107 		start++;
2108 	}
2109 }
2110 
2111 static void ktsb_phys_patch(void)
2112 {
2113 	extern unsigned int __swapper_tsb_phys_patch;
2114 	extern unsigned int __swapper_tsb_phys_patch_end;
2115 	unsigned long ktsb_pa;
2116 
2117 	ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
2118 	patch_one_ktsb_phys(&__swapper_tsb_phys_patch,
2119 			    &__swapper_tsb_phys_patch_end, ktsb_pa);
2120 #ifndef CONFIG_DEBUG_PAGEALLOC
2121 	{
2122 	extern unsigned int __swapper_4m_tsb_phys_patch;
2123 	extern unsigned int __swapper_4m_tsb_phys_patch_end;
2124 	ktsb_pa = (kern_base +
2125 		   ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
2126 	patch_one_ktsb_phys(&__swapper_4m_tsb_phys_patch,
2127 			    &__swapper_4m_tsb_phys_patch_end, ktsb_pa);
2128 	}
2129 #endif
2130 }
2131 
2132 static void __init sun4v_ktsb_init(void)
2133 {
2134 	unsigned long ktsb_pa;
2135 
2136 	/* First KTSB for PAGE_SIZE mappings.  */
2137 	ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
2138 
2139 	switch (PAGE_SIZE) {
2140 	case 8 * 1024:
2141 	default:
2142 		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_8K;
2143 		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_8K;
2144 		break;
2145 
2146 	case 64 * 1024:
2147 		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_64K;
2148 		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_64K;
2149 		break;
2150 
2151 	case 512 * 1024:
2152 		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_512K;
2153 		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_512K;
2154 		break;
2155 
2156 	case 4 * 1024 * 1024:
2157 		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_4MB;
2158 		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_4MB;
2159 		break;
2160 	}
2161 
2162 	ktsb_descr[0].assoc = 1;
2163 	ktsb_descr[0].num_ttes = KERNEL_TSB_NENTRIES;
2164 	ktsb_descr[0].ctx_idx = 0;
2165 	ktsb_descr[0].tsb_base = ktsb_pa;
2166 	ktsb_descr[0].resv = 0;
2167 
2168 #ifndef CONFIG_DEBUG_PAGEALLOC
2169 	/* Second KTSB for 4MB/256MB/2GB/16GB mappings.  */
2170 	ktsb_pa = (kern_base +
2171 		   ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
2172 
2173 	ktsb_descr[1].pgsz_idx = HV_PGSZ_IDX_4MB;
2174 	ktsb_descr[1].pgsz_mask = ((HV_PGSZ_MASK_4MB |
2175 				    HV_PGSZ_MASK_256MB |
2176 				    HV_PGSZ_MASK_2GB |
2177 				    HV_PGSZ_MASK_16GB) &
2178 				   cpu_pgsz_mask);
2179 	ktsb_descr[1].assoc = 1;
2180 	ktsb_descr[1].num_ttes = KERNEL_TSB4M_NENTRIES;
2181 	ktsb_descr[1].ctx_idx = 0;
2182 	ktsb_descr[1].tsb_base = ktsb_pa;
2183 	ktsb_descr[1].resv = 0;
2184 #endif
2185 }
2186 
2187 void sun4v_ktsb_register(void)
2188 {
2189 	unsigned long pa, ret;
2190 
2191 	pa = kern_base + ((unsigned long)&ktsb_descr[0] - KERNBASE);
2192 
2193 	ret = sun4v_mmu_tsb_ctx0(NUM_KTSB_DESCR, pa);
2194 	if (ret != 0) {
2195 		prom_printf("hypervisor_mmu_tsb_ctx0[%lx]: "
2196 			    "errors with %lx\n", pa, ret);
2197 		prom_halt();
2198 	}
2199 }
2200 
2201 static void __init sun4u_linear_pte_xor_finalize(void)
2202 {
2203 #ifndef CONFIG_DEBUG_PAGEALLOC
2204 	/* This is where we would add Panther support for
2205 	 * 32MB and 256MB pages.
2206 	 */
2207 #endif
2208 }
2209 
2210 static void __init sun4v_linear_pte_xor_finalize(void)
2211 {
2212 	unsigned long pagecv_flag;
2213 
2214 	/* Bit 9 of TTE is no longer CV bit on M7 processor and it instead
2215 	 * enables MCD error. Do not set bit 9 on M7 processor.
2216 	 */
2217 	switch (sun4v_chip_type) {
2218 	case SUN4V_CHIP_SPARC_M7:
2219 	case SUN4V_CHIP_SPARC_M8:
2220 	case SUN4V_CHIP_SPARC_SN:
2221 		pagecv_flag = 0x00;
2222 		break;
2223 	default:
2224 		pagecv_flag = _PAGE_CV_4V;
2225 		break;
2226 	}
2227 #ifndef CONFIG_DEBUG_PAGEALLOC
2228 	if (cpu_pgsz_mask & HV_PGSZ_MASK_256MB) {
2229 		kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZ256MB_4V) ^
2230 			PAGE_OFFSET;
2231 		kern_linear_pte_xor[1] |= (_PAGE_CP_4V | pagecv_flag |
2232 					   _PAGE_P_4V | _PAGE_W_4V);
2233 	} else {
2234 		kern_linear_pte_xor[1] = kern_linear_pte_xor[0];
2235 	}
2236 
2237 	if (cpu_pgsz_mask & HV_PGSZ_MASK_2GB) {
2238 		kern_linear_pte_xor[2] = (_PAGE_VALID | _PAGE_SZ2GB_4V) ^
2239 			PAGE_OFFSET;
2240 		kern_linear_pte_xor[2] |= (_PAGE_CP_4V | pagecv_flag |
2241 					   _PAGE_P_4V | _PAGE_W_4V);
2242 	} else {
2243 		kern_linear_pte_xor[2] = kern_linear_pte_xor[1];
2244 	}
2245 
2246 	if (cpu_pgsz_mask & HV_PGSZ_MASK_16GB) {
2247 		kern_linear_pte_xor[3] = (_PAGE_VALID | _PAGE_SZ16GB_4V) ^
2248 			PAGE_OFFSET;
2249 		kern_linear_pte_xor[3] |= (_PAGE_CP_4V | pagecv_flag |
2250 					   _PAGE_P_4V | _PAGE_W_4V);
2251 	} else {
2252 		kern_linear_pte_xor[3] = kern_linear_pte_xor[2];
2253 	}
2254 #endif
2255 }
2256 
2257 /* paging_init() sets up the page tables */
2258 
2259 static unsigned long last_valid_pfn;
2260 
2261 static void sun4u_pgprot_init(void);
2262 static void sun4v_pgprot_init(void);
2263 
2264 static phys_addr_t __init available_memory(void)
2265 {
2266 	phys_addr_t available = 0ULL;
2267 	phys_addr_t pa_start, pa_end;
2268 	u64 i;
2269 
2270 	for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &pa_start,
2271 				&pa_end, NULL)
2272 		available = available + (pa_end  - pa_start);
2273 
2274 	return available;
2275 }
2276 
2277 #define _PAGE_CACHE_4U	(_PAGE_CP_4U | _PAGE_CV_4U)
2278 #define _PAGE_CACHE_4V	(_PAGE_CP_4V | _PAGE_CV_4V)
2279 #define __DIRTY_BITS_4U	 (_PAGE_MODIFIED_4U | _PAGE_WRITE_4U | _PAGE_W_4U)
2280 #define __DIRTY_BITS_4V	 (_PAGE_MODIFIED_4V | _PAGE_WRITE_4V | _PAGE_W_4V)
2281 #define __ACCESS_BITS_4U (_PAGE_ACCESSED_4U | _PAGE_READ_4U | _PAGE_R)
2282 #define __ACCESS_BITS_4V (_PAGE_ACCESSED_4V | _PAGE_READ_4V | _PAGE_R)
2283 
2284 /* We need to exclude reserved regions. This exclusion will include
2285  * vmlinux and initrd. To be more precise the initrd size could be used to
2286  * compute a new lower limit because it is freed later during initialization.
2287  */
2288 static void __init reduce_memory(phys_addr_t limit_ram)
2289 {
2290 	phys_addr_t avail_ram = available_memory();
2291 	phys_addr_t pa_start, pa_end;
2292 	u64 i;
2293 
2294 	if (limit_ram >= avail_ram)
2295 		return;
2296 
2297 	for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &pa_start,
2298 				&pa_end, NULL) {
2299 		phys_addr_t region_size = pa_end - pa_start;
2300 		phys_addr_t clip_start = pa_start;
2301 
2302 		avail_ram = avail_ram - region_size;
2303 		/* Are we consuming too much? */
2304 		if (avail_ram < limit_ram) {
2305 			phys_addr_t give_back = limit_ram - avail_ram;
2306 
2307 			region_size = region_size - give_back;
2308 			clip_start = clip_start + give_back;
2309 		}
2310 
2311 		memblock_remove(clip_start, region_size);
2312 
2313 		if (avail_ram <= limit_ram)
2314 			break;
2315 		i = 0UL;
2316 	}
2317 }
2318 
2319 void __init paging_init(void)
2320 {
2321 	unsigned long end_pfn, shift, phys_base;
2322 	unsigned long real_end, i;
2323 
2324 	setup_page_offset();
2325 
2326 	/* These build time checkes make sure that the dcache_dirty_cpu()
2327 	 * page->flags usage will work.
2328 	 *
2329 	 * When a page gets marked as dcache-dirty, we store the
2330 	 * cpu number starting at bit 32 in the page->flags.  Also,
2331 	 * functions like clear_dcache_dirty_cpu use the cpu mask
2332 	 * in 13-bit signed-immediate instruction fields.
2333 	 */
2334 
2335 	/*
2336 	 * Page flags must not reach into upper 32 bits that are used
2337 	 * for the cpu number
2338 	 */
2339 	BUILD_BUG_ON(NR_PAGEFLAGS > 32);
2340 
2341 	/*
2342 	 * The bit fields placed in the high range must not reach below
2343 	 * the 32 bit boundary. Otherwise we cannot place the cpu field
2344 	 * at the 32 bit boundary.
2345 	 */
2346 	BUILD_BUG_ON(SECTIONS_WIDTH + NODES_WIDTH + ZONES_WIDTH +
2347 		ilog2(roundup_pow_of_two(NR_CPUS)) > 32);
2348 
2349 	BUILD_BUG_ON(NR_CPUS > 4096);
2350 
2351 	kern_base = (prom_boot_mapping_phys_low >> ILOG2_4MB) << ILOG2_4MB;
2352 	kern_size = (unsigned long)&_end - (unsigned long)KERNBASE;
2353 
2354 	/* Invalidate both kernel TSBs.  */
2355 	memset(swapper_tsb, 0x40, sizeof(swapper_tsb));
2356 #ifndef CONFIG_DEBUG_PAGEALLOC
2357 	memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
2358 #endif
2359 
2360 	/* TTE.cv bit on sparc v9 occupies the same position as TTE.mcde
2361 	 * bit on M7 processor. This is a conflicting usage of the same
2362 	 * bit. Enabling TTE.cv on M7 would turn on Memory Corruption
2363 	 * Detection error on all pages and this will lead to problems
2364 	 * later. Kernel does not run with MCD enabled and hence rest
2365 	 * of the required steps to fully configure memory corruption
2366 	 * detection are not taken. We need to ensure TTE.mcde is not
2367 	 * set on M7 processor. Compute the value of cacheability
2368 	 * flag for use later taking this into consideration.
2369 	 */
2370 	switch (sun4v_chip_type) {
2371 	case SUN4V_CHIP_SPARC_M7:
2372 	case SUN4V_CHIP_SPARC_M8:
2373 	case SUN4V_CHIP_SPARC_SN:
2374 		page_cache4v_flag = _PAGE_CP_4V;
2375 		break;
2376 	default:
2377 		page_cache4v_flag = _PAGE_CACHE_4V;
2378 		break;
2379 	}
2380 
2381 	if (tlb_type == hypervisor)
2382 		sun4v_pgprot_init();
2383 	else
2384 		sun4u_pgprot_init();
2385 
2386 	if (tlb_type == cheetah_plus ||
2387 	    tlb_type == hypervisor) {
2388 		tsb_phys_patch();
2389 		ktsb_phys_patch();
2390 	}
2391 
2392 	if (tlb_type == hypervisor)
2393 		sun4v_patch_tlb_handlers();
2394 
2395 	/* Find available physical memory...
2396 	 *
2397 	 * Read it twice in order to work around a bug in openfirmware.
2398 	 * The call to grab this table itself can cause openfirmware to
2399 	 * allocate memory, which in turn can take away some space from
2400 	 * the list of available memory.  Reading it twice makes sure
2401 	 * we really do get the final value.
2402 	 */
2403 	read_obp_translations();
2404 	read_obp_memory("reg", &pall[0], &pall_ents);
2405 	read_obp_memory("available", &pavail[0], &pavail_ents);
2406 	read_obp_memory("available", &pavail[0], &pavail_ents);
2407 
2408 	phys_base = 0xffffffffffffffffUL;
2409 	for (i = 0; i < pavail_ents; i++) {
2410 		phys_base = min(phys_base, pavail[i].phys_addr);
2411 		memblock_add(pavail[i].phys_addr, pavail[i].reg_size);
2412 	}
2413 
2414 	memblock_reserve(kern_base, kern_size);
2415 
2416 	find_ramdisk(phys_base);
2417 
2418 	if (cmdline_memory_size)
2419 		reduce_memory(cmdline_memory_size);
2420 
2421 	memblock_allow_resize();
2422 	memblock_dump_all();
2423 
2424 	set_bit(0, mmu_context_bmap);
2425 
2426 	shift = kern_base + PAGE_OFFSET - ((unsigned long)KERNBASE);
2427 
2428 	real_end = (unsigned long)_end;
2429 	num_kernel_image_mappings = DIV_ROUND_UP(real_end - KERNBASE, 1 << ILOG2_4MB);
2430 	printk("Kernel: Using %d locked TLB entries for main kernel image.\n",
2431 	       num_kernel_image_mappings);
2432 
2433 	/* Set kernel pgd to upper alias so physical page computations
2434 	 * work.
2435 	 */
2436 	init_mm.pgd += ((shift) / (sizeof(pgd_t)));
2437 
2438 	memset(swapper_pg_dir, 0, sizeof(swapper_pg_dir));
2439 
2440 	inherit_prom_mappings();
2441 
2442 	/* Ok, we can use our TLB miss and window trap handlers safely.  */
2443 	setup_tba();
2444 
2445 	__flush_tlb_all();
2446 
2447 	prom_build_devicetree();
2448 	of_populate_present_mask();
2449 #ifndef CONFIG_SMP
2450 	of_fill_in_cpu_data();
2451 #endif
2452 
2453 	if (tlb_type == hypervisor) {
2454 		sun4v_mdesc_init();
2455 		mdesc_populate_present_mask(cpu_all_mask);
2456 #ifndef CONFIG_SMP
2457 		mdesc_fill_in_cpu_data(cpu_all_mask);
2458 #endif
2459 		mdesc_get_page_sizes(cpu_all_mask, &cpu_pgsz_mask);
2460 
2461 		sun4v_linear_pte_xor_finalize();
2462 
2463 		sun4v_ktsb_init();
2464 		sun4v_ktsb_register();
2465 	} else {
2466 		unsigned long impl, ver;
2467 
2468 		cpu_pgsz_mask = (HV_PGSZ_MASK_8K | HV_PGSZ_MASK_64K |
2469 				 HV_PGSZ_MASK_512K | HV_PGSZ_MASK_4MB);
2470 
2471 		__asm__ __volatile__("rdpr %%ver, %0" : "=r" (ver));
2472 		impl = ((ver >> 32) & 0xffff);
2473 		if (impl == PANTHER_IMPL)
2474 			cpu_pgsz_mask |= (HV_PGSZ_MASK_32MB |
2475 					  HV_PGSZ_MASK_256MB);
2476 
2477 		sun4u_linear_pte_xor_finalize();
2478 	}
2479 
2480 	/* Flush the TLBs and the 4M TSB so that the updated linear
2481 	 * pte XOR settings are realized for all mappings.
2482 	 */
2483 	__flush_tlb_all();
2484 #ifndef CONFIG_DEBUG_PAGEALLOC
2485 	memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
2486 #endif
2487 	__flush_tlb_all();
2488 
2489 	/* Setup bootmem... */
2490 	last_valid_pfn = end_pfn = bootmem_init(phys_base);
2491 
2492 	kernel_physical_mapping_init();
2493 
2494 	{
2495 		unsigned long max_zone_pfns[MAX_NR_ZONES];
2496 
2497 		memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
2498 
2499 		max_zone_pfns[ZONE_NORMAL] = end_pfn;
2500 
2501 		free_area_init_nodes(max_zone_pfns);
2502 	}
2503 
2504 	printk("Booting Linux...\n");
2505 }
2506 
2507 int page_in_phys_avail(unsigned long paddr)
2508 {
2509 	int i;
2510 
2511 	paddr &= PAGE_MASK;
2512 
2513 	for (i = 0; i < pavail_ents; i++) {
2514 		unsigned long start, end;
2515 
2516 		start = pavail[i].phys_addr;
2517 		end = start + pavail[i].reg_size;
2518 
2519 		if (paddr >= start && paddr < end)
2520 			return 1;
2521 	}
2522 	if (paddr >= kern_base && paddr < (kern_base + kern_size))
2523 		return 1;
2524 #ifdef CONFIG_BLK_DEV_INITRD
2525 	if (paddr >= __pa(initrd_start) &&
2526 	    paddr < __pa(PAGE_ALIGN(initrd_end)))
2527 		return 1;
2528 #endif
2529 
2530 	return 0;
2531 }
2532 
2533 static void __init register_page_bootmem_info(void)
2534 {
2535 #ifdef CONFIG_NEED_MULTIPLE_NODES
2536 	int i;
2537 
2538 	for_each_online_node(i)
2539 		if (NODE_DATA(i)->node_spanned_pages)
2540 			register_page_bootmem_info_node(NODE_DATA(i));
2541 #endif
2542 }
2543 void __init mem_init(void)
2544 {
2545 	high_memory = __va(last_valid_pfn << PAGE_SHIFT);
2546 
2547 	memblock_free_all();
2548 
2549 	/*
2550 	 * Must be done after boot memory is put on freelist, because here we
2551 	 * might set fields in deferred struct pages that have not yet been
2552 	 * initialized, and memblock_free_all() initializes all the reserved
2553 	 * deferred pages for us.
2554 	 */
2555 	register_page_bootmem_info();
2556 
2557 	/*
2558 	 * Set up the zero page, mark it reserved, so that page count
2559 	 * is not manipulated when freeing the page from user ptes.
2560 	 */
2561 	mem_map_zero = alloc_pages(GFP_KERNEL|__GFP_ZERO, 0);
2562 	if (mem_map_zero == NULL) {
2563 		prom_printf("paging_init: Cannot alloc zero page.\n");
2564 		prom_halt();
2565 	}
2566 	mark_page_reserved(mem_map_zero);
2567 
2568 	mem_init_print_info(NULL);
2569 
2570 	if (tlb_type == cheetah || tlb_type == cheetah_plus)
2571 		cheetah_ecache_flush_init();
2572 }
2573 
2574 void free_initmem(void)
2575 {
2576 	unsigned long addr, initend;
2577 	int do_free = 1;
2578 
2579 	/* If the physical memory maps were trimmed by kernel command
2580 	 * line options, don't even try freeing this initmem stuff up.
2581 	 * The kernel image could have been in the trimmed out region
2582 	 * and if so the freeing below will free invalid page structs.
2583 	 */
2584 	if (cmdline_memory_size)
2585 		do_free = 0;
2586 
2587 	/*
2588 	 * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes.
2589 	 */
2590 	addr = PAGE_ALIGN((unsigned long)(__init_begin));
2591 	initend = (unsigned long)(__init_end) & PAGE_MASK;
2592 	for (; addr < initend; addr += PAGE_SIZE) {
2593 		unsigned long page;
2594 
2595 		page = (addr +
2596 			((unsigned long) __va(kern_base)) -
2597 			((unsigned long) KERNBASE));
2598 		memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
2599 
2600 		if (do_free)
2601 			free_reserved_page(virt_to_page(page));
2602 	}
2603 }
2604 
2605 #ifdef CONFIG_BLK_DEV_INITRD
2606 void free_initrd_mem(unsigned long start, unsigned long end)
2607 {
2608 	free_reserved_area((void *)start, (void *)end, POISON_FREE_INITMEM,
2609 			   "initrd");
2610 }
2611 #endif
2612 
2613 pgprot_t PAGE_KERNEL __read_mostly;
2614 EXPORT_SYMBOL(PAGE_KERNEL);
2615 
2616 pgprot_t PAGE_KERNEL_LOCKED __read_mostly;
2617 pgprot_t PAGE_COPY __read_mostly;
2618 
2619 pgprot_t PAGE_SHARED __read_mostly;
2620 EXPORT_SYMBOL(PAGE_SHARED);
2621 
2622 unsigned long pg_iobits __read_mostly;
2623 
2624 unsigned long _PAGE_IE __read_mostly;
2625 EXPORT_SYMBOL(_PAGE_IE);
2626 
2627 unsigned long _PAGE_E __read_mostly;
2628 EXPORT_SYMBOL(_PAGE_E);
2629 
2630 unsigned long _PAGE_CACHE __read_mostly;
2631 EXPORT_SYMBOL(_PAGE_CACHE);
2632 
2633 #ifdef CONFIG_SPARSEMEM_VMEMMAP
2634 int __meminit vmemmap_populate(unsigned long vstart, unsigned long vend,
2635 			       int node, struct vmem_altmap *altmap)
2636 {
2637 	unsigned long pte_base;
2638 
2639 	pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2640 		    _PAGE_CP_4U | _PAGE_CV_4U |
2641 		    _PAGE_P_4U | _PAGE_W_4U);
2642 	if (tlb_type == hypervisor)
2643 		pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2644 			    page_cache4v_flag | _PAGE_P_4V | _PAGE_W_4V);
2645 
2646 	pte_base |= _PAGE_PMD_HUGE;
2647 
2648 	vstart = vstart & PMD_MASK;
2649 	vend = ALIGN(vend, PMD_SIZE);
2650 	for (; vstart < vend; vstart += PMD_SIZE) {
2651 		pgd_t *pgd = vmemmap_pgd_populate(vstart, node);
2652 		unsigned long pte;
2653 		pud_t *pud;
2654 		pmd_t *pmd;
2655 
2656 		if (!pgd)
2657 			return -ENOMEM;
2658 
2659 		pud = vmemmap_pud_populate(pgd, vstart, node);
2660 		if (!pud)
2661 			return -ENOMEM;
2662 
2663 		pmd = pmd_offset(pud, vstart);
2664 		pte = pmd_val(*pmd);
2665 		if (!(pte & _PAGE_VALID)) {
2666 			void *block = vmemmap_alloc_block(PMD_SIZE, node);
2667 
2668 			if (!block)
2669 				return -ENOMEM;
2670 
2671 			pmd_val(*pmd) = pte_base | __pa(block);
2672 		}
2673 	}
2674 
2675 	return 0;
2676 }
2677 
2678 void vmemmap_free(unsigned long start, unsigned long end,
2679 		struct vmem_altmap *altmap)
2680 {
2681 }
2682 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
2683 
2684 static void prot_init_common(unsigned long page_none,
2685 			     unsigned long page_shared,
2686 			     unsigned long page_copy,
2687 			     unsigned long page_readonly,
2688 			     unsigned long page_exec_bit)
2689 {
2690 	PAGE_COPY = __pgprot(page_copy);
2691 	PAGE_SHARED = __pgprot(page_shared);
2692 
2693 	protection_map[0x0] = __pgprot(page_none);
2694 	protection_map[0x1] = __pgprot(page_readonly & ~page_exec_bit);
2695 	protection_map[0x2] = __pgprot(page_copy & ~page_exec_bit);
2696 	protection_map[0x3] = __pgprot(page_copy & ~page_exec_bit);
2697 	protection_map[0x4] = __pgprot(page_readonly);
2698 	protection_map[0x5] = __pgprot(page_readonly);
2699 	protection_map[0x6] = __pgprot(page_copy);
2700 	protection_map[0x7] = __pgprot(page_copy);
2701 	protection_map[0x8] = __pgprot(page_none);
2702 	protection_map[0x9] = __pgprot(page_readonly & ~page_exec_bit);
2703 	protection_map[0xa] = __pgprot(page_shared & ~page_exec_bit);
2704 	protection_map[0xb] = __pgprot(page_shared & ~page_exec_bit);
2705 	protection_map[0xc] = __pgprot(page_readonly);
2706 	protection_map[0xd] = __pgprot(page_readonly);
2707 	protection_map[0xe] = __pgprot(page_shared);
2708 	protection_map[0xf] = __pgprot(page_shared);
2709 }
2710 
2711 static void __init sun4u_pgprot_init(void)
2712 {
2713 	unsigned long page_none, page_shared, page_copy, page_readonly;
2714 	unsigned long page_exec_bit;
2715 	int i;
2716 
2717 	PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2718 				_PAGE_CACHE_4U | _PAGE_P_4U |
2719 				__ACCESS_BITS_4U | __DIRTY_BITS_4U |
2720 				_PAGE_EXEC_4U);
2721 	PAGE_KERNEL_LOCKED = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2722 				       _PAGE_CACHE_4U | _PAGE_P_4U |
2723 				       __ACCESS_BITS_4U | __DIRTY_BITS_4U |
2724 				       _PAGE_EXEC_4U | _PAGE_L_4U);
2725 
2726 	_PAGE_IE = _PAGE_IE_4U;
2727 	_PAGE_E = _PAGE_E_4U;
2728 	_PAGE_CACHE = _PAGE_CACHE_4U;
2729 
2730 	pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4U | __DIRTY_BITS_4U |
2731 		     __ACCESS_BITS_4U | _PAGE_E_4U);
2732 
2733 #ifdef CONFIG_DEBUG_PAGEALLOC
2734 	kern_linear_pte_xor[0] = _PAGE_VALID ^ PAGE_OFFSET;
2735 #else
2736 	kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4U) ^
2737 		PAGE_OFFSET;
2738 #endif
2739 	kern_linear_pte_xor[0] |= (_PAGE_CP_4U | _PAGE_CV_4U |
2740 				   _PAGE_P_4U | _PAGE_W_4U);
2741 
2742 	for (i = 1; i < 4; i++)
2743 		kern_linear_pte_xor[i] = kern_linear_pte_xor[0];
2744 
2745 	_PAGE_ALL_SZ_BITS =  (_PAGE_SZ4MB_4U | _PAGE_SZ512K_4U |
2746 			      _PAGE_SZ64K_4U | _PAGE_SZ8K_4U |
2747 			      _PAGE_SZ32MB_4U | _PAGE_SZ256MB_4U);
2748 
2749 
2750 	page_none = _PAGE_PRESENT_4U | _PAGE_ACCESSED_4U | _PAGE_CACHE_4U;
2751 	page_shared = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2752 		       __ACCESS_BITS_4U | _PAGE_WRITE_4U | _PAGE_EXEC_4U);
2753 	page_copy   = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2754 		       __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2755 	page_readonly   = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2756 			   __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2757 
2758 	page_exec_bit = _PAGE_EXEC_4U;
2759 
2760 	prot_init_common(page_none, page_shared, page_copy, page_readonly,
2761 			 page_exec_bit);
2762 }
2763 
2764 static void __init sun4v_pgprot_init(void)
2765 {
2766 	unsigned long page_none, page_shared, page_copy, page_readonly;
2767 	unsigned long page_exec_bit;
2768 	int i;
2769 
2770 	PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4V | _PAGE_VALID |
2771 				page_cache4v_flag | _PAGE_P_4V |
2772 				__ACCESS_BITS_4V | __DIRTY_BITS_4V |
2773 				_PAGE_EXEC_4V);
2774 	PAGE_KERNEL_LOCKED = PAGE_KERNEL;
2775 
2776 	_PAGE_IE = _PAGE_IE_4V;
2777 	_PAGE_E = _PAGE_E_4V;
2778 	_PAGE_CACHE = page_cache4v_flag;
2779 
2780 #ifdef CONFIG_DEBUG_PAGEALLOC
2781 	kern_linear_pte_xor[0] = _PAGE_VALID ^ PAGE_OFFSET;
2782 #else
2783 	kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4V) ^
2784 		PAGE_OFFSET;
2785 #endif
2786 	kern_linear_pte_xor[0] |= (page_cache4v_flag | _PAGE_P_4V |
2787 				   _PAGE_W_4V);
2788 
2789 	for (i = 1; i < 4; i++)
2790 		kern_linear_pte_xor[i] = kern_linear_pte_xor[0];
2791 
2792 	pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4V | __DIRTY_BITS_4V |
2793 		     __ACCESS_BITS_4V | _PAGE_E_4V);
2794 
2795 	_PAGE_ALL_SZ_BITS = (_PAGE_SZ16GB_4V | _PAGE_SZ2GB_4V |
2796 			     _PAGE_SZ256MB_4V | _PAGE_SZ32MB_4V |
2797 			     _PAGE_SZ4MB_4V | _PAGE_SZ512K_4V |
2798 			     _PAGE_SZ64K_4V | _PAGE_SZ8K_4V);
2799 
2800 	page_none = _PAGE_PRESENT_4V | _PAGE_ACCESSED_4V | page_cache4v_flag;
2801 	page_shared = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag |
2802 		       __ACCESS_BITS_4V | _PAGE_WRITE_4V | _PAGE_EXEC_4V);
2803 	page_copy   = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag |
2804 		       __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2805 	page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag |
2806 			 __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2807 
2808 	page_exec_bit = _PAGE_EXEC_4V;
2809 
2810 	prot_init_common(page_none, page_shared, page_copy, page_readonly,
2811 			 page_exec_bit);
2812 }
2813 
2814 unsigned long pte_sz_bits(unsigned long sz)
2815 {
2816 	if (tlb_type == hypervisor) {
2817 		switch (sz) {
2818 		case 8 * 1024:
2819 		default:
2820 			return _PAGE_SZ8K_4V;
2821 		case 64 * 1024:
2822 			return _PAGE_SZ64K_4V;
2823 		case 512 * 1024:
2824 			return _PAGE_SZ512K_4V;
2825 		case 4 * 1024 * 1024:
2826 			return _PAGE_SZ4MB_4V;
2827 		}
2828 	} else {
2829 		switch (sz) {
2830 		case 8 * 1024:
2831 		default:
2832 			return _PAGE_SZ8K_4U;
2833 		case 64 * 1024:
2834 			return _PAGE_SZ64K_4U;
2835 		case 512 * 1024:
2836 			return _PAGE_SZ512K_4U;
2837 		case 4 * 1024 * 1024:
2838 			return _PAGE_SZ4MB_4U;
2839 		}
2840 	}
2841 }
2842 
2843 pte_t mk_pte_io(unsigned long page, pgprot_t prot, int space, unsigned long page_size)
2844 {
2845 	pte_t pte;
2846 
2847 	pte_val(pte)  = page | pgprot_val(pgprot_noncached(prot));
2848 	pte_val(pte) |= (((unsigned long)space) << 32);
2849 	pte_val(pte) |= pte_sz_bits(page_size);
2850 
2851 	return pte;
2852 }
2853 
2854 static unsigned long kern_large_tte(unsigned long paddr)
2855 {
2856 	unsigned long val;
2857 
2858 	val = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2859 	       _PAGE_CP_4U | _PAGE_CV_4U | _PAGE_P_4U |
2860 	       _PAGE_EXEC_4U | _PAGE_L_4U | _PAGE_W_4U);
2861 	if (tlb_type == hypervisor)
2862 		val = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2863 		       page_cache4v_flag | _PAGE_P_4V |
2864 		       _PAGE_EXEC_4V | _PAGE_W_4V);
2865 
2866 	return val | paddr;
2867 }
2868 
2869 /* If not locked, zap it. */
2870 void __flush_tlb_all(void)
2871 {
2872 	unsigned long pstate;
2873 	int i;
2874 
2875 	__asm__ __volatile__("flushw\n\t"
2876 			     "rdpr	%%pstate, %0\n\t"
2877 			     "wrpr	%0, %1, %%pstate"
2878 			     : "=r" (pstate)
2879 			     : "i" (PSTATE_IE));
2880 	if (tlb_type == hypervisor) {
2881 		sun4v_mmu_demap_all();
2882 	} else if (tlb_type == spitfire) {
2883 		for (i = 0; i < 64; i++) {
2884 			/* Spitfire Errata #32 workaround */
2885 			/* NOTE: Always runs on spitfire, so no
2886 			 *       cheetah+ page size encodings.
2887 			 */
2888 			__asm__ __volatile__("stxa	%0, [%1] %2\n\t"
2889 					     "flush	%%g6"
2890 					     : /* No outputs */
2891 					     : "r" (0),
2892 					     "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2893 
2894 			if (!(spitfire_get_dtlb_data(i) & _PAGE_L_4U)) {
2895 				__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2896 						     "membar #Sync"
2897 						     : /* no outputs */
2898 						     : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
2899 				spitfire_put_dtlb_data(i, 0x0UL);
2900 			}
2901 
2902 			/* Spitfire Errata #32 workaround */
2903 			/* NOTE: Always runs on spitfire, so no
2904 			 *       cheetah+ page size encodings.
2905 			 */
2906 			__asm__ __volatile__("stxa	%0, [%1] %2\n\t"
2907 					     "flush	%%g6"
2908 					     : /* No outputs */
2909 					     : "r" (0),
2910 					     "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2911 
2912 			if (!(spitfire_get_itlb_data(i) & _PAGE_L_4U)) {
2913 				__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2914 						     "membar #Sync"
2915 						     : /* no outputs */
2916 						     : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU));
2917 				spitfire_put_itlb_data(i, 0x0UL);
2918 			}
2919 		}
2920 	} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
2921 		cheetah_flush_dtlb_all();
2922 		cheetah_flush_itlb_all();
2923 	}
2924 	__asm__ __volatile__("wrpr	%0, 0, %%pstate"
2925 			     : : "r" (pstate));
2926 }
2927 
2928 pte_t *pte_alloc_one_kernel(struct mm_struct *mm)
2929 {
2930 	struct page *page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2931 	pte_t *pte = NULL;
2932 
2933 	if (page)
2934 		pte = (pte_t *) page_address(page);
2935 
2936 	return pte;
2937 }
2938 
2939 pgtable_t pte_alloc_one(struct mm_struct *mm)
2940 {
2941 	struct page *page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2942 	if (!page)
2943 		return NULL;
2944 	if (!pgtable_page_ctor(page)) {
2945 		free_unref_page(page);
2946 		return NULL;
2947 	}
2948 	return (pte_t *) page_address(page);
2949 }
2950 
2951 void pte_free_kernel(struct mm_struct *mm, pte_t *pte)
2952 {
2953 	free_page((unsigned long)pte);
2954 }
2955 
2956 static void __pte_free(pgtable_t pte)
2957 {
2958 	struct page *page = virt_to_page(pte);
2959 
2960 	pgtable_page_dtor(page);
2961 	__free_page(page);
2962 }
2963 
2964 void pte_free(struct mm_struct *mm, pgtable_t pte)
2965 {
2966 	__pte_free(pte);
2967 }
2968 
2969 void pgtable_free(void *table, bool is_page)
2970 {
2971 	if (is_page)
2972 		__pte_free(table);
2973 	else
2974 		kmem_cache_free(pgtable_cache, table);
2975 }
2976 
2977 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2978 void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr,
2979 			  pmd_t *pmd)
2980 {
2981 	unsigned long pte, flags;
2982 	struct mm_struct *mm;
2983 	pmd_t entry = *pmd;
2984 
2985 	if (!pmd_large(entry) || !pmd_young(entry))
2986 		return;
2987 
2988 	pte = pmd_val(entry);
2989 
2990 	/* Don't insert a non-valid PMD into the TSB, we'll deadlock.  */
2991 	if (!(pte & _PAGE_VALID))
2992 		return;
2993 
2994 	/* We are fabricating 8MB pages using 4MB real hw pages.  */
2995 	pte |= (addr & (1UL << REAL_HPAGE_SHIFT));
2996 
2997 	mm = vma->vm_mm;
2998 
2999 	spin_lock_irqsave(&mm->context.lock, flags);
3000 
3001 	if (mm->context.tsb_block[MM_TSB_HUGE].tsb != NULL)
3002 		__update_mmu_tsb_insert(mm, MM_TSB_HUGE, REAL_HPAGE_SHIFT,
3003 					addr, pte);
3004 
3005 	spin_unlock_irqrestore(&mm->context.lock, flags);
3006 }
3007 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3008 
3009 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
3010 static void context_reload(void *__data)
3011 {
3012 	struct mm_struct *mm = __data;
3013 
3014 	if (mm == current->mm)
3015 		load_secondary_context(mm);
3016 }
3017 
3018 void hugetlb_setup(struct pt_regs *regs)
3019 {
3020 	struct mm_struct *mm = current->mm;
3021 	struct tsb_config *tp;
3022 
3023 	if (faulthandler_disabled() || !mm) {
3024 		const struct exception_table_entry *entry;
3025 
3026 		entry = search_exception_tables(regs->tpc);
3027 		if (entry) {
3028 			regs->tpc = entry->fixup;
3029 			regs->tnpc = regs->tpc + 4;
3030 			return;
3031 		}
3032 		pr_alert("Unexpected HugeTLB setup in atomic context.\n");
3033 		die_if_kernel("HugeTSB in atomic", regs);
3034 	}
3035 
3036 	tp = &mm->context.tsb_block[MM_TSB_HUGE];
3037 	if (likely(tp->tsb == NULL))
3038 		tsb_grow(mm, MM_TSB_HUGE, 0);
3039 
3040 	tsb_context_switch(mm);
3041 	smp_tsb_sync(mm);
3042 
3043 	/* On UltraSPARC-III+ and later, configure the second half of
3044 	 * the Data-TLB for huge pages.
3045 	 */
3046 	if (tlb_type == cheetah_plus) {
3047 		bool need_context_reload = false;
3048 		unsigned long ctx;
3049 
3050 		spin_lock_irq(&ctx_alloc_lock);
3051 		ctx = mm->context.sparc64_ctx_val;
3052 		ctx &= ~CTX_PGSZ_MASK;
3053 		ctx |= CTX_PGSZ_BASE << CTX_PGSZ0_SHIFT;
3054 		ctx |= CTX_PGSZ_HUGE << CTX_PGSZ1_SHIFT;
3055 
3056 		if (ctx != mm->context.sparc64_ctx_val) {
3057 			/* When changing the page size fields, we
3058 			 * must perform a context flush so that no
3059 			 * stale entries match.  This flush must
3060 			 * occur with the original context register
3061 			 * settings.
3062 			 */
3063 			do_flush_tlb_mm(mm);
3064 
3065 			/* Reload the context register of all processors
3066 			 * also executing in this address space.
3067 			 */
3068 			mm->context.sparc64_ctx_val = ctx;
3069 			need_context_reload = true;
3070 		}
3071 		spin_unlock_irq(&ctx_alloc_lock);
3072 
3073 		if (need_context_reload)
3074 			on_each_cpu(context_reload, mm, 0);
3075 	}
3076 }
3077 #endif
3078 
3079 static struct resource code_resource = {
3080 	.name	= "Kernel code",
3081 	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
3082 };
3083 
3084 static struct resource data_resource = {
3085 	.name	= "Kernel data",
3086 	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
3087 };
3088 
3089 static struct resource bss_resource = {
3090 	.name	= "Kernel bss",
3091 	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
3092 };
3093 
3094 static inline resource_size_t compute_kern_paddr(void *addr)
3095 {
3096 	return (resource_size_t) (addr - KERNBASE + kern_base);
3097 }
3098 
3099 static void __init kernel_lds_init(void)
3100 {
3101 	code_resource.start = compute_kern_paddr(_text);
3102 	code_resource.end   = compute_kern_paddr(_etext - 1);
3103 	data_resource.start = compute_kern_paddr(_etext);
3104 	data_resource.end   = compute_kern_paddr(_edata - 1);
3105 	bss_resource.start  = compute_kern_paddr(__bss_start);
3106 	bss_resource.end    = compute_kern_paddr(_end - 1);
3107 }
3108 
3109 static int __init report_memory(void)
3110 {
3111 	int i;
3112 	struct resource *res;
3113 
3114 	kernel_lds_init();
3115 
3116 	for (i = 0; i < pavail_ents; i++) {
3117 		res = kzalloc(sizeof(struct resource), GFP_KERNEL);
3118 
3119 		if (!res) {
3120 			pr_warn("Failed to allocate source.\n");
3121 			break;
3122 		}
3123 
3124 		res->name = "System RAM";
3125 		res->start = pavail[i].phys_addr;
3126 		res->end = pavail[i].phys_addr + pavail[i].reg_size - 1;
3127 		res->flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM;
3128 
3129 		if (insert_resource(&iomem_resource, res) < 0) {
3130 			pr_warn("Resource insertion failed.\n");
3131 			break;
3132 		}
3133 
3134 		insert_resource(res, &code_resource);
3135 		insert_resource(res, &data_resource);
3136 		insert_resource(res, &bss_resource);
3137 	}
3138 
3139 	return 0;
3140 }
3141 arch_initcall(report_memory);
3142 
3143 #ifdef CONFIG_SMP
3144 #define do_flush_tlb_kernel_range	smp_flush_tlb_kernel_range
3145 #else
3146 #define do_flush_tlb_kernel_range	__flush_tlb_kernel_range
3147 #endif
3148 
3149 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
3150 {
3151 	if (start < HI_OBP_ADDRESS && end > LOW_OBP_ADDRESS) {
3152 		if (start < LOW_OBP_ADDRESS) {
3153 			flush_tsb_kernel_range(start, LOW_OBP_ADDRESS);
3154 			do_flush_tlb_kernel_range(start, LOW_OBP_ADDRESS);
3155 		}
3156 		if (end > HI_OBP_ADDRESS) {
3157 			flush_tsb_kernel_range(HI_OBP_ADDRESS, end);
3158 			do_flush_tlb_kernel_range(HI_OBP_ADDRESS, end);
3159 		}
3160 	} else {
3161 		flush_tsb_kernel_range(start, end);
3162 		do_flush_tlb_kernel_range(start, end);
3163 	}
3164 }
3165 
3166 void copy_user_highpage(struct page *to, struct page *from,
3167 	unsigned long vaddr, struct vm_area_struct *vma)
3168 {
3169 	char *vfrom, *vto;
3170 
3171 	vfrom = kmap_atomic(from);
3172 	vto = kmap_atomic(to);
3173 	copy_user_page(vto, vfrom, vaddr, to);
3174 	kunmap_atomic(vto);
3175 	kunmap_atomic(vfrom);
3176 
3177 	/* If this page has ADI enabled, copy over any ADI tags
3178 	 * as well
3179 	 */
3180 	if (vma->vm_flags & VM_SPARC_ADI) {
3181 		unsigned long pfrom, pto, i, adi_tag;
3182 
3183 		pfrom = page_to_phys(from);
3184 		pto = page_to_phys(to);
3185 
3186 		for (i = pfrom; i < (pfrom + PAGE_SIZE); i += adi_blksize()) {
3187 			asm volatile("ldxa [%1] %2, %0\n\t"
3188 					: "=r" (adi_tag)
3189 					:  "r" (i), "i" (ASI_MCD_REAL));
3190 			asm volatile("stxa %0, [%1] %2\n\t"
3191 					:
3192 					: "r" (adi_tag), "r" (pto),
3193 					  "i" (ASI_MCD_REAL));
3194 			pto += adi_blksize();
3195 		}
3196 		asm volatile("membar #Sync\n\t");
3197 	}
3198 }
3199 EXPORT_SYMBOL(copy_user_highpage);
3200 
3201 void copy_highpage(struct page *to, struct page *from)
3202 {
3203 	char *vfrom, *vto;
3204 
3205 	vfrom = kmap_atomic(from);
3206 	vto = kmap_atomic(to);
3207 	copy_page(vto, vfrom);
3208 	kunmap_atomic(vto);
3209 	kunmap_atomic(vfrom);
3210 
3211 	/* If this platform is ADI enabled, copy any ADI tags
3212 	 * as well
3213 	 */
3214 	if (adi_capable()) {
3215 		unsigned long pfrom, pto, i, adi_tag;
3216 
3217 		pfrom = page_to_phys(from);
3218 		pto = page_to_phys(to);
3219 
3220 		for (i = pfrom; i < (pfrom + PAGE_SIZE); i += adi_blksize()) {
3221 			asm volatile("ldxa [%1] %2, %0\n\t"
3222 					: "=r" (adi_tag)
3223 					:  "r" (i), "i" (ASI_MCD_REAL));
3224 			asm volatile("stxa %0, [%1] %2\n\t"
3225 					:
3226 					: "r" (adi_tag), "r" (pto),
3227 					  "i" (ASI_MCD_REAL));
3228 			pto += adi_blksize();
3229 		}
3230 		asm volatile("membar #Sync\n\t");
3231 	}
3232 }
3233 EXPORT_SYMBOL(copy_highpage);
3234