xref: /openbmc/linux/arch/sparc/mm/init_64.c (revision c8dbaa22)
1 /*
2  *  arch/sparc64/mm/init.c
3  *
4  *  Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu)
5  *  Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
6  */
7 
8 #include <linux/extable.h>
9 #include <linux/kernel.h>
10 #include <linux/sched.h>
11 #include <linux/string.h>
12 #include <linux/init.h>
13 #include <linux/bootmem.h>
14 #include <linux/mm.h>
15 #include <linux/hugetlb.h>
16 #include <linux/initrd.h>
17 #include <linux/swap.h>
18 #include <linux/pagemap.h>
19 #include <linux/poison.h>
20 #include <linux/fs.h>
21 #include <linux/seq_file.h>
22 #include <linux/kprobes.h>
23 #include <linux/cache.h>
24 #include <linux/sort.h>
25 #include <linux/ioport.h>
26 #include <linux/percpu.h>
27 #include <linux/memblock.h>
28 #include <linux/mmzone.h>
29 #include <linux/gfp.h>
30 
31 #include <asm/head.h>
32 #include <asm/page.h>
33 #include <asm/pgalloc.h>
34 #include <asm/pgtable.h>
35 #include <asm/oplib.h>
36 #include <asm/iommu.h>
37 #include <asm/io.h>
38 #include <linux/uaccess.h>
39 #include <asm/mmu_context.h>
40 #include <asm/tlbflush.h>
41 #include <asm/dma.h>
42 #include <asm/starfire.h>
43 #include <asm/tlb.h>
44 #include <asm/spitfire.h>
45 #include <asm/sections.h>
46 #include <asm/tsb.h>
47 #include <asm/hypervisor.h>
48 #include <asm/prom.h>
49 #include <asm/mdesc.h>
50 #include <asm/cpudata.h>
51 #include <asm/setup.h>
52 #include <asm/irq.h>
53 
54 #include "init_64.h"
55 
56 unsigned long kern_linear_pte_xor[4] __read_mostly;
57 static unsigned long page_cache4v_flag;
58 
59 /* A bitmap, two bits for every 256MB of physical memory.  These two
60  * bits determine what page size we use for kernel linear
61  * translations.  They form an index into kern_linear_pte_xor[].  The
62  * value in the indexed slot is XOR'd with the TLB miss virtual
63  * address to form the resulting TTE.  The mapping is:
64  *
65  *	0	==>	4MB
66  *	1	==>	256MB
67  *	2	==>	2GB
68  *	3	==>	16GB
69  *
70  * All sun4v chips support 256MB pages.  Only SPARC-T4 and later
71  * support 2GB pages, and hopefully future cpus will support the 16GB
72  * pages as well.  For slots 2 and 3, we encode a 256MB TTE xor there
73  * if these larger page sizes are not supported by the cpu.
74  *
75  * It would be nice to determine this from the machine description
76  * 'cpu' properties, but we need to have this table setup before the
77  * MDESC is initialized.
78  */
79 
80 #ifndef CONFIG_DEBUG_PAGEALLOC
81 /* A special kernel TSB for 4MB, 256MB, 2GB and 16GB linear mappings.
82  * Space is allocated for this right after the trap table in
83  * arch/sparc64/kernel/head.S
84  */
85 extern struct tsb swapper_4m_tsb[KERNEL_TSB4M_NENTRIES];
86 #endif
87 extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
88 
89 static unsigned long cpu_pgsz_mask;
90 
91 #define MAX_BANKS	1024
92 
93 static struct linux_prom64_registers pavail[MAX_BANKS];
94 static int pavail_ents;
95 
96 u64 numa_latency[MAX_NUMNODES][MAX_NUMNODES];
97 
98 static int cmp_p64(const void *a, const void *b)
99 {
100 	const struct linux_prom64_registers *x = a, *y = b;
101 
102 	if (x->phys_addr > y->phys_addr)
103 		return 1;
104 	if (x->phys_addr < y->phys_addr)
105 		return -1;
106 	return 0;
107 }
108 
109 static void __init read_obp_memory(const char *property,
110 				   struct linux_prom64_registers *regs,
111 				   int *num_ents)
112 {
113 	phandle node = prom_finddevice("/memory");
114 	int prop_size = prom_getproplen(node, property);
115 	int ents, ret, i;
116 
117 	ents = prop_size / sizeof(struct linux_prom64_registers);
118 	if (ents > MAX_BANKS) {
119 		prom_printf("The machine has more %s property entries than "
120 			    "this kernel can support (%d).\n",
121 			    property, MAX_BANKS);
122 		prom_halt();
123 	}
124 
125 	ret = prom_getproperty(node, property, (char *) regs, prop_size);
126 	if (ret == -1) {
127 		prom_printf("Couldn't get %s property from /memory.\n",
128 				property);
129 		prom_halt();
130 	}
131 
132 	/* Sanitize what we got from the firmware, by page aligning
133 	 * everything.
134 	 */
135 	for (i = 0; i < ents; i++) {
136 		unsigned long base, size;
137 
138 		base = regs[i].phys_addr;
139 		size = regs[i].reg_size;
140 
141 		size &= PAGE_MASK;
142 		if (base & ~PAGE_MASK) {
143 			unsigned long new_base = PAGE_ALIGN(base);
144 
145 			size -= new_base - base;
146 			if ((long) size < 0L)
147 				size = 0UL;
148 			base = new_base;
149 		}
150 		if (size == 0UL) {
151 			/* If it is empty, simply get rid of it.
152 			 * This simplifies the logic of the other
153 			 * functions that process these arrays.
154 			 */
155 			memmove(&regs[i], &regs[i + 1],
156 				(ents - i - 1) * sizeof(regs[0]));
157 			i--;
158 			ents--;
159 			continue;
160 		}
161 		regs[i].phys_addr = base;
162 		regs[i].reg_size = size;
163 	}
164 
165 	*num_ents = ents;
166 
167 	sort(regs, ents, sizeof(struct linux_prom64_registers),
168 	     cmp_p64, NULL);
169 }
170 
171 /* Kernel physical address base and size in bytes.  */
172 unsigned long kern_base __read_mostly;
173 unsigned long kern_size __read_mostly;
174 
175 /* Initial ramdisk setup */
176 extern unsigned long sparc_ramdisk_image64;
177 extern unsigned int sparc_ramdisk_image;
178 extern unsigned int sparc_ramdisk_size;
179 
180 struct page *mem_map_zero __read_mostly;
181 EXPORT_SYMBOL(mem_map_zero);
182 
183 unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly;
184 
185 unsigned long sparc64_kern_pri_context __read_mostly;
186 unsigned long sparc64_kern_pri_nuc_bits __read_mostly;
187 unsigned long sparc64_kern_sec_context __read_mostly;
188 
189 int num_kernel_image_mappings;
190 
191 #ifdef CONFIG_DEBUG_DCFLUSH
192 atomic_t dcpage_flushes = ATOMIC_INIT(0);
193 #ifdef CONFIG_SMP
194 atomic_t dcpage_flushes_xcall = ATOMIC_INIT(0);
195 #endif
196 #endif
197 
198 inline void flush_dcache_page_impl(struct page *page)
199 {
200 	BUG_ON(tlb_type == hypervisor);
201 #ifdef CONFIG_DEBUG_DCFLUSH
202 	atomic_inc(&dcpage_flushes);
203 #endif
204 
205 #ifdef DCACHE_ALIASING_POSSIBLE
206 	__flush_dcache_page(page_address(page),
207 			    ((tlb_type == spitfire) &&
208 			     page_mapping(page) != NULL));
209 #else
210 	if (page_mapping(page) != NULL &&
211 	    tlb_type == spitfire)
212 		__flush_icache_page(__pa(page_address(page)));
213 #endif
214 }
215 
216 #define PG_dcache_dirty		PG_arch_1
217 #define PG_dcache_cpu_shift	32UL
218 #define PG_dcache_cpu_mask	\
219 	((1UL<<ilog2(roundup_pow_of_two(NR_CPUS)))-1UL)
220 
221 #define dcache_dirty_cpu(page) \
222 	(((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask)
223 
224 static inline void set_dcache_dirty(struct page *page, int this_cpu)
225 {
226 	unsigned long mask = this_cpu;
227 	unsigned long non_cpu_bits;
228 
229 	non_cpu_bits = ~(PG_dcache_cpu_mask << PG_dcache_cpu_shift);
230 	mask = (mask << PG_dcache_cpu_shift) | (1UL << PG_dcache_dirty);
231 
232 	__asm__ __volatile__("1:\n\t"
233 			     "ldx	[%2], %%g7\n\t"
234 			     "and	%%g7, %1, %%g1\n\t"
235 			     "or	%%g1, %0, %%g1\n\t"
236 			     "casx	[%2], %%g7, %%g1\n\t"
237 			     "cmp	%%g7, %%g1\n\t"
238 			     "bne,pn	%%xcc, 1b\n\t"
239 			     " nop"
240 			     : /* no outputs */
241 			     : "r" (mask), "r" (non_cpu_bits), "r" (&page->flags)
242 			     : "g1", "g7");
243 }
244 
245 static inline void clear_dcache_dirty_cpu(struct page *page, unsigned long cpu)
246 {
247 	unsigned long mask = (1UL << PG_dcache_dirty);
248 
249 	__asm__ __volatile__("! test_and_clear_dcache_dirty\n"
250 			     "1:\n\t"
251 			     "ldx	[%2], %%g7\n\t"
252 			     "srlx	%%g7, %4, %%g1\n\t"
253 			     "and	%%g1, %3, %%g1\n\t"
254 			     "cmp	%%g1, %0\n\t"
255 			     "bne,pn	%%icc, 2f\n\t"
256 			     " andn	%%g7, %1, %%g1\n\t"
257 			     "casx	[%2], %%g7, %%g1\n\t"
258 			     "cmp	%%g7, %%g1\n\t"
259 			     "bne,pn	%%xcc, 1b\n\t"
260 			     " nop\n"
261 			     "2:"
262 			     : /* no outputs */
263 			     : "r" (cpu), "r" (mask), "r" (&page->flags),
264 			       "i" (PG_dcache_cpu_mask),
265 			       "i" (PG_dcache_cpu_shift)
266 			     : "g1", "g7");
267 }
268 
269 static inline void tsb_insert(struct tsb *ent, unsigned long tag, unsigned long pte)
270 {
271 	unsigned long tsb_addr = (unsigned long) ent;
272 
273 	if (tlb_type == cheetah_plus || tlb_type == hypervisor)
274 		tsb_addr = __pa(tsb_addr);
275 
276 	__tsb_insert(tsb_addr, tag, pte);
277 }
278 
279 unsigned long _PAGE_ALL_SZ_BITS __read_mostly;
280 
281 static void flush_dcache(unsigned long pfn)
282 {
283 	struct page *page;
284 
285 	page = pfn_to_page(pfn);
286 	if (page) {
287 		unsigned long pg_flags;
288 
289 		pg_flags = page->flags;
290 		if (pg_flags & (1UL << PG_dcache_dirty)) {
291 			int cpu = ((pg_flags >> PG_dcache_cpu_shift) &
292 				   PG_dcache_cpu_mask);
293 			int this_cpu = get_cpu();
294 
295 			/* This is just to optimize away some function calls
296 			 * in the SMP case.
297 			 */
298 			if (cpu == this_cpu)
299 				flush_dcache_page_impl(page);
300 			else
301 				smp_flush_dcache_page_impl(page, cpu);
302 
303 			clear_dcache_dirty_cpu(page, cpu);
304 
305 			put_cpu();
306 		}
307 	}
308 }
309 
310 /* mm->context.lock must be held */
311 static void __update_mmu_tsb_insert(struct mm_struct *mm, unsigned long tsb_index,
312 				    unsigned long tsb_hash_shift, unsigned long address,
313 				    unsigned long tte)
314 {
315 	struct tsb *tsb = mm->context.tsb_block[tsb_index].tsb;
316 	unsigned long tag;
317 
318 	if (unlikely(!tsb))
319 		return;
320 
321 	tsb += ((address >> tsb_hash_shift) &
322 		(mm->context.tsb_block[tsb_index].tsb_nentries - 1UL));
323 	tag = (address >> 22UL);
324 	tsb_insert(tsb, tag, tte);
325 }
326 
327 #ifdef CONFIG_HUGETLB_PAGE
328 static void __init add_huge_page_size(unsigned long size)
329 {
330 	unsigned int order;
331 
332 	if (size_to_hstate(size))
333 		return;
334 
335 	order = ilog2(size) - PAGE_SHIFT;
336 	hugetlb_add_hstate(order);
337 }
338 
339 static int __init hugetlbpage_init(void)
340 {
341 	add_huge_page_size(1UL << HPAGE_64K_SHIFT);
342 	add_huge_page_size(1UL << HPAGE_SHIFT);
343 	add_huge_page_size(1UL << HPAGE_256MB_SHIFT);
344 	add_huge_page_size(1UL << HPAGE_2GB_SHIFT);
345 
346 	return 0;
347 }
348 
349 arch_initcall(hugetlbpage_init);
350 
351 static int __init setup_hugepagesz(char *string)
352 {
353 	unsigned long long hugepage_size;
354 	unsigned int hugepage_shift;
355 	unsigned short hv_pgsz_idx;
356 	unsigned int hv_pgsz_mask;
357 	int rc = 0;
358 
359 	hugepage_size = memparse(string, &string);
360 	hugepage_shift = ilog2(hugepage_size);
361 
362 	switch (hugepage_shift) {
363 	case HPAGE_2GB_SHIFT:
364 		hv_pgsz_mask = HV_PGSZ_MASK_2GB;
365 		hv_pgsz_idx = HV_PGSZ_IDX_2GB;
366 		break;
367 	case HPAGE_256MB_SHIFT:
368 		hv_pgsz_mask = HV_PGSZ_MASK_256MB;
369 		hv_pgsz_idx = HV_PGSZ_IDX_256MB;
370 		break;
371 	case HPAGE_SHIFT:
372 		hv_pgsz_mask = HV_PGSZ_MASK_4MB;
373 		hv_pgsz_idx = HV_PGSZ_IDX_4MB;
374 		break;
375 	case HPAGE_64K_SHIFT:
376 		hv_pgsz_mask = HV_PGSZ_MASK_64K;
377 		hv_pgsz_idx = HV_PGSZ_IDX_64K;
378 		break;
379 	default:
380 		hv_pgsz_mask = 0;
381 	}
382 
383 	if ((hv_pgsz_mask & cpu_pgsz_mask) == 0U) {
384 		hugetlb_bad_size();
385 		pr_err("hugepagesz=%llu not supported by MMU.\n",
386 			hugepage_size);
387 		goto out;
388 	}
389 
390 	add_huge_page_size(hugepage_size);
391 	rc = 1;
392 
393 out:
394 	return rc;
395 }
396 __setup("hugepagesz=", setup_hugepagesz);
397 #endif	/* CONFIG_HUGETLB_PAGE */
398 
399 void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t *ptep)
400 {
401 	struct mm_struct *mm;
402 	unsigned long flags;
403 	pte_t pte = *ptep;
404 
405 	if (tlb_type != hypervisor) {
406 		unsigned long pfn = pte_pfn(pte);
407 
408 		if (pfn_valid(pfn))
409 			flush_dcache(pfn);
410 	}
411 
412 	mm = vma->vm_mm;
413 
414 	/* Don't insert a non-valid PTE into the TSB, we'll deadlock.  */
415 	if (!pte_accessible(mm, pte))
416 		return;
417 
418 	spin_lock_irqsave(&mm->context.lock, flags);
419 
420 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
421 	if ((mm->context.hugetlb_pte_count || mm->context.thp_pte_count) &&
422 	    is_hugetlb_pmd(__pmd(pte_val(pte)))) {
423 		/* We are fabricating 8MB pages using 4MB real hw pages.  */
424 		pte_val(pte) |= (address & (1UL << REAL_HPAGE_SHIFT));
425 		__update_mmu_tsb_insert(mm, MM_TSB_HUGE, REAL_HPAGE_SHIFT,
426 					address, pte_val(pte));
427 	} else
428 #endif
429 		__update_mmu_tsb_insert(mm, MM_TSB_BASE, PAGE_SHIFT,
430 					address, pte_val(pte));
431 
432 	spin_unlock_irqrestore(&mm->context.lock, flags);
433 }
434 
435 void flush_dcache_page(struct page *page)
436 {
437 	struct address_space *mapping;
438 	int this_cpu;
439 
440 	if (tlb_type == hypervisor)
441 		return;
442 
443 	/* Do not bother with the expensive D-cache flush if it
444 	 * is merely the zero page.  The 'bigcore' testcase in GDB
445 	 * causes this case to run millions of times.
446 	 */
447 	if (page == ZERO_PAGE(0))
448 		return;
449 
450 	this_cpu = get_cpu();
451 
452 	mapping = page_mapping(page);
453 	if (mapping && !mapping_mapped(mapping)) {
454 		int dirty = test_bit(PG_dcache_dirty, &page->flags);
455 		if (dirty) {
456 			int dirty_cpu = dcache_dirty_cpu(page);
457 
458 			if (dirty_cpu == this_cpu)
459 				goto out;
460 			smp_flush_dcache_page_impl(page, dirty_cpu);
461 		}
462 		set_dcache_dirty(page, this_cpu);
463 	} else {
464 		/* We could delay the flush for the !page_mapping
465 		 * case too.  But that case is for exec env/arg
466 		 * pages and those are %99 certainly going to get
467 		 * faulted into the tlb (and thus flushed) anyways.
468 		 */
469 		flush_dcache_page_impl(page);
470 	}
471 
472 out:
473 	put_cpu();
474 }
475 EXPORT_SYMBOL(flush_dcache_page);
476 
477 void __kprobes flush_icache_range(unsigned long start, unsigned long end)
478 {
479 	/* Cheetah and Hypervisor platform cpus have coherent I-cache. */
480 	if (tlb_type == spitfire) {
481 		unsigned long kaddr;
482 
483 		/* This code only runs on Spitfire cpus so this is
484 		 * why we can assume _PAGE_PADDR_4U.
485 		 */
486 		for (kaddr = start; kaddr < end; kaddr += PAGE_SIZE) {
487 			unsigned long paddr, mask = _PAGE_PADDR_4U;
488 
489 			if (kaddr >= PAGE_OFFSET)
490 				paddr = kaddr & mask;
491 			else {
492 				pgd_t *pgdp = pgd_offset_k(kaddr);
493 				pud_t *pudp = pud_offset(pgdp, kaddr);
494 				pmd_t *pmdp = pmd_offset(pudp, kaddr);
495 				pte_t *ptep = pte_offset_kernel(pmdp, kaddr);
496 
497 				paddr = pte_val(*ptep) & mask;
498 			}
499 			__flush_icache_page(paddr);
500 		}
501 	}
502 }
503 EXPORT_SYMBOL(flush_icache_range);
504 
505 void mmu_info(struct seq_file *m)
506 {
507 	static const char *pgsz_strings[] = {
508 		"8K", "64K", "512K", "4MB", "32MB",
509 		"256MB", "2GB", "16GB",
510 	};
511 	int i, printed;
512 
513 	if (tlb_type == cheetah)
514 		seq_printf(m, "MMU Type\t: Cheetah\n");
515 	else if (tlb_type == cheetah_plus)
516 		seq_printf(m, "MMU Type\t: Cheetah+\n");
517 	else if (tlb_type == spitfire)
518 		seq_printf(m, "MMU Type\t: Spitfire\n");
519 	else if (tlb_type == hypervisor)
520 		seq_printf(m, "MMU Type\t: Hypervisor (sun4v)\n");
521 	else
522 		seq_printf(m, "MMU Type\t: ???\n");
523 
524 	seq_printf(m, "MMU PGSZs\t: ");
525 	printed = 0;
526 	for (i = 0; i < ARRAY_SIZE(pgsz_strings); i++) {
527 		if (cpu_pgsz_mask & (1UL << i)) {
528 			seq_printf(m, "%s%s",
529 				   printed ? "," : "", pgsz_strings[i]);
530 			printed++;
531 		}
532 	}
533 	seq_putc(m, '\n');
534 
535 #ifdef CONFIG_DEBUG_DCFLUSH
536 	seq_printf(m, "DCPageFlushes\t: %d\n",
537 		   atomic_read(&dcpage_flushes));
538 #ifdef CONFIG_SMP
539 	seq_printf(m, "DCPageFlushesXC\t: %d\n",
540 		   atomic_read(&dcpage_flushes_xcall));
541 #endif /* CONFIG_SMP */
542 #endif /* CONFIG_DEBUG_DCFLUSH */
543 }
544 
545 struct linux_prom_translation prom_trans[512] __read_mostly;
546 unsigned int prom_trans_ents __read_mostly;
547 
548 unsigned long kern_locked_tte_data;
549 
550 /* The obp translations are saved based on 8k pagesize, since obp can
551  * use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS ->
552  * HI_OBP_ADDRESS range are handled in ktlb.S.
553  */
554 static inline int in_obp_range(unsigned long vaddr)
555 {
556 	return (vaddr >= LOW_OBP_ADDRESS &&
557 		vaddr < HI_OBP_ADDRESS);
558 }
559 
560 static int cmp_ptrans(const void *a, const void *b)
561 {
562 	const struct linux_prom_translation *x = a, *y = b;
563 
564 	if (x->virt > y->virt)
565 		return 1;
566 	if (x->virt < y->virt)
567 		return -1;
568 	return 0;
569 }
570 
571 /* Read OBP translations property into 'prom_trans[]'.  */
572 static void __init read_obp_translations(void)
573 {
574 	int n, node, ents, first, last, i;
575 
576 	node = prom_finddevice("/virtual-memory");
577 	n = prom_getproplen(node, "translations");
578 	if (unlikely(n == 0 || n == -1)) {
579 		prom_printf("prom_mappings: Couldn't get size.\n");
580 		prom_halt();
581 	}
582 	if (unlikely(n > sizeof(prom_trans))) {
583 		prom_printf("prom_mappings: Size %d is too big.\n", n);
584 		prom_halt();
585 	}
586 
587 	if ((n = prom_getproperty(node, "translations",
588 				  (char *)&prom_trans[0],
589 				  sizeof(prom_trans))) == -1) {
590 		prom_printf("prom_mappings: Couldn't get property.\n");
591 		prom_halt();
592 	}
593 
594 	n = n / sizeof(struct linux_prom_translation);
595 
596 	ents = n;
597 
598 	sort(prom_trans, ents, sizeof(struct linux_prom_translation),
599 	     cmp_ptrans, NULL);
600 
601 	/* Now kick out all the non-OBP entries.  */
602 	for (i = 0; i < ents; i++) {
603 		if (in_obp_range(prom_trans[i].virt))
604 			break;
605 	}
606 	first = i;
607 	for (; i < ents; i++) {
608 		if (!in_obp_range(prom_trans[i].virt))
609 			break;
610 	}
611 	last = i;
612 
613 	for (i = 0; i < (last - first); i++) {
614 		struct linux_prom_translation *src = &prom_trans[i + first];
615 		struct linux_prom_translation *dest = &prom_trans[i];
616 
617 		*dest = *src;
618 	}
619 	for (; i < ents; i++) {
620 		struct linux_prom_translation *dest = &prom_trans[i];
621 		dest->virt = dest->size = dest->data = 0x0UL;
622 	}
623 
624 	prom_trans_ents = last - first;
625 
626 	if (tlb_type == spitfire) {
627 		/* Clear diag TTE bits. */
628 		for (i = 0; i < prom_trans_ents; i++)
629 			prom_trans[i].data &= ~0x0003fe0000000000UL;
630 	}
631 
632 	/* Force execute bit on.  */
633 	for (i = 0; i < prom_trans_ents; i++)
634 		prom_trans[i].data |= (tlb_type == hypervisor ?
635 				       _PAGE_EXEC_4V : _PAGE_EXEC_4U);
636 }
637 
638 static void __init hypervisor_tlb_lock(unsigned long vaddr,
639 				       unsigned long pte,
640 				       unsigned long mmu)
641 {
642 	unsigned long ret = sun4v_mmu_map_perm_addr(vaddr, 0, pte, mmu);
643 
644 	if (ret != 0) {
645 		prom_printf("hypervisor_tlb_lock[%lx:%x:%lx:%lx]: "
646 			    "errors with %lx\n", vaddr, 0, pte, mmu, ret);
647 		prom_halt();
648 	}
649 }
650 
651 static unsigned long kern_large_tte(unsigned long paddr);
652 
653 static void __init remap_kernel(void)
654 {
655 	unsigned long phys_page, tte_vaddr, tte_data;
656 	int i, tlb_ent = sparc64_highest_locked_tlbent();
657 
658 	tte_vaddr = (unsigned long) KERNBASE;
659 	phys_page = (prom_boot_mapping_phys_low >> ILOG2_4MB) << ILOG2_4MB;
660 	tte_data = kern_large_tte(phys_page);
661 
662 	kern_locked_tte_data = tte_data;
663 
664 	/* Now lock us into the TLBs via Hypervisor or OBP. */
665 	if (tlb_type == hypervisor) {
666 		for (i = 0; i < num_kernel_image_mappings; i++) {
667 			hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU);
668 			hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU);
669 			tte_vaddr += 0x400000;
670 			tte_data += 0x400000;
671 		}
672 	} else {
673 		for (i = 0; i < num_kernel_image_mappings; i++) {
674 			prom_dtlb_load(tlb_ent - i, tte_data, tte_vaddr);
675 			prom_itlb_load(tlb_ent - i, tte_data, tte_vaddr);
676 			tte_vaddr += 0x400000;
677 			tte_data += 0x400000;
678 		}
679 		sparc64_highest_unlocked_tlb_ent = tlb_ent - i;
680 	}
681 	if (tlb_type == cheetah_plus) {
682 		sparc64_kern_pri_context = (CTX_CHEETAH_PLUS_CTX0 |
683 					    CTX_CHEETAH_PLUS_NUC);
684 		sparc64_kern_pri_nuc_bits = CTX_CHEETAH_PLUS_NUC;
685 		sparc64_kern_sec_context = CTX_CHEETAH_PLUS_CTX0;
686 	}
687 }
688 
689 
690 static void __init inherit_prom_mappings(void)
691 {
692 	/* Now fixup OBP's idea about where we really are mapped. */
693 	printk("Remapping the kernel... ");
694 	remap_kernel();
695 	printk("done.\n");
696 }
697 
698 void prom_world(int enter)
699 {
700 	if (!enter)
701 		set_fs(get_fs());
702 
703 	__asm__ __volatile__("flushw");
704 }
705 
706 void __flush_dcache_range(unsigned long start, unsigned long end)
707 {
708 	unsigned long va;
709 
710 	if (tlb_type == spitfire) {
711 		int n = 0;
712 
713 		for (va = start; va < end; va += 32) {
714 			spitfire_put_dcache_tag(va & 0x3fe0, 0x0);
715 			if (++n >= 512)
716 				break;
717 		}
718 	} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
719 		start = __pa(start);
720 		end = __pa(end);
721 		for (va = start; va < end; va += 32)
722 			__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
723 					     "membar #Sync"
724 					     : /* no outputs */
725 					     : "r" (va),
726 					       "i" (ASI_DCACHE_INVALIDATE));
727 	}
728 }
729 EXPORT_SYMBOL(__flush_dcache_range);
730 
731 /* get_new_mmu_context() uses "cache + 1".  */
732 DEFINE_SPINLOCK(ctx_alloc_lock);
733 unsigned long tlb_context_cache = CTX_FIRST_VERSION;
734 #define MAX_CTX_NR	(1UL << CTX_NR_BITS)
735 #define CTX_BMAP_SLOTS	BITS_TO_LONGS(MAX_CTX_NR)
736 DECLARE_BITMAP(mmu_context_bmap, MAX_CTX_NR);
737 DEFINE_PER_CPU(struct mm_struct *, per_cpu_secondary_mm) = {0};
738 
739 static void mmu_context_wrap(void)
740 {
741 	unsigned long old_ver = tlb_context_cache & CTX_VERSION_MASK;
742 	unsigned long new_ver, new_ctx, old_ctx;
743 	struct mm_struct *mm;
744 	int cpu;
745 
746 	bitmap_zero(mmu_context_bmap, 1 << CTX_NR_BITS);
747 
748 	/* Reserve kernel context */
749 	set_bit(0, mmu_context_bmap);
750 
751 	new_ver = (tlb_context_cache & CTX_VERSION_MASK) + CTX_FIRST_VERSION;
752 	if (unlikely(new_ver == 0))
753 		new_ver = CTX_FIRST_VERSION;
754 	tlb_context_cache = new_ver;
755 
756 	/*
757 	 * Make sure that any new mm that are added into per_cpu_secondary_mm,
758 	 * are going to go through get_new_mmu_context() path.
759 	 */
760 	mb();
761 
762 	/*
763 	 * Updated versions to current on those CPUs that had valid secondary
764 	 * contexts
765 	 */
766 	for_each_online_cpu(cpu) {
767 		/*
768 		 * If a new mm is stored after we took this mm from the array,
769 		 * it will go into get_new_mmu_context() path, because we
770 		 * already bumped the version in tlb_context_cache.
771 		 */
772 		mm = per_cpu(per_cpu_secondary_mm, cpu);
773 
774 		if (unlikely(!mm || mm == &init_mm))
775 			continue;
776 
777 		old_ctx = mm->context.sparc64_ctx_val;
778 		if (likely((old_ctx & CTX_VERSION_MASK) == old_ver)) {
779 			new_ctx = (old_ctx & ~CTX_VERSION_MASK) | new_ver;
780 			set_bit(new_ctx & CTX_NR_MASK, mmu_context_bmap);
781 			mm->context.sparc64_ctx_val = new_ctx;
782 		}
783 	}
784 }
785 
786 /* Caller does TLB context flushing on local CPU if necessary.
787  * The caller also ensures that CTX_VALID(mm->context) is false.
788  *
789  * We must be careful about boundary cases so that we never
790  * let the user have CTX 0 (nucleus) or we ever use a CTX
791  * version of zero (and thus NO_CONTEXT would not be caught
792  * by version mis-match tests in mmu_context.h).
793  *
794  * Always invoked with interrupts disabled.
795  */
796 void get_new_mmu_context(struct mm_struct *mm)
797 {
798 	unsigned long ctx, new_ctx;
799 	unsigned long orig_pgsz_bits;
800 
801 	spin_lock(&ctx_alloc_lock);
802 retry:
803 	/* wrap might have happened, test again if our context became valid */
804 	if (unlikely(CTX_VALID(mm->context)))
805 		goto out;
806 	orig_pgsz_bits = (mm->context.sparc64_ctx_val & CTX_PGSZ_MASK);
807 	ctx = (tlb_context_cache + 1) & CTX_NR_MASK;
808 	new_ctx = find_next_zero_bit(mmu_context_bmap, 1 << CTX_NR_BITS, ctx);
809 	if (new_ctx >= (1 << CTX_NR_BITS)) {
810 		new_ctx = find_next_zero_bit(mmu_context_bmap, ctx, 1);
811 		if (new_ctx >= ctx) {
812 			mmu_context_wrap();
813 			goto retry;
814 		}
815 	}
816 	if (mm->context.sparc64_ctx_val)
817 		cpumask_clear(mm_cpumask(mm));
818 	mmu_context_bmap[new_ctx>>6] |= (1UL << (new_ctx & 63));
819 	new_ctx |= (tlb_context_cache & CTX_VERSION_MASK);
820 	tlb_context_cache = new_ctx;
821 	mm->context.sparc64_ctx_val = new_ctx | orig_pgsz_bits;
822 out:
823 	spin_unlock(&ctx_alloc_lock);
824 }
825 
826 static int numa_enabled = 1;
827 static int numa_debug;
828 
829 static int __init early_numa(char *p)
830 {
831 	if (!p)
832 		return 0;
833 
834 	if (strstr(p, "off"))
835 		numa_enabled = 0;
836 
837 	if (strstr(p, "debug"))
838 		numa_debug = 1;
839 
840 	return 0;
841 }
842 early_param("numa", early_numa);
843 
844 #define numadbg(f, a...) \
845 do {	if (numa_debug) \
846 		printk(KERN_INFO f, ## a); \
847 } while (0)
848 
849 static void __init find_ramdisk(unsigned long phys_base)
850 {
851 #ifdef CONFIG_BLK_DEV_INITRD
852 	if (sparc_ramdisk_image || sparc_ramdisk_image64) {
853 		unsigned long ramdisk_image;
854 
855 		/* Older versions of the bootloader only supported a
856 		 * 32-bit physical address for the ramdisk image
857 		 * location, stored at sparc_ramdisk_image.  Newer
858 		 * SILO versions set sparc_ramdisk_image to zero and
859 		 * provide a full 64-bit physical address at
860 		 * sparc_ramdisk_image64.
861 		 */
862 		ramdisk_image = sparc_ramdisk_image;
863 		if (!ramdisk_image)
864 			ramdisk_image = sparc_ramdisk_image64;
865 
866 		/* Another bootloader quirk.  The bootloader normalizes
867 		 * the physical address to KERNBASE, so we have to
868 		 * factor that back out and add in the lowest valid
869 		 * physical page address to get the true physical address.
870 		 */
871 		ramdisk_image -= KERNBASE;
872 		ramdisk_image += phys_base;
873 
874 		numadbg("Found ramdisk at physical address 0x%lx, size %u\n",
875 			ramdisk_image, sparc_ramdisk_size);
876 
877 		initrd_start = ramdisk_image;
878 		initrd_end = ramdisk_image + sparc_ramdisk_size;
879 
880 		memblock_reserve(initrd_start, sparc_ramdisk_size);
881 
882 		initrd_start += PAGE_OFFSET;
883 		initrd_end += PAGE_OFFSET;
884 	}
885 #endif
886 }
887 
888 struct node_mem_mask {
889 	unsigned long mask;
890 	unsigned long match;
891 };
892 static struct node_mem_mask node_masks[MAX_NUMNODES];
893 static int num_node_masks;
894 
895 #ifdef CONFIG_NEED_MULTIPLE_NODES
896 
897 struct mdesc_mlgroup {
898 	u64	node;
899 	u64	latency;
900 	u64	match;
901 	u64	mask;
902 };
903 
904 static struct mdesc_mlgroup *mlgroups;
905 static int num_mlgroups;
906 
907 int numa_cpu_lookup_table[NR_CPUS];
908 cpumask_t numa_cpumask_lookup_table[MAX_NUMNODES];
909 
910 struct mdesc_mblock {
911 	u64	base;
912 	u64	size;
913 	u64	offset; /* RA-to-PA */
914 };
915 static struct mdesc_mblock *mblocks;
916 static int num_mblocks;
917 
918 static struct mdesc_mblock * __init addr_to_mblock(unsigned long addr)
919 {
920 	struct mdesc_mblock *m = NULL;
921 	int i;
922 
923 	for (i = 0; i < num_mblocks; i++) {
924 		m = &mblocks[i];
925 
926 		if (addr >= m->base &&
927 		    addr < (m->base + m->size)) {
928 			break;
929 		}
930 	}
931 
932 	return m;
933 }
934 
935 static u64 __init memblock_nid_range_sun4u(u64 start, u64 end, int *nid)
936 {
937 	int prev_nid, new_nid;
938 
939 	prev_nid = -1;
940 	for ( ; start < end; start += PAGE_SIZE) {
941 		for (new_nid = 0; new_nid < num_node_masks; new_nid++) {
942 			struct node_mem_mask *p = &node_masks[new_nid];
943 
944 			if ((start & p->mask) == p->match) {
945 				if (prev_nid == -1)
946 					prev_nid = new_nid;
947 				break;
948 			}
949 		}
950 
951 		if (new_nid == num_node_masks) {
952 			prev_nid = 0;
953 			WARN_ONCE(1, "addr[%Lx] doesn't match a NUMA node rule. Some memory will be owned by node 0.",
954 				  start);
955 			break;
956 		}
957 
958 		if (prev_nid != new_nid)
959 			break;
960 	}
961 	*nid = prev_nid;
962 
963 	return start > end ? end : start;
964 }
965 
966 static u64 __init memblock_nid_range(u64 start, u64 end, int *nid)
967 {
968 	u64 ret_end, pa_start, m_mask, m_match, m_end;
969 	struct mdesc_mblock *mblock;
970 	int _nid, i;
971 
972 	if (tlb_type != hypervisor)
973 		return memblock_nid_range_sun4u(start, end, nid);
974 
975 	mblock = addr_to_mblock(start);
976 	if (!mblock) {
977 		WARN_ONCE(1, "memblock_nid_range: Can't find mblock addr[%Lx]",
978 			  start);
979 
980 		_nid = 0;
981 		ret_end = end;
982 		goto done;
983 	}
984 
985 	pa_start = start + mblock->offset;
986 	m_match = 0;
987 	m_mask = 0;
988 
989 	for (_nid = 0; _nid < num_node_masks; _nid++) {
990 		struct node_mem_mask *const m = &node_masks[_nid];
991 
992 		if ((pa_start & m->mask) == m->match) {
993 			m_match = m->match;
994 			m_mask = m->mask;
995 			break;
996 		}
997 	}
998 
999 	if (num_node_masks == _nid) {
1000 		/* We could not find NUMA group, so default to 0, but lets
1001 		 * search for latency group, so we could calculate the correct
1002 		 * end address that we return
1003 		 */
1004 		_nid = 0;
1005 
1006 		for (i = 0; i < num_mlgroups; i++) {
1007 			struct mdesc_mlgroup *const m = &mlgroups[i];
1008 
1009 			if ((pa_start & m->mask) == m->match) {
1010 				m_match = m->match;
1011 				m_mask = m->mask;
1012 				break;
1013 			}
1014 		}
1015 
1016 		if (i == num_mlgroups) {
1017 			WARN_ONCE(1, "memblock_nid_range: Can't find latency group addr[%Lx]",
1018 				  start);
1019 
1020 			ret_end = end;
1021 			goto done;
1022 		}
1023 	}
1024 
1025 	/*
1026 	 * Each latency group has match and mask, and each memory block has an
1027 	 * offset.  An address belongs to a latency group if its address matches
1028 	 * the following formula: ((addr + offset) & mask) == match
1029 	 * It is, however, slow to check every single page if it matches a
1030 	 * particular latency group. As optimization we calculate end value by
1031 	 * using bit arithmetics.
1032 	 */
1033 	m_end = m_match + (1ul << __ffs(m_mask)) - mblock->offset;
1034 	m_end += pa_start & ~((1ul << fls64(m_mask)) - 1);
1035 	ret_end = m_end > end ? end : m_end;
1036 
1037 done:
1038 	*nid = _nid;
1039 	return ret_end;
1040 }
1041 #endif
1042 
1043 /* This must be invoked after performing all of the necessary
1044  * memblock_set_node() calls for 'nid'.  We need to be able to get
1045  * correct data from get_pfn_range_for_nid().
1046  */
1047 static void __init allocate_node_data(int nid)
1048 {
1049 	struct pglist_data *p;
1050 	unsigned long start_pfn, end_pfn;
1051 #ifdef CONFIG_NEED_MULTIPLE_NODES
1052 	unsigned long paddr;
1053 
1054 	paddr = memblock_alloc_try_nid(sizeof(struct pglist_data), SMP_CACHE_BYTES, nid);
1055 	if (!paddr) {
1056 		prom_printf("Cannot allocate pglist_data for nid[%d]\n", nid);
1057 		prom_halt();
1058 	}
1059 	NODE_DATA(nid) = __va(paddr);
1060 	memset(NODE_DATA(nid), 0, sizeof(struct pglist_data));
1061 
1062 	NODE_DATA(nid)->node_id = nid;
1063 #endif
1064 
1065 	p = NODE_DATA(nid);
1066 
1067 	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
1068 	p->node_start_pfn = start_pfn;
1069 	p->node_spanned_pages = end_pfn - start_pfn;
1070 }
1071 
1072 static void init_node_masks_nonnuma(void)
1073 {
1074 #ifdef CONFIG_NEED_MULTIPLE_NODES
1075 	int i;
1076 #endif
1077 
1078 	numadbg("Initializing tables for non-numa.\n");
1079 
1080 	node_masks[0].mask = 0;
1081 	node_masks[0].match = 0;
1082 	num_node_masks = 1;
1083 
1084 #ifdef CONFIG_NEED_MULTIPLE_NODES
1085 	for (i = 0; i < NR_CPUS; i++)
1086 		numa_cpu_lookup_table[i] = 0;
1087 
1088 	cpumask_setall(&numa_cpumask_lookup_table[0]);
1089 #endif
1090 }
1091 
1092 #ifdef CONFIG_NEED_MULTIPLE_NODES
1093 struct pglist_data *node_data[MAX_NUMNODES];
1094 
1095 EXPORT_SYMBOL(numa_cpu_lookup_table);
1096 EXPORT_SYMBOL(numa_cpumask_lookup_table);
1097 EXPORT_SYMBOL(node_data);
1098 
1099 static int scan_pio_for_cfg_handle(struct mdesc_handle *md, u64 pio,
1100 				   u32 cfg_handle)
1101 {
1102 	u64 arc;
1103 
1104 	mdesc_for_each_arc(arc, md, pio, MDESC_ARC_TYPE_FWD) {
1105 		u64 target = mdesc_arc_target(md, arc);
1106 		const u64 *val;
1107 
1108 		val = mdesc_get_property(md, target,
1109 					 "cfg-handle", NULL);
1110 		if (val && *val == cfg_handle)
1111 			return 0;
1112 	}
1113 	return -ENODEV;
1114 }
1115 
1116 static int scan_arcs_for_cfg_handle(struct mdesc_handle *md, u64 grp,
1117 				    u32 cfg_handle)
1118 {
1119 	u64 arc, candidate, best_latency = ~(u64)0;
1120 
1121 	candidate = MDESC_NODE_NULL;
1122 	mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1123 		u64 target = mdesc_arc_target(md, arc);
1124 		const char *name = mdesc_node_name(md, target);
1125 		const u64 *val;
1126 
1127 		if (strcmp(name, "pio-latency-group"))
1128 			continue;
1129 
1130 		val = mdesc_get_property(md, target, "latency", NULL);
1131 		if (!val)
1132 			continue;
1133 
1134 		if (*val < best_latency) {
1135 			candidate = target;
1136 			best_latency = *val;
1137 		}
1138 	}
1139 
1140 	if (candidate == MDESC_NODE_NULL)
1141 		return -ENODEV;
1142 
1143 	return scan_pio_for_cfg_handle(md, candidate, cfg_handle);
1144 }
1145 
1146 int of_node_to_nid(struct device_node *dp)
1147 {
1148 	const struct linux_prom64_registers *regs;
1149 	struct mdesc_handle *md;
1150 	u32 cfg_handle;
1151 	int count, nid;
1152 	u64 grp;
1153 
1154 	/* This is the right thing to do on currently supported
1155 	 * SUN4U NUMA platforms as well, as the PCI controller does
1156 	 * not sit behind any particular memory controller.
1157 	 */
1158 	if (!mlgroups)
1159 		return -1;
1160 
1161 	regs = of_get_property(dp, "reg", NULL);
1162 	if (!regs)
1163 		return -1;
1164 
1165 	cfg_handle = (regs->phys_addr >> 32UL) & 0x0fffffff;
1166 
1167 	md = mdesc_grab();
1168 
1169 	count = 0;
1170 	nid = -1;
1171 	mdesc_for_each_node_by_name(md, grp, "group") {
1172 		if (!scan_arcs_for_cfg_handle(md, grp, cfg_handle)) {
1173 			nid = count;
1174 			break;
1175 		}
1176 		count++;
1177 	}
1178 
1179 	mdesc_release(md);
1180 
1181 	return nid;
1182 }
1183 
1184 static void __init add_node_ranges(void)
1185 {
1186 	struct memblock_region *reg;
1187 	unsigned long prev_max;
1188 
1189 memblock_resized:
1190 	prev_max = memblock.memory.max;
1191 
1192 	for_each_memblock(memory, reg) {
1193 		unsigned long size = reg->size;
1194 		unsigned long start, end;
1195 
1196 		start = reg->base;
1197 		end = start + size;
1198 		while (start < end) {
1199 			unsigned long this_end;
1200 			int nid;
1201 
1202 			this_end = memblock_nid_range(start, end, &nid);
1203 
1204 			numadbg("Setting memblock NUMA node nid[%d] "
1205 				"start[%lx] end[%lx]\n",
1206 				nid, start, this_end);
1207 
1208 			memblock_set_node(start, this_end - start,
1209 					  &memblock.memory, nid);
1210 			if (memblock.memory.max != prev_max)
1211 				goto memblock_resized;
1212 			start = this_end;
1213 		}
1214 	}
1215 }
1216 
1217 static int __init grab_mlgroups(struct mdesc_handle *md)
1218 {
1219 	unsigned long paddr;
1220 	int count = 0;
1221 	u64 node;
1222 
1223 	mdesc_for_each_node_by_name(md, node, "memory-latency-group")
1224 		count++;
1225 	if (!count)
1226 		return -ENOENT;
1227 
1228 	paddr = memblock_alloc(count * sizeof(struct mdesc_mlgroup),
1229 			  SMP_CACHE_BYTES);
1230 	if (!paddr)
1231 		return -ENOMEM;
1232 
1233 	mlgroups = __va(paddr);
1234 	num_mlgroups = count;
1235 
1236 	count = 0;
1237 	mdesc_for_each_node_by_name(md, node, "memory-latency-group") {
1238 		struct mdesc_mlgroup *m = &mlgroups[count++];
1239 		const u64 *val;
1240 
1241 		m->node = node;
1242 
1243 		val = mdesc_get_property(md, node, "latency", NULL);
1244 		m->latency = *val;
1245 		val = mdesc_get_property(md, node, "address-match", NULL);
1246 		m->match = *val;
1247 		val = mdesc_get_property(md, node, "address-mask", NULL);
1248 		m->mask = *val;
1249 
1250 		numadbg("MLGROUP[%d]: node[%llx] latency[%llx] "
1251 			"match[%llx] mask[%llx]\n",
1252 			count - 1, m->node, m->latency, m->match, m->mask);
1253 	}
1254 
1255 	return 0;
1256 }
1257 
1258 static int __init grab_mblocks(struct mdesc_handle *md)
1259 {
1260 	unsigned long paddr;
1261 	int count = 0;
1262 	u64 node;
1263 
1264 	mdesc_for_each_node_by_name(md, node, "mblock")
1265 		count++;
1266 	if (!count)
1267 		return -ENOENT;
1268 
1269 	paddr = memblock_alloc(count * sizeof(struct mdesc_mblock),
1270 			  SMP_CACHE_BYTES);
1271 	if (!paddr)
1272 		return -ENOMEM;
1273 
1274 	mblocks = __va(paddr);
1275 	num_mblocks = count;
1276 
1277 	count = 0;
1278 	mdesc_for_each_node_by_name(md, node, "mblock") {
1279 		struct mdesc_mblock *m = &mblocks[count++];
1280 		const u64 *val;
1281 
1282 		val = mdesc_get_property(md, node, "base", NULL);
1283 		m->base = *val;
1284 		val = mdesc_get_property(md, node, "size", NULL);
1285 		m->size = *val;
1286 		val = mdesc_get_property(md, node,
1287 					 "address-congruence-offset", NULL);
1288 
1289 		/* The address-congruence-offset property is optional.
1290 		 * Explicity zero it be identifty this.
1291 		 */
1292 		if (val)
1293 			m->offset = *val;
1294 		else
1295 			m->offset = 0UL;
1296 
1297 		numadbg("MBLOCK[%d]: base[%llx] size[%llx] offset[%llx]\n",
1298 			count - 1, m->base, m->size, m->offset);
1299 	}
1300 
1301 	return 0;
1302 }
1303 
1304 static void __init numa_parse_mdesc_group_cpus(struct mdesc_handle *md,
1305 					       u64 grp, cpumask_t *mask)
1306 {
1307 	u64 arc;
1308 
1309 	cpumask_clear(mask);
1310 
1311 	mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_BACK) {
1312 		u64 target = mdesc_arc_target(md, arc);
1313 		const char *name = mdesc_node_name(md, target);
1314 		const u64 *id;
1315 
1316 		if (strcmp(name, "cpu"))
1317 			continue;
1318 		id = mdesc_get_property(md, target, "id", NULL);
1319 		if (*id < nr_cpu_ids)
1320 			cpumask_set_cpu(*id, mask);
1321 	}
1322 }
1323 
1324 static struct mdesc_mlgroup * __init find_mlgroup(u64 node)
1325 {
1326 	int i;
1327 
1328 	for (i = 0; i < num_mlgroups; i++) {
1329 		struct mdesc_mlgroup *m = &mlgroups[i];
1330 		if (m->node == node)
1331 			return m;
1332 	}
1333 	return NULL;
1334 }
1335 
1336 int __node_distance(int from, int to)
1337 {
1338 	if ((from >= MAX_NUMNODES) || (to >= MAX_NUMNODES)) {
1339 		pr_warn("Returning default NUMA distance value for %d->%d\n",
1340 			from, to);
1341 		return (from == to) ? LOCAL_DISTANCE : REMOTE_DISTANCE;
1342 	}
1343 	return numa_latency[from][to];
1344 }
1345 
1346 static int __init find_best_numa_node_for_mlgroup(struct mdesc_mlgroup *grp)
1347 {
1348 	int i;
1349 
1350 	for (i = 0; i < MAX_NUMNODES; i++) {
1351 		struct node_mem_mask *n = &node_masks[i];
1352 
1353 		if ((grp->mask == n->mask) && (grp->match == n->match))
1354 			break;
1355 	}
1356 	return i;
1357 }
1358 
1359 static void __init find_numa_latencies_for_group(struct mdesc_handle *md,
1360 						 u64 grp, int index)
1361 {
1362 	u64 arc;
1363 
1364 	mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1365 		int tnode;
1366 		u64 target = mdesc_arc_target(md, arc);
1367 		struct mdesc_mlgroup *m = find_mlgroup(target);
1368 
1369 		if (!m)
1370 			continue;
1371 		tnode = find_best_numa_node_for_mlgroup(m);
1372 		if (tnode == MAX_NUMNODES)
1373 			continue;
1374 		numa_latency[index][tnode] = m->latency;
1375 	}
1376 }
1377 
1378 static int __init numa_attach_mlgroup(struct mdesc_handle *md, u64 grp,
1379 				      int index)
1380 {
1381 	struct mdesc_mlgroup *candidate = NULL;
1382 	u64 arc, best_latency = ~(u64)0;
1383 	struct node_mem_mask *n;
1384 
1385 	mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1386 		u64 target = mdesc_arc_target(md, arc);
1387 		struct mdesc_mlgroup *m = find_mlgroup(target);
1388 		if (!m)
1389 			continue;
1390 		if (m->latency < best_latency) {
1391 			candidate = m;
1392 			best_latency = m->latency;
1393 		}
1394 	}
1395 	if (!candidate)
1396 		return -ENOENT;
1397 
1398 	if (num_node_masks != index) {
1399 		printk(KERN_ERR "Inconsistent NUMA state, "
1400 		       "index[%d] != num_node_masks[%d]\n",
1401 		       index, num_node_masks);
1402 		return -EINVAL;
1403 	}
1404 
1405 	n = &node_masks[num_node_masks++];
1406 
1407 	n->mask = candidate->mask;
1408 	n->match = candidate->match;
1409 
1410 	numadbg("NUMA NODE[%d]: mask[%lx] match[%lx] (latency[%llx])\n",
1411 		index, n->mask, n->match, candidate->latency);
1412 
1413 	return 0;
1414 }
1415 
1416 static int __init numa_parse_mdesc_group(struct mdesc_handle *md, u64 grp,
1417 					 int index)
1418 {
1419 	cpumask_t mask;
1420 	int cpu;
1421 
1422 	numa_parse_mdesc_group_cpus(md, grp, &mask);
1423 
1424 	for_each_cpu(cpu, &mask)
1425 		numa_cpu_lookup_table[cpu] = index;
1426 	cpumask_copy(&numa_cpumask_lookup_table[index], &mask);
1427 
1428 	if (numa_debug) {
1429 		printk(KERN_INFO "NUMA GROUP[%d]: cpus [ ", index);
1430 		for_each_cpu(cpu, &mask)
1431 			printk("%d ", cpu);
1432 		printk("]\n");
1433 	}
1434 
1435 	return numa_attach_mlgroup(md, grp, index);
1436 }
1437 
1438 static int __init numa_parse_mdesc(void)
1439 {
1440 	struct mdesc_handle *md = mdesc_grab();
1441 	int i, j, err, count;
1442 	u64 node;
1443 
1444 	node = mdesc_node_by_name(md, MDESC_NODE_NULL, "latency-groups");
1445 	if (node == MDESC_NODE_NULL) {
1446 		mdesc_release(md);
1447 		return -ENOENT;
1448 	}
1449 
1450 	err = grab_mblocks(md);
1451 	if (err < 0)
1452 		goto out;
1453 
1454 	err = grab_mlgroups(md);
1455 	if (err < 0)
1456 		goto out;
1457 
1458 	count = 0;
1459 	mdesc_for_each_node_by_name(md, node, "group") {
1460 		err = numa_parse_mdesc_group(md, node, count);
1461 		if (err < 0)
1462 			break;
1463 		count++;
1464 	}
1465 
1466 	count = 0;
1467 	mdesc_for_each_node_by_name(md, node, "group") {
1468 		find_numa_latencies_for_group(md, node, count);
1469 		count++;
1470 	}
1471 
1472 	/* Normalize numa latency matrix according to ACPI SLIT spec. */
1473 	for (i = 0; i < MAX_NUMNODES; i++) {
1474 		u64 self_latency = numa_latency[i][i];
1475 
1476 		for (j = 0; j < MAX_NUMNODES; j++) {
1477 			numa_latency[i][j] =
1478 				(numa_latency[i][j] * LOCAL_DISTANCE) /
1479 				self_latency;
1480 		}
1481 	}
1482 
1483 	add_node_ranges();
1484 
1485 	for (i = 0; i < num_node_masks; i++) {
1486 		allocate_node_data(i);
1487 		node_set_online(i);
1488 	}
1489 
1490 	err = 0;
1491 out:
1492 	mdesc_release(md);
1493 	return err;
1494 }
1495 
1496 static int __init numa_parse_jbus(void)
1497 {
1498 	unsigned long cpu, index;
1499 
1500 	/* NUMA node id is encoded in bits 36 and higher, and there is
1501 	 * a 1-to-1 mapping from CPU ID to NUMA node ID.
1502 	 */
1503 	index = 0;
1504 	for_each_present_cpu(cpu) {
1505 		numa_cpu_lookup_table[cpu] = index;
1506 		cpumask_copy(&numa_cpumask_lookup_table[index], cpumask_of(cpu));
1507 		node_masks[index].mask = ~((1UL << 36UL) - 1UL);
1508 		node_masks[index].match = cpu << 36UL;
1509 
1510 		index++;
1511 	}
1512 	num_node_masks = index;
1513 
1514 	add_node_ranges();
1515 
1516 	for (index = 0; index < num_node_masks; index++) {
1517 		allocate_node_data(index);
1518 		node_set_online(index);
1519 	}
1520 
1521 	return 0;
1522 }
1523 
1524 static int __init numa_parse_sun4u(void)
1525 {
1526 	if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1527 		unsigned long ver;
1528 
1529 		__asm__ ("rdpr %%ver, %0" : "=r" (ver));
1530 		if ((ver >> 32UL) == __JALAPENO_ID ||
1531 		    (ver >> 32UL) == __SERRANO_ID)
1532 			return numa_parse_jbus();
1533 	}
1534 	return -1;
1535 }
1536 
1537 static int __init bootmem_init_numa(void)
1538 {
1539 	int i, j;
1540 	int err = -1;
1541 
1542 	numadbg("bootmem_init_numa()\n");
1543 
1544 	/* Some sane defaults for numa latency values */
1545 	for (i = 0; i < MAX_NUMNODES; i++) {
1546 		for (j = 0; j < MAX_NUMNODES; j++)
1547 			numa_latency[i][j] = (i == j) ?
1548 				LOCAL_DISTANCE : REMOTE_DISTANCE;
1549 	}
1550 
1551 	if (numa_enabled) {
1552 		if (tlb_type == hypervisor)
1553 			err = numa_parse_mdesc();
1554 		else
1555 			err = numa_parse_sun4u();
1556 	}
1557 	return err;
1558 }
1559 
1560 #else
1561 
1562 static int bootmem_init_numa(void)
1563 {
1564 	return -1;
1565 }
1566 
1567 #endif
1568 
1569 static void __init bootmem_init_nonnuma(void)
1570 {
1571 	unsigned long top_of_ram = memblock_end_of_DRAM();
1572 	unsigned long total_ram = memblock_phys_mem_size();
1573 
1574 	numadbg("bootmem_init_nonnuma()\n");
1575 
1576 	printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
1577 	       top_of_ram, total_ram);
1578 	printk(KERN_INFO "Memory hole size: %ldMB\n",
1579 	       (top_of_ram - total_ram) >> 20);
1580 
1581 	init_node_masks_nonnuma();
1582 	memblock_set_node(0, (phys_addr_t)ULLONG_MAX, &memblock.memory, 0);
1583 	allocate_node_data(0);
1584 	node_set_online(0);
1585 }
1586 
1587 static unsigned long __init bootmem_init(unsigned long phys_base)
1588 {
1589 	unsigned long end_pfn;
1590 
1591 	end_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
1592 	max_pfn = max_low_pfn = end_pfn;
1593 	min_low_pfn = (phys_base >> PAGE_SHIFT);
1594 
1595 	if (bootmem_init_numa() < 0)
1596 		bootmem_init_nonnuma();
1597 
1598 	/* Dump memblock with node info. */
1599 	memblock_dump_all();
1600 
1601 	/* XXX cpu notifier XXX */
1602 
1603 	sparse_memory_present_with_active_regions(MAX_NUMNODES);
1604 	sparse_init();
1605 
1606 	return end_pfn;
1607 }
1608 
1609 static struct linux_prom64_registers pall[MAX_BANKS] __initdata;
1610 static int pall_ents __initdata;
1611 
1612 static unsigned long max_phys_bits = 40;
1613 
1614 bool kern_addr_valid(unsigned long addr)
1615 {
1616 	pgd_t *pgd;
1617 	pud_t *pud;
1618 	pmd_t *pmd;
1619 	pte_t *pte;
1620 
1621 	if ((long)addr < 0L) {
1622 		unsigned long pa = __pa(addr);
1623 
1624 		if ((pa >> max_phys_bits) != 0UL)
1625 			return false;
1626 
1627 		return pfn_valid(pa >> PAGE_SHIFT);
1628 	}
1629 
1630 	if (addr >= (unsigned long) KERNBASE &&
1631 	    addr < (unsigned long)&_end)
1632 		return true;
1633 
1634 	pgd = pgd_offset_k(addr);
1635 	if (pgd_none(*pgd))
1636 		return 0;
1637 
1638 	pud = pud_offset(pgd, addr);
1639 	if (pud_none(*pud))
1640 		return 0;
1641 
1642 	if (pud_large(*pud))
1643 		return pfn_valid(pud_pfn(*pud));
1644 
1645 	pmd = pmd_offset(pud, addr);
1646 	if (pmd_none(*pmd))
1647 		return 0;
1648 
1649 	if (pmd_large(*pmd))
1650 		return pfn_valid(pmd_pfn(*pmd));
1651 
1652 	pte = pte_offset_kernel(pmd, addr);
1653 	if (pte_none(*pte))
1654 		return 0;
1655 
1656 	return pfn_valid(pte_pfn(*pte));
1657 }
1658 EXPORT_SYMBOL(kern_addr_valid);
1659 
1660 static unsigned long __ref kernel_map_hugepud(unsigned long vstart,
1661 					      unsigned long vend,
1662 					      pud_t *pud)
1663 {
1664 	const unsigned long mask16gb = (1UL << 34) - 1UL;
1665 	u64 pte_val = vstart;
1666 
1667 	/* Each PUD is 8GB */
1668 	if ((vstart & mask16gb) ||
1669 	    (vend - vstart <= mask16gb)) {
1670 		pte_val ^= kern_linear_pte_xor[2];
1671 		pud_val(*pud) = pte_val | _PAGE_PUD_HUGE;
1672 
1673 		return vstart + PUD_SIZE;
1674 	}
1675 
1676 	pte_val ^= kern_linear_pte_xor[3];
1677 	pte_val |= _PAGE_PUD_HUGE;
1678 
1679 	vend = vstart + mask16gb + 1UL;
1680 	while (vstart < vend) {
1681 		pud_val(*pud) = pte_val;
1682 
1683 		pte_val += PUD_SIZE;
1684 		vstart += PUD_SIZE;
1685 		pud++;
1686 	}
1687 	return vstart;
1688 }
1689 
1690 static bool kernel_can_map_hugepud(unsigned long vstart, unsigned long vend,
1691 				   bool guard)
1692 {
1693 	if (guard && !(vstart & ~PUD_MASK) && (vend - vstart) >= PUD_SIZE)
1694 		return true;
1695 
1696 	return false;
1697 }
1698 
1699 static unsigned long __ref kernel_map_hugepmd(unsigned long vstart,
1700 					      unsigned long vend,
1701 					      pmd_t *pmd)
1702 {
1703 	const unsigned long mask256mb = (1UL << 28) - 1UL;
1704 	const unsigned long mask2gb = (1UL << 31) - 1UL;
1705 	u64 pte_val = vstart;
1706 
1707 	/* Each PMD is 8MB */
1708 	if ((vstart & mask256mb) ||
1709 	    (vend - vstart <= mask256mb)) {
1710 		pte_val ^= kern_linear_pte_xor[0];
1711 		pmd_val(*pmd) = pte_val | _PAGE_PMD_HUGE;
1712 
1713 		return vstart + PMD_SIZE;
1714 	}
1715 
1716 	if ((vstart & mask2gb) ||
1717 	    (vend - vstart <= mask2gb)) {
1718 		pte_val ^= kern_linear_pte_xor[1];
1719 		pte_val |= _PAGE_PMD_HUGE;
1720 		vend = vstart + mask256mb + 1UL;
1721 	} else {
1722 		pte_val ^= kern_linear_pte_xor[2];
1723 		pte_val |= _PAGE_PMD_HUGE;
1724 		vend = vstart + mask2gb + 1UL;
1725 	}
1726 
1727 	while (vstart < vend) {
1728 		pmd_val(*pmd) = pte_val;
1729 
1730 		pte_val += PMD_SIZE;
1731 		vstart += PMD_SIZE;
1732 		pmd++;
1733 	}
1734 
1735 	return vstart;
1736 }
1737 
1738 static bool kernel_can_map_hugepmd(unsigned long vstart, unsigned long vend,
1739 				   bool guard)
1740 {
1741 	if (guard && !(vstart & ~PMD_MASK) && (vend - vstart) >= PMD_SIZE)
1742 		return true;
1743 
1744 	return false;
1745 }
1746 
1747 static unsigned long __ref kernel_map_range(unsigned long pstart,
1748 					    unsigned long pend, pgprot_t prot,
1749 					    bool use_huge)
1750 {
1751 	unsigned long vstart = PAGE_OFFSET + pstart;
1752 	unsigned long vend = PAGE_OFFSET + pend;
1753 	unsigned long alloc_bytes = 0UL;
1754 
1755 	if ((vstart & ~PAGE_MASK) || (vend & ~PAGE_MASK)) {
1756 		prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n",
1757 			    vstart, vend);
1758 		prom_halt();
1759 	}
1760 
1761 	while (vstart < vend) {
1762 		unsigned long this_end, paddr = __pa(vstart);
1763 		pgd_t *pgd = pgd_offset_k(vstart);
1764 		pud_t *pud;
1765 		pmd_t *pmd;
1766 		pte_t *pte;
1767 
1768 		if (pgd_none(*pgd)) {
1769 			pud_t *new;
1770 
1771 			new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1772 			alloc_bytes += PAGE_SIZE;
1773 			pgd_populate(&init_mm, pgd, new);
1774 		}
1775 		pud = pud_offset(pgd, vstart);
1776 		if (pud_none(*pud)) {
1777 			pmd_t *new;
1778 
1779 			if (kernel_can_map_hugepud(vstart, vend, use_huge)) {
1780 				vstart = kernel_map_hugepud(vstart, vend, pud);
1781 				continue;
1782 			}
1783 			new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1784 			alloc_bytes += PAGE_SIZE;
1785 			pud_populate(&init_mm, pud, new);
1786 		}
1787 
1788 		pmd = pmd_offset(pud, vstart);
1789 		if (pmd_none(*pmd)) {
1790 			pte_t *new;
1791 
1792 			if (kernel_can_map_hugepmd(vstart, vend, use_huge)) {
1793 				vstart = kernel_map_hugepmd(vstart, vend, pmd);
1794 				continue;
1795 			}
1796 			new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1797 			alloc_bytes += PAGE_SIZE;
1798 			pmd_populate_kernel(&init_mm, pmd, new);
1799 		}
1800 
1801 		pte = pte_offset_kernel(pmd, vstart);
1802 		this_end = (vstart + PMD_SIZE) & PMD_MASK;
1803 		if (this_end > vend)
1804 			this_end = vend;
1805 
1806 		while (vstart < this_end) {
1807 			pte_val(*pte) = (paddr | pgprot_val(prot));
1808 
1809 			vstart += PAGE_SIZE;
1810 			paddr += PAGE_SIZE;
1811 			pte++;
1812 		}
1813 	}
1814 
1815 	return alloc_bytes;
1816 }
1817 
1818 static void __init flush_all_kernel_tsbs(void)
1819 {
1820 	int i;
1821 
1822 	for (i = 0; i < KERNEL_TSB_NENTRIES; i++) {
1823 		struct tsb *ent = &swapper_tsb[i];
1824 
1825 		ent->tag = (1UL << TSB_TAG_INVALID_BIT);
1826 	}
1827 #ifndef CONFIG_DEBUG_PAGEALLOC
1828 	for (i = 0; i < KERNEL_TSB4M_NENTRIES; i++) {
1829 		struct tsb *ent = &swapper_4m_tsb[i];
1830 
1831 		ent->tag = (1UL << TSB_TAG_INVALID_BIT);
1832 	}
1833 #endif
1834 }
1835 
1836 extern unsigned int kvmap_linear_patch[1];
1837 
1838 static void __init kernel_physical_mapping_init(void)
1839 {
1840 	unsigned long i, mem_alloced = 0UL;
1841 	bool use_huge = true;
1842 
1843 #ifdef CONFIG_DEBUG_PAGEALLOC
1844 	use_huge = false;
1845 #endif
1846 	for (i = 0; i < pall_ents; i++) {
1847 		unsigned long phys_start, phys_end;
1848 
1849 		phys_start = pall[i].phys_addr;
1850 		phys_end = phys_start + pall[i].reg_size;
1851 
1852 		mem_alloced += kernel_map_range(phys_start, phys_end,
1853 						PAGE_KERNEL, use_huge);
1854 	}
1855 
1856 	printk("Allocated %ld bytes for kernel page tables.\n",
1857 	       mem_alloced);
1858 
1859 	kvmap_linear_patch[0] = 0x01000000; /* nop */
1860 	flushi(&kvmap_linear_patch[0]);
1861 
1862 	flush_all_kernel_tsbs();
1863 
1864 	__flush_tlb_all();
1865 }
1866 
1867 #ifdef CONFIG_DEBUG_PAGEALLOC
1868 void __kernel_map_pages(struct page *page, int numpages, int enable)
1869 {
1870 	unsigned long phys_start = page_to_pfn(page) << PAGE_SHIFT;
1871 	unsigned long phys_end = phys_start + (numpages * PAGE_SIZE);
1872 
1873 	kernel_map_range(phys_start, phys_end,
1874 			 (enable ? PAGE_KERNEL : __pgprot(0)), false);
1875 
1876 	flush_tsb_kernel_range(PAGE_OFFSET + phys_start,
1877 			       PAGE_OFFSET + phys_end);
1878 
1879 	/* we should perform an IPI and flush all tlbs,
1880 	 * but that can deadlock->flush only current cpu.
1881 	 */
1882 	__flush_tlb_kernel_range(PAGE_OFFSET + phys_start,
1883 				 PAGE_OFFSET + phys_end);
1884 }
1885 #endif
1886 
1887 unsigned long __init find_ecache_flush_span(unsigned long size)
1888 {
1889 	int i;
1890 
1891 	for (i = 0; i < pavail_ents; i++) {
1892 		if (pavail[i].reg_size >= size)
1893 			return pavail[i].phys_addr;
1894 	}
1895 
1896 	return ~0UL;
1897 }
1898 
1899 unsigned long PAGE_OFFSET;
1900 EXPORT_SYMBOL(PAGE_OFFSET);
1901 
1902 unsigned long VMALLOC_END   = 0x0000010000000000UL;
1903 EXPORT_SYMBOL(VMALLOC_END);
1904 
1905 unsigned long sparc64_va_hole_top =    0xfffff80000000000UL;
1906 unsigned long sparc64_va_hole_bottom = 0x0000080000000000UL;
1907 
1908 static void __init setup_page_offset(void)
1909 {
1910 	if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1911 		/* Cheetah/Panther support a full 64-bit virtual
1912 		 * address, so we can use all that our page tables
1913 		 * support.
1914 		 */
1915 		sparc64_va_hole_top =    0xfff0000000000000UL;
1916 		sparc64_va_hole_bottom = 0x0010000000000000UL;
1917 
1918 		max_phys_bits = 42;
1919 	} else if (tlb_type == hypervisor) {
1920 		switch (sun4v_chip_type) {
1921 		case SUN4V_CHIP_NIAGARA1:
1922 		case SUN4V_CHIP_NIAGARA2:
1923 			/* T1 and T2 support 48-bit virtual addresses.  */
1924 			sparc64_va_hole_top =    0xffff800000000000UL;
1925 			sparc64_va_hole_bottom = 0x0000800000000000UL;
1926 
1927 			max_phys_bits = 39;
1928 			break;
1929 		case SUN4V_CHIP_NIAGARA3:
1930 			/* T3 supports 48-bit virtual addresses.  */
1931 			sparc64_va_hole_top =    0xffff800000000000UL;
1932 			sparc64_va_hole_bottom = 0x0000800000000000UL;
1933 
1934 			max_phys_bits = 43;
1935 			break;
1936 		case SUN4V_CHIP_NIAGARA4:
1937 		case SUN4V_CHIP_NIAGARA5:
1938 		case SUN4V_CHIP_SPARC64X:
1939 		case SUN4V_CHIP_SPARC_M6:
1940 			/* T4 and later support 52-bit virtual addresses.  */
1941 			sparc64_va_hole_top =    0xfff8000000000000UL;
1942 			sparc64_va_hole_bottom = 0x0008000000000000UL;
1943 			max_phys_bits = 47;
1944 			break;
1945 		case SUN4V_CHIP_SPARC_M7:
1946 		case SUN4V_CHIP_SPARC_SN:
1947 			/* M7 and later support 52-bit virtual addresses.  */
1948 			sparc64_va_hole_top =    0xfff8000000000000UL;
1949 			sparc64_va_hole_bottom = 0x0008000000000000UL;
1950 			max_phys_bits = 49;
1951 			break;
1952 		case SUN4V_CHIP_SPARC_M8:
1953 		default:
1954 			/* M8 and later support 54-bit virtual addresses.
1955 			 * However, restricting M8 and above VA bits to 53
1956 			 * as 4-level page table cannot support more than
1957 			 * 53 VA bits.
1958 			 */
1959 			sparc64_va_hole_top =    0xfff0000000000000UL;
1960 			sparc64_va_hole_bottom = 0x0010000000000000UL;
1961 			max_phys_bits = 51;
1962 			break;
1963 		}
1964 	}
1965 
1966 	if (max_phys_bits > MAX_PHYS_ADDRESS_BITS) {
1967 		prom_printf("MAX_PHYS_ADDRESS_BITS is too small, need %lu\n",
1968 			    max_phys_bits);
1969 		prom_halt();
1970 	}
1971 
1972 	PAGE_OFFSET = sparc64_va_hole_top;
1973 	VMALLOC_END = ((sparc64_va_hole_bottom >> 1) +
1974 		       (sparc64_va_hole_bottom >> 2));
1975 
1976 	pr_info("MM: PAGE_OFFSET is 0x%016lx (max_phys_bits == %lu)\n",
1977 		PAGE_OFFSET, max_phys_bits);
1978 	pr_info("MM: VMALLOC [0x%016lx --> 0x%016lx]\n",
1979 		VMALLOC_START, VMALLOC_END);
1980 	pr_info("MM: VMEMMAP [0x%016lx --> 0x%016lx]\n",
1981 		VMEMMAP_BASE, VMEMMAP_BASE << 1);
1982 }
1983 
1984 static void __init tsb_phys_patch(void)
1985 {
1986 	struct tsb_ldquad_phys_patch_entry *pquad;
1987 	struct tsb_phys_patch_entry *p;
1988 
1989 	pquad = &__tsb_ldquad_phys_patch;
1990 	while (pquad < &__tsb_ldquad_phys_patch_end) {
1991 		unsigned long addr = pquad->addr;
1992 
1993 		if (tlb_type == hypervisor)
1994 			*(unsigned int *) addr = pquad->sun4v_insn;
1995 		else
1996 			*(unsigned int *) addr = pquad->sun4u_insn;
1997 		wmb();
1998 		__asm__ __volatile__("flush	%0"
1999 				     : /* no outputs */
2000 				     : "r" (addr));
2001 
2002 		pquad++;
2003 	}
2004 
2005 	p = &__tsb_phys_patch;
2006 	while (p < &__tsb_phys_patch_end) {
2007 		unsigned long addr = p->addr;
2008 
2009 		*(unsigned int *) addr = p->insn;
2010 		wmb();
2011 		__asm__ __volatile__("flush	%0"
2012 				     : /* no outputs */
2013 				     : "r" (addr));
2014 
2015 		p++;
2016 	}
2017 }
2018 
2019 /* Don't mark as init, we give this to the Hypervisor.  */
2020 #ifndef CONFIG_DEBUG_PAGEALLOC
2021 #define NUM_KTSB_DESCR	2
2022 #else
2023 #define NUM_KTSB_DESCR	1
2024 #endif
2025 static struct hv_tsb_descr ktsb_descr[NUM_KTSB_DESCR];
2026 
2027 /* The swapper TSBs are loaded with a base sequence of:
2028  *
2029  *	sethi	%uhi(SYMBOL), REG1
2030  *	sethi	%hi(SYMBOL), REG2
2031  *	or	REG1, %ulo(SYMBOL), REG1
2032  *	or	REG2, %lo(SYMBOL), REG2
2033  *	sllx	REG1, 32, REG1
2034  *	or	REG1, REG2, REG1
2035  *
2036  * When we use physical addressing for the TSB accesses, we patch the
2037  * first four instructions in the above sequence.
2038  */
2039 
2040 static void patch_one_ktsb_phys(unsigned int *start, unsigned int *end, unsigned long pa)
2041 {
2042 	unsigned long high_bits, low_bits;
2043 
2044 	high_bits = (pa >> 32) & 0xffffffff;
2045 	low_bits = (pa >> 0) & 0xffffffff;
2046 
2047 	while (start < end) {
2048 		unsigned int *ia = (unsigned int *)(unsigned long)*start;
2049 
2050 		ia[0] = (ia[0] & ~0x3fffff) | (high_bits >> 10);
2051 		__asm__ __volatile__("flush	%0" : : "r" (ia));
2052 
2053 		ia[1] = (ia[1] & ~0x3fffff) | (low_bits >> 10);
2054 		__asm__ __volatile__("flush	%0" : : "r" (ia + 1));
2055 
2056 		ia[2] = (ia[2] & ~0x1fff) | (high_bits & 0x3ff);
2057 		__asm__ __volatile__("flush	%0" : : "r" (ia + 2));
2058 
2059 		ia[3] = (ia[3] & ~0x1fff) | (low_bits & 0x3ff);
2060 		__asm__ __volatile__("flush	%0" : : "r" (ia + 3));
2061 
2062 		start++;
2063 	}
2064 }
2065 
2066 static void ktsb_phys_patch(void)
2067 {
2068 	extern unsigned int __swapper_tsb_phys_patch;
2069 	extern unsigned int __swapper_tsb_phys_patch_end;
2070 	unsigned long ktsb_pa;
2071 
2072 	ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
2073 	patch_one_ktsb_phys(&__swapper_tsb_phys_patch,
2074 			    &__swapper_tsb_phys_patch_end, ktsb_pa);
2075 #ifndef CONFIG_DEBUG_PAGEALLOC
2076 	{
2077 	extern unsigned int __swapper_4m_tsb_phys_patch;
2078 	extern unsigned int __swapper_4m_tsb_phys_patch_end;
2079 	ktsb_pa = (kern_base +
2080 		   ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
2081 	patch_one_ktsb_phys(&__swapper_4m_tsb_phys_patch,
2082 			    &__swapper_4m_tsb_phys_patch_end, ktsb_pa);
2083 	}
2084 #endif
2085 }
2086 
2087 static void __init sun4v_ktsb_init(void)
2088 {
2089 	unsigned long ktsb_pa;
2090 
2091 	/* First KTSB for PAGE_SIZE mappings.  */
2092 	ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
2093 
2094 	switch (PAGE_SIZE) {
2095 	case 8 * 1024:
2096 	default:
2097 		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_8K;
2098 		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_8K;
2099 		break;
2100 
2101 	case 64 * 1024:
2102 		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_64K;
2103 		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_64K;
2104 		break;
2105 
2106 	case 512 * 1024:
2107 		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_512K;
2108 		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_512K;
2109 		break;
2110 
2111 	case 4 * 1024 * 1024:
2112 		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_4MB;
2113 		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_4MB;
2114 		break;
2115 	}
2116 
2117 	ktsb_descr[0].assoc = 1;
2118 	ktsb_descr[0].num_ttes = KERNEL_TSB_NENTRIES;
2119 	ktsb_descr[0].ctx_idx = 0;
2120 	ktsb_descr[0].tsb_base = ktsb_pa;
2121 	ktsb_descr[0].resv = 0;
2122 
2123 #ifndef CONFIG_DEBUG_PAGEALLOC
2124 	/* Second KTSB for 4MB/256MB/2GB/16GB mappings.  */
2125 	ktsb_pa = (kern_base +
2126 		   ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
2127 
2128 	ktsb_descr[1].pgsz_idx = HV_PGSZ_IDX_4MB;
2129 	ktsb_descr[1].pgsz_mask = ((HV_PGSZ_MASK_4MB |
2130 				    HV_PGSZ_MASK_256MB |
2131 				    HV_PGSZ_MASK_2GB |
2132 				    HV_PGSZ_MASK_16GB) &
2133 				   cpu_pgsz_mask);
2134 	ktsb_descr[1].assoc = 1;
2135 	ktsb_descr[1].num_ttes = KERNEL_TSB4M_NENTRIES;
2136 	ktsb_descr[1].ctx_idx = 0;
2137 	ktsb_descr[1].tsb_base = ktsb_pa;
2138 	ktsb_descr[1].resv = 0;
2139 #endif
2140 }
2141 
2142 void sun4v_ktsb_register(void)
2143 {
2144 	unsigned long pa, ret;
2145 
2146 	pa = kern_base + ((unsigned long)&ktsb_descr[0] - KERNBASE);
2147 
2148 	ret = sun4v_mmu_tsb_ctx0(NUM_KTSB_DESCR, pa);
2149 	if (ret != 0) {
2150 		prom_printf("hypervisor_mmu_tsb_ctx0[%lx]: "
2151 			    "errors with %lx\n", pa, ret);
2152 		prom_halt();
2153 	}
2154 }
2155 
2156 static void __init sun4u_linear_pte_xor_finalize(void)
2157 {
2158 #ifndef CONFIG_DEBUG_PAGEALLOC
2159 	/* This is where we would add Panther support for
2160 	 * 32MB and 256MB pages.
2161 	 */
2162 #endif
2163 }
2164 
2165 static void __init sun4v_linear_pte_xor_finalize(void)
2166 {
2167 	unsigned long pagecv_flag;
2168 
2169 	/* Bit 9 of TTE is no longer CV bit on M7 processor and it instead
2170 	 * enables MCD error. Do not set bit 9 on M7 processor.
2171 	 */
2172 	switch (sun4v_chip_type) {
2173 	case SUN4V_CHIP_SPARC_M7:
2174 	case SUN4V_CHIP_SPARC_M8:
2175 	case SUN4V_CHIP_SPARC_SN:
2176 		pagecv_flag = 0x00;
2177 		break;
2178 	default:
2179 		pagecv_flag = _PAGE_CV_4V;
2180 		break;
2181 	}
2182 #ifndef CONFIG_DEBUG_PAGEALLOC
2183 	if (cpu_pgsz_mask & HV_PGSZ_MASK_256MB) {
2184 		kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZ256MB_4V) ^
2185 			PAGE_OFFSET;
2186 		kern_linear_pte_xor[1] |= (_PAGE_CP_4V | pagecv_flag |
2187 					   _PAGE_P_4V | _PAGE_W_4V);
2188 	} else {
2189 		kern_linear_pte_xor[1] = kern_linear_pte_xor[0];
2190 	}
2191 
2192 	if (cpu_pgsz_mask & HV_PGSZ_MASK_2GB) {
2193 		kern_linear_pte_xor[2] = (_PAGE_VALID | _PAGE_SZ2GB_4V) ^
2194 			PAGE_OFFSET;
2195 		kern_linear_pte_xor[2] |= (_PAGE_CP_4V | pagecv_flag |
2196 					   _PAGE_P_4V | _PAGE_W_4V);
2197 	} else {
2198 		kern_linear_pte_xor[2] = kern_linear_pte_xor[1];
2199 	}
2200 
2201 	if (cpu_pgsz_mask & HV_PGSZ_MASK_16GB) {
2202 		kern_linear_pte_xor[3] = (_PAGE_VALID | _PAGE_SZ16GB_4V) ^
2203 			PAGE_OFFSET;
2204 		kern_linear_pte_xor[3] |= (_PAGE_CP_4V | pagecv_flag |
2205 					   _PAGE_P_4V | _PAGE_W_4V);
2206 	} else {
2207 		kern_linear_pte_xor[3] = kern_linear_pte_xor[2];
2208 	}
2209 #endif
2210 }
2211 
2212 /* paging_init() sets up the page tables */
2213 
2214 static unsigned long last_valid_pfn;
2215 
2216 static void sun4u_pgprot_init(void);
2217 static void sun4v_pgprot_init(void);
2218 
2219 static phys_addr_t __init available_memory(void)
2220 {
2221 	phys_addr_t available = 0ULL;
2222 	phys_addr_t pa_start, pa_end;
2223 	u64 i;
2224 
2225 	for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &pa_start,
2226 				&pa_end, NULL)
2227 		available = available + (pa_end  - pa_start);
2228 
2229 	return available;
2230 }
2231 
2232 #define _PAGE_CACHE_4U	(_PAGE_CP_4U | _PAGE_CV_4U)
2233 #define _PAGE_CACHE_4V	(_PAGE_CP_4V | _PAGE_CV_4V)
2234 #define __DIRTY_BITS_4U	 (_PAGE_MODIFIED_4U | _PAGE_WRITE_4U | _PAGE_W_4U)
2235 #define __DIRTY_BITS_4V	 (_PAGE_MODIFIED_4V | _PAGE_WRITE_4V | _PAGE_W_4V)
2236 #define __ACCESS_BITS_4U (_PAGE_ACCESSED_4U | _PAGE_READ_4U | _PAGE_R)
2237 #define __ACCESS_BITS_4V (_PAGE_ACCESSED_4V | _PAGE_READ_4V | _PAGE_R)
2238 
2239 /* We need to exclude reserved regions. This exclusion will include
2240  * vmlinux and initrd. To be more precise the initrd size could be used to
2241  * compute a new lower limit because it is freed later during initialization.
2242  */
2243 static void __init reduce_memory(phys_addr_t limit_ram)
2244 {
2245 	phys_addr_t avail_ram = available_memory();
2246 	phys_addr_t pa_start, pa_end;
2247 	u64 i;
2248 
2249 	if (limit_ram >= avail_ram)
2250 		return;
2251 
2252 	for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &pa_start,
2253 				&pa_end, NULL) {
2254 		phys_addr_t region_size = pa_end - pa_start;
2255 		phys_addr_t clip_start = pa_start;
2256 
2257 		avail_ram = avail_ram - region_size;
2258 		/* Are we consuming too much? */
2259 		if (avail_ram < limit_ram) {
2260 			phys_addr_t give_back = limit_ram - avail_ram;
2261 
2262 			region_size = region_size - give_back;
2263 			clip_start = clip_start + give_back;
2264 		}
2265 
2266 		memblock_remove(clip_start, region_size);
2267 
2268 		if (avail_ram <= limit_ram)
2269 			break;
2270 		i = 0UL;
2271 	}
2272 }
2273 
2274 void __init paging_init(void)
2275 {
2276 	unsigned long end_pfn, shift, phys_base;
2277 	unsigned long real_end, i;
2278 
2279 	setup_page_offset();
2280 
2281 	/* These build time checkes make sure that the dcache_dirty_cpu()
2282 	 * page->flags usage will work.
2283 	 *
2284 	 * When a page gets marked as dcache-dirty, we store the
2285 	 * cpu number starting at bit 32 in the page->flags.  Also,
2286 	 * functions like clear_dcache_dirty_cpu use the cpu mask
2287 	 * in 13-bit signed-immediate instruction fields.
2288 	 */
2289 
2290 	/*
2291 	 * Page flags must not reach into upper 32 bits that are used
2292 	 * for the cpu number
2293 	 */
2294 	BUILD_BUG_ON(NR_PAGEFLAGS > 32);
2295 
2296 	/*
2297 	 * The bit fields placed in the high range must not reach below
2298 	 * the 32 bit boundary. Otherwise we cannot place the cpu field
2299 	 * at the 32 bit boundary.
2300 	 */
2301 	BUILD_BUG_ON(SECTIONS_WIDTH + NODES_WIDTH + ZONES_WIDTH +
2302 		ilog2(roundup_pow_of_two(NR_CPUS)) > 32);
2303 
2304 	BUILD_BUG_ON(NR_CPUS > 4096);
2305 
2306 	kern_base = (prom_boot_mapping_phys_low >> ILOG2_4MB) << ILOG2_4MB;
2307 	kern_size = (unsigned long)&_end - (unsigned long)KERNBASE;
2308 
2309 	/* Invalidate both kernel TSBs.  */
2310 	memset(swapper_tsb, 0x40, sizeof(swapper_tsb));
2311 #ifndef CONFIG_DEBUG_PAGEALLOC
2312 	memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
2313 #endif
2314 
2315 	/* TTE.cv bit on sparc v9 occupies the same position as TTE.mcde
2316 	 * bit on M7 processor. This is a conflicting usage of the same
2317 	 * bit. Enabling TTE.cv on M7 would turn on Memory Corruption
2318 	 * Detection error on all pages and this will lead to problems
2319 	 * later. Kernel does not run with MCD enabled and hence rest
2320 	 * of the required steps to fully configure memory corruption
2321 	 * detection are not taken. We need to ensure TTE.mcde is not
2322 	 * set on M7 processor. Compute the value of cacheability
2323 	 * flag for use later taking this into consideration.
2324 	 */
2325 	switch (sun4v_chip_type) {
2326 	case SUN4V_CHIP_SPARC_M7:
2327 	case SUN4V_CHIP_SPARC_M8:
2328 	case SUN4V_CHIP_SPARC_SN:
2329 		page_cache4v_flag = _PAGE_CP_4V;
2330 		break;
2331 	default:
2332 		page_cache4v_flag = _PAGE_CACHE_4V;
2333 		break;
2334 	}
2335 
2336 	if (tlb_type == hypervisor)
2337 		sun4v_pgprot_init();
2338 	else
2339 		sun4u_pgprot_init();
2340 
2341 	if (tlb_type == cheetah_plus ||
2342 	    tlb_type == hypervisor) {
2343 		tsb_phys_patch();
2344 		ktsb_phys_patch();
2345 	}
2346 
2347 	if (tlb_type == hypervisor)
2348 		sun4v_patch_tlb_handlers();
2349 
2350 	/* Find available physical memory...
2351 	 *
2352 	 * Read it twice in order to work around a bug in openfirmware.
2353 	 * The call to grab this table itself can cause openfirmware to
2354 	 * allocate memory, which in turn can take away some space from
2355 	 * the list of available memory.  Reading it twice makes sure
2356 	 * we really do get the final value.
2357 	 */
2358 	read_obp_translations();
2359 	read_obp_memory("reg", &pall[0], &pall_ents);
2360 	read_obp_memory("available", &pavail[0], &pavail_ents);
2361 	read_obp_memory("available", &pavail[0], &pavail_ents);
2362 
2363 	phys_base = 0xffffffffffffffffUL;
2364 	for (i = 0; i < pavail_ents; i++) {
2365 		phys_base = min(phys_base, pavail[i].phys_addr);
2366 		memblock_add(pavail[i].phys_addr, pavail[i].reg_size);
2367 	}
2368 
2369 	memblock_reserve(kern_base, kern_size);
2370 
2371 	find_ramdisk(phys_base);
2372 
2373 	if (cmdline_memory_size)
2374 		reduce_memory(cmdline_memory_size);
2375 
2376 	memblock_allow_resize();
2377 	memblock_dump_all();
2378 
2379 	set_bit(0, mmu_context_bmap);
2380 
2381 	shift = kern_base + PAGE_OFFSET - ((unsigned long)KERNBASE);
2382 
2383 	real_end = (unsigned long)_end;
2384 	num_kernel_image_mappings = DIV_ROUND_UP(real_end - KERNBASE, 1 << ILOG2_4MB);
2385 	printk("Kernel: Using %d locked TLB entries for main kernel image.\n",
2386 	       num_kernel_image_mappings);
2387 
2388 	/* Set kernel pgd to upper alias so physical page computations
2389 	 * work.
2390 	 */
2391 	init_mm.pgd += ((shift) / (sizeof(pgd_t)));
2392 
2393 	memset(swapper_pg_dir, 0, sizeof(swapper_pg_dir));
2394 
2395 	inherit_prom_mappings();
2396 
2397 	/* Ok, we can use our TLB miss and window trap handlers safely.  */
2398 	setup_tba();
2399 
2400 	__flush_tlb_all();
2401 
2402 	prom_build_devicetree();
2403 	of_populate_present_mask();
2404 #ifndef CONFIG_SMP
2405 	of_fill_in_cpu_data();
2406 #endif
2407 
2408 	if (tlb_type == hypervisor) {
2409 		sun4v_mdesc_init();
2410 		mdesc_populate_present_mask(cpu_all_mask);
2411 #ifndef CONFIG_SMP
2412 		mdesc_fill_in_cpu_data(cpu_all_mask);
2413 #endif
2414 		mdesc_get_page_sizes(cpu_all_mask, &cpu_pgsz_mask);
2415 
2416 		sun4v_linear_pte_xor_finalize();
2417 
2418 		sun4v_ktsb_init();
2419 		sun4v_ktsb_register();
2420 	} else {
2421 		unsigned long impl, ver;
2422 
2423 		cpu_pgsz_mask = (HV_PGSZ_MASK_8K | HV_PGSZ_MASK_64K |
2424 				 HV_PGSZ_MASK_512K | HV_PGSZ_MASK_4MB);
2425 
2426 		__asm__ __volatile__("rdpr %%ver, %0" : "=r" (ver));
2427 		impl = ((ver >> 32) & 0xffff);
2428 		if (impl == PANTHER_IMPL)
2429 			cpu_pgsz_mask |= (HV_PGSZ_MASK_32MB |
2430 					  HV_PGSZ_MASK_256MB);
2431 
2432 		sun4u_linear_pte_xor_finalize();
2433 	}
2434 
2435 	/* Flush the TLBs and the 4M TSB so that the updated linear
2436 	 * pte XOR settings are realized for all mappings.
2437 	 */
2438 	__flush_tlb_all();
2439 #ifndef CONFIG_DEBUG_PAGEALLOC
2440 	memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
2441 #endif
2442 	__flush_tlb_all();
2443 
2444 	/* Setup bootmem... */
2445 	last_valid_pfn = end_pfn = bootmem_init(phys_base);
2446 
2447 	kernel_physical_mapping_init();
2448 
2449 	{
2450 		unsigned long max_zone_pfns[MAX_NR_ZONES];
2451 
2452 		memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
2453 
2454 		max_zone_pfns[ZONE_NORMAL] = end_pfn;
2455 
2456 		free_area_init_nodes(max_zone_pfns);
2457 	}
2458 
2459 	printk("Booting Linux...\n");
2460 }
2461 
2462 int page_in_phys_avail(unsigned long paddr)
2463 {
2464 	int i;
2465 
2466 	paddr &= PAGE_MASK;
2467 
2468 	for (i = 0; i < pavail_ents; i++) {
2469 		unsigned long start, end;
2470 
2471 		start = pavail[i].phys_addr;
2472 		end = start + pavail[i].reg_size;
2473 
2474 		if (paddr >= start && paddr < end)
2475 			return 1;
2476 	}
2477 	if (paddr >= kern_base && paddr < (kern_base + kern_size))
2478 		return 1;
2479 #ifdef CONFIG_BLK_DEV_INITRD
2480 	if (paddr >= __pa(initrd_start) &&
2481 	    paddr < __pa(PAGE_ALIGN(initrd_end)))
2482 		return 1;
2483 #endif
2484 
2485 	return 0;
2486 }
2487 
2488 static void __init register_page_bootmem_info(void)
2489 {
2490 #ifdef CONFIG_NEED_MULTIPLE_NODES
2491 	int i;
2492 
2493 	for_each_online_node(i)
2494 		if (NODE_DATA(i)->node_spanned_pages)
2495 			register_page_bootmem_info_node(NODE_DATA(i));
2496 #endif
2497 }
2498 void __init mem_init(void)
2499 {
2500 	high_memory = __va(last_valid_pfn << PAGE_SHIFT);
2501 
2502 	register_page_bootmem_info();
2503 	free_all_bootmem();
2504 
2505 	/*
2506 	 * Set up the zero page, mark it reserved, so that page count
2507 	 * is not manipulated when freeing the page from user ptes.
2508 	 */
2509 	mem_map_zero = alloc_pages(GFP_KERNEL|__GFP_ZERO, 0);
2510 	if (mem_map_zero == NULL) {
2511 		prom_printf("paging_init: Cannot alloc zero page.\n");
2512 		prom_halt();
2513 	}
2514 	mark_page_reserved(mem_map_zero);
2515 
2516 	mem_init_print_info(NULL);
2517 
2518 	if (tlb_type == cheetah || tlb_type == cheetah_plus)
2519 		cheetah_ecache_flush_init();
2520 }
2521 
2522 void free_initmem(void)
2523 {
2524 	unsigned long addr, initend;
2525 	int do_free = 1;
2526 
2527 	/* If the physical memory maps were trimmed by kernel command
2528 	 * line options, don't even try freeing this initmem stuff up.
2529 	 * The kernel image could have been in the trimmed out region
2530 	 * and if so the freeing below will free invalid page structs.
2531 	 */
2532 	if (cmdline_memory_size)
2533 		do_free = 0;
2534 
2535 	/*
2536 	 * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes.
2537 	 */
2538 	addr = PAGE_ALIGN((unsigned long)(__init_begin));
2539 	initend = (unsigned long)(__init_end) & PAGE_MASK;
2540 	for (; addr < initend; addr += PAGE_SIZE) {
2541 		unsigned long page;
2542 
2543 		page = (addr +
2544 			((unsigned long) __va(kern_base)) -
2545 			((unsigned long) KERNBASE));
2546 		memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
2547 
2548 		if (do_free)
2549 			free_reserved_page(virt_to_page(page));
2550 	}
2551 }
2552 
2553 #ifdef CONFIG_BLK_DEV_INITRD
2554 void free_initrd_mem(unsigned long start, unsigned long end)
2555 {
2556 	free_reserved_area((void *)start, (void *)end, POISON_FREE_INITMEM,
2557 			   "initrd");
2558 }
2559 #endif
2560 
2561 pgprot_t PAGE_KERNEL __read_mostly;
2562 EXPORT_SYMBOL(PAGE_KERNEL);
2563 
2564 pgprot_t PAGE_KERNEL_LOCKED __read_mostly;
2565 pgprot_t PAGE_COPY __read_mostly;
2566 
2567 pgprot_t PAGE_SHARED __read_mostly;
2568 EXPORT_SYMBOL(PAGE_SHARED);
2569 
2570 unsigned long pg_iobits __read_mostly;
2571 
2572 unsigned long _PAGE_IE __read_mostly;
2573 EXPORT_SYMBOL(_PAGE_IE);
2574 
2575 unsigned long _PAGE_E __read_mostly;
2576 EXPORT_SYMBOL(_PAGE_E);
2577 
2578 unsigned long _PAGE_CACHE __read_mostly;
2579 EXPORT_SYMBOL(_PAGE_CACHE);
2580 
2581 #ifdef CONFIG_SPARSEMEM_VMEMMAP
2582 int __meminit vmemmap_populate(unsigned long vstart, unsigned long vend,
2583 			       int node)
2584 {
2585 	unsigned long pte_base;
2586 
2587 	pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2588 		    _PAGE_CP_4U | _PAGE_CV_4U |
2589 		    _PAGE_P_4U | _PAGE_W_4U);
2590 	if (tlb_type == hypervisor)
2591 		pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2592 			    page_cache4v_flag | _PAGE_P_4V | _PAGE_W_4V);
2593 
2594 	pte_base |= _PAGE_PMD_HUGE;
2595 
2596 	vstart = vstart & PMD_MASK;
2597 	vend = ALIGN(vend, PMD_SIZE);
2598 	for (; vstart < vend; vstart += PMD_SIZE) {
2599 		pgd_t *pgd = pgd_offset_k(vstart);
2600 		unsigned long pte;
2601 		pud_t *pud;
2602 		pmd_t *pmd;
2603 
2604 		if (pgd_none(*pgd)) {
2605 			pud_t *new = vmemmap_alloc_block(PAGE_SIZE, node);
2606 
2607 			if (!new)
2608 				return -ENOMEM;
2609 			pgd_populate(&init_mm, pgd, new);
2610 		}
2611 
2612 		pud = pud_offset(pgd, vstart);
2613 		if (pud_none(*pud)) {
2614 			pmd_t *new = vmemmap_alloc_block(PAGE_SIZE, node);
2615 
2616 			if (!new)
2617 				return -ENOMEM;
2618 			pud_populate(&init_mm, pud, new);
2619 		}
2620 
2621 		pmd = pmd_offset(pud, vstart);
2622 
2623 		pte = pmd_val(*pmd);
2624 		if (!(pte & _PAGE_VALID)) {
2625 			void *block = vmemmap_alloc_block(PMD_SIZE, node);
2626 
2627 			if (!block)
2628 				return -ENOMEM;
2629 
2630 			pmd_val(*pmd) = pte_base | __pa(block);
2631 		}
2632 	}
2633 
2634 	return 0;
2635 }
2636 
2637 void vmemmap_free(unsigned long start, unsigned long end)
2638 {
2639 }
2640 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
2641 
2642 static void prot_init_common(unsigned long page_none,
2643 			     unsigned long page_shared,
2644 			     unsigned long page_copy,
2645 			     unsigned long page_readonly,
2646 			     unsigned long page_exec_bit)
2647 {
2648 	PAGE_COPY = __pgprot(page_copy);
2649 	PAGE_SHARED = __pgprot(page_shared);
2650 
2651 	protection_map[0x0] = __pgprot(page_none);
2652 	protection_map[0x1] = __pgprot(page_readonly & ~page_exec_bit);
2653 	protection_map[0x2] = __pgprot(page_copy & ~page_exec_bit);
2654 	protection_map[0x3] = __pgprot(page_copy & ~page_exec_bit);
2655 	protection_map[0x4] = __pgprot(page_readonly);
2656 	protection_map[0x5] = __pgprot(page_readonly);
2657 	protection_map[0x6] = __pgprot(page_copy);
2658 	protection_map[0x7] = __pgprot(page_copy);
2659 	protection_map[0x8] = __pgprot(page_none);
2660 	protection_map[0x9] = __pgprot(page_readonly & ~page_exec_bit);
2661 	protection_map[0xa] = __pgprot(page_shared & ~page_exec_bit);
2662 	protection_map[0xb] = __pgprot(page_shared & ~page_exec_bit);
2663 	protection_map[0xc] = __pgprot(page_readonly);
2664 	protection_map[0xd] = __pgprot(page_readonly);
2665 	protection_map[0xe] = __pgprot(page_shared);
2666 	protection_map[0xf] = __pgprot(page_shared);
2667 }
2668 
2669 static void __init sun4u_pgprot_init(void)
2670 {
2671 	unsigned long page_none, page_shared, page_copy, page_readonly;
2672 	unsigned long page_exec_bit;
2673 	int i;
2674 
2675 	PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2676 				_PAGE_CACHE_4U | _PAGE_P_4U |
2677 				__ACCESS_BITS_4U | __DIRTY_BITS_4U |
2678 				_PAGE_EXEC_4U);
2679 	PAGE_KERNEL_LOCKED = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2680 				       _PAGE_CACHE_4U | _PAGE_P_4U |
2681 				       __ACCESS_BITS_4U | __DIRTY_BITS_4U |
2682 				       _PAGE_EXEC_4U | _PAGE_L_4U);
2683 
2684 	_PAGE_IE = _PAGE_IE_4U;
2685 	_PAGE_E = _PAGE_E_4U;
2686 	_PAGE_CACHE = _PAGE_CACHE_4U;
2687 
2688 	pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4U | __DIRTY_BITS_4U |
2689 		     __ACCESS_BITS_4U | _PAGE_E_4U);
2690 
2691 #ifdef CONFIG_DEBUG_PAGEALLOC
2692 	kern_linear_pte_xor[0] = _PAGE_VALID ^ PAGE_OFFSET;
2693 #else
2694 	kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4U) ^
2695 		PAGE_OFFSET;
2696 #endif
2697 	kern_linear_pte_xor[0] |= (_PAGE_CP_4U | _PAGE_CV_4U |
2698 				   _PAGE_P_4U | _PAGE_W_4U);
2699 
2700 	for (i = 1; i < 4; i++)
2701 		kern_linear_pte_xor[i] = kern_linear_pte_xor[0];
2702 
2703 	_PAGE_ALL_SZ_BITS =  (_PAGE_SZ4MB_4U | _PAGE_SZ512K_4U |
2704 			      _PAGE_SZ64K_4U | _PAGE_SZ8K_4U |
2705 			      _PAGE_SZ32MB_4U | _PAGE_SZ256MB_4U);
2706 
2707 
2708 	page_none = _PAGE_PRESENT_4U | _PAGE_ACCESSED_4U | _PAGE_CACHE_4U;
2709 	page_shared = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2710 		       __ACCESS_BITS_4U | _PAGE_WRITE_4U | _PAGE_EXEC_4U);
2711 	page_copy   = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2712 		       __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2713 	page_readonly   = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2714 			   __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2715 
2716 	page_exec_bit = _PAGE_EXEC_4U;
2717 
2718 	prot_init_common(page_none, page_shared, page_copy, page_readonly,
2719 			 page_exec_bit);
2720 }
2721 
2722 static void __init sun4v_pgprot_init(void)
2723 {
2724 	unsigned long page_none, page_shared, page_copy, page_readonly;
2725 	unsigned long page_exec_bit;
2726 	int i;
2727 
2728 	PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4V | _PAGE_VALID |
2729 				page_cache4v_flag | _PAGE_P_4V |
2730 				__ACCESS_BITS_4V | __DIRTY_BITS_4V |
2731 				_PAGE_EXEC_4V);
2732 	PAGE_KERNEL_LOCKED = PAGE_KERNEL;
2733 
2734 	_PAGE_IE = _PAGE_IE_4V;
2735 	_PAGE_E = _PAGE_E_4V;
2736 	_PAGE_CACHE = page_cache4v_flag;
2737 
2738 #ifdef CONFIG_DEBUG_PAGEALLOC
2739 	kern_linear_pte_xor[0] = _PAGE_VALID ^ PAGE_OFFSET;
2740 #else
2741 	kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4V) ^
2742 		PAGE_OFFSET;
2743 #endif
2744 	kern_linear_pte_xor[0] |= (page_cache4v_flag | _PAGE_P_4V |
2745 				   _PAGE_W_4V);
2746 
2747 	for (i = 1; i < 4; i++)
2748 		kern_linear_pte_xor[i] = kern_linear_pte_xor[0];
2749 
2750 	pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4V | __DIRTY_BITS_4V |
2751 		     __ACCESS_BITS_4V | _PAGE_E_4V);
2752 
2753 	_PAGE_ALL_SZ_BITS = (_PAGE_SZ16GB_4V | _PAGE_SZ2GB_4V |
2754 			     _PAGE_SZ256MB_4V | _PAGE_SZ32MB_4V |
2755 			     _PAGE_SZ4MB_4V | _PAGE_SZ512K_4V |
2756 			     _PAGE_SZ64K_4V | _PAGE_SZ8K_4V);
2757 
2758 	page_none = _PAGE_PRESENT_4V | _PAGE_ACCESSED_4V | page_cache4v_flag;
2759 	page_shared = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag |
2760 		       __ACCESS_BITS_4V | _PAGE_WRITE_4V | _PAGE_EXEC_4V);
2761 	page_copy   = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag |
2762 		       __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2763 	page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag |
2764 			 __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2765 
2766 	page_exec_bit = _PAGE_EXEC_4V;
2767 
2768 	prot_init_common(page_none, page_shared, page_copy, page_readonly,
2769 			 page_exec_bit);
2770 }
2771 
2772 unsigned long pte_sz_bits(unsigned long sz)
2773 {
2774 	if (tlb_type == hypervisor) {
2775 		switch (sz) {
2776 		case 8 * 1024:
2777 		default:
2778 			return _PAGE_SZ8K_4V;
2779 		case 64 * 1024:
2780 			return _PAGE_SZ64K_4V;
2781 		case 512 * 1024:
2782 			return _PAGE_SZ512K_4V;
2783 		case 4 * 1024 * 1024:
2784 			return _PAGE_SZ4MB_4V;
2785 		}
2786 	} else {
2787 		switch (sz) {
2788 		case 8 * 1024:
2789 		default:
2790 			return _PAGE_SZ8K_4U;
2791 		case 64 * 1024:
2792 			return _PAGE_SZ64K_4U;
2793 		case 512 * 1024:
2794 			return _PAGE_SZ512K_4U;
2795 		case 4 * 1024 * 1024:
2796 			return _PAGE_SZ4MB_4U;
2797 		}
2798 	}
2799 }
2800 
2801 pte_t mk_pte_io(unsigned long page, pgprot_t prot, int space, unsigned long page_size)
2802 {
2803 	pte_t pte;
2804 
2805 	pte_val(pte)  = page | pgprot_val(pgprot_noncached(prot));
2806 	pte_val(pte) |= (((unsigned long)space) << 32);
2807 	pte_val(pte) |= pte_sz_bits(page_size);
2808 
2809 	return pte;
2810 }
2811 
2812 static unsigned long kern_large_tte(unsigned long paddr)
2813 {
2814 	unsigned long val;
2815 
2816 	val = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2817 	       _PAGE_CP_4U | _PAGE_CV_4U | _PAGE_P_4U |
2818 	       _PAGE_EXEC_4U | _PAGE_L_4U | _PAGE_W_4U);
2819 	if (tlb_type == hypervisor)
2820 		val = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2821 		       page_cache4v_flag | _PAGE_P_4V |
2822 		       _PAGE_EXEC_4V | _PAGE_W_4V);
2823 
2824 	return val | paddr;
2825 }
2826 
2827 /* If not locked, zap it. */
2828 void __flush_tlb_all(void)
2829 {
2830 	unsigned long pstate;
2831 	int i;
2832 
2833 	__asm__ __volatile__("flushw\n\t"
2834 			     "rdpr	%%pstate, %0\n\t"
2835 			     "wrpr	%0, %1, %%pstate"
2836 			     : "=r" (pstate)
2837 			     : "i" (PSTATE_IE));
2838 	if (tlb_type == hypervisor) {
2839 		sun4v_mmu_demap_all();
2840 	} else if (tlb_type == spitfire) {
2841 		for (i = 0; i < 64; i++) {
2842 			/* Spitfire Errata #32 workaround */
2843 			/* NOTE: Always runs on spitfire, so no
2844 			 *       cheetah+ page size encodings.
2845 			 */
2846 			__asm__ __volatile__("stxa	%0, [%1] %2\n\t"
2847 					     "flush	%%g6"
2848 					     : /* No outputs */
2849 					     : "r" (0),
2850 					     "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2851 
2852 			if (!(spitfire_get_dtlb_data(i) & _PAGE_L_4U)) {
2853 				__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2854 						     "membar #Sync"
2855 						     : /* no outputs */
2856 						     : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
2857 				spitfire_put_dtlb_data(i, 0x0UL);
2858 			}
2859 
2860 			/* Spitfire Errata #32 workaround */
2861 			/* NOTE: Always runs on spitfire, so no
2862 			 *       cheetah+ page size encodings.
2863 			 */
2864 			__asm__ __volatile__("stxa	%0, [%1] %2\n\t"
2865 					     "flush	%%g6"
2866 					     : /* No outputs */
2867 					     : "r" (0),
2868 					     "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2869 
2870 			if (!(spitfire_get_itlb_data(i) & _PAGE_L_4U)) {
2871 				__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2872 						     "membar #Sync"
2873 						     : /* no outputs */
2874 						     : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU));
2875 				spitfire_put_itlb_data(i, 0x0UL);
2876 			}
2877 		}
2878 	} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
2879 		cheetah_flush_dtlb_all();
2880 		cheetah_flush_itlb_all();
2881 	}
2882 	__asm__ __volatile__("wrpr	%0, 0, %%pstate"
2883 			     : : "r" (pstate));
2884 }
2885 
2886 pte_t *pte_alloc_one_kernel(struct mm_struct *mm,
2887 			    unsigned long address)
2888 {
2889 	struct page *page = alloc_page(GFP_KERNEL | __GFP_NOTRACK | __GFP_ZERO);
2890 	pte_t *pte = NULL;
2891 
2892 	if (page)
2893 		pte = (pte_t *) page_address(page);
2894 
2895 	return pte;
2896 }
2897 
2898 pgtable_t pte_alloc_one(struct mm_struct *mm,
2899 			unsigned long address)
2900 {
2901 	struct page *page = alloc_page(GFP_KERNEL | __GFP_NOTRACK | __GFP_ZERO);
2902 	if (!page)
2903 		return NULL;
2904 	if (!pgtable_page_ctor(page)) {
2905 		free_hot_cold_page(page, 0);
2906 		return NULL;
2907 	}
2908 	return (pte_t *) page_address(page);
2909 }
2910 
2911 void pte_free_kernel(struct mm_struct *mm, pte_t *pte)
2912 {
2913 	free_page((unsigned long)pte);
2914 }
2915 
2916 static void __pte_free(pgtable_t pte)
2917 {
2918 	struct page *page = virt_to_page(pte);
2919 
2920 	pgtable_page_dtor(page);
2921 	__free_page(page);
2922 }
2923 
2924 void pte_free(struct mm_struct *mm, pgtable_t pte)
2925 {
2926 	__pte_free(pte);
2927 }
2928 
2929 void pgtable_free(void *table, bool is_page)
2930 {
2931 	if (is_page)
2932 		__pte_free(table);
2933 	else
2934 		kmem_cache_free(pgtable_cache, table);
2935 }
2936 
2937 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2938 void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr,
2939 			  pmd_t *pmd)
2940 {
2941 	unsigned long pte, flags;
2942 	struct mm_struct *mm;
2943 	pmd_t entry = *pmd;
2944 
2945 	if (!pmd_large(entry) || !pmd_young(entry))
2946 		return;
2947 
2948 	pte = pmd_val(entry);
2949 
2950 	/* Don't insert a non-valid PMD into the TSB, we'll deadlock.  */
2951 	if (!(pte & _PAGE_VALID))
2952 		return;
2953 
2954 	/* We are fabricating 8MB pages using 4MB real hw pages.  */
2955 	pte |= (addr & (1UL << REAL_HPAGE_SHIFT));
2956 
2957 	mm = vma->vm_mm;
2958 
2959 	spin_lock_irqsave(&mm->context.lock, flags);
2960 
2961 	if (mm->context.tsb_block[MM_TSB_HUGE].tsb != NULL)
2962 		__update_mmu_tsb_insert(mm, MM_TSB_HUGE, REAL_HPAGE_SHIFT,
2963 					addr, pte);
2964 
2965 	spin_unlock_irqrestore(&mm->context.lock, flags);
2966 }
2967 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2968 
2969 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
2970 static void context_reload(void *__data)
2971 {
2972 	struct mm_struct *mm = __data;
2973 
2974 	if (mm == current->mm)
2975 		load_secondary_context(mm);
2976 }
2977 
2978 void hugetlb_setup(struct pt_regs *regs)
2979 {
2980 	struct mm_struct *mm = current->mm;
2981 	struct tsb_config *tp;
2982 
2983 	if (faulthandler_disabled() || !mm) {
2984 		const struct exception_table_entry *entry;
2985 
2986 		entry = search_exception_tables(regs->tpc);
2987 		if (entry) {
2988 			regs->tpc = entry->fixup;
2989 			regs->tnpc = regs->tpc + 4;
2990 			return;
2991 		}
2992 		pr_alert("Unexpected HugeTLB setup in atomic context.\n");
2993 		die_if_kernel("HugeTSB in atomic", regs);
2994 	}
2995 
2996 	tp = &mm->context.tsb_block[MM_TSB_HUGE];
2997 	if (likely(tp->tsb == NULL))
2998 		tsb_grow(mm, MM_TSB_HUGE, 0);
2999 
3000 	tsb_context_switch(mm);
3001 	smp_tsb_sync(mm);
3002 
3003 	/* On UltraSPARC-III+ and later, configure the second half of
3004 	 * the Data-TLB for huge pages.
3005 	 */
3006 	if (tlb_type == cheetah_plus) {
3007 		bool need_context_reload = false;
3008 		unsigned long ctx;
3009 
3010 		spin_lock_irq(&ctx_alloc_lock);
3011 		ctx = mm->context.sparc64_ctx_val;
3012 		ctx &= ~CTX_PGSZ_MASK;
3013 		ctx |= CTX_PGSZ_BASE << CTX_PGSZ0_SHIFT;
3014 		ctx |= CTX_PGSZ_HUGE << CTX_PGSZ1_SHIFT;
3015 
3016 		if (ctx != mm->context.sparc64_ctx_val) {
3017 			/* When changing the page size fields, we
3018 			 * must perform a context flush so that no
3019 			 * stale entries match.  This flush must
3020 			 * occur with the original context register
3021 			 * settings.
3022 			 */
3023 			do_flush_tlb_mm(mm);
3024 
3025 			/* Reload the context register of all processors
3026 			 * also executing in this address space.
3027 			 */
3028 			mm->context.sparc64_ctx_val = ctx;
3029 			need_context_reload = true;
3030 		}
3031 		spin_unlock_irq(&ctx_alloc_lock);
3032 
3033 		if (need_context_reload)
3034 			on_each_cpu(context_reload, mm, 0);
3035 	}
3036 }
3037 #endif
3038 
3039 static struct resource code_resource = {
3040 	.name	= "Kernel code",
3041 	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
3042 };
3043 
3044 static struct resource data_resource = {
3045 	.name	= "Kernel data",
3046 	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
3047 };
3048 
3049 static struct resource bss_resource = {
3050 	.name	= "Kernel bss",
3051 	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
3052 };
3053 
3054 static inline resource_size_t compute_kern_paddr(void *addr)
3055 {
3056 	return (resource_size_t) (addr - KERNBASE + kern_base);
3057 }
3058 
3059 static void __init kernel_lds_init(void)
3060 {
3061 	code_resource.start = compute_kern_paddr(_text);
3062 	code_resource.end   = compute_kern_paddr(_etext - 1);
3063 	data_resource.start = compute_kern_paddr(_etext);
3064 	data_resource.end   = compute_kern_paddr(_edata - 1);
3065 	bss_resource.start  = compute_kern_paddr(__bss_start);
3066 	bss_resource.end    = compute_kern_paddr(_end - 1);
3067 }
3068 
3069 static int __init report_memory(void)
3070 {
3071 	int i;
3072 	struct resource *res;
3073 
3074 	kernel_lds_init();
3075 
3076 	for (i = 0; i < pavail_ents; i++) {
3077 		res = kzalloc(sizeof(struct resource), GFP_KERNEL);
3078 
3079 		if (!res) {
3080 			pr_warn("Failed to allocate source.\n");
3081 			break;
3082 		}
3083 
3084 		res->name = "System RAM";
3085 		res->start = pavail[i].phys_addr;
3086 		res->end = pavail[i].phys_addr + pavail[i].reg_size - 1;
3087 		res->flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM;
3088 
3089 		if (insert_resource(&iomem_resource, res) < 0) {
3090 			pr_warn("Resource insertion failed.\n");
3091 			break;
3092 		}
3093 
3094 		insert_resource(res, &code_resource);
3095 		insert_resource(res, &data_resource);
3096 		insert_resource(res, &bss_resource);
3097 	}
3098 
3099 	return 0;
3100 }
3101 arch_initcall(report_memory);
3102 
3103 #ifdef CONFIG_SMP
3104 #define do_flush_tlb_kernel_range	smp_flush_tlb_kernel_range
3105 #else
3106 #define do_flush_tlb_kernel_range	__flush_tlb_kernel_range
3107 #endif
3108 
3109 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
3110 {
3111 	if (start < HI_OBP_ADDRESS && end > LOW_OBP_ADDRESS) {
3112 		if (start < LOW_OBP_ADDRESS) {
3113 			flush_tsb_kernel_range(start, LOW_OBP_ADDRESS);
3114 			do_flush_tlb_kernel_range(start, LOW_OBP_ADDRESS);
3115 		}
3116 		if (end > HI_OBP_ADDRESS) {
3117 			flush_tsb_kernel_range(HI_OBP_ADDRESS, end);
3118 			do_flush_tlb_kernel_range(HI_OBP_ADDRESS, end);
3119 		}
3120 	} else {
3121 		flush_tsb_kernel_range(start, end);
3122 		do_flush_tlb_kernel_range(start, end);
3123 	}
3124 }
3125