xref: /openbmc/linux/arch/sparc/mm/init_64.c (revision b04b4f78)
1 /*
2  *  arch/sparc64/mm/init.c
3  *
4  *  Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu)
5  *  Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
6  */
7 
8 #include <linux/module.h>
9 #include <linux/kernel.h>
10 #include <linux/sched.h>
11 #include <linux/string.h>
12 #include <linux/init.h>
13 #include <linux/bootmem.h>
14 #include <linux/mm.h>
15 #include <linux/hugetlb.h>
16 #include <linux/slab.h>
17 #include <linux/initrd.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/poison.h>
21 #include <linux/fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/kprobes.h>
24 #include <linux/cache.h>
25 #include <linux/sort.h>
26 #include <linux/percpu.h>
27 #include <linux/lmb.h>
28 #include <linux/mmzone.h>
29 
30 #include <asm/head.h>
31 #include <asm/system.h>
32 #include <asm/page.h>
33 #include <asm/pgalloc.h>
34 #include <asm/pgtable.h>
35 #include <asm/oplib.h>
36 #include <asm/iommu.h>
37 #include <asm/io.h>
38 #include <asm/uaccess.h>
39 #include <asm/mmu_context.h>
40 #include <asm/tlbflush.h>
41 #include <asm/dma.h>
42 #include <asm/starfire.h>
43 #include <asm/tlb.h>
44 #include <asm/spitfire.h>
45 #include <asm/sections.h>
46 #include <asm/tsb.h>
47 #include <asm/hypervisor.h>
48 #include <asm/prom.h>
49 #include <asm/mdesc.h>
50 #include <asm/cpudata.h>
51 #include <asm/irq.h>
52 
53 #include "init_64.h"
54 
55 unsigned long kern_linear_pte_xor[2] __read_mostly;
56 
57 /* A bitmap, one bit for every 256MB of physical memory.  If the bit
58  * is clear, we should use a 4MB page (via kern_linear_pte_xor[0]) else
59  * if set we should use a 256MB page (via kern_linear_pte_xor[1]).
60  */
61 unsigned long kpte_linear_bitmap[KPTE_BITMAP_BYTES / sizeof(unsigned long)];
62 
63 #ifndef CONFIG_DEBUG_PAGEALLOC
64 /* A special kernel TSB for 4MB and 256MB linear mappings.
65  * Space is allocated for this right after the trap table
66  * in arch/sparc64/kernel/head.S
67  */
68 extern struct tsb swapper_4m_tsb[KERNEL_TSB4M_NENTRIES];
69 #endif
70 
71 #define MAX_BANKS	32
72 
73 static struct linux_prom64_registers pavail[MAX_BANKS] __devinitdata;
74 static int pavail_ents __devinitdata;
75 
76 static int cmp_p64(const void *a, const void *b)
77 {
78 	const struct linux_prom64_registers *x = a, *y = b;
79 
80 	if (x->phys_addr > y->phys_addr)
81 		return 1;
82 	if (x->phys_addr < y->phys_addr)
83 		return -1;
84 	return 0;
85 }
86 
87 static void __init read_obp_memory(const char *property,
88 				   struct linux_prom64_registers *regs,
89 				   int *num_ents)
90 {
91 	int node = prom_finddevice("/memory");
92 	int prop_size = prom_getproplen(node, property);
93 	int ents, ret, i;
94 
95 	ents = prop_size / sizeof(struct linux_prom64_registers);
96 	if (ents > MAX_BANKS) {
97 		prom_printf("The machine has more %s property entries than "
98 			    "this kernel can support (%d).\n",
99 			    property, MAX_BANKS);
100 		prom_halt();
101 	}
102 
103 	ret = prom_getproperty(node, property, (char *) regs, prop_size);
104 	if (ret == -1) {
105 		prom_printf("Couldn't get %s property from /memory.\n");
106 		prom_halt();
107 	}
108 
109 	/* Sanitize what we got from the firmware, by page aligning
110 	 * everything.
111 	 */
112 	for (i = 0; i < ents; i++) {
113 		unsigned long base, size;
114 
115 		base = regs[i].phys_addr;
116 		size = regs[i].reg_size;
117 
118 		size &= PAGE_MASK;
119 		if (base & ~PAGE_MASK) {
120 			unsigned long new_base = PAGE_ALIGN(base);
121 
122 			size -= new_base - base;
123 			if ((long) size < 0L)
124 				size = 0UL;
125 			base = new_base;
126 		}
127 		if (size == 0UL) {
128 			/* If it is empty, simply get rid of it.
129 			 * This simplifies the logic of the other
130 			 * functions that process these arrays.
131 			 */
132 			memmove(&regs[i], &regs[i + 1],
133 				(ents - i - 1) * sizeof(regs[0]));
134 			i--;
135 			ents--;
136 			continue;
137 		}
138 		regs[i].phys_addr = base;
139 		regs[i].reg_size = size;
140 	}
141 
142 	*num_ents = ents;
143 
144 	sort(regs, ents, sizeof(struct linux_prom64_registers),
145 	     cmp_p64, NULL);
146 }
147 
148 unsigned long *sparc64_valid_addr_bitmap __read_mostly;
149 EXPORT_SYMBOL(sparc64_valid_addr_bitmap);
150 
151 /* Kernel physical address base and size in bytes.  */
152 unsigned long kern_base __read_mostly;
153 unsigned long kern_size __read_mostly;
154 
155 /* Initial ramdisk setup */
156 extern unsigned long sparc_ramdisk_image64;
157 extern unsigned int sparc_ramdisk_image;
158 extern unsigned int sparc_ramdisk_size;
159 
160 struct page *mem_map_zero __read_mostly;
161 EXPORT_SYMBOL(mem_map_zero);
162 
163 unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly;
164 
165 unsigned long sparc64_kern_pri_context __read_mostly;
166 unsigned long sparc64_kern_pri_nuc_bits __read_mostly;
167 unsigned long sparc64_kern_sec_context __read_mostly;
168 
169 int num_kernel_image_mappings;
170 
171 #ifdef CONFIG_DEBUG_DCFLUSH
172 atomic_t dcpage_flushes = ATOMIC_INIT(0);
173 #ifdef CONFIG_SMP
174 atomic_t dcpage_flushes_xcall = ATOMIC_INIT(0);
175 #endif
176 #endif
177 
178 inline void flush_dcache_page_impl(struct page *page)
179 {
180 	BUG_ON(tlb_type == hypervisor);
181 #ifdef CONFIG_DEBUG_DCFLUSH
182 	atomic_inc(&dcpage_flushes);
183 #endif
184 
185 #ifdef DCACHE_ALIASING_POSSIBLE
186 	__flush_dcache_page(page_address(page),
187 			    ((tlb_type == spitfire) &&
188 			     page_mapping(page) != NULL));
189 #else
190 	if (page_mapping(page) != NULL &&
191 	    tlb_type == spitfire)
192 		__flush_icache_page(__pa(page_address(page)));
193 #endif
194 }
195 
196 #define PG_dcache_dirty		PG_arch_1
197 #define PG_dcache_cpu_shift	32UL
198 #define PG_dcache_cpu_mask	\
199 	((1UL<<ilog2(roundup_pow_of_two(NR_CPUS)))-1UL)
200 
201 #define dcache_dirty_cpu(page) \
202 	(((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask)
203 
204 static inline void set_dcache_dirty(struct page *page, int this_cpu)
205 {
206 	unsigned long mask = this_cpu;
207 	unsigned long non_cpu_bits;
208 
209 	non_cpu_bits = ~(PG_dcache_cpu_mask << PG_dcache_cpu_shift);
210 	mask = (mask << PG_dcache_cpu_shift) | (1UL << PG_dcache_dirty);
211 
212 	__asm__ __volatile__("1:\n\t"
213 			     "ldx	[%2], %%g7\n\t"
214 			     "and	%%g7, %1, %%g1\n\t"
215 			     "or	%%g1, %0, %%g1\n\t"
216 			     "casx	[%2], %%g7, %%g1\n\t"
217 			     "cmp	%%g7, %%g1\n\t"
218 			     "bne,pn	%%xcc, 1b\n\t"
219 			     " nop"
220 			     : /* no outputs */
221 			     : "r" (mask), "r" (non_cpu_bits), "r" (&page->flags)
222 			     : "g1", "g7");
223 }
224 
225 static inline void clear_dcache_dirty_cpu(struct page *page, unsigned long cpu)
226 {
227 	unsigned long mask = (1UL << PG_dcache_dirty);
228 
229 	__asm__ __volatile__("! test_and_clear_dcache_dirty\n"
230 			     "1:\n\t"
231 			     "ldx	[%2], %%g7\n\t"
232 			     "srlx	%%g7, %4, %%g1\n\t"
233 			     "and	%%g1, %3, %%g1\n\t"
234 			     "cmp	%%g1, %0\n\t"
235 			     "bne,pn	%%icc, 2f\n\t"
236 			     " andn	%%g7, %1, %%g1\n\t"
237 			     "casx	[%2], %%g7, %%g1\n\t"
238 			     "cmp	%%g7, %%g1\n\t"
239 			     "bne,pn	%%xcc, 1b\n\t"
240 			     " nop\n"
241 			     "2:"
242 			     : /* no outputs */
243 			     : "r" (cpu), "r" (mask), "r" (&page->flags),
244 			       "i" (PG_dcache_cpu_mask),
245 			       "i" (PG_dcache_cpu_shift)
246 			     : "g1", "g7");
247 }
248 
249 static inline void tsb_insert(struct tsb *ent, unsigned long tag, unsigned long pte)
250 {
251 	unsigned long tsb_addr = (unsigned long) ent;
252 
253 	if (tlb_type == cheetah_plus || tlb_type == hypervisor)
254 		tsb_addr = __pa(tsb_addr);
255 
256 	__tsb_insert(tsb_addr, tag, pte);
257 }
258 
259 unsigned long _PAGE_ALL_SZ_BITS __read_mostly;
260 unsigned long _PAGE_SZBITS __read_mostly;
261 
262 static void flush_dcache(unsigned long pfn)
263 {
264 	struct page *page;
265 
266 	page = pfn_to_page(pfn);
267 	if (page && page_mapping(page)) {
268 		unsigned long pg_flags;
269 
270 		pg_flags = page->flags;
271 		if (pg_flags & (1UL << PG_dcache_dirty)) {
272 			int cpu = ((pg_flags >> PG_dcache_cpu_shift) &
273 				   PG_dcache_cpu_mask);
274 			int this_cpu = get_cpu();
275 
276 			/* This is just to optimize away some function calls
277 			 * in the SMP case.
278 			 */
279 			if (cpu == this_cpu)
280 				flush_dcache_page_impl(page);
281 			else
282 				smp_flush_dcache_page_impl(page, cpu);
283 
284 			clear_dcache_dirty_cpu(page, cpu);
285 
286 			put_cpu();
287 		}
288 	}
289 }
290 
291 void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t pte)
292 {
293 	struct mm_struct *mm;
294 	struct tsb *tsb;
295 	unsigned long tag, flags;
296 	unsigned long tsb_index, tsb_hash_shift;
297 
298 	if (tlb_type != hypervisor) {
299 		unsigned long pfn = pte_pfn(pte);
300 
301 		if (pfn_valid(pfn))
302 			flush_dcache(pfn);
303 	}
304 
305 	mm = vma->vm_mm;
306 
307 	tsb_index = MM_TSB_BASE;
308 	tsb_hash_shift = PAGE_SHIFT;
309 
310 	spin_lock_irqsave(&mm->context.lock, flags);
311 
312 #ifdef CONFIG_HUGETLB_PAGE
313 	if (mm->context.tsb_block[MM_TSB_HUGE].tsb != NULL) {
314 		if ((tlb_type == hypervisor &&
315 		     (pte_val(pte) & _PAGE_SZALL_4V) == _PAGE_SZHUGE_4V) ||
316 		    (tlb_type != hypervisor &&
317 		     (pte_val(pte) & _PAGE_SZALL_4U) == _PAGE_SZHUGE_4U)) {
318 			tsb_index = MM_TSB_HUGE;
319 			tsb_hash_shift = HPAGE_SHIFT;
320 		}
321 	}
322 #endif
323 
324 	tsb = mm->context.tsb_block[tsb_index].tsb;
325 	tsb += ((address >> tsb_hash_shift) &
326 		(mm->context.tsb_block[tsb_index].tsb_nentries - 1UL));
327 	tag = (address >> 22UL);
328 	tsb_insert(tsb, tag, pte_val(pte));
329 
330 	spin_unlock_irqrestore(&mm->context.lock, flags);
331 }
332 
333 void flush_dcache_page(struct page *page)
334 {
335 	struct address_space *mapping;
336 	int this_cpu;
337 
338 	if (tlb_type == hypervisor)
339 		return;
340 
341 	/* Do not bother with the expensive D-cache flush if it
342 	 * is merely the zero page.  The 'bigcore' testcase in GDB
343 	 * causes this case to run millions of times.
344 	 */
345 	if (page == ZERO_PAGE(0))
346 		return;
347 
348 	this_cpu = get_cpu();
349 
350 	mapping = page_mapping(page);
351 	if (mapping && !mapping_mapped(mapping)) {
352 		int dirty = test_bit(PG_dcache_dirty, &page->flags);
353 		if (dirty) {
354 			int dirty_cpu = dcache_dirty_cpu(page);
355 
356 			if (dirty_cpu == this_cpu)
357 				goto out;
358 			smp_flush_dcache_page_impl(page, dirty_cpu);
359 		}
360 		set_dcache_dirty(page, this_cpu);
361 	} else {
362 		/* We could delay the flush for the !page_mapping
363 		 * case too.  But that case is for exec env/arg
364 		 * pages and those are %99 certainly going to get
365 		 * faulted into the tlb (and thus flushed) anyways.
366 		 */
367 		flush_dcache_page_impl(page);
368 	}
369 
370 out:
371 	put_cpu();
372 }
373 EXPORT_SYMBOL(flush_dcache_page);
374 
375 void __kprobes flush_icache_range(unsigned long start, unsigned long end)
376 {
377 	/* Cheetah and Hypervisor platform cpus have coherent I-cache. */
378 	if (tlb_type == spitfire) {
379 		unsigned long kaddr;
380 
381 		/* This code only runs on Spitfire cpus so this is
382 		 * why we can assume _PAGE_PADDR_4U.
383 		 */
384 		for (kaddr = start; kaddr < end; kaddr += PAGE_SIZE) {
385 			unsigned long paddr, mask = _PAGE_PADDR_4U;
386 
387 			if (kaddr >= PAGE_OFFSET)
388 				paddr = kaddr & mask;
389 			else {
390 				pgd_t *pgdp = pgd_offset_k(kaddr);
391 				pud_t *pudp = pud_offset(pgdp, kaddr);
392 				pmd_t *pmdp = pmd_offset(pudp, kaddr);
393 				pte_t *ptep = pte_offset_kernel(pmdp, kaddr);
394 
395 				paddr = pte_val(*ptep) & mask;
396 			}
397 			__flush_icache_page(paddr);
398 		}
399 	}
400 }
401 EXPORT_SYMBOL(flush_icache_range);
402 
403 void mmu_info(struct seq_file *m)
404 {
405 	if (tlb_type == cheetah)
406 		seq_printf(m, "MMU Type\t: Cheetah\n");
407 	else if (tlb_type == cheetah_plus)
408 		seq_printf(m, "MMU Type\t: Cheetah+\n");
409 	else if (tlb_type == spitfire)
410 		seq_printf(m, "MMU Type\t: Spitfire\n");
411 	else if (tlb_type == hypervisor)
412 		seq_printf(m, "MMU Type\t: Hypervisor (sun4v)\n");
413 	else
414 		seq_printf(m, "MMU Type\t: ???\n");
415 
416 #ifdef CONFIG_DEBUG_DCFLUSH
417 	seq_printf(m, "DCPageFlushes\t: %d\n",
418 		   atomic_read(&dcpage_flushes));
419 #ifdef CONFIG_SMP
420 	seq_printf(m, "DCPageFlushesXC\t: %d\n",
421 		   atomic_read(&dcpage_flushes_xcall));
422 #endif /* CONFIG_SMP */
423 #endif /* CONFIG_DEBUG_DCFLUSH */
424 }
425 
426 struct linux_prom_translation prom_trans[512] __read_mostly;
427 unsigned int prom_trans_ents __read_mostly;
428 
429 unsigned long kern_locked_tte_data;
430 
431 /* The obp translations are saved based on 8k pagesize, since obp can
432  * use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS ->
433  * HI_OBP_ADDRESS range are handled in ktlb.S.
434  */
435 static inline int in_obp_range(unsigned long vaddr)
436 {
437 	return (vaddr >= LOW_OBP_ADDRESS &&
438 		vaddr < HI_OBP_ADDRESS);
439 }
440 
441 static int cmp_ptrans(const void *a, const void *b)
442 {
443 	const struct linux_prom_translation *x = a, *y = b;
444 
445 	if (x->virt > y->virt)
446 		return 1;
447 	if (x->virt < y->virt)
448 		return -1;
449 	return 0;
450 }
451 
452 /* Read OBP translations property into 'prom_trans[]'.  */
453 static void __init read_obp_translations(void)
454 {
455 	int n, node, ents, first, last, i;
456 
457 	node = prom_finddevice("/virtual-memory");
458 	n = prom_getproplen(node, "translations");
459 	if (unlikely(n == 0 || n == -1)) {
460 		prom_printf("prom_mappings: Couldn't get size.\n");
461 		prom_halt();
462 	}
463 	if (unlikely(n > sizeof(prom_trans))) {
464 		prom_printf("prom_mappings: Size %Zd is too big.\n", n);
465 		prom_halt();
466 	}
467 
468 	if ((n = prom_getproperty(node, "translations",
469 				  (char *)&prom_trans[0],
470 				  sizeof(prom_trans))) == -1) {
471 		prom_printf("prom_mappings: Couldn't get property.\n");
472 		prom_halt();
473 	}
474 
475 	n = n / sizeof(struct linux_prom_translation);
476 
477 	ents = n;
478 
479 	sort(prom_trans, ents, sizeof(struct linux_prom_translation),
480 	     cmp_ptrans, NULL);
481 
482 	/* Now kick out all the non-OBP entries.  */
483 	for (i = 0; i < ents; i++) {
484 		if (in_obp_range(prom_trans[i].virt))
485 			break;
486 	}
487 	first = i;
488 	for (; i < ents; i++) {
489 		if (!in_obp_range(prom_trans[i].virt))
490 			break;
491 	}
492 	last = i;
493 
494 	for (i = 0; i < (last - first); i++) {
495 		struct linux_prom_translation *src = &prom_trans[i + first];
496 		struct linux_prom_translation *dest = &prom_trans[i];
497 
498 		*dest = *src;
499 	}
500 	for (; i < ents; i++) {
501 		struct linux_prom_translation *dest = &prom_trans[i];
502 		dest->virt = dest->size = dest->data = 0x0UL;
503 	}
504 
505 	prom_trans_ents = last - first;
506 
507 	if (tlb_type == spitfire) {
508 		/* Clear diag TTE bits. */
509 		for (i = 0; i < prom_trans_ents; i++)
510 			prom_trans[i].data &= ~0x0003fe0000000000UL;
511 	}
512 }
513 
514 static void __init hypervisor_tlb_lock(unsigned long vaddr,
515 				       unsigned long pte,
516 				       unsigned long mmu)
517 {
518 	unsigned long ret = sun4v_mmu_map_perm_addr(vaddr, 0, pte, mmu);
519 
520 	if (ret != 0) {
521 		prom_printf("hypervisor_tlb_lock[%lx:%lx:%lx:%lx]: "
522 			    "errors with %lx\n", vaddr, 0, pte, mmu, ret);
523 		prom_halt();
524 	}
525 }
526 
527 static unsigned long kern_large_tte(unsigned long paddr);
528 
529 static void __init remap_kernel(void)
530 {
531 	unsigned long phys_page, tte_vaddr, tte_data;
532 	int i, tlb_ent = sparc64_highest_locked_tlbent();
533 
534 	tte_vaddr = (unsigned long) KERNBASE;
535 	phys_page = (prom_boot_mapping_phys_low >> 22UL) << 22UL;
536 	tte_data = kern_large_tte(phys_page);
537 
538 	kern_locked_tte_data = tte_data;
539 
540 	/* Now lock us into the TLBs via Hypervisor or OBP. */
541 	if (tlb_type == hypervisor) {
542 		for (i = 0; i < num_kernel_image_mappings; i++) {
543 			hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU);
544 			hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU);
545 			tte_vaddr += 0x400000;
546 			tte_data += 0x400000;
547 		}
548 	} else {
549 		for (i = 0; i < num_kernel_image_mappings; i++) {
550 			prom_dtlb_load(tlb_ent - i, tte_data, tte_vaddr);
551 			prom_itlb_load(tlb_ent - i, tte_data, tte_vaddr);
552 			tte_vaddr += 0x400000;
553 			tte_data += 0x400000;
554 		}
555 		sparc64_highest_unlocked_tlb_ent = tlb_ent - i;
556 	}
557 	if (tlb_type == cheetah_plus) {
558 		sparc64_kern_pri_context = (CTX_CHEETAH_PLUS_CTX0 |
559 					    CTX_CHEETAH_PLUS_NUC);
560 		sparc64_kern_pri_nuc_bits = CTX_CHEETAH_PLUS_NUC;
561 		sparc64_kern_sec_context = CTX_CHEETAH_PLUS_CTX0;
562 	}
563 }
564 
565 
566 static void __init inherit_prom_mappings(void)
567 {
568 	/* Now fixup OBP's idea about where we really are mapped. */
569 	printk("Remapping the kernel... ");
570 	remap_kernel();
571 	printk("done.\n");
572 }
573 
574 void prom_world(int enter)
575 {
576 	if (!enter)
577 		set_fs((mm_segment_t) { get_thread_current_ds() });
578 
579 	__asm__ __volatile__("flushw");
580 }
581 
582 void __flush_dcache_range(unsigned long start, unsigned long end)
583 {
584 	unsigned long va;
585 
586 	if (tlb_type == spitfire) {
587 		int n = 0;
588 
589 		for (va = start; va < end; va += 32) {
590 			spitfire_put_dcache_tag(va & 0x3fe0, 0x0);
591 			if (++n >= 512)
592 				break;
593 		}
594 	} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
595 		start = __pa(start);
596 		end = __pa(end);
597 		for (va = start; va < end; va += 32)
598 			__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
599 					     "membar #Sync"
600 					     : /* no outputs */
601 					     : "r" (va),
602 					       "i" (ASI_DCACHE_INVALIDATE));
603 	}
604 }
605 EXPORT_SYMBOL(__flush_dcache_range);
606 
607 /* get_new_mmu_context() uses "cache + 1".  */
608 DEFINE_SPINLOCK(ctx_alloc_lock);
609 unsigned long tlb_context_cache = CTX_FIRST_VERSION - 1;
610 #define MAX_CTX_NR	(1UL << CTX_NR_BITS)
611 #define CTX_BMAP_SLOTS	BITS_TO_LONGS(MAX_CTX_NR)
612 DECLARE_BITMAP(mmu_context_bmap, MAX_CTX_NR);
613 
614 /* Caller does TLB context flushing on local CPU if necessary.
615  * The caller also ensures that CTX_VALID(mm->context) is false.
616  *
617  * We must be careful about boundary cases so that we never
618  * let the user have CTX 0 (nucleus) or we ever use a CTX
619  * version of zero (and thus NO_CONTEXT would not be caught
620  * by version mis-match tests in mmu_context.h).
621  *
622  * Always invoked with interrupts disabled.
623  */
624 void get_new_mmu_context(struct mm_struct *mm)
625 {
626 	unsigned long ctx, new_ctx;
627 	unsigned long orig_pgsz_bits;
628 	unsigned long flags;
629 	int new_version;
630 
631 	spin_lock_irqsave(&ctx_alloc_lock, flags);
632 	orig_pgsz_bits = (mm->context.sparc64_ctx_val & CTX_PGSZ_MASK);
633 	ctx = (tlb_context_cache + 1) & CTX_NR_MASK;
634 	new_ctx = find_next_zero_bit(mmu_context_bmap, 1 << CTX_NR_BITS, ctx);
635 	new_version = 0;
636 	if (new_ctx >= (1 << CTX_NR_BITS)) {
637 		new_ctx = find_next_zero_bit(mmu_context_bmap, ctx, 1);
638 		if (new_ctx >= ctx) {
639 			int i;
640 			new_ctx = (tlb_context_cache & CTX_VERSION_MASK) +
641 				CTX_FIRST_VERSION;
642 			if (new_ctx == 1)
643 				new_ctx = CTX_FIRST_VERSION;
644 
645 			/* Don't call memset, for 16 entries that's just
646 			 * plain silly...
647 			 */
648 			mmu_context_bmap[0] = 3;
649 			mmu_context_bmap[1] = 0;
650 			mmu_context_bmap[2] = 0;
651 			mmu_context_bmap[3] = 0;
652 			for (i = 4; i < CTX_BMAP_SLOTS; i += 4) {
653 				mmu_context_bmap[i + 0] = 0;
654 				mmu_context_bmap[i + 1] = 0;
655 				mmu_context_bmap[i + 2] = 0;
656 				mmu_context_bmap[i + 3] = 0;
657 			}
658 			new_version = 1;
659 			goto out;
660 		}
661 	}
662 	mmu_context_bmap[new_ctx>>6] |= (1UL << (new_ctx & 63));
663 	new_ctx |= (tlb_context_cache & CTX_VERSION_MASK);
664 out:
665 	tlb_context_cache = new_ctx;
666 	mm->context.sparc64_ctx_val = new_ctx | orig_pgsz_bits;
667 	spin_unlock_irqrestore(&ctx_alloc_lock, flags);
668 
669 	if (unlikely(new_version))
670 		smp_new_mmu_context_version();
671 }
672 
673 static int numa_enabled = 1;
674 static int numa_debug;
675 
676 static int __init early_numa(char *p)
677 {
678 	if (!p)
679 		return 0;
680 
681 	if (strstr(p, "off"))
682 		numa_enabled = 0;
683 
684 	if (strstr(p, "debug"))
685 		numa_debug = 1;
686 
687 	return 0;
688 }
689 early_param("numa", early_numa);
690 
691 #define numadbg(f, a...) \
692 do {	if (numa_debug) \
693 		printk(KERN_INFO f, ## a); \
694 } while (0)
695 
696 static void __init find_ramdisk(unsigned long phys_base)
697 {
698 #ifdef CONFIG_BLK_DEV_INITRD
699 	if (sparc_ramdisk_image || sparc_ramdisk_image64) {
700 		unsigned long ramdisk_image;
701 
702 		/* Older versions of the bootloader only supported a
703 		 * 32-bit physical address for the ramdisk image
704 		 * location, stored at sparc_ramdisk_image.  Newer
705 		 * SILO versions set sparc_ramdisk_image to zero and
706 		 * provide a full 64-bit physical address at
707 		 * sparc_ramdisk_image64.
708 		 */
709 		ramdisk_image = sparc_ramdisk_image;
710 		if (!ramdisk_image)
711 			ramdisk_image = sparc_ramdisk_image64;
712 
713 		/* Another bootloader quirk.  The bootloader normalizes
714 		 * the physical address to KERNBASE, so we have to
715 		 * factor that back out and add in the lowest valid
716 		 * physical page address to get the true physical address.
717 		 */
718 		ramdisk_image -= KERNBASE;
719 		ramdisk_image += phys_base;
720 
721 		numadbg("Found ramdisk at physical address 0x%lx, size %u\n",
722 			ramdisk_image, sparc_ramdisk_size);
723 
724 		initrd_start = ramdisk_image;
725 		initrd_end = ramdisk_image + sparc_ramdisk_size;
726 
727 		lmb_reserve(initrd_start, sparc_ramdisk_size);
728 
729 		initrd_start += PAGE_OFFSET;
730 		initrd_end += PAGE_OFFSET;
731 	}
732 #endif
733 }
734 
735 struct node_mem_mask {
736 	unsigned long mask;
737 	unsigned long val;
738 	unsigned long bootmem_paddr;
739 };
740 static struct node_mem_mask node_masks[MAX_NUMNODES];
741 static int num_node_masks;
742 
743 int numa_cpu_lookup_table[NR_CPUS];
744 cpumask_t numa_cpumask_lookup_table[MAX_NUMNODES];
745 
746 #ifdef CONFIG_NEED_MULTIPLE_NODES
747 
748 struct mdesc_mblock {
749 	u64	base;
750 	u64	size;
751 	u64	offset; /* RA-to-PA */
752 };
753 static struct mdesc_mblock *mblocks;
754 static int num_mblocks;
755 
756 static unsigned long ra_to_pa(unsigned long addr)
757 {
758 	int i;
759 
760 	for (i = 0; i < num_mblocks; i++) {
761 		struct mdesc_mblock *m = &mblocks[i];
762 
763 		if (addr >= m->base &&
764 		    addr < (m->base + m->size)) {
765 			addr += m->offset;
766 			break;
767 		}
768 	}
769 	return addr;
770 }
771 
772 static int find_node(unsigned long addr)
773 {
774 	int i;
775 
776 	addr = ra_to_pa(addr);
777 	for (i = 0; i < num_node_masks; i++) {
778 		struct node_mem_mask *p = &node_masks[i];
779 
780 		if ((addr & p->mask) == p->val)
781 			return i;
782 	}
783 	return -1;
784 }
785 
786 static unsigned long long nid_range(unsigned long long start,
787 				    unsigned long long end, int *nid)
788 {
789 	*nid = find_node(start);
790 	start += PAGE_SIZE;
791 	while (start < end) {
792 		int n = find_node(start);
793 
794 		if (n != *nid)
795 			break;
796 		start += PAGE_SIZE;
797 	}
798 
799 	if (start > end)
800 		start = end;
801 
802 	return start;
803 }
804 #else
805 static unsigned long long nid_range(unsigned long long start,
806 				    unsigned long long end, int *nid)
807 {
808 	*nid = 0;
809 	return end;
810 }
811 #endif
812 
813 /* This must be invoked after performing all of the necessary
814  * add_active_range() calls for 'nid'.  We need to be able to get
815  * correct data from get_pfn_range_for_nid().
816  */
817 static void __init allocate_node_data(int nid)
818 {
819 	unsigned long paddr, num_pages, start_pfn, end_pfn;
820 	struct pglist_data *p;
821 
822 #ifdef CONFIG_NEED_MULTIPLE_NODES
823 	paddr = lmb_alloc_nid(sizeof(struct pglist_data),
824 			      SMP_CACHE_BYTES, nid, nid_range);
825 	if (!paddr) {
826 		prom_printf("Cannot allocate pglist_data for nid[%d]\n", nid);
827 		prom_halt();
828 	}
829 	NODE_DATA(nid) = __va(paddr);
830 	memset(NODE_DATA(nid), 0, sizeof(struct pglist_data));
831 
832 	NODE_DATA(nid)->bdata = &bootmem_node_data[nid];
833 #endif
834 
835 	p = NODE_DATA(nid);
836 
837 	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
838 	p->node_start_pfn = start_pfn;
839 	p->node_spanned_pages = end_pfn - start_pfn;
840 
841 	if (p->node_spanned_pages) {
842 		num_pages = bootmem_bootmap_pages(p->node_spanned_pages);
843 
844 		paddr = lmb_alloc_nid(num_pages << PAGE_SHIFT, PAGE_SIZE, nid,
845 				      nid_range);
846 		if (!paddr) {
847 			prom_printf("Cannot allocate bootmap for nid[%d]\n",
848 				  nid);
849 			prom_halt();
850 		}
851 		node_masks[nid].bootmem_paddr = paddr;
852 	}
853 }
854 
855 static void init_node_masks_nonnuma(void)
856 {
857 	int i;
858 
859 	numadbg("Initializing tables for non-numa.\n");
860 
861 	node_masks[0].mask = node_masks[0].val = 0;
862 	num_node_masks = 1;
863 
864 	for (i = 0; i < NR_CPUS; i++)
865 		numa_cpu_lookup_table[i] = 0;
866 
867 	numa_cpumask_lookup_table[0] = CPU_MASK_ALL;
868 }
869 
870 #ifdef CONFIG_NEED_MULTIPLE_NODES
871 struct pglist_data *node_data[MAX_NUMNODES];
872 
873 EXPORT_SYMBOL(numa_cpu_lookup_table);
874 EXPORT_SYMBOL(numa_cpumask_lookup_table);
875 EXPORT_SYMBOL(node_data);
876 
877 struct mdesc_mlgroup {
878 	u64	node;
879 	u64	latency;
880 	u64	match;
881 	u64	mask;
882 };
883 static struct mdesc_mlgroup *mlgroups;
884 static int num_mlgroups;
885 
886 static int scan_pio_for_cfg_handle(struct mdesc_handle *md, u64 pio,
887 				   u32 cfg_handle)
888 {
889 	u64 arc;
890 
891 	mdesc_for_each_arc(arc, md, pio, MDESC_ARC_TYPE_FWD) {
892 		u64 target = mdesc_arc_target(md, arc);
893 		const u64 *val;
894 
895 		val = mdesc_get_property(md, target,
896 					 "cfg-handle", NULL);
897 		if (val && *val == cfg_handle)
898 			return 0;
899 	}
900 	return -ENODEV;
901 }
902 
903 static int scan_arcs_for_cfg_handle(struct mdesc_handle *md, u64 grp,
904 				    u32 cfg_handle)
905 {
906 	u64 arc, candidate, best_latency = ~(u64)0;
907 
908 	candidate = MDESC_NODE_NULL;
909 	mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
910 		u64 target = mdesc_arc_target(md, arc);
911 		const char *name = mdesc_node_name(md, target);
912 		const u64 *val;
913 
914 		if (strcmp(name, "pio-latency-group"))
915 			continue;
916 
917 		val = mdesc_get_property(md, target, "latency", NULL);
918 		if (!val)
919 			continue;
920 
921 		if (*val < best_latency) {
922 			candidate = target;
923 			best_latency = *val;
924 		}
925 	}
926 
927 	if (candidate == MDESC_NODE_NULL)
928 		return -ENODEV;
929 
930 	return scan_pio_for_cfg_handle(md, candidate, cfg_handle);
931 }
932 
933 int of_node_to_nid(struct device_node *dp)
934 {
935 	const struct linux_prom64_registers *regs;
936 	struct mdesc_handle *md;
937 	u32 cfg_handle;
938 	int count, nid;
939 	u64 grp;
940 
941 	/* This is the right thing to do on currently supported
942 	 * SUN4U NUMA platforms as well, as the PCI controller does
943 	 * not sit behind any particular memory controller.
944 	 */
945 	if (!mlgroups)
946 		return -1;
947 
948 	regs = of_get_property(dp, "reg", NULL);
949 	if (!regs)
950 		return -1;
951 
952 	cfg_handle = (regs->phys_addr >> 32UL) & 0x0fffffff;
953 
954 	md = mdesc_grab();
955 
956 	count = 0;
957 	nid = -1;
958 	mdesc_for_each_node_by_name(md, grp, "group") {
959 		if (!scan_arcs_for_cfg_handle(md, grp, cfg_handle)) {
960 			nid = count;
961 			break;
962 		}
963 		count++;
964 	}
965 
966 	mdesc_release(md);
967 
968 	return nid;
969 }
970 
971 static void __init add_node_ranges(void)
972 {
973 	int i;
974 
975 	for (i = 0; i < lmb.memory.cnt; i++) {
976 		unsigned long size = lmb_size_bytes(&lmb.memory, i);
977 		unsigned long start, end;
978 
979 		start = lmb.memory.region[i].base;
980 		end = start + size;
981 		while (start < end) {
982 			unsigned long this_end;
983 			int nid;
984 
985 			this_end = nid_range(start, end, &nid);
986 
987 			numadbg("Adding active range nid[%d] "
988 				"start[%lx] end[%lx]\n",
989 				nid, start, this_end);
990 
991 			add_active_range(nid,
992 					 start >> PAGE_SHIFT,
993 					 this_end >> PAGE_SHIFT);
994 
995 			start = this_end;
996 		}
997 	}
998 }
999 
1000 static int __init grab_mlgroups(struct mdesc_handle *md)
1001 {
1002 	unsigned long paddr;
1003 	int count = 0;
1004 	u64 node;
1005 
1006 	mdesc_for_each_node_by_name(md, node, "memory-latency-group")
1007 		count++;
1008 	if (!count)
1009 		return -ENOENT;
1010 
1011 	paddr = lmb_alloc(count * sizeof(struct mdesc_mlgroup),
1012 			  SMP_CACHE_BYTES);
1013 	if (!paddr)
1014 		return -ENOMEM;
1015 
1016 	mlgroups = __va(paddr);
1017 	num_mlgroups = count;
1018 
1019 	count = 0;
1020 	mdesc_for_each_node_by_name(md, node, "memory-latency-group") {
1021 		struct mdesc_mlgroup *m = &mlgroups[count++];
1022 		const u64 *val;
1023 
1024 		m->node = node;
1025 
1026 		val = mdesc_get_property(md, node, "latency", NULL);
1027 		m->latency = *val;
1028 		val = mdesc_get_property(md, node, "address-match", NULL);
1029 		m->match = *val;
1030 		val = mdesc_get_property(md, node, "address-mask", NULL);
1031 		m->mask = *val;
1032 
1033 		numadbg("MLGROUP[%d]: node[%llx] latency[%llx] "
1034 			"match[%llx] mask[%llx]\n",
1035 			count - 1, m->node, m->latency, m->match, m->mask);
1036 	}
1037 
1038 	return 0;
1039 }
1040 
1041 static int __init grab_mblocks(struct mdesc_handle *md)
1042 {
1043 	unsigned long paddr;
1044 	int count = 0;
1045 	u64 node;
1046 
1047 	mdesc_for_each_node_by_name(md, node, "mblock")
1048 		count++;
1049 	if (!count)
1050 		return -ENOENT;
1051 
1052 	paddr = lmb_alloc(count * sizeof(struct mdesc_mblock),
1053 			  SMP_CACHE_BYTES);
1054 	if (!paddr)
1055 		return -ENOMEM;
1056 
1057 	mblocks = __va(paddr);
1058 	num_mblocks = count;
1059 
1060 	count = 0;
1061 	mdesc_for_each_node_by_name(md, node, "mblock") {
1062 		struct mdesc_mblock *m = &mblocks[count++];
1063 		const u64 *val;
1064 
1065 		val = mdesc_get_property(md, node, "base", NULL);
1066 		m->base = *val;
1067 		val = mdesc_get_property(md, node, "size", NULL);
1068 		m->size = *val;
1069 		val = mdesc_get_property(md, node,
1070 					 "address-congruence-offset", NULL);
1071 		m->offset = *val;
1072 
1073 		numadbg("MBLOCK[%d]: base[%llx] size[%llx] offset[%llx]\n",
1074 			count - 1, m->base, m->size, m->offset);
1075 	}
1076 
1077 	return 0;
1078 }
1079 
1080 static void __init numa_parse_mdesc_group_cpus(struct mdesc_handle *md,
1081 					       u64 grp, cpumask_t *mask)
1082 {
1083 	u64 arc;
1084 
1085 	cpus_clear(*mask);
1086 
1087 	mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_BACK) {
1088 		u64 target = mdesc_arc_target(md, arc);
1089 		const char *name = mdesc_node_name(md, target);
1090 		const u64 *id;
1091 
1092 		if (strcmp(name, "cpu"))
1093 			continue;
1094 		id = mdesc_get_property(md, target, "id", NULL);
1095 		if (*id < nr_cpu_ids)
1096 			cpu_set(*id, *mask);
1097 	}
1098 }
1099 
1100 static struct mdesc_mlgroup * __init find_mlgroup(u64 node)
1101 {
1102 	int i;
1103 
1104 	for (i = 0; i < num_mlgroups; i++) {
1105 		struct mdesc_mlgroup *m = &mlgroups[i];
1106 		if (m->node == node)
1107 			return m;
1108 	}
1109 	return NULL;
1110 }
1111 
1112 static int __init numa_attach_mlgroup(struct mdesc_handle *md, u64 grp,
1113 				      int index)
1114 {
1115 	struct mdesc_mlgroup *candidate = NULL;
1116 	u64 arc, best_latency = ~(u64)0;
1117 	struct node_mem_mask *n;
1118 
1119 	mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1120 		u64 target = mdesc_arc_target(md, arc);
1121 		struct mdesc_mlgroup *m = find_mlgroup(target);
1122 		if (!m)
1123 			continue;
1124 		if (m->latency < best_latency) {
1125 			candidate = m;
1126 			best_latency = m->latency;
1127 		}
1128 	}
1129 	if (!candidate)
1130 		return -ENOENT;
1131 
1132 	if (num_node_masks != index) {
1133 		printk(KERN_ERR "Inconsistent NUMA state, "
1134 		       "index[%d] != num_node_masks[%d]\n",
1135 		       index, num_node_masks);
1136 		return -EINVAL;
1137 	}
1138 
1139 	n = &node_masks[num_node_masks++];
1140 
1141 	n->mask = candidate->mask;
1142 	n->val = candidate->match;
1143 
1144 	numadbg("NUMA NODE[%d]: mask[%lx] val[%lx] (latency[%llx])\n",
1145 		index, n->mask, n->val, candidate->latency);
1146 
1147 	return 0;
1148 }
1149 
1150 static int __init numa_parse_mdesc_group(struct mdesc_handle *md, u64 grp,
1151 					 int index)
1152 {
1153 	cpumask_t mask;
1154 	int cpu;
1155 
1156 	numa_parse_mdesc_group_cpus(md, grp, &mask);
1157 
1158 	for_each_cpu_mask(cpu, mask)
1159 		numa_cpu_lookup_table[cpu] = index;
1160 	numa_cpumask_lookup_table[index] = mask;
1161 
1162 	if (numa_debug) {
1163 		printk(KERN_INFO "NUMA GROUP[%d]: cpus [ ", index);
1164 		for_each_cpu_mask(cpu, mask)
1165 			printk("%d ", cpu);
1166 		printk("]\n");
1167 	}
1168 
1169 	return numa_attach_mlgroup(md, grp, index);
1170 }
1171 
1172 static int __init numa_parse_mdesc(void)
1173 {
1174 	struct mdesc_handle *md = mdesc_grab();
1175 	int i, err, count;
1176 	u64 node;
1177 
1178 	node = mdesc_node_by_name(md, MDESC_NODE_NULL, "latency-groups");
1179 	if (node == MDESC_NODE_NULL) {
1180 		mdesc_release(md);
1181 		return -ENOENT;
1182 	}
1183 
1184 	err = grab_mblocks(md);
1185 	if (err < 0)
1186 		goto out;
1187 
1188 	err = grab_mlgroups(md);
1189 	if (err < 0)
1190 		goto out;
1191 
1192 	count = 0;
1193 	mdesc_for_each_node_by_name(md, node, "group") {
1194 		err = numa_parse_mdesc_group(md, node, count);
1195 		if (err < 0)
1196 			break;
1197 		count++;
1198 	}
1199 
1200 	add_node_ranges();
1201 
1202 	for (i = 0; i < num_node_masks; i++) {
1203 		allocate_node_data(i);
1204 		node_set_online(i);
1205 	}
1206 
1207 	err = 0;
1208 out:
1209 	mdesc_release(md);
1210 	return err;
1211 }
1212 
1213 static int __init numa_parse_jbus(void)
1214 {
1215 	unsigned long cpu, index;
1216 
1217 	/* NUMA node id is encoded in bits 36 and higher, and there is
1218 	 * a 1-to-1 mapping from CPU ID to NUMA node ID.
1219 	 */
1220 	index = 0;
1221 	for_each_present_cpu(cpu) {
1222 		numa_cpu_lookup_table[cpu] = index;
1223 		numa_cpumask_lookup_table[index] = cpumask_of_cpu(cpu);
1224 		node_masks[index].mask = ~((1UL << 36UL) - 1UL);
1225 		node_masks[index].val = cpu << 36UL;
1226 
1227 		index++;
1228 	}
1229 	num_node_masks = index;
1230 
1231 	add_node_ranges();
1232 
1233 	for (index = 0; index < num_node_masks; index++) {
1234 		allocate_node_data(index);
1235 		node_set_online(index);
1236 	}
1237 
1238 	return 0;
1239 }
1240 
1241 static int __init numa_parse_sun4u(void)
1242 {
1243 	if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1244 		unsigned long ver;
1245 
1246 		__asm__ ("rdpr %%ver, %0" : "=r" (ver));
1247 		if ((ver >> 32UL) == __JALAPENO_ID ||
1248 		    (ver >> 32UL) == __SERRANO_ID)
1249 			return numa_parse_jbus();
1250 	}
1251 	return -1;
1252 }
1253 
1254 static int __init bootmem_init_numa(void)
1255 {
1256 	int err = -1;
1257 
1258 	numadbg("bootmem_init_numa()\n");
1259 
1260 	if (numa_enabled) {
1261 		if (tlb_type == hypervisor)
1262 			err = numa_parse_mdesc();
1263 		else
1264 			err = numa_parse_sun4u();
1265 	}
1266 	return err;
1267 }
1268 
1269 #else
1270 
1271 static int bootmem_init_numa(void)
1272 {
1273 	return -1;
1274 }
1275 
1276 #endif
1277 
1278 static void __init bootmem_init_nonnuma(void)
1279 {
1280 	unsigned long top_of_ram = lmb_end_of_DRAM();
1281 	unsigned long total_ram = lmb_phys_mem_size();
1282 	unsigned int i;
1283 
1284 	numadbg("bootmem_init_nonnuma()\n");
1285 
1286 	printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
1287 	       top_of_ram, total_ram);
1288 	printk(KERN_INFO "Memory hole size: %ldMB\n",
1289 	       (top_of_ram - total_ram) >> 20);
1290 
1291 	init_node_masks_nonnuma();
1292 
1293 	for (i = 0; i < lmb.memory.cnt; i++) {
1294 		unsigned long size = lmb_size_bytes(&lmb.memory, i);
1295 		unsigned long start_pfn, end_pfn;
1296 
1297 		if (!size)
1298 			continue;
1299 
1300 		start_pfn = lmb.memory.region[i].base >> PAGE_SHIFT;
1301 		end_pfn = start_pfn + lmb_size_pages(&lmb.memory, i);
1302 		add_active_range(0, start_pfn, end_pfn);
1303 	}
1304 
1305 	allocate_node_data(0);
1306 
1307 	node_set_online(0);
1308 }
1309 
1310 static void __init reserve_range_in_node(int nid, unsigned long start,
1311 					 unsigned long end)
1312 {
1313 	numadbg("    reserve_range_in_node(nid[%d],start[%lx],end[%lx]\n",
1314 		nid, start, end);
1315 	while (start < end) {
1316 		unsigned long this_end;
1317 		int n;
1318 
1319 		this_end = nid_range(start, end, &n);
1320 		if (n == nid) {
1321 			numadbg("      MATCH reserving range [%lx:%lx]\n",
1322 				start, this_end);
1323 			reserve_bootmem_node(NODE_DATA(nid), start,
1324 					     (this_end - start), BOOTMEM_DEFAULT);
1325 		} else
1326 			numadbg("      NO MATCH, advancing start to %lx\n",
1327 				this_end);
1328 
1329 		start = this_end;
1330 	}
1331 }
1332 
1333 static void __init trim_reserved_in_node(int nid)
1334 {
1335 	int i;
1336 
1337 	numadbg("  trim_reserved_in_node(%d)\n", nid);
1338 
1339 	for (i = 0; i < lmb.reserved.cnt; i++) {
1340 		unsigned long start = lmb.reserved.region[i].base;
1341 		unsigned long size = lmb_size_bytes(&lmb.reserved, i);
1342 		unsigned long end = start + size;
1343 
1344 		reserve_range_in_node(nid, start, end);
1345 	}
1346 }
1347 
1348 static void __init bootmem_init_one_node(int nid)
1349 {
1350 	struct pglist_data *p;
1351 
1352 	numadbg("bootmem_init_one_node(%d)\n", nid);
1353 
1354 	p = NODE_DATA(nid);
1355 
1356 	if (p->node_spanned_pages) {
1357 		unsigned long paddr = node_masks[nid].bootmem_paddr;
1358 		unsigned long end_pfn;
1359 
1360 		end_pfn = p->node_start_pfn + p->node_spanned_pages;
1361 
1362 		numadbg("  init_bootmem_node(%d, %lx, %lx, %lx)\n",
1363 			nid, paddr >> PAGE_SHIFT, p->node_start_pfn, end_pfn);
1364 
1365 		init_bootmem_node(p, paddr >> PAGE_SHIFT,
1366 				  p->node_start_pfn, end_pfn);
1367 
1368 		numadbg("  free_bootmem_with_active_regions(%d, %lx)\n",
1369 			nid, end_pfn);
1370 		free_bootmem_with_active_regions(nid, end_pfn);
1371 
1372 		trim_reserved_in_node(nid);
1373 
1374 		numadbg("  sparse_memory_present_with_active_regions(%d)\n",
1375 			nid);
1376 		sparse_memory_present_with_active_regions(nid);
1377 	}
1378 }
1379 
1380 static unsigned long __init bootmem_init(unsigned long phys_base)
1381 {
1382 	unsigned long end_pfn;
1383 	int nid;
1384 
1385 	end_pfn = lmb_end_of_DRAM() >> PAGE_SHIFT;
1386 	max_pfn = max_low_pfn = end_pfn;
1387 	min_low_pfn = (phys_base >> PAGE_SHIFT);
1388 
1389 	if (bootmem_init_numa() < 0)
1390 		bootmem_init_nonnuma();
1391 
1392 	/* XXX cpu notifier XXX */
1393 
1394 	for_each_online_node(nid)
1395 		bootmem_init_one_node(nid);
1396 
1397 	sparse_init();
1398 
1399 	return end_pfn;
1400 }
1401 
1402 static struct linux_prom64_registers pall[MAX_BANKS] __initdata;
1403 static int pall_ents __initdata;
1404 
1405 #ifdef CONFIG_DEBUG_PAGEALLOC
1406 static unsigned long __ref kernel_map_range(unsigned long pstart,
1407 					    unsigned long pend, pgprot_t prot)
1408 {
1409 	unsigned long vstart = PAGE_OFFSET + pstart;
1410 	unsigned long vend = PAGE_OFFSET + pend;
1411 	unsigned long alloc_bytes = 0UL;
1412 
1413 	if ((vstart & ~PAGE_MASK) || (vend & ~PAGE_MASK)) {
1414 		prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n",
1415 			    vstart, vend);
1416 		prom_halt();
1417 	}
1418 
1419 	while (vstart < vend) {
1420 		unsigned long this_end, paddr = __pa(vstart);
1421 		pgd_t *pgd = pgd_offset_k(vstart);
1422 		pud_t *pud;
1423 		pmd_t *pmd;
1424 		pte_t *pte;
1425 
1426 		pud = pud_offset(pgd, vstart);
1427 		if (pud_none(*pud)) {
1428 			pmd_t *new;
1429 
1430 			new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1431 			alloc_bytes += PAGE_SIZE;
1432 			pud_populate(&init_mm, pud, new);
1433 		}
1434 
1435 		pmd = pmd_offset(pud, vstart);
1436 		if (!pmd_present(*pmd)) {
1437 			pte_t *new;
1438 
1439 			new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1440 			alloc_bytes += PAGE_SIZE;
1441 			pmd_populate_kernel(&init_mm, pmd, new);
1442 		}
1443 
1444 		pte = pte_offset_kernel(pmd, vstart);
1445 		this_end = (vstart + PMD_SIZE) & PMD_MASK;
1446 		if (this_end > vend)
1447 			this_end = vend;
1448 
1449 		while (vstart < this_end) {
1450 			pte_val(*pte) = (paddr | pgprot_val(prot));
1451 
1452 			vstart += PAGE_SIZE;
1453 			paddr += PAGE_SIZE;
1454 			pte++;
1455 		}
1456 	}
1457 
1458 	return alloc_bytes;
1459 }
1460 
1461 extern unsigned int kvmap_linear_patch[1];
1462 #endif /* CONFIG_DEBUG_PAGEALLOC */
1463 
1464 static void __init mark_kpte_bitmap(unsigned long start, unsigned long end)
1465 {
1466 	const unsigned long shift_256MB = 28;
1467 	const unsigned long mask_256MB = ((1UL << shift_256MB) - 1UL);
1468 	const unsigned long size_256MB = (1UL << shift_256MB);
1469 
1470 	while (start < end) {
1471 		long remains;
1472 
1473 		remains = end - start;
1474 		if (remains < size_256MB)
1475 			break;
1476 
1477 		if (start & mask_256MB) {
1478 			start = (start + size_256MB) & ~mask_256MB;
1479 			continue;
1480 		}
1481 
1482 		while (remains >= size_256MB) {
1483 			unsigned long index = start >> shift_256MB;
1484 
1485 			__set_bit(index, kpte_linear_bitmap);
1486 
1487 			start += size_256MB;
1488 			remains -= size_256MB;
1489 		}
1490 	}
1491 }
1492 
1493 static void __init init_kpte_bitmap(void)
1494 {
1495 	unsigned long i;
1496 
1497 	for (i = 0; i < pall_ents; i++) {
1498 		unsigned long phys_start, phys_end;
1499 
1500 		phys_start = pall[i].phys_addr;
1501 		phys_end = phys_start + pall[i].reg_size;
1502 
1503 		mark_kpte_bitmap(phys_start, phys_end);
1504 	}
1505 }
1506 
1507 static void __init kernel_physical_mapping_init(void)
1508 {
1509 #ifdef CONFIG_DEBUG_PAGEALLOC
1510 	unsigned long i, mem_alloced = 0UL;
1511 
1512 	for (i = 0; i < pall_ents; i++) {
1513 		unsigned long phys_start, phys_end;
1514 
1515 		phys_start = pall[i].phys_addr;
1516 		phys_end = phys_start + pall[i].reg_size;
1517 
1518 		mem_alloced += kernel_map_range(phys_start, phys_end,
1519 						PAGE_KERNEL);
1520 	}
1521 
1522 	printk("Allocated %ld bytes for kernel page tables.\n",
1523 	       mem_alloced);
1524 
1525 	kvmap_linear_patch[0] = 0x01000000; /* nop */
1526 	flushi(&kvmap_linear_patch[0]);
1527 
1528 	__flush_tlb_all();
1529 #endif
1530 }
1531 
1532 #ifdef CONFIG_DEBUG_PAGEALLOC
1533 void kernel_map_pages(struct page *page, int numpages, int enable)
1534 {
1535 	unsigned long phys_start = page_to_pfn(page) << PAGE_SHIFT;
1536 	unsigned long phys_end = phys_start + (numpages * PAGE_SIZE);
1537 
1538 	kernel_map_range(phys_start, phys_end,
1539 			 (enable ? PAGE_KERNEL : __pgprot(0)));
1540 
1541 	flush_tsb_kernel_range(PAGE_OFFSET + phys_start,
1542 			       PAGE_OFFSET + phys_end);
1543 
1544 	/* we should perform an IPI and flush all tlbs,
1545 	 * but that can deadlock->flush only current cpu.
1546 	 */
1547 	__flush_tlb_kernel_range(PAGE_OFFSET + phys_start,
1548 				 PAGE_OFFSET + phys_end);
1549 }
1550 #endif
1551 
1552 unsigned long __init find_ecache_flush_span(unsigned long size)
1553 {
1554 	int i;
1555 
1556 	for (i = 0; i < pavail_ents; i++) {
1557 		if (pavail[i].reg_size >= size)
1558 			return pavail[i].phys_addr;
1559 	}
1560 
1561 	return ~0UL;
1562 }
1563 
1564 static void __init tsb_phys_patch(void)
1565 {
1566 	struct tsb_ldquad_phys_patch_entry *pquad;
1567 	struct tsb_phys_patch_entry *p;
1568 
1569 	pquad = &__tsb_ldquad_phys_patch;
1570 	while (pquad < &__tsb_ldquad_phys_patch_end) {
1571 		unsigned long addr = pquad->addr;
1572 
1573 		if (tlb_type == hypervisor)
1574 			*(unsigned int *) addr = pquad->sun4v_insn;
1575 		else
1576 			*(unsigned int *) addr = pquad->sun4u_insn;
1577 		wmb();
1578 		__asm__ __volatile__("flush	%0"
1579 				     : /* no outputs */
1580 				     : "r" (addr));
1581 
1582 		pquad++;
1583 	}
1584 
1585 	p = &__tsb_phys_patch;
1586 	while (p < &__tsb_phys_patch_end) {
1587 		unsigned long addr = p->addr;
1588 
1589 		*(unsigned int *) addr = p->insn;
1590 		wmb();
1591 		__asm__ __volatile__("flush	%0"
1592 				     : /* no outputs */
1593 				     : "r" (addr));
1594 
1595 		p++;
1596 	}
1597 }
1598 
1599 /* Don't mark as init, we give this to the Hypervisor.  */
1600 #ifndef CONFIG_DEBUG_PAGEALLOC
1601 #define NUM_KTSB_DESCR	2
1602 #else
1603 #define NUM_KTSB_DESCR	1
1604 #endif
1605 static struct hv_tsb_descr ktsb_descr[NUM_KTSB_DESCR];
1606 extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
1607 
1608 static void __init sun4v_ktsb_init(void)
1609 {
1610 	unsigned long ktsb_pa;
1611 
1612 	/* First KTSB for PAGE_SIZE mappings.  */
1613 	ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
1614 
1615 	switch (PAGE_SIZE) {
1616 	case 8 * 1024:
1617 	default:
1618 		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_8K;
1619 		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_8K;
1620 		break;
1621 
1622 	case 64 * 1024:
1623 		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_64K;
1624 		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_64K;
1625 		break;
1626 
1627 	case 512 * 1024:
1628 		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_512K;
1629 		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_512K;
1630 		break;
1631 
1632 	case 4 * 1024 * 1024:
1633 		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_4MB;
1634 		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_4MB;
1635 		break;
1636 	};
1637 
1638 	ktsb_descr[0].assoc = 1;
1639 	ktsb_descr[0].num_ttes = KERNEL_TSB_NENTRIES;
1640 	ktsb_descr[0].ctx_idx = 0;
1641 	ktsb_descr[0].tsb_base = ktsb_pa;
1642 	ktsb_descr[0].resv = 0;
1643 
1644 #ifndef CONFIG_DEBUG_PAGEALLOC
1645 	/* Second KTSB for 4MB/256MB mappings.  */
1646 	ktsb_pa = (kern_base +
1647 		   ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
1648 
1649 	ktsb_descr[1].pgsz_idx = HV_PGSZ_IDX_4MB;
1650 	ktsb_descr[1].pgsz_mask = (HV_PGSZ_MASK_4MB |
1651 				   HV_PGSZ_MASK_256MB);
1652 	ktsb_descr[1].assoc = 1;
1653 	ktsb_descr[1].num_ttes = KERNEL_TSB4M_NENTRIES;
1654 	ktsb_descr[1].ctx_idx = 0;
1655 	ktsb_descr[1].tsb_base = ktsb_pa;
1656 	ktsb_descr[1].resv = 0;
1657 #endif
1658 }
1659 
1660 void __cpuinit sun4v_ktsb_register(void)
1661 {
1662 	unsigned long pa, ret;
1663 
1664 	pa = kern_base + ((unsigned long)&ktsb_descr[0] - KERNBASE);
1665 
1666 	ret = sun4v_mmu_tsb_ctx0(NUM_KTSB_DESCR, pa);
1667 	if (ret != 0) {
1668 		prom_printf("hypervisor_mmu_tsb_ctx0[%lx]: "
1669 			    "errors with %lx\n", pa, ret);
1670 		prom_halt();
1671 	}
1672 }
1673 
1674 /* paging_init() sets up the page tables */
1675 
1676 static unsigned long last_valid_pfn;
1677 pgd_t swapper_pg_dir[2048];
1678 
1679 static void sun4u_pgprot_init(void);
1680 static void sun4v_pgprot_init(void);
1681 
1682 /* Dummy function */
1683 void __init setup_per_cpu_areas(void)
1684 {
1685 }
1686 
1687 void __init paging_init(void)
1688 {
1689 	unsigned long end_pfn, shift, phys_base;
1690 	unsigned long real_end, i;
1691 
1692 	/* These build time checkes make sure that the dcache_dirty_cpu()
1693 	 * page->flags usage will work.
1694 	 *
1695 	 * When a page gets marked as dcache-dirty, we store the
1696 	 * cpu number starting at bit 32 in the page->flags.  Also,
1697 	 * functions like clear_dcache_dirty_cpu use the cpu mask
1698 	 * in 13-bit signed-immediate instruction fields.
1699 	 */
1700 
1701 	/*
1702 	 * Page flags must not reach into upper 32 bits that are used
1703 	 * for the cpu number
1704 	 */
1705 	BUILD_BUG_ON(NR_PAGEFLAGS > 32);
1706 
1707 	/*
1708 	 * The bit fields placed in the high range must not reach below
1709 	 * the 32 bit boundary. Otherwise we cannot place the cpu field
1710 	 * at the 32 bit boundary.
1711 	 */
1712 	BUILD_BUG_ON(SECTIONS_WIDTH + NODES_WIDTH + ZONES_WIDTH +
1713 		ilog2(roundup_pow_of_two(NR_CPUS)) > 32);
1714 
1715 	BUILD_BUG_ON(NR_CPUS > 4096);
1716 
1717 	kern_base = (prom_boot_mapping_phys_low >> 22UL) << 22UL;
1718 	kern_size = (unsigned long)&_end - (unsigned long)KERNBASE;
1719 
1720 	/* Invalidate both kernel TSBs.  */
1721 	memset(swapper_tsb, 0x40, sizeof(swapper_tsb));
1722 #ifndef CONFIG_DEBUG_PAGEALLOC
1723 	memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
1724 #endif
1725 
1726 	if (tlb_type == hypervisor)
1727 		sun4v_pgprot_init();
1728 	else
1729 		sun4u_pgprot_init();
1730 
1731 	if (tlb_type == cheetah_plus ||
1732 	    tlb_type == hypervisor)
1733 		tsb_phys_patch();
1734 
1735 	if (tlb_type == hypervisor) {
1736 		sun4v_patch_tlb_handlers();
1737 		sun4v_ktsb_init();
1738 	}
1739 
1740 	lmb_init();
1741 
1742 	/* Find available physical memory...
1743 	 *
1744 	 * Read it twice in order to work around a bug in openfirmware.
1745 	 * The call to grab this table itself can cause openfirmware to
1746 	 * allocate memory, which in turn can take away some space from
1747 	 * the list of available memory.  Reading it twice makes sure
1748 	 * we really do get the final value.
1749 	 */
1750 	read_obp_translations();
1751 	read_obp_memory("reg", &pall[0], &pall_ents);
1752 	read_obp_memory("available", &pavail[0], &pavail_ents);
1753 	read_obp_memory("available", &pavail[0], &pavail_ents);
1754 
1755 	phys_base = 0xffffffffffffffffUL;
1756 	for (i = 0; i < pavail_ents; i++) {
1757 		phys_base = min(phys_base, pavail[i].phys_addr);
1758 		lmb_add(pavail[i].phys_addr, pavail[i].reg_size);
1759 	}
1760 
1761 	lmb_reserve(kern_base, kern_size);
1762 
1763 	find_ramdisk(phys_base);
1764 
1765 	lmb_enforce_memory_limit(cmdline_memory_size);
1766 
1767 	lmb_analyze();
1768 	lmb_dump_all();
1769 
1770 	set_bit(0, mmu_context_bmap);
1771 
1772 	shift = kern_base + PAGE_OFFSET - ((unsigned long)KERNBASE);
1773 
1774 	real_end = (unsigned long)_end;
1775 	num_kernel_image_mappings = DIV_ROUND_UP(real_end - KERNBASE, 1 << 22);
1776 	printk("Kernel: Using %d locked TLB entries for main kernel image.\n",
1777 	       num_kernel_image_mappings);
1778 
1779 	/* Set kernel pgd to upper alias so physical page computations
1780 	 * work.
1781 	 */
1782 	init_mm.pgd += ((shift) / (sizeof(pgd_t)));
1783 
1784 	memset(swapper_low_pmd_dir, 0, sizeof(swapper_low_pmd_dir));
1785 
1786 	/* Now can init the kernel/bad page tables. */
1787 	pud_set(pud_offset(&swapper_pg_dir[0], 0),
1788 		swapper_low_pmd_dir + (shift / sizeof(pgd_t)));
1789 
1790 	inherit_prom_mappings();
1791 
1792 	init_kpte_bitmap();
1793 
1794 	/* Ok, we can use our TLB miss and window trap handlers safely.  */
1795 	setup_tba();
1796 
1797 	__flush_tlb_all();
1798 
1799 	if (tlb_type == hypervisor)
1800 		sun4v_ktsb_register();
1801 
1802 	/* We must setup the per-cpu areas before we pull in the
1803 	 * PROM and the MDESC.  The code there fills in cpu and
1804 	 * other information into per-cpu data structures.
1805 	 */
1806 	real_setup_per_cpu_areas();
1807 
1808 	prom_build_devicetree();
1809 
1810 	if (tlb_type == hypervisor)
1811 		sun4v_mdesc_init();
1812 
1813 	/* Once the OF device tree and MDESC have been setup, we know
1814 	 * the list of possible cpus.  Therefore we can allocate the
1815 	 * IRQ stacks.
1816 	 */
1817 	for_each_possible_cpu(i) {
1818 		/* XXX Use node local allocations... XXX */
1819 		softirq_stack[i] = __va(lmb_alloc(THREAD_SIZE, THREAD_SIZE));
1820 		hardirq_stack[i] = __va(lmb_alloc(THREAD_SIZE, THREAD_SIZE));
1821 	}
1822 
1823 	/* Setup bootmem... */
1824 	last_valid_pfn = end_pfn = bootmem_init(phys_base);
1825 
1826 #ifndef CONFIG_NEED_MULTIPLE_NODES
1827 	max_mapnr = last_valid_pfn;
1828 #endif
1829 	kernel_physical_mapping_init();
1830 
1831 	{
1832 		unsigned long max_zone_pfns[MAX_NR_ZONES];
1833 
1834 		memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
1835 
1836 		max_zone_pfns[ZONE_NORMAL] = end_pfn;
1837 
1838 		free_area_init_nodes(max_zone_pfns);
1839 	}
1840 
1841 	printk("Booting Linux...\n");
1842 }
1843 
1844 int __devinit page_in_phys_avail(unsigned long paddr)
1845 {
1846 	int i;
1847 
1848 	paddr &= PAGE_MASK;
1849 
1850 	for (i = 0; i < pavail_ents; i++) {
1851 		unsigned long start, end;
1852 
1853 		start = pavail[i].phys_addr;
1854 		end = start + pavail[i].reg_size;
1855 
1856 		if (paddr >= start && paddr < end)
1857 			return 1;
1858 	}
1859 	if (paddr >= kern_base && paddr < (kern_base + kern_size))
1860 		return 1;
1861 #ifdef CONFIG_BLK_DEV_INITRD
1862 	if (paddr >= __pa(initrd_start) &&
1863 	    paddr < __pa(PAGE_ALIGN(initrd_end)))
1864 		return 1;
1865 #endif
1866 
1867 	return 0;
1868 }
1869 
1870 static struct linux_prom64_registers pavail_rescan[MAX_BANKS] __initdata;
1871 static int pavail_rescan_ents __initdata;
1872 
1873 /* Certain OBP calls, such as fetching "available" properties, can
1874  * claim physical memory.  So, along with initializing the valid
1875  * address bitmap, what we do here is refetch the physical available
1876  * memory list again, and make sure it provides at least as much
1877  * memory as 'pavail' does.
1878  */
1879 static void __init setup_valid_addr_bitmap_from_pavail(void)
1880 {
1881 	int i;
1882 
1883 	read_obp_memory("available", &pavail_rescan[0], &pavail_rescan_ents);
1884 
1885 	for (i = 0; i < pavail_ents; i++) {
1886 		unsigned long old_start, old_end;
1887 
1888 		old_start = pavail[i].phys_addr;
1889 		old_end = old_start + pavail[i].reg_size;
1890 		while (old_start < old_end) {
1891 			int n;
1892 
1893 			for (n = 0; n < pavail_rescan_ents; n++) {
1894 				unsigned long new_start, new_end;
1895 
1896 				new_start = pavail_rescan[n].phys_addr;
1897 				new_end = new_start +
1898 					pavail_rescan[n].reg_size;
1899 
1900 				if (new_start <= old_start &&
1901 				    new_end >= (old_start + PAGE_SIZE)) {
1902 					set_bit(old_start >> 22,
1903 						sparc64_valid_addr_bitmap);
1904 					goto do_next_page;
1905 				}
1906 			}
1907 
1908 			prom_printf("mem_init: Lost memory in pavail\n");
1909 			prom_printf("mem_init: OLD start[%lx] size[%lx]\n",
1910 				    pavail[i].phys_addr,
1911 				    pavail[i].reg_size);
1912 			prom_printf("mem_init: NEW start[%lx] size[%lx]\n",
1913 				    pavail_rescan[i].phys_addr,
1914 				    pavail_rescan[i].reg_size);
1915 			prom_printf("mem_init: Cannot continue, aborting.\n");
1916 			prom_halt();
1917 
1918 		do_next_page:
1919 			old_start += PAGE_SIZE;
1920 		}
1921 	}
1922 }
1923 
1924 void __init mem_init(void)
1925 {
1926 	unsigned long codepages, datapages, initpages;
1927 	unsigned long addr, last;
1928 	int i;
1929 
1930 	i = last_valid_pfn >> ((22 - PAGE_SHIFT) + 6);
1931 	i += 1;
1932 	sparc64_valid_addr_bitmap = (unsigned long *) alloc_bootmem(i << 3);
1933 	if (sparc64_valid_addr_bitmap == NULL) {
1934 		prom_printf("mem_init: Cannot alloc valid_addr_bitmap.\n");
1935 		prom_halt();
1936 	}
1937 	memset(sparc64_valid_addr_bitmap, 0, i << 3);
1938 
1939 	addr = PAGE_OFFSET + kern_base;
1940 	last = PAGE_ALIGN(kern_size) + addr;
1941 	while (addr < last) {
1942 		set_bit(__pa(addr) >> 22, sparc64_valid_addr_bitmap);
1943 		addr += PAGE_SIZE;
1944 	}
1945 
1946 	setup_valid_addr_bitmap_from_pavail();
1947 
1948 	high_memory = __va(last_valid_pfn << PAGE_SHIFT);
1949 
1950 #ifdef CONFIG_NEED_MULTIPLE_NODES
1951 	for_each_online_node(i) {
1952 		if (NODE_DATA(i)->node_spanned_pages != 0) {
1953 			totalram_pages +=
1954 				free_all_bootmem_node(NODE_DATA(i));
1955 		}
1956 	}
1957 #else
1958 	totalram_pages = free_all_bootmem();
1959 #endif
1960 
1961 	/* We subtract one to account for the mem_map_zero page
1962 	 * allocated below.
1963 	 */
1964 	totalram_pages -= 1;
1965 	num_physpages = totalram_pages;
1966 
1967 	/*
1968 	 * Set up the zero page, mark it reserved, so that page count
1969 	 * is not manipulated when freeing the page from user ptes.
1970 	 */
1971 	mem_map_zero = alloc_pages(GFP_KERNEL|__GFP_ZERO, 0);
1972 	if (mem_map_zero == NULL) {
1973 		prom_printf("paging_init: Cannot alloc zero page.\n");
1974 		prom_halt();
1975 	}
1976 	SetPageReserved(mem_map_zero);
1977 
1978 	codepages = (((unsigned long) _etext) - ((unsigned long) _start));
1979 	codepages = PAGE_ALIGN(codepages) >> PAGE_SHIFT;
1980 	datapages = (((unsigned long) _edata) - ((unsigned long) _etext));
1981 	datapages = PAGE_ALIGN(datapages) >> PAGE_SHIFT;
1982 	initpages = (((unsigned long) __init_end) - ((unsigned long) __init_begin));
1983 	initpages = PAGE_ALIGN(initpages) >> PAGE_SHIFT;
1984 
1985 	printk("Memory: %luk available (%ldk kernel code, %ldk data, %ldk init) [%016lx,%016lx]\n",
1986 	       nr_free_pages() << (PAGE_SHIFT-10),
1987 	       codepages << (PAGE_SHIFT-10),
1988 	       datapages << (PAGE_SHIFT-10),
1989 	       initpages << (PAGE_SHIFT-10),
1990 	       PAGE_OFFSET, (last_valid_pfn << PAGE_SHIFT));
1991 
1992 	if (tlb_type == cheetah || tlb_type == cheetah_plus)
1993 		cheetah_ecache_flush_init();
1994 }
1995 
1996 void free_initmem(void)
1997 {
1998 	unsigned long addr, initend;
1999 	int do_free = 1;
2000 
2001 	/* If the physical memory maps were trimmed by kernel command
2002 	 * line options, don't even try freeing this initmem stuff up.
2003 	 * The kernel image could have been in the trimmed out region
2004 	 * and if so the freeing below will free invalid page structs.
2005 	 */
2006 	if (cmdline_memory_size)
2007 		do_free = 0;
2008 
2009 	/*
2010 	 * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes.
2011 	 */
2012 	addr = PAGE_ALIGN((unsigned long)(__init_begin));
2013 	initend = (unsigned long)(__init_end) & PAGE_MASK;
2014 	for (; addr < initend; addr += PAGE_SIZE) {
2015 		unsigned long page;
2016 		struct page *p;
2017 
2018 		page = (addr +
2019 			((unsigned long) __va(kern_base)) -
2020 			((unsigned long) KERNBASE));
2021 		memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
2022 
2023 		if (do_free) {
2024 			p = virt_to_page(page);
2025 
2026 			ClearPageReserved(p);
2027 			init_page_count(p);
2028 			__free_page(p);
2029 			num_physpages++;
2030 			totalram_pages++;
2031 		}
2032 	}
2033 }
2034 
2035 #ifdef CONFIG_BLK_DEV_INITRD
2036 void free_initrd_mem(unsigned long start, unsigned long end)
2037 {
2038 	if (start < end)
2039 		printk ("Freeing initrd memory: %ldk freed\n", (end - start) >> 10);
2040 	for (; start < end; start += PAGE_SIZE) {
2041 		struct page *p = virt_to_page(start);
2042 
2043 		ClearPageReserved(p);
2044 		init_page_count(p);
2045 		__free_page(p);
2046 		num_physpages++;
2047 		totalram_pages++;
2048 	}
2049 }
2050 #endif
2051 
2052 #define _PAGE_CACHE_4U	(_PAGE_CP_4U | _PAGE_CV_4U)
2053 #define _PAGE_CACHE_4V	(_PAGE_CP_4V | _PAGE_CV_4V)
2054 #define __DIRTY_BITS_4U	 (_PAGE_MODIFIED_4U | _PAGE_WRITE_4U | _PAGE_W_4U)
2055 #define __DIRTY_BITS_4V	 (_PAGE_MODIFIED_4V | _PAGE_WRITE_4V | _PAGE_W_4V)
2056 #define __ACCESS_BITS_4U (_PAGE_ACCESSED_4U | _PAGE_READ_4U | _PAGE_R)
2057 #define __ACCESS_BITS_4V (_PAGE_ACCESSED_4V | _PAGE_READ_4V | _PAGE_R)
2058 
2059 pgprot_t PAGE_KERNEL __read_mostly;
2060 EXPORT_SYMBOL(PAGE_KERNEL);
2061 
2062 pgprot_t PAGE_KERNEL_LOCKED __read_mostly;
2063 pgprot_t PAGE_COPY __read_mostly;
2064 
2065 pgprot_t PAGE_SHARED __read_mostly;
2066 EXPORT_SYMBOL(PAGE_SHARED);
2067 
2068 unsigned long pg_iobits __read_mostly;
2069 
2070 unsigned long _PAGE_IE __read_mostly;
2071 EXPORT_SYMBOL(_PAGE_IE);
2072 
2073 unsigned long _PAGE_E __read_mostly;
2074 EXPORT_SYMBOL(_PAGE_E);
2075 
2076 unsigned long _PAGE_CACHE __read_mostly;
2077 EXPORT_SYMBOL(_PAGE_CACHE);
2078 
2079 #ifdef CONFIG_SPARSEMEM_VMEMMAP
2080 unsigned long vmemmap_table[VMEMMAP_SIZE];
2081 
2082 int __meminit vmemmap_populate(struct page *start, unsigned long nr, int node)
2083 {
2084 	unsigned long vstart = (unsigned long) start;
2085 	unsigned long vend = (unsigned long) (start + nr);
2086 	unsigned long phys_start = (vstart - VMEMMAP_BASE);
2087 	unsigned long phys_end = (vend - VMEMMAP_BASE);
2088 	unsigned long addr = phys_start & VMEMMAP_CHUNK_MASK;
2089 	unsigned long end = VMEMMAP_ALIGN(phys_end);
2090 	unsigned long pte_base;
2091 
2092 	pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2093 		    _PAGE_CP_4U | _PAGE_CV_4U |
2094 		    _PAGE_P_4U | _PAGE_W_4U);
2095 	if (tlb_type == hypervisor)
2096 		pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2097 			    _PAGE_CP_4V | _PAGE_CV_4V |
2098 			    _PAGE_P_4V | _PAGE_W_4V);
2099 
2100 	for (; addr < end; addr += VMEMMAP_CHUNK) {
2101 		unsigned long *vmem_pp =
2102 			vmemmap_table + (addr >> VMEMMAP_CHUNK_SHIFT);
2103 		void *block;
2104 
2105 		if (!(*vmem_pp & _PAGE_VALID)) {
2106 			block = vmemmap_alloc_block(1UL << 22, node);
2107 			if (!block)
2108 				return -ENOMEM;
2109 
2110 			*vmem_pp = pte_base | __pa(block);
2111 
2112 			printk(KERN_INFO "[%p-%p] page_structs=%lu "
2113 			       "node=%d entry=%lu/%lu\n", start, block, nr,
2114 			       node,
2115 			       addr >> VMEMMAP_CHUNK_SHIFT,
2116 			       VMEMMAP_SIZE >> VMEMMAP_CHUNK_SHIFT);
2117 		}
2118 	}
2119 	return 0;
2120 }
2121 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
2122 
2123 static void prot_init_common(unsigned long page_none,
2124 			     unsigned long page_shared,
2125 			     unsigned long page_copy,
2126 			     unsigned long page_readonly,
2127 			     unsigned long page_exec_bit)
2128 {
2129 	PAGE_COPY = __pgprot(page_copy);
2130 	PAGE_SHARED = __pgprot(page_shared);
2131 
2132 	protection_map[0x0] = __pgprot(page_none);
2133 	protection_map[0x1] = __pgprot(page_readonly & ~page_exec_bit);
2134 	protection_map[0x2] = __pgprot(page_copy & ~page_exec_bit);
2135 	protection_map[0x3] = __pgprot(page_copy & ~page_exec_bit);
2136 	protection_map[0x4] = __pgprot(page_readonly);
2137 	protection_map[0x5] = __pgprot(page_readonly);
2138 	protection_map[0x6] = __pgprot(page_copy);
2139 	protection_map[0x7] = __pgprot(page_copy);
2140 	protection_map[0x8] = __pgprot(page_none);
2141 	protection_map[0x9] = __pgprot(page_readonly & ~page_exec_bit);
2142 	protection_map[0xa] = __pgprot(page_shared & ~page_exec_bit);
2143 	protection_map[0xb] = __pgprot(page_shared & ~page_exec_bit);
2144 	protection_map[0xc] = __pgprot(page_readonly);
2145 	protection_map[0xd] = __pgprot(page_readonly);
2146 	protection_map[0xe] = __pgprot(page_shared);
2147 	protection_map[0xf] = __pgprot(page_shared);
2148 }
2149 
2150 static void __init sun4u_pgprot_init(void)
2151 {
2152 	unsigned long page_none, page_shared, page_copy, page_readonly;
2153 	unsigned long page_exec_bit;
2154 
2155 	PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2156 				_PAGE_CACHE_4U | _PAGE_P_4U |
2157 				__ACCESS_BITS_4U | __DIRTY_BITS_4U |
2158 				_PAGE_EXEC_4U);
2159 	PAGE_KERNEL_LOCKED = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2160 				       _PAGE_CACHE_4U | _PAGE_P_4U |
2161 				       __ACCESS_BITS_4U | __DIRTY_BITS_4U |
2162 				       _PAGE_EXEC_4U | _PAGE_L_4U);
2163 
2164 	_PAGE_IE = _PAGE_IE_4U;
2165 	_PAGE_E = _PAGE_E_4U;
2166 	_PAGE_CACHE = _PAGE_CACHE_4U;
2167 
2168 	pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4U | __DIRTY_BITS_4U |
2169 		     __ACCESS_BITS_4U | _PAGE_E_4U);
2170 
2171 #ifdef CONFIG_DEBUG_PAGEALLOC
2172 	kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZBITS_4U) ^
2173 		0xfffff80000000000UL;
2174 #else
2175 	kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4U) ^
2176 		0xfffff80000000000UL;
2177 #endif
2178 	kern_linear_pte_xor[0] |= (_PAGE_CP_4U | _PAGE_CV_4U |
2179 				   _PAGE_P_4U | _PAGE_W_4U);
2180 
2181 	/* XXX Should use 256MB on Panther. XXX */
2182 	kern_linear_pte_xor[1] = kern_linear_pte_xor[0];
2183 
2184 	_PAGE_SZBITS = _PAGE_SZBITS_4U;
2185 	_PAGE_ALL_SZ_BITS =  (_PAGE_SZ4MB_4U | _PAGE_SZ512K_4U |
2186 			      _PAGE_SZ64K_4U | _PAGE_SZ8K_4U |
2187 			      _PAGE_SZ32MB_4U | _PAGE_SZ256MB_4U);
2188 
2189 
2190 	page_none = _PAGE_PRESENT_4U | _PAGE_ACCESSED_4U | _PAGE_CACHE_4U;
2191 	page_shared = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2192 		       __ACCESS_BITS_4U | _PAGE_WRITE_4U | _PAGE_EXEC_4U);
2193 	page_copy   = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2194 		       __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2195 	page_readonly   = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2196 			   __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2197 
2198 	page_exec_bit = _PAGE_EXEC_4U;
2199 
2200 	prot_init_common(page_none, page_shared, page_copy, page_readonly,
2201 			 page_exec_bit);
2202 }
2203 
2204 static void __init sun4v_pgprot_init(void)
2205 {
2206 	unsigned long page_none, page_shared, page_copy, page_readonly;
2207 	unsigned long page_exec_bit;
2208 
2209 	PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4V | _PAGE_VALID |
2210 				_PAGE_CACHE_4V | _PAGE_P_4V |
2211 				__ACCESS_BITS_4V | __DIRTY_BITS_4V |
2212 				_PAGE_EXEC_4V);
2213 	PAGE_KERNEL_LOCKED = PAGE_KERNEL;
2214 
2215 	_PAGE_IE = _PAGE_IE_4V;
2216 	_PAGE_E = _PAGE_E_4V;
2217 	_PAGE_CACHE = _PAGE_CACHE_4V;
2218 
2219 #ifdef CONFIG_DEBUG_PAGEALLOC
2220 	kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZBITS_4V) ^
2221 		0xfffff80000000000UL;
2222 #else
2223 	kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4V) ^
2224 		0xfffff80000000000UL;
2225 #endif
2226 	kern_linear_pte_xor[0] |= (_PAGE_CP_4V | _PAGE_CV_4V |
2227 				   _PAGE_P_4V | _PAGE_W_4V);
2228 
2229 #ifdef CONFIG_DEBUG_PAGEALLOC
2230 	kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZBITS_4V) ^
2231 		0xfffff80000000000UL;
2232 #else
2233 	kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZ256MB_4V) ^
2234 		0xfffff80000000000UL;
2235 #endif
2236 	kern_linear_pte_xor[1] |= (_PAGE_CP_4V | _PAGE_CV_4V |
2237 				   _PAGE_P_4V | _PAGE_W_4V);
2238 
2239 	pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4V | __DIRTY_BITS_4V |
2240 		     __ACCESS_BITS_4V | _PAGE_E_4V);
2241 
2242 	_PAGE_SZBITS = _PAGE_SZBITS_4V;
2243 	_PAGE_ALL_SZ_BITS = (_PAGE_SZ16GB_4V | _PAGE_SZ2GB_4V |
2244 			     _PAGE_SZ256MB_4V | _PAGE_SZ32MB_4V |
2245 			     _PAGE_SZ4MB_4V | _PAGE_SZ512K_4V |
2246 			     _PAGE_SZ64K_4V | _PAGE_SZ8K_4V);
2247 
2248 	page_none = _PAGE_PRESENT_4V | _PAGE_ACCESSED_4V | _PAGE_CACHE_4V;
2249 	page_shared = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
2250 		       __ACCESS_BITS_4V | _PAGE_WRITE_4V | _PAGE_EXEC_4V);
2251 	page_copy   = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
2252 		       __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2253 	page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
2254 			 __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2255 
2256 	page_exec_bit = _PAGE_EXEC_4V;
2257 
2258 	prot_init_common(page_none, page_shared, page_copy, page_readonly,
2259 			 page_exec_bit);
2260 }
2261 
2262 unsigned long pte_sz_bits(unsigned long sz)
2263 {
2264 	if (tlb_type == hypervisor) {
2265 		switch (sz) {
2266 		case 8 * 1024:
2267 		default:
2268 			return _PAGE_SZ8K_4V;
2269 		case 64 * 1024:
2270 			return _PAGE_SZ64K_4V;
2271 		case 512 * 1024:
2272 			return _PAGE_SZ512K_4V;
2273 		case 4 * 1024 * 1024:
2274 			return _PAGE_SZ4MB_4V;
2275 		};
2276 	} else {
2277 		switch (sz) {
2278 		case 8 * 1024:
2279 		default:
2280 			return _PAGE_SZ8K_4U;
2281 		case 64 * 1024:
2282 			return _PAGE_SZ64K_4U;
2283 		case 512 * 1024:
2284 			return _PAGE_SZ512K_4U;
2285 		case 4 * 1024 * 1024:
2286 			return _PAGE_SZ4MB_4U;
2287 		};
2288 	}
2289 }
2290 
2291 pte_t mk_pte_io(unsigned long page, pgprot_t prot, int space, unsigned long page_size)
2292 {
2293 	pte_t pte;
2294 
2295 	pte_val(pte)  = page | pgprot_val(pgprot_noncached(prot));
2296 	pte_val(pte) |= (((unsigned long)space) << 32);
2297 	pte_val(pte) |= pte_sz_bits(page_size);
2298 
2299 	return pte;
2300 }
2301 
2302 static unsigned long kern_large_tte(unsigned long paddr)
2303 {
2304 	unsigned long val;
2305 
2306 	val = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2307 	       _PAGE_CP_4U | _PAGE_CV_4U | _PAGE_P_4U |
2308 	       _PAGE_EXEC_4U | _PAGE_L_4U | _PAGE_W_4U);
2309 	if (tlb_type == hypervisor)
2310 		val = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2311 		       _PAGE_CP_4V | _PAGE_CV_4V | _PAGE_P_4V |
2312 		       _PAGE_EXEC_4V | _PAGE_W_4V);
2313 
2314 	return val | paddr;
2315 }
2316 
2317 /* If not locked, zap it. */
2318 void __flush_tlb_all(void)
2319 {
2320 	unsigned long pstate;
2321 	int i;
2322 
2323 	__asm__ __volatile__("flushw\n\t"
2324 			     "rdpr	%%pstate, %0\n\t"
2325 			     "wrpr	%0, %1, %%pstate"
2326 			     : "=r" (pstate)
2327 			     : "i" (PSTATE_IE));
2328 	if (tlb_type == hypervisor) {
2329 		sun4v_mmu_demap_all();
2330 	} else if (tlb_type == spitfire) {
2331 		for (i = 0; i < 64; i++) {
2332 			/* Spitfire Errata #32 workaround */
2333 			/* NOTE: Always runs on spitfire, so no
2334 			 *       cheetah+ page size encodings.
2335 			 */
2336 			__asm__ __volatile__("stxa	%0, [%1] %2\n\t"
2337 					     "flush	%%g6"
2338 					     : /* No outputs */
2339 					     : "r" (0),
2340 					     "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2341 
2342 			if (!(spitfire_get_dtlb_data(i) & _PAGE_L_4U)) {
2343 				__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2344 						     "membar #Sync"
2345 						     : /* no outputs */
2346 						     : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
2347 				spitfire_put_dtlb_data(i, 0x0UL);
2348 			}
2349 
2350 			/* Spitfire Errata #32 workaround */
2351 			/* NOTE: Always runs on spitfire, so no
2352 			 *       cheetah+ page size encodings.
2353 			 */
2354 			__asm__ __volatile__("stxa	%0, [%1] %2\n\t"
2355 					     "flush	%%g6"
2356 					     : /* No outputs */
2357 					     : "r" (0),
2358 					     "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2359 
2360 			if (!(spitfire_get_itlb_data(i) & _PAGE_L_4U)) {
2361 				__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2362 						     "membar #Sync"
2363 						     : /* no outputs */
2364 						     : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU));
2365 				spitfire_put_itlb_data(i, 0x0UL);
2366 			}
2367 		}
2368 	} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
2369 		cheetah_flush_dtlb_all();
2370 		cheetah_flush_itlb_all();
2371 	}
2372 	__asm__ __volatile__("wrpr	%0, 0, %%pstate"
2373 			     : : "r" (pstate));
2374 }
2375