1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * arch/sparc64/mm/init.c 4 * 5 * Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu) 6 * Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz) 7 */ 8 9 #include <linux/extable.h> 10 #include <linux/kernel.h> 11 #include <linux/sched.h> 12 #include <linux/string.h> 13 #include <linux/init.h> 14 #include <linux/memblock.h> 15 #include <linux/mm.h> 16 #include <linux/hugetlb.h> 17 #include <linux/initrd.h> 18 #include <linux/swap.h> 19 #include <linux/pagemap.h> 20 #include <linux/poison.h> 21 #include <linux/fs.h> 22 #include <linux/seq_file.h> 23 #include <linux/kprobes.h> 24 #include <linux/cache.h> 25 #include <linux/sort.h> 26 #include <linux/ioport.h> 27 #include <linux/percpu.h> 28 #include <linux/mmzone.h> 29 #include <linux/gfp.h> 30 31 #include <asm/head.h> 32 #include <asm/page.h> 33 #include <asm/pgalloc.h> 34 #include <asm/oplib.h> 35 #include <asm/iommu.h> 36 #include <asm/io.h> 37 #include <linux/uaccess.h> 38 #include <asm/mmu_context.h> 39 #include <asm/tlbflush.h> 40 #include <asm/dma.h> 41 #include <asm/starfire.h> 42 #include <asm/tlb.h> 43 #include <asm/spitfire.h> 44 #include <asm/sections.h> 45 #include <asm/tsb.h> 46 #include <asm/hypervisor.h> 47 #include <asm/prom.h> 48 #include <asm/mdesc.h> 49 #include <asm/cpudata.h> 50 #include <asm/setup.h> 51 #include <asm/irq.h> 52 53 #include "init_64.h" 54 55 unsigned long kern_linear_pte_xor[4] __read_mostly; 56 static unsigned long page_cache4v_flag; 57 58 /* A bitmap, two bits for every 256MB of physical memory. These two 59 * bits determine what page size we use for kernel linear 60 * translations. They form an index into kern_linear_pte_xor[]. The 61 * value in the indexed slot is XOR'd with the TLB miss virtual 62 * address to form the resulting TTE. The mapping is: 63 * 64 * 0 ==> 4MB 65 * 1 ==> 256MB 66 * 2 ==> 2GB 67 * 3 ==> 16GB 68 * 69 * All sun4v chips support 256MB pages. Only SPARC-T4 and later 70 * support 2GB pages, and hopefully future cpus will support the 16GB 71 * pages as well. For slots 2 and 3, we encode a 256MB TTE xor there 72 * if these larger page sizes are not supported by the cpu. 73 * 74 * It would be nice to determine this from the machine description 75 * 'cpu' properties, but we need to have this table setup before the 76 * MDESC is initialized. 77 */ 78 79 #ifndef CONFIG_DEBUG_PAGEALLOC 80 /* A special kernel TSB for 4MB, 256MB, 2GB and 16GB linear mappings. 81 * Space is allocated for this right after the trap table in 82 * arch/sparc64/kernel/head.S 83 */ 84 extern struct tsb swapper_4m_tsb[KERNEL_TSB4M_NENTRIES]; 85 #endif 86 extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES]; 87 88 static unsigned long cpu_pgsz_mask; 89 90 #define MAX_BANKS 1024 91 92 static struct linux_prom64_registers pavail[MAX_BANKS]; 93 static int pavail_ents; 94 95 u64 numa_latency[MAX_NUMNODES][MAX_NUMNODES]; 96 97 static int cmp_p64(const void *a, const void *b) 98 { 99 const struct linux_prom64_registers *x = a, *y = b; 100 101 if (x->phys_addr > y->phys_addr) 102 return 1; 103 if (x->phys_addr < y->phys_addr) 104 return -1; 105 return 0; 106 } 107 108 static void __init read_obp_memory(const char *property, 109 struct linux_prom64_registers *regs, 110 int *num_ents) 111 { 112 phandle node = prom_finddevice("/memory"); 113 int prop_size = prom_getproplen(node, property); 114 int ents, ret, i; 115 116 ents = prop_size / sizeof(struct linux_prom64_registers); 117 if (ents > MAX_BANKS) { 118 prom_printf("The machine has more %s property entries than " 119 "this kernel can support (%d).\n", 120 property, MAX_BANKS); 121 prom_halt(); 122 } 123 124 ret = prom_getproperty(node, property, (char *) regs, prop_size); 125 if (ret == -1) { 126 prom_printf("Couldn't get %s property from /memory.\n", 127 property); 128 prom_halt(); 129 } 130 131 /* Sanitize what we got from the firmware, by page aligning 132 * everything. 133 */ 134 for (i = 0; i < ents; i++) { 135 unsigned long base, size; 136 137 base = regs[i].phys_addr; 138 size = regs[i].reg_size; 139 140 size &= PAGE_MASK; 141 if (base & ~PAGE_MASK) { 142 unsigned long new_base = PAGE_ALIGN(base); 143 144 size -= new_base - base; 145 if ((long) size < 0L) 146 size = 0UL; 147 base = new_base; 148 } 149 if (size == 0UL) { 150 /* If it is empty, simply get rid of it. 151 * This simplifies the logic of the other 152 * functions that process these arrays. 153 */ 154 memmove(®s[i], ®s[i + 1], 155 (ents - i - 1) * sizeof(regs[0])); 156 i--; 157 ents--; 158 continue; 159 } 160 regs[i].phys_addr = base; 161 regs[i].reg_size = size; 162 } 163 164 *num_ents = ents; 165 166 sort(regs, ents, sizeof(struct linux_prom64_registers), 167 cmp_p64, NULL); 168 } 169 170 /* Kernel physical address base and size in bytes. */ 171 unsigned long kern_base __read_mostly; 172 unsigned long kern_size __read_mostly; 173 174 /* Initial ramdisk setup */ 175 extern unsigned long sparc_ramdisk_image64; 176 extern unsigned int sparc_ramdisk_image; 177 extern unsigned int sparc_ramdisk_size; 178 179 struct page *mem_map_zero __read_mostly; 180 EXPORT_SYMBOL(mem_map_zero); 181 182 unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly; 183 184 unsigned long sparc64_kern_pri_context __read_mostly; 185 unsigned long sparc64_kern_pri_nuc_bits __read_mostly; 186 unsigned long sparc64_kern_sec_context __read_mostly; 187 188 int num_kernel_image_mappings; 189 190 #ifdef CONFIG_DEBUG_DCFLUSH 191 atomic_t dcpage_flushes = ATOMIC_INIT(0); 192 #ifdef CONFIG_SMP 193 atomic_t dcpage_flushes_xcall = ATOMIC_INIT(0); 194 #endif 195 #endif 196 197 inline void flush_dcache_page_impl(struct page *page) 198 { 199 BUG_ON(tlb_type == hypervisor); 200 #ifdef CONFIG_DEBUG_DCFLUSH 201 atomic_inc(&dcpage_flushes); 202 #endif 203 204 #ifdef DCACHE_ALIASING_POSSIBLE 205 __flush_dcache_page(page_address(page), 206 ((tlb_type == spitfire) && 207 page_mapping_file(page) != NULL)); 208 #else 209 if (page_mapping_file(page) != NULL && 210 tlb_type == spitfire) 211 __flush_icache_page(__pa(page_address(page))); 212 #endif 213 } 214 215 #define PG_dcache_dirty PG_arch_1 216 #define PG_dcache_cpu_shift 32UL 217 #define PG_dcache_cpu_mask \ 218 ((1UL<<ilog2(roundup_pow_of_two(NR_CPUS)))-1UL) 219 220 #define dcache_dirty_cpu(page) \ 221 (((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask) 222 223 static inline void set_dcache_dirty(struct page *page, int this_cpu) 224 { 225 unsigned long mask = this_cpu; 226 unsigned long non_cpu_bits; 227 228 non_cpu_bits = ~(PG_dcache_cpu_mask << PG_dcache_cpu_shift); 229 mask = (mask << PG_dcache_cpu_shift) | (1UL << PG_dcache_dirty); 230 231 __asm__ __volatile__("1:\n\t" 232 "ldx [%2], %%g7\n\t" 233 "and %%g7, %1, %%g1\n\t" 234 "or %%g1, %0, %%g1\n\t" 235 "casx [%2], %%g7, %%g1\n\t" 236 "cmp %%g7, %%g1\n\t" 237 "bne,pn %%xcc, 1b\n\t" 238 " nop" 239 : /* no outputs */ 240 : "r" (mask), "r" (non_cpu_bits), "r" (&page->flags) 241 : "g1", "g7"); 242 } 243 244 static inline void clear_dcache_dirty_cpu(struct page *page, unsigned long cpu) 245 { 246 unsigned long mask = (1UL << PG_dcache_dirty); 247 248 __asm__ __volatile__("! test_and_clear_dcache_dirty\n" 249 "1:\n\t" 250 "ldx [%2], %%g7\n\t" 251 "srlx %%g7, %4, %%g1\n\t" 252 "and %%g1, %3, %%g1\n\t" 253 "cmp %%g1, %0\n\t" 254 "bne,pn %%icc, 2f\n\t" 255 " andn %%g7, %1, %%g1\n\t" 256 "casx [%2], %%g7, %%g1\n\t" 257 "cmp %%g7, %%g1\n\t" 258 "bne,pn %%xcc, 1b\n\t" 259 " nop\n" 260 "2:" 261 : /* no outputs */ 262 : "r" (cpu), "r" (mask), "r" (&page->flags), 263 "i" (PG_dcache_cpu_mask), 264 "i" (PG_dcache_cpu_shift) 265 : "g1", "g7"); 266 } 267 268 static inline void tsb_insert(struct tsb *ent, unsigned long tag, unsigned long pte) 269 { 270 unsigned long tsb_addr = (unsigned long) ent; 271 272 if (tlb_type == cheetah_plus || tlb_type == hypervisor) 273 tsb_addr = __pa(tsb_addr); 274 275 __tsb_insert(tsb_addr, tag, pte); 276 } 277 278 unsigned long _PAGE_ALL_SZ_BITS __read_mostly; 279 280 static void flush_dcache(unsigned long pfn) 281 { 282 struct page *page; 283 284 page = pfn_to_page(pfn); 285 if (page) { 286 unsigned long pg_flags; 287 288 pg_flags = page->flags; 289 if (pg_flags & (1UL << PG_dcache_dirty)) { 290 int cpu = ((pg_flags >> PG_dcache_cpu_shift) & 291 PG_dcache_cpu_mask); 292 int this_cpu = get_cpu(); 293 294 /* This is just to optimize away some function calls 295 * in the SMP case. 296 */ 297 if (cpu == this_cpu) 298 flush_dcache_page_impl(page); 299 else 300 smp_flush_dcache_page_impl(page, cpu); 301 302 clear_dcache_dirty_cpu(page, cpu); 303 304 put_cpu(); 305 } 306 } 307 } 308 309 /* mm->context.lock must be held */ 310 static void __update_mmu_tsb_insert(struct mm_struct *mm, unsigned long tsb_index, 311 unsigned long tsb_hash_shift, unsigned long address, 312 unsigned long tte) 313 { 314 struct tsb *tsb = mm->context.tsb_block[tsb_index].tsb; 315 unsigned long tag; 316 317 if (unlikely(!tsb)) 318 return; 319 320 tsb += ((address >> tsb_hash_shift) & 321 (mm->context.tsb_block[tsb_index].tsb_nentries - 1UL)); 322 tag = (address >> 22UL); 323 tsb_insert(tsb, tag, tte); 324 } 325 326 #ifdef CONFIG_HUGETLB_PAGE 327 static int __init hugetlbpage_init(void) 328 { 329 hugetlb_add_hstate(HPAGE_64K_SHIFT - PAGE_SHIFT); 330 hugetlb_add_hstate(HPAGE_SHIFT - PAGE_SHIFT); 331 hugetlb_add_hstate(HPAGE_256MB_SHIFT - PAGE_SHIFT); 332 hugetlb_add_hstate(HPAGE_2GB_SHIFT - PAGE_SHIFT); 333 334 return 0; 335 } 336 337 arch_initcall(hugetlbpage_init); 338 339 static void __init pud_huge_patch(void) 340 { 341 struct pud_huge_patch_entry *p; 342 unsigned long addr; 343 344 p = &__pud_huge_patch; 345 addr = p->addr; 346 *(unsigned int *)addr = p->insn; 347 348 __asm__ __volatile__("flush %0" : : "r" (addr)); 349 } 350 351 bool __init arch_hugetlb_valid_size(unsigned long size) 352 { 353 unsigned int hugepage_shift = ilog2(size); 354 unsigned short hv_pgsz_idx; 355 unsigned int hv_pgsz_mask; 356 357 switch (hugepage_shift) { 358 case HPAGE_16GB_SHIFT: 359 hv_pgsz_mask = HV_PGSZ_MASK_16GB; 360 hv_pgsz_idx = HV_PGSZ_IDX_16GB; 361 pud_huge_patch(); 362 break; 363 case HPAGE_2GB_SHIFT: 364 hv_pgsz_mask = HV_PGSZ_MASK_2GB; 365 hv_pgsz_idx = HV_PGSZ_IDX_2GB; 366 break; 367 case HPAGE_256MB_SHIFT: 368 hv_pgsz_mask = HV_PGSZ_MASK_256MB; 369 hv_pgsz_idx = HV_PGSZ_IDX_256MB; 370 break; 371 case HPAGE_SHIFT: 372 hv_pgsz_mask = HV_PGSZ_MASK_4MB; 373 hv_pgsz_idx = HV_PGSZ_IDX_4MB; 374 break; 375 case HPAGE_64K_SHIFT: 376 hv_pgsz_mask = HV_PGSZ_MASK_64K; 377 hv_pgsz_idx = HV_PGSZ_IDX_64K; 378 break; 379 default: 380 hv_pgsz_mask = 0; 381 } 382 383 if ((hv_pgsz_mask & cpu_pgsz_mask) == 0U) 384 return false; 385 386 return true; 387 } 388 #endif /* CONFIG_HUGETLB_PAGE */ 389 390 void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t *ptep) 391 { 392 struct mm_struct *mm; 393 unsigned long flags; 394 bool is_huge_tsb; 395 pte_t pte = *ptep; 396 397 if (tlb_type != hypervisor) { 398 unsigned long pfn = pte_pfn(pte); 399 400 if (pfn_valid(pfn)) 401 flush_dcache(pfn); 402 } 403 404 mm = vma->vm_mm; 405 406 /* Don't insert a non-valid PTE into the TSB, we'll deadlock. */ 407 if (!pte_accessible(mm, pte)) 408 return; 409 410 spin_lock_irqsave(&mm->context.lock, flags); 411 412 is_huge_tsb = false; 413 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE) 414 if (mm->context.hugetlb_pte_count || mm->context.thp_pte_count) { 415 unsigned long hugepage_size = PAGE_SIZE; 416 417 if (is_vm_hugetlb_page(vma)) 418 hugepage_size = huge_page_size(hstate_vma(vma)); 419 420 if (hugepage_size >= PUD_SIZE) { 421 unsigned long mask = 0x1ffc00000UL; 422 423 /* Transfer bits [32:22] from address to resolve 424 * at 4M granularity. 425 */ 426 pte_val(pte) &= ~mask; 427 pte_val(pte) |= (address & mask); 428 } else if (hugepage_size >= PMD_SIZE) { 429 /* We are fabricating 8MB pages using 4MB 430 * real hw pages. 431 */ 432 pte_val(pte) |= (address & (1UL << REAL_HPAGE_SHIFT)); 433 } 434 435 if (hugepage_size >= PMD_SIZE) { 436 __update_mmu_tsb_insert(mm, MM_TSB_HUGE, 437 REAL_HPAGE_SHIFT, address, pte_val(pte)); 438 is_huge_tsb = true; 439 } 440 } 441 #endif 442 if (!is_huge_tsb) 443 __update_mmu_tsb_insert(mm, MM_TSB_BASE, PAGE_SHIFT, 444 address, pte_val(pte)); 445 446 spin_unlock_irqrestore(&mm->context.lock, flags); 447 } 448 449 void flush_dcache_page(struct page *page) 450 { 451 struct address_space *mapping; 452 int this_cpu; 453 454 if (tlb_type == hypervisor) 455 return; 456 457 /* Do not bother with the expensive D-cache flush if it 458 * is merely the zero page. The 'bigcore' testcase in GDB 459 * causes this case to run millions of times. 460 */ 461 if (page == ZERO_PAGE(0)) 462 return; 463 464 this_cpu = get_cpu(); 465 466 mapping = page_mapping_file(page); 467 if (mapping && !mapping_mapped(mapping)) { 468 int dirty = test_bit(PG_dcache_dirty, &page->flags); 469 if (dirty) { 470 int dirty_cpu = dcache_dirty_cpu(page); 471 472 if (dirty_cpu == this_cpu) 473 goto out; 474 smp_flush_dcache_page_impl(page, dirty_cpu); 475 } 476 set_dcache_dirty(page, this_cpu); 477 } else { 478 /* We could delay the flush for the !page_mapping 479 * case too. But that case is for exec env/arg 480 * pages and those are %99 certainly going to get 481 * faulted into the tlb (and thus flushed) anyways. 482 */ 483 flush_dcache_page_impl(page); 484 } 485 486 out: 487 put_cpu(); 488 } 489 EXPORT_SYMBOL(flush_dcache_page); 490 491 void __kprobes flush_icache_range(unsigned long start, unsigned long end) 492 { 493 /* Cheetah and Hypervisor platform cpus have coherent I-cache. */ 494 if (tlb_type == spitfire) { 495 unsigned long kaddr; 496 497 /* This code only runs on Spitfire cpus so this is 498 * why we can assume _PAGE_PADDR_4U. 499 */ 500 for (kaddr = start; kaddr < end; kaddr += PAGE_SIZE) { 501 unsigned long paddr, mask = _PAGE_PADDR_4U; 502 503 if (kaddr >= PAGE_OFFSET) 504 paddr = kaddr & mask; 505 else { 506 pte_t *ptep = virt_to_kpte(kaddr); 507 508 paddr = pte_val(*ptep) & mask; 509 } 510 __flush_icache_page(paddr); 511 } 512 } 513 } 514 EXPORT_SYMBOL(flush_icache_range); 515 516 void mmu_info(struct seq_file *m) 517 { 518 static const char *pgsz_strings[] = { 519 "8K", "64K", "512K", "4MB", "32MB", 520 "256MB", "2GB", "16GB", 521 }; 522 int i, printed; 523 524 if (tlb_type == cheetah) 525 seq_printf(m, "MMU Type\t: Cheetah\n"); 526 else if (tlb_type == cheetah_plus) 527 seq_printf(m, "MMU Type\t: Cheetah+\n"); 528 else if (tlb_type == spitfire) 529 seq_printf(m, "MMU Type\t: Spitfire\n"); 530 else if (tlb_type == hypervisor) 531 seq_printf(m, "MMU Type\t: Hypervisor (sun4v)\n"); 532 else 533 seq_printf(m, "MMU Type\t: ???\n"); 534 535 seq_printf(m, "MMU PGSZs\t: "); 536 printed = 0; 537 for (i = 0; i < ARRAY_SIZE(pgsz_strings); i++) { 538 if (cpu_pgsz_mask & (1UL << i)) { 539 seq_printf(m, "%s%s", 540 printed ? "," : "", pgsz_strings[i]); 541 printed++; 542 } 543 } 544 seq_putc(m, '\n'); 545 546 #ifdef CONFIG_DEBUG_DCFLUSH 547 seq_printf(m, "DCPageFlushes\t: %d\n", 548 atomic_read(&dcpage_flushes)); 549 #ifdef CONFIG_SMP 550 seq_printf(m, "DCPageFlushesXC\t: %d\n", 551 atomic_read(&dcpage_flushes_xcall)); 552 #endif /* CONFIG_SMP */ 553 #endif /* CONFIG_DEBUG_DCFLUSH */ 554 } 555 556 struct linux_prom_translation prom_trans[512] __read_mostly; 557 unsigned int prom_trans_ents __read_mostly; 558 559 unsigned long kern_locked_tte_data; 560 561 /* The obp translations are saved based on 8k pagesize, since obp can 562 * use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS -> 563 * HI_OBP_ADDRESS range are handled in ktlb.S. 564 */ 565 static inline int in_obp_range(unsigned long vaddr) 566 { 567 return (vaddr >= LOW_OBP_ADDRESS && 568 vaddr < HI_OBP_ADDRESS); 569 } 570 571 static int cmp_ptrans(const void *a, const void *b) 572 { 573 const struct linux_prom_translation *x = a, *y = b; 574 575 if (x->virt > y->virt) 576 return 1; 577 if (x->virt < y->virt) 578 return -1; 579 return 0; 580 } 581 582 /* Read OBP translations property into 'prom_trans[]'. */ 583 static void __init read_obp_translations(void) 584 { 585 int n, node, ents, first, last, i; 586 587 node = prom_finddevice("/virtual-memory"); 588 n = prom_getproplen(node, "translations"); 589 if (unlikely(n == 0 || n == -1)) { 590 prom_printf("prom_mappings: Couldn't get size.\n"); 591 prom_halt(); 592 } 593 if (unlikely(n > sizeof(prom_trans))) { 594 prom_printf("prom_mappings: Size %d is too big.\n", n); 595 prom_halt(); 596 } 597 598 if ((n = prom_getproperty(node, "translations", 599 (char *)&prom_trans[0], 600 sizeof(prom_trans))) == -1) { 601 prom_printf("prom_mappings: Couldn't get property.\n"); 602 prom_halt(); 603 } 604 605 n = n / sizeof(struct linux_prom_translation); 606 607 ents = n; 608 609 sort(prom_trans, ents, sizeof(struct linux_prom_translation), 610 cmp_ptrans, NULL); 611 612 /* Now kick out all the non-OBP entries. */ 613 for (i = 0; i < ents; i++) { 614 if (in_obp_range(prom_trans[i].virt)) 615 break; 616 } 617 first = i; 618 for (; i < ents; i++) { 619 if (!in_obp_range(prom_trans[i].virt)) 620 break; 621 } 622 last = i; 623 624 for (i = 0; i < (last - first); i++) { 625 struct linux_prom_translation *src = &prom_trans[i + first]; 626 struct linux_prom_translation *dest = &prom_trans[i]; 627 628 *dest = *src; 629 } 630 for (; i < ents; i++) { 631 struct linux_prom_translation *dest = &prom_trans[i]; 632 dest->virt = dest->size = dest->data = 0x0UL; 633 } 634 635 prom_trans_ents = last - first; 636 637 if (tlb_type == spitfire) { 638 /* Clear diag TTE bits. */ 639 for (i = 0; i < prom_trans_ents; i++) 640 prom_trans[i].data &= ~0x0003fe0000000000UL; 641 } 642 643 /* Force execute bit on. */ 644 for (i = 0; i < prom_trans_ents; i++) 645 prom_trans[i].data |= (tlb_type == hypervisor ? 646 _PAGE_EXEC_4V : _PAGE_EXEC_4U); 647 } 648 649 static void __init hypervisor_tlb_lock(unsigned long vaddr, 650 unsigned long pte, 651 unsigned long mmu) 652 { 653 unsigned long ret = sun4v_mmu_map_perm_addr(vaddr, 0, pte, mmu); 654 655 if (ret != 0) { 656 prom_printf("hypervisor_tlb_lock[%lx:%x:%lx:%lx]: " 657 "errors with %lx\n", vaddr, 0, pte, mmu, ret); 658 prom_halt(); 659 } 660 } 661 662 static unsigned long kern_large_tte(unsigned long paddr); 663 664 static void __init remap_kernel(void) 665 { 666 unsigned long phys_page, tte_vaddr, tte_data; 667 int i, tlb_ent = sparc64_highest_locked_tlbent(); 668 669 tte_vaddr = (unsigned long) KERNBASE; 670 phys_page = (prom_boot_mapping_phys_low >> ILOG2_4MB) << ILOG2_4MB; 671 tte_data = kern_large_tte(phys_page); 672 673 kern_locked_tte_data = tte_data; 674 675 /* Now lock us into the TLBs via Hypervisor or OBP. */ 676 if (tlb_type == hypervisor) { 677 for (i = 0; i < num_kernel_image_mappings; i++) { 678 hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU); 679 hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU); 680 tte_vaddr += 0x400000; 681 tte_data += 0x400000; 682 } 683 } else { 684 for (i = 0; i < num_kernel_image_mappings; i++) { 685 prom_dtlb_load(tlb_ent - i, tte_data, tte_vaddr); 686 prom_itlb_load(tlb_ent - i, tte_data, tte_vaddr); 687 tte_vaddr += 0x400000; 688 tte_data += 0x400000; 689 } 690 sparc64_highest_unlocked_tlb_ent = tlb_ent - i; 691 } 692 if (tlb_type == cheetah_plus) { 693 sparc64_kern_pri_context = (CTX_CHEETAH_PLUS_CTX0 | 694 CTX_CHEETAH_PLUS_NUC); 695 sparc64_kern_pri_nuc_bits = CTX_CHEETAH_PLUS_NUC; 696 sparc64_kern_sec_context = CTX_CHEETAH_PLUS_CTX0; 697 } 698 } 699 700 701 static void __init inherit_prom_mappings(void) 702 { 703 /* Now fixup OBP's idea about where we really are mapped. */ 704 printk("Remapping the kernel... "); 705 remap_kernel(); 706 printk("done.\n"); 707 } 708 709 void prom_world(int enter) 710 { 711 if (!enter) 712 set_fs(get_fs()); 713 714 __asm__ __volatile__("flushw"); 715 } 716 717 void __flush_dcache_range(unsigned long start, unsigned long end) 718 { 719 unsigned long va; 720 721 if (tlb_type == spitfire) { 722 int n = 0; 723 724 for (va = start; va < end; va += 32) { 725 spitfire_put_dcache_tag(va & 0x3fe0, 0x0); 726 if (++n >= 512) 727 break; 728 } 729 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) { 730 start = __pa(start); 731 end = __pa(end); 732 for (va = start; va < end; va += 32) 733 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t" 734 "membar #Sync" 735 : /* no outputs */ 736 : "r" (va), 737 "i" (ASI_DCACHE_INVALIDATE)); 738 } 739 } 740 EXPORT_SYMBOL(__flush_dcache_range); 741 742 /* get_new_mmu_context() uses "cache + 1". */ 743 DEFINE_SPINLOCK(ctx_alloc_lock); 744 unsigned long tlb_context_cache = CTX_FIRST_VERSION; 745 #define MAX_CTX_NR (1UL << CTX_NR_BITS) 746 #define CTX_BMAP_SLOTS BITS_TO_LONGS(MAX_CTX_NR) 747 DECLARE_BITMAP(mmu_context_bmap, MAX_CTX_NR); 748 DEFINE_PER_CPU(struct mm_struct *, per_cpu_secondary_mm) = {0}; 749 750 static void mmu_context_wrap(void) 751 { 752 unsigned long old_ver = tlb_context_cache & CTX_VERSION_MASK; 753 unsigned long new_ver, new_ctx, old_ctx; 754 struct mm_struct *mm; 755 int cpu; 756 757 bitmap_zero(mmu_context_bmap, 1 << CTX_NR_BITS); 758 759 /* Reserve kernel context */ 760 set_bit(0, mmu_context_bmap); 761 762 new_ver = (tlb_context_cache & CTX_VERSION_MASK) + CTX_FIRST_VERSION; 763 if (unlikely(new_ver == 0)) 764 new_ver = CTX_FIRST_VERSION; 765 tlb_context_cache = new_ver; 766 767 /* 768 * Make sure that any new mm that are added into per_cpu_secondary_mm, 769 * are going to go through get_new_mmu_context() path. 770 */ 771 mb(); 772 773 /* 774 * Updated versions to current on those CPUs that had valid secondary 775 * contexts 776 */ 777 for_each_online_cpu(cpu) { 778 /* 779 * If a new mm is stored after we took this mm from the array, 780 * it will go into get_new_mmu_context() path, because we 781 * already bumped the version in tlb_context_cache. 782 */ 783 mm = per_cpu(per_cpu_secondary_mm, cpu); 784 785 if (unlikely(!mm || mm == &init_mm)) 786 continue; 787 788 old_ctx = mm->context.sparc64_ctx_val; 789 if (likely((old_ctx & CTX_VERSION_MASK) == old_ver)) { 790 new_ctx = (old_ctx & ~CTX_VERSION_MASK) | new_ver; 791 set_bit(new_ctx & CTX_NR_MASK, mmu_context_bmap); 792 mm->context.sparc64_ctx_val = new_ctx; 793 } 794 } 795 } 796 797 /* Caller does TLB context flushing on local CPU if necessary. 798 * The caller also ensures that CTX_VALID(mm->context) is false. 799 * 800 * We must be careful about boundary cases so that we never 801 * let the user have CTX 0 (nucleus) or we ever use a CTX 802 * version of zero (and thus NO_CONTEXT would not be caught 803 * by version mis-match tests in mmu_context.h). 804 * 805 * Always invoked with interrupts disabled. 806 */ 807 void get_new_mmu_context(struct mm_struct *mm) 808 { 809 unsigned long ctx, new_ctx; 810 unsigned long orig_pgsz_bits; 811 812 spin_lock(&ctx_alloc_lock); 813 retry: 814 /* wrap might have happened, test again if our context became valid */ 815 if (unlikely(CTX_VALID(mm->context))) 816 goto out; 817 orig_pgsz_bits = (mm->context.sparc64_ctx_val & CTX_PGSZ_MASK); 818 ctx = (tlb_context_cache + 1) & CTX_NR_MASK; 819 new_ctx = find_next_zero_bit(mmu_context_bmap, 1 << CTX_NR_BITS, ctx); 820 if (new_ctx >= (1 << CTX_NR_BITS)) { 821 new_ctx = find_next_zero_bit(mmu_context_bmap, ctx, 1); 822 if (new_ctx >= ctx) { 823 mmu_context_wrap(); 824 goto retry; 825 } 826 } 827 if (mm->context.sparc64_ctx_val) 828 cpumask_clear(mm_cpumask(mm)); 829 mmu_context_bmap[new_ctx>>6] |= (1UL << (new_ctx & 63)); 830 new_ctx |= (tlb_context_cache & CTX_VERSION_MASK); 831 tlb_context_cache = new_ctx; 832 mm->context.sparc64_ctx_val = new_ctx | orig_pgsz_bits; 833 out: 834 spin_unlock(&ctx_alloc_lock); 835 } 836 837 static int numa_enabled = 1; 838 static int numa_debug; 839 840 static int __init early_numa(char *p) 841 { 842 if (!p) 843 return 0; 844 845 if (strstr(p, "off")) 846 numa_enabled = 0; 847 848 if (strstr(p, "debug")) 849 numa_debug = 1; 850 851 return 0; 852 } 853 early_param("numa", early_numa); 854 855 #define numadbg(f, a...) \ 856 do { if (numa_debug) \ 857 printk(KERN_INFO f, ## a); \ 858 } while (0) 859 860 static void __init find_ramdisk(unsigned long phys_base) 861 { 862 #ifdef CONFIG_BLK_DEV_INITRD 863 if (sparc_ramdisk_image || sparc_ramdisk_image64) { 864 unsigned long ramdisk_image; 865 866 /* Older versions of the bootloader only supported a 867 * 32-bit physical address for the ramdisk image 868 * location, stored at sparc_ramdisk_image. Newer 869 * SILO versions set sparc_ramdisk_image to zero and 870 * provide a full 64-bit physical address at 871 * sparc_ramdisk_image64. 872 */ 873 ramdisk_image = sparc_ramdisk_image; 874 if (!ramdisk_image) 875 ramdisk_image = sparc_ramdisk_image64; 876 877 /* Another bootloader quirk. The bootloader normalizes 878 * the physical address to KERNBASE, so we have to 879 * factor that back out and add in the lowest valid 880 * physical page address to get the true physical address. 881 */ 882 ramdisk_image -= KERNBASE; 883 ramdisk_image += phys_base; 884 885 numadbg("Found ramdisk at physical address 0x%lx, size %u\n", 886 ramdisk_image, sparc_ramdisk_size); 887 888 initrd_start = ramdisk_image; 889 initrd_end = ramdisk_image + sparc_ramdisk_size; 890 891 memblock_reserve(initrd_start, sparc_ramdisk_size); 892 893 initrd_start += PAGE_OFFSET; 894 initrd_end += PAGE_OFFSET; 895 } 896 #endif 897 } 898 899 struct node_mem_mask { 900 unsigned long mask; 901 unsigned long match; 902 }; 903 static struct node_mem_mask node_masks[MAX_NUMNODES]; 904 static int num_node_masks; 905 906 #ifdef CONFIG_NEED_MULTIPLE_NODES 907 908 struct mdesc_mlgroup { 909 u64 node; 910 u64 latency; 911 u64 match; 912 u64 mask; 913 }; 914 915 static struct mdesc_mlgroup *mlgroups; 916 static int num_mlgroups; 917 918 int numa_cpu_lookup_table[NR_CPUS]; 919 cpumask_t numa_cpumask_lookup_table[MAX_NUMNODES]; 920 921 struct mdesc_mblock { 922 u64 base; 923 u64 size; 924 u64 offset; /* RA-to-PA */ 925 }; 926 static struct mdesc_mblock *mblocks; 927 static int num_mblocks; 928 929 static struct mdesc_mblock * __init addr_to_mblock(unsigned long addr) 930 { 931 struct mdesc_mblock *m = NULL; 932 int i; 933 934 for (i = 0; i < num_mblocks; i++) { 935 m = &mblocks[i]; 936 937 if (addr >= m->base && 938 addr < (m->base + m->size)) { 939 break; 940 } 941 } 942 943 return m; 944 } 945 946 static u64 __init memblock_nid_range_sun4u(u64 start, u64 end, int *nid) 947 { 948 int prev_nid, new_nid; 949 950 prev_nid = NUMA_NO_NODE; 951 for ( ; start < end; start += PAGE_SIZE) { 952 for (new_nid = 0; new_nid < num_node_masks; new_nid++) { 953 struct node_mem_mask *p = &node_masks[new_nid]; 954 955 if ((start & p->mask) == p->match) { 956 if (prev_nid == NUMA_NO_NODE) 957 prev_nid = new_nid; 958 break; 959 } 960 } 961 962 if (new_nid == num_node_masks) { 963 prev_nid = 0; 964 WARN_ONCE(1, "addr[%Lx] doesn't match a NUMA node rule. Some memory will be owned by node 0.", 965 start); 966 break; 967 } 968 969 if (prev_nid != new_nid) 970 break; 971 } 972 *nid = prev_nid; 973 974 return start > end ? end : start; 975 } 976 977 static u64 __init memblock_nid_range(u64 start, u64 end, int *nid) 978 { 979 u64 ret_end, pa_start, m_mask, m_match, m_end; 980 struct mdesc_mblock *mblock; 981 int _nid, i; 982 983 if (tlb_type != hypervisor) 984 return memblock_nid_range_sun4u(start, end, nid); 985 986 mblock = addr_to_mblock(start); 987 if (!mblock) { 988 WARN_ONCE(1, "memblock_nid_range: Can't find mblock addr[%Lx]", 989 start); 990 991 _nid = 0; 992 ret_end = end; 993 goto done; 994 } 995 996 pa_start = start + mblock->offset; 997 m_match = 0; 998 m_mask = 0; 999 1000 for (_nid = 0; _nid < num_node_masks; _nid++) { 1001 struct node_mem_mask *const m = &node_masks[_nid]; 1002 1003 if ((pa_start & m->mask) == m->match) { 1004 m_match = m->match; 1005 m_mask = m->mask; 1006 break; 1007 } 1008 } 1009 1010 if (num_node_masks == _nid) { 1011 /* We could not find NUMA group, so default to 0, but lets 1012 * search for latency group, so we could calculate the correct 1013 * end address that we return 1014 */ 1015 _nid = 0; 1016 1017 for (i = 0; i < num_mlgroups; i++) { 1018 struct mdesc_mlgroup *const m = &mlgroups[i]; 1019 1020 if ((pa_start & m->mask) == m->match) { 1021 m_match = m->match; 1022 m_mask = m->mask; 1023 break; 1024 } 1025 } 1026 1027 if (i == num_mlgroups) { 1028 WARN_ONCE(1, "memblock_nid_range: Can't find latency group addr[%Lx]", 1029 start); 1030 1031 ret_end = end; 1032 goto done; 1033 } 1034 } 1035 1036 /* 1037 * Each latency group has match and mask, and each memory block has an 1038 * offset. An address belongs to a latency group if its address matches 1039 * the following formula: ((addr + offset) & mask) == match 1040 * It is, however, slow to check every single page if it matches a 1041 * particular latency group. As optimization we calculate end value by 1042 * using bit arithmetics. 1043 */ 1044 m_end = m_match + (1ul << __ffs(m_mask)) - mblock->offset; 1045 m_end += pa_start & ~((1ul << fls64(m_mask)) - 1); 1046 ret_end = m_end > end ? end : m_end; 1047 1048 done: 1049 *nid = _nid; 1050 return ret_end; 1051 } 1052 #endif 1053 1054 /* This must be invoked after performing all of the necessary 1055 * memblock_set_node() calls for 'nid'. We need to be able to get 1056 * correct data from get_pfn_range_for_nid(). 1057 */ 1058 static void __init allocate_node_data(int nid) 1059 { 1060 struct pglist_data *p; 1061 unsigned long start_pfn, end_pfn; 1062 #ifdef CONFIG_NEED_MULTIPLE_NODES 1063 1064 NODE_DATA(nid) = memblock_alloc_node(sizeof(struct pglist_data), 1065 SMP_CACHE_BYTES, nid); 1066 if (!NODE_DATA(nid)) { 1067 prom_printf("Cannot allocate pglist_data for nid[%d]\n", nid); 1068 prom_halt(); 1069 } 1070 1071 NODE_DATA(nid)->node_id = nid; 1072 #endif 1073 1074 p = NODE_DATA(nid); 1075 1076 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); 1077 p->node_start_pfn = start_pfn; 1078 p->node_spanned_pages = end_pfn - start_pfn; 1079 } 1080 1081 static void init_node_masks_nonnuma(void) 1082 { 1083 #ifdef CONFIG_NEED_MULTIPLE_NODES 1084 int i; 1085 #endif 1086 1087 numadbg("Initializing tables for non-numa.\n"); 1088 1089 node_masks[0].mask = 0; 1090 node_masks[0].match = 0; 1091 num_node_masks = 1; 1092 1093 #ifdef CONFIG_NEED_MULTIPLE_NODES 1094 for (i = 0; i < NR_CPUS; i++) 1095 numa_cpu_lookup_table[i] = 0; 1096 1097 cpumask_setall(&numa_cpumask_lookup_table[0]); 1098 #endif 1099 } 1100 1101 #ifdef CONFIG_NEED_MULTIPLE_NODES 1102 struct pglist_data *node_data[MAX_NUMNODES]; 1103 1104 EXPORT_SYMBOL(numa_cpu_lookup_table); 1105 EXPORT_SYMBOL(numa_cpumask_lookup_table); 1106 EXPORT_SYMBOL(node_data); 1107 1108 static int scan_pio_for_cfg_handle(struct mdesc_handle *md, u64 pio, 1109 u32 cfg_handle) 1110 { 1111 u64 arc; 1112 1113 mdesc_for_each_arc(arc, md, pio, MDESC_ARC_TYPE_FWD) { 1114 u64 target = mdesc_arc_target(md, arc); 1115 const u64 *val; 1116 1117 val = mdesc_get_property(md, target, 1118 "cfg-handle", NULL); 1119 if (val && *val == cfg_handle) 1120 return 0; 1121 } 1122 return -ENODEV; 1123 } 1124 1125 static int scan_arcs_for_cfg_handle(struct mdesc_handle *md, u64 grp, 1126 u32 cfg_handle) 1127 { 1128 u64 arc, candidate, best_latency = ~(u64)0; 1129 1130 candidate = MDESC_NODE_NULL; 1131 mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) { 1132 u64 target = mdesc_arc_target(md, arc); 1133 const char *name = mdesc_node_name(md, target); 1134 const u64 *val; 1135 1136 if (strcmp(name, "pio-latency-group")) 1137 continue; 1138 1139 val = mdesc_get_property(md, target, "latency", NULL); 1140 if (!val) 1141 continue; 1142 1143 if (*val < best_latency) { 1144 candidate = target; 1145 best_latency = *val; 1146 } 1147 } 1148 1149 if (candidate == MDESC_NODE_NULL) 1150 return -ENODEV; 1151 1152 return scan_pio_for_cfg_handle(md, candidate, cfg_handle); 1153 } 1154 1155 int of_node_to_nid(struct device_node *dp) 1156 { 1157 const struct linux_prom64_registers *regs; 1158 struct mdesc_handle *md; 1159 u32 cfg_handle; 1160 int count, nid; 1161 u64 grp; 1162 1163 /* This is the right thing to do on currently supported 1164 * SUN4U NUMA platforms as well, as the PCI controller does 1165 * not sit behind any particular memory controller. 1166 */ 1167 if (!mlgroups) 1168 return -1; 1169 1170 regs = of_get_property(dp, "reg", NULL); 1171 if (!regs) 1172 return -1; 1173 1174 cfg_handle = (regs->phys_addr >> 32UL) & 0x0fffffff; 1175 1176 md = mdesc_grab(); 1177 1178 count = 0; 1179 nid = NUMA_NO_NODE; 1180 mdesc_for_each_node_by_name(md, grp, "group") { 1181 if (!scan_arcs_for_cfg_handle(md, grp, cfg_handle)) { 1182 nid = count; 1183 break; 1184 } 1185 count++; 1186 } 1187 1188 mdesc_release(md); 1189 1190 return nid; 1191 } 1192 1193 static void __init add_node_ranges(void) 1194 { 1195 phys_addr_t start, end; 1196 unsigned long prev_max; 1197 u64 i; 1198 1199 memblock_resized: 1200 prev_max = memblock.memory.max; 1201 1202 for_each_mem_range(i, &start, &end) { 1203 while (start < end) { 1204 unsigned long this_end; 1205 int nid; 1206 1207 this_end = memblock_nid_range(start, end, &nid); 1208 1209 numadbg("Setting memblock NUMA node nid[%d] " 1210 "start[%llx] end[%lx]\n", 1211 nid, start, this_end); 1212 1213 memblock_set_node(start, this_end - start, 1214 &memblock.memory, nid); 1215 if (memblock.memory.max != prev_max) 1216 goto memblock_resized; 1217 start = this_end; 1218 } 1219 } 1220 } 1221 1222 static int __init grab_mlgroups(struct mdesc_handle *md) 1223 { 1224 unsigned long paddr; 1225 int count = 0; 1226 u64 node; 1227 1228 mdesc_for_each_node_by_name(md, node, "memory-latency-group") 1229 count++; 1230 if (!count) 1231 return -ENOENT; 1232 1233 paddr = memblock_phys_alloc(count * sizeof(struct mdesc_mlgroup), 1234 SMP_CACHE_BYTES); 1235 if (!paddr) 1236 return -ENOMEM; 1237 1238 mlgroups = __va(paddr); 1239 num_mlgroups = count; 1240 1241 count = 0; 1242 mdesc_for_each_node_by_name(md, node, "memory-latency-group") { 1243 struct mdesc_mlgroup *m = &mlgroups[count++]; 1244 const u64 *val; 1245 1246 m->node = node; 1247 1248 val = mdesc_get_property(md, node, "latency", NULL); 1249 m->latency = *val; 1250 val = mdesc_get_property(md, node, "address-match", NULL); 1251 m->match = *val; 1252 val = mdesc_get_property(md, node, "address-mask", NULL); 1253 m->mask = *val; 1254 1255 numadbg("MLGROUP[%d]: node[%llx] latency[%llx] " 1256 "match[%llx] mask[%llx]\n", 1257 count - 1, m->node, m->latency, m->match, m->mask); 1258 } 1259 1260 return 0; 1261 } 1262 1263 static int __init grab_mblocks(struct mdesc_handle *md) 1264 { 1265 unsigned long paddr; 1266 int count = 0; 1267 u64 node; 1268 1269 mdesc_for_each_node_by_name(md, node, "mblock") 1270 count++; 1271 if (!count) 1272 return -ENOENT; 1273 1274 paddr = memblock_phys_alloc(count * sizeof(struct mdesc_mblock), 1275 SMP_CACHE_BYTES); 1276 if (!paddr) 1277 return -ENOMEM; 1278 1279 mblocks = __va(paddr); 1280 num_mblocks = count; 1281 1282 count = 0; 1283 mdesc_for_each_node_by_name(md, node, "mblock") { 1284 struct mdesc_mblock *m = &mblocks[count++]; 1285 const u64 *val; 1286 1287 val = mdesc_get_property(md, node, "base", NULL); 1288 m->base = *val; 1289 val = mdesc_get_property(md, node, "size", NULL); 1290 m->size = *val; 1291 val = mdesc_get_property(md, node, 1292 "address-congruence-offset", NULL); 1293 1294 /* The address-congruence-offset property is optional. 1295 * Explicity zero it be identifty this. 1296 */ 1297 if (val) 1298 m->offset = *val; 1299 else 1300 m->offset = 0UL; 1301 1302 numadbg("MBLOCK[%d]: base[%llx] size[%llx] offset[%llx]\n", 1303 count - 1, m->base, m->size, m->offset); 1304 } 1305 1306 return 0; 1307 } 1308 1309 static void __init numa_parse_mdesc_group_cpus(struct mdesc_handle *md, 1310 u64 grp, cpumask_t *mask) 1311 { 1312 u64 arc; 1313 1314 cpumask_clear(mask); 1315 1316 mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_BACK) { 1317 u64 target = mdesc_arc_target(md, arc); 1318 const char *name = mdesc_node_name(md, target); 1319 const u64 *id; 1320 1321 if (strcmp(name, "cpu")) 1322 continue; 1323 id = mdesc_get_property(md, target, "id", NULL); 1324 if (*id < nr_cpu_ids) 1325 cpumask_set_cpu(*id, mask); 1326 } 1327 } 1328 1329 static struct mdesc_mlgroup * __init find_mlgroup(u64 node) 1330 { 1331 int i; 1332 1333 for (i = 0; i < num_mlgroups; i++) { 1334 struct mdesc_mlgroup *m = &mlgroups[i]; 1335 if (m->node == node) 1336 return m; 1337 } 1338 return NULL; 1339 } 1340 1341 int __node_distance(int from, int to) 1342 { 1343 if ((from >= MAX_NUMNODES) || (to >= MAX_NUMNODES)) { 1344 pr_warn("Returning default NUMA distance value for %d->%d\n", 1345 from, to); 1346 return (from == to) ? LOCAL_DISTANCE : REMOTE_DISTANCE; 1347 } 1348 return numa_latency[from][to]; 1349 } 1350 EXPORT_SYMBOL(__node_distance); 1351 1352 static int __init find_best_numa_node_for_mlgroup(struct mdesc_mlgroup *grp) 1353 { 1354 int i; 1355 1356 for (i = 0; i < MAX_NUMNODES; i++) { 1357 struct node_mem_mask *n = &node_masks[i]; 1358 1359 if ((grp->mask == n->mask) && (grp->match == n->match)) 1360 break; 1361 } 1362 return i; 1363 } 1364 1365 static void __init find_numa_latencies_for_group(struct mdesc_handle *md, 1366 u64 grp, int index) 1367 { 1368 u64 arc; 1369 1370 mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) { 1371 int tnode; 1372 u64 target = mdesc_arc_target(md, arc); 1373 struct mdesc_mlgroup *m = find_mlgroup(target); 1374 1375 if (!m) 1376 continue; 1377 tnode = find_best_numa_node_for_mlgroup(m); 1378 if (tnode == MAX_NUMNODES) 1379 continue; 1380 numa_latency[index][tnode] = m->latency; 1381 } 1382 } 1383 1384 static int __init numa_attach_mlgroup(struct mdesc_handle *md, u64 grp, 1385 int index) 1386 { 1387 struct mdesc_mlgroup *candidate = NULL; 1388 u64 arc, best_latency = ~(u64)0; 1389 struct node_mem_mask *n; 1390 1391 mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) { 1392 u64 target = mdesc_arc_target(md, arc); 1393 struct mdesc_mlgroup *m = find_mlgroup(target); 1394 if (!m) 1395 continue; 1396 if (m->latency < best_latency) { 1397 candidate = m; 1398 best_latency = m->latency; 1399 } 1400 } 1401 if (!candidate) 1402 return -ENOENT; 1403 1404 if (num_node_masks != index) { 1405 printk(KERN_ERR "Inconsistent NUMA state, " 1406 "index[%d] != num_node_masks[%d]\n", 1407 index, num_node_masks); 1408 return -EINVAL; 1409 } 1410 1411 n = &node_masks[num_node_masks++]; 1412 1413 n->mask = candidate->mask; 1414 n->match = candidate->match; 1415 1416 numadbg("NUMA NODE[%d]: mask[%lx] match[%lx] (latency[%llx])\n", 1417 index, n->mask, n->match, candidate->latency); 1418 1419 return 0; 1420 } 1421 1422 static int __init numa_parse_mdesc_group(struct mdesc_handle *md, u64 grp, 1423 int index) 1424 { 1425 cpumask_t mask; 1426 int cpu; 1427 1428 numa_parse_mdesc_group_cpus(md, grp, &mask); 1429 1430 for_each_cpu(cpu, &mask) 1431 numa_cpu_lookup_table[cpu] = index; 1432 cpumask_copy(&numa_cpumask_lookup_table[index], &mask); 1433 1434 if (numa_debug) { 1435 printk(KERN_INFO "NUMA GROUP[%d]: cpus [ ", index); 1436 for_each_cpu(cpu, &mask) 1437 printk("%d ", cpu); 1438 printk("]\n"); 1439 } 1440 1441 return numa_attach_mlgroup(md, grp, index); 1442 } 1443 1444 static int __init numa_parse_mdesc(void) 1445 { 1446 struct mdesc_handle *md = mdesc_grab(); 1447 int i, j, err, count; 1448 u64 node; 1449 1450 node = mdesc_node_by_name(md, MDESC_NODE_NULL, "latency-groups"); 1451 if (node == MDESC_NODE_NULL) { 1452 mdesc_release(md); 1453 return -ENOENT; 1454 } 1455 1456 err = grab_mblocks(md); 1457 if (err < 0) 1458 goto out; 1459 1460 err = grab_mlgroups(md); 1461 if (err < 0) 1462 goto out; 1463 1464 count = 0; 1465 mdesc_for_each_node_by_name(md, node, "group") { 1466 err = numa_parse_mdesc_group(md, node, count); 1467 if (err < 0) 1468 break; 1469 count++; 1470 } 1471 1472 count = 0; 1473 mdesc_for_each_node_by_name(md, node, "group") { 1474 find_numa_latencies_for_group(md, node, count); 1475 count++; 1476 } 1477 1478 /* Normalize numa latency matrix according to ACPI SLIT spec. */ 1479 for (i = 0; i < MAX_NUMNODES; i++) { 1480 u64 self_latency = numa_latency[i][i]; 1481 1482 for (j = 0; j < MAX_NUMNODES; j++) { 1483 numa_latency[i][j] = 1484 (numa_latency[i][j] * LOCAL_DISTANCE) / 1485 self_latency; 1486 } 1487 } 1488 1489 add_node_ranges(); 1490 1491 for (i = 0; i < num_node_masks; i++) { 1492 allocate_node_data(i); 1493 node_set_online(i); 1494 } 1495 1496 err = 0; 1497 out: 1498 mdesc_release(md); 1499 return err; 1500 } 1501 1502 static int __init numa_parse_jbus(void) 1503 { 1504 unsigned long cpu, index; 1505 1506 /* NUMA node id is encoded in bits 36 and higher, and there is 1507 * a 1-to-1 mapping from CPU ID to NUMA node ID. 1508 */ 1509 index = 0; 1510 for_each_present_cpu(cpu) { 1511 numa_cpu_lookup_table[cpu] = index; 1512 cpumask_copy(&numa_cpumask_lookup_table[index], cpumask_of(cpu)); 1513 node_masks[index].mask = ~((1UL << 36UL) - 1UL); 1514 node_masks[index].match = cpu << 36UL; 1515 1516 index++; 1517 } 1518 num_node_masks = index; 1519 1520 add_node_ranges(); 1521 1522 for (index = 0; index < num_node_masks; index++) { 1523 allocate_node_data(index); 1524 node_set_online(index); 1525 } 1526 1527 return 0; 1528 } 1529 1530 static int __init numa_parse_sun4u(void) 1531 { 1532 if (tlb_type == cheetah || tlb_type == cheetah_plus) { 1533 unsigned long ver; 1534 1535 __asm__ ("rdpr %%ver, %0" : "=r" (ver)); 1536 if ((ver >> 32UL) == __JALAPENO_ID || 1537 (ver >> 32UL) == __SERRANO_ID) 1538 return numa_parse_jbus(); 1539 } 1540 return -1; 1541 } 1542 1543 static int __init bootmem_init_numa(void) 1544 { 1545 int i, j; 1546 int err = -1; 1547 1548 numadbg("bootmem_init_numa()\n"); 1549 1550 /* Some sane defaults for numa latency values */ 1551 for (i = 0; i < MAX_NUMNODES; i++) { 1552 for (j = 0; j < MAX_NUMNODES; j++) 1553 numa_latency[i][j] = (i == j) ? 1554 LOCAL_DISTANCE : REMOTE_DISTANCE; 1555 } 1556 1557 if (numa_enabled) { 1558 if (tlb_type == hypervisor) 1559 err = numa_parse_mdesc(); 1560 else 1561 err = numa_parse_sun4u(); 1562 } 1563 return err; 1564 } 1565 1566 #else 1567 1568 static int bootmem_init_numa(void) 1569 { 1570 return -1; 1571 } 1572 1573 #endif 1574 1575 static void __init bootmem_init_nonnuma(void) 1576 { 1577 unsigned long top_of_ram = memblock_end_of_DRAM(); 1578 unsigned long total_ram = memblock_phys_mem_size(); 1579 1580 numadbg("bootmem_init_nonnuma()\n"); 1581 1582 printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n", 1583 top_of_ram, total_ram); 1584 printk(KERN_INFO "Memory hole size: %ldMB\n", 1585 (top_of_ram - total_ram) >> 20); 1586 1587 init_node_masks_nonnuma(); 1588 memblock_set_node(0, PHYS_ADDR_MAX, &memblock.memory, 0); 1589 allocate_node_data(0); 1590 node_set_online(0); 1591 } 1592 1593 static unsigned long __init bootmem_init(unsigned long phys_base) 1594 { 1595 unsigned long end_pfn; 1596 1597 end_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT; 1598 max_pfn = max_low_pfn = end_pfn; 1599 min_low_pfn = (phys_base >> PAGE_SHIFT); 1600 1601 if (bootmem_init_numa() < 0) 1602 bootmem_init_nonnuma(); 1603 1604 /* Dump memblock with node info. */ 1605 memblock_dump_all(); 1606 1607 /* XXX cpu notifier XXX */ 1608 1609 sparse_init(); 1610 1611 return end_pfn; 1612 } 1613 1614 static struct linux_prom64_registers pall[MAX_BANKS] __initdata; 1615 static int pall_ents __initdata; 1616 1617 static unsigned long max_phys_bits = 40; 1618 1619 bool kern_addr_valid(unsigned long addr) 1620 { 1621 pgd_t *pgd; 1622 p4d_t *p4d; 1623 pud_t *pud; 1624 pmd_t *pmd; 1625 pte_t *pte; 1626 1627 if ((long)addr < 0L) { 1628 unsigned long pa = __pa(addr); 1629 1630 if ((pa >> max_phys_bits) != 0UL) 1631 return false; 1632 1633 return pfn_valid(pa >> PAGE_SHIFT); 1634 } 1635 1636 if (addr >= (unsigned long) KERNBASE && 1637 addr < (unsigned long)&_end) 1638 return true; 1639 1640 pgd = pgd_offset_k(addr); 1641 if (pgd_none(*pgd)) 1642 return false; 1643 1644 p4d = p4d_offset(pgd, addr); 1645 if (p4d_none(*p4d)) 1646 return false; 1647 1648 pud = pud_offset(p4d, addr); 1649 if (pud_none(*pud)) 1650 return false; 1651 1652 if (pud_large(*pud)) 1653 return pfn_valid(pud_pfn(*pud)); 1654 1655 pmd = pmd_offset(pud, addr); 1656 if (pmd_none(*pmd)) 1657 return false; 1658 1659 if (pmd_large(*pmd)) 1660 return pfn_valid(pmd_pfn(*pmd)); 1661 1662 pte = pte_offset_kernel(pmd, addr); 1663 if (pte_none(*pte)) 1664 return false; 1665 1666 return pfn_valid(pte_pfn(*pte)); 1667 } 1668 EXPORT_SYMBOL(kern_addr_valid); 1669 1670 static unsigned long __ref kernel_map_hugepud(unsigned long vstart, 1671 unsigned long vend, 1672 pud_t *pud) 1673 { 1674 const unsigned long mask16gb = (1UL << 34) - 1UL; 1675 u64 pte_val = vstart; 1676 1677 /* Each PUD is 8GB */ 1678 if ((vstart & mask16gb) || 1679 (vend - vstart <= mask16gb)) { 1680 pte_val ^= kern_linear_pte_xor[2]; 1681 pud_val(*pud) = pte_val | _PAGE_PUD_HUGE; 1682 1683 return vstart + PUD_SIZE; 1684 } 1685 1686 pte_val ^= kern_linear_pte_xor[3]; 1687 pte_val |= _PAGE_PUD_HUGE; 1688 1689 vend = vstart + mask16gb + 1UL; 1690 while (vstart < vend) { 1691 pud_val(*pud) = pte_val; 1692 1693 pte_val += PUD_SIZE; 1694 vstart += PUD_SIZE; 1695 pud++; 1696 } 1697 return vstart; 1698 } 1699 1700 static bool kernel_can_map_hugepud(unsigned long vstart, unsigned long vend, 1701 bool guard) 1702 { 1703 if (guard && !(vstart & ~PUD_MASK) && (vend - vstart) >= PUD_SIZE) 1704 return true; 1705 1706 return false; 1707 } 1708 1709 static unsigned long __ref kernel_map_hugepmd(unsigned long vstart, 1710 unsigned long vend, 1711 pmd_t *pmd) 1712 { 1713 const unsigned long mask256mb = (1UL << 28) - 1UL; 1714 const unsigned long mask2gb = (1UL << 31) - 1UL; 1715 u64 pte_val = vstart; 1716 1717 /* Each PMD is 8MB */ 1718 if ((vstart & mask256mb) || 1719 (vend - vstart <= mask256mb)) { 1720 pte_val ^= kern_linear_pte_xor[0]; 1721 pmd_val(*pmd) = pte_val | _PAGE_PMD_HUGE; 1722 1723 return vstart + PMD_SIZE; 1724 } 1725 1726 if ((vstart & mask2gb) || 1727 (vend - vstart <= mask2gb)) { 1728 pte_val ^= kern_linear_pte_xor[1]; 1729 pte_val |= _PAGE_PMD_HUGE; 1730 vend = vstart + mask256mb + 1UL; 1731 } else { 1732 pte_val ^= kern_linear_pte_xor[2]; 1733 pte_val |= _PAGE_PMD_HUGE; 1734 vend = vstart + mask2gb + 1UL; 1735 } 1736 1737 while (vstart < vend) { 1738 pmd_val(*pmd) = pte_val; 1739 1740 pte_val += PMD_SIZE; 1741 vstart += PMD_SIZE; 1742 pmd++; 1743 } 1744 1745 return vstart; 1746 } 1747 1748 static bool kernel_can_map_hugepmd(unsigned long vstart, unsigned long vend, 1749 bool guard) 1750 { 1751 if (guard && !(vstart & ~PMD_MASK) && (vend - vstart) >= PMD_SIZE) 1752 return true; 1753 1754 return false; 1755 } 1756 1757 static unsigned long __ref kernel_map_range(unsigned long pstart, 1758 unsigned long pend, pgprot_t prot, 1759 bool use_huge) 1760 { 1761 unsigned long vstart = PAGE_OFFSET + pstart; 1762 unsigned long vend = PAGE_OFFSET + pend; 1763 unsigned long alloc_bytes = 0UL; 1764 1765 if ((vstart & ~PAGE_MASK) || (vend & ~PAGE_MASK)) { 1766 prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n", 1767 vstart, vend); 1768 prom_halt(); 1769 } 1770 1771 while (vstart < vend) { 1772 unsigned long this_end, paddr = __pa(vstart); 1773 pgd_t *pgd = pgd_offset_k(vstart); 1774 p4d_t *p4d; 1775 pud_t *pud; 1776 pmd_t *pmd; 1777 pte_t *pte; 1778 1779 if (pgd_none(*pgd)) { 1780 pud_t *new; 1781 1782 new = memblock_alloc_from(PAGE_SIZE, PAGE_SIZE, 1783 PAGE_SIZE); 1784 if (!new) 1785 goto err_alloc; 1786 alloc_bytes += PAGE_SIZE; 1787 pgd_populate(&init_mm, pgd, new); 1788 } 1789 1790 p4d = p4d_offset(pgd, vstart); 1791 if (p4d_none(*p4d)) { 1792 pud_t *new; 1793 1794 new = memblock_alloc_from(PAGE_SIZE, PAGE_SIZE, 1795 PAGE_SIZE); 1796 if (!new) 1797 goto err_alloc; 1798 alloc_bytes += PAGE_SIZE; 1799 p4d_populate(&init_mm, p4d, new); 1800 } 1801 1802 pud = pud_offset(p4d, vstart); 1803 if (pud_none(*pud)) { 1804 pmd_t *new; 1805 1806 if (kernel_can_map_hugepud(vstart, vend, use_huge)) { 1807 vstart = kernel_map_hugepud(vstart, vend, pud); 1808 continue; 1809 } 1810 new = memblock_alloc_from(PAGE_SIZE, PAGE_SIZE, 1811 PAGE_SIZE); 1812 if (!new) 1813 goto err_alloc; 1814 alloc_bytes += PAGE_SIZE; 1815 pud_populate(&init_mm, pud, new); 1816 } 1817 1818 pmd = pmd_offset(pud, vstart); 1819 if (pmd_none(*pmd)) { 1820 pte_t *new; 1821 1822 if (kernel_can_map_hugepmd(vstart, vend, use_huge)) { 1823 vstart = kernel_map_hugepmd(vstart, vend, pmd); 1824 continue; 1825 } 1826 new = memblock_alloc_from(PAGE_SIZE, PAGE_SIZE, 1827 PAGE_SIZE); 1828 if (!new) 1829 goto err_alloc; 1830 alloc_bytes += PAGE_SIZE; 1831 pmd_populate_kernel(&init_mm, pmd, new); 1832 } 1833 1834 pte = pte_offset_kernel(pmd, vstart); 1835 this_end = (vstart + PMD_SIZE) & PMD_MASK; 1836 if (this_end > vend) 1837 this_end = vend; 1838 1839 while (vstart < this_end) { 1840 pte_val(*pte) = (paddr | pgprot_val(prot)); 1841 1842 vstart += PAGE_SIZE; 1843 paddr += PAGE_SIZE; 1844 pte++; 1845 } 1846 } 1847 1848 return alloc_bytes; 1849 1850 err_alloc: 1851 panic("%s: Failed to allocate %lu bytes align=%lx from=%lx\n", 1852 __func__, PAGE_SIZE, PAGE_SIZE, PAGE_SIZE); 1853 return -ENOMEM; 1854 } 1855 1856 static void __init flush_all_kernel_tsbs(void) 1857 { 1858 int i; 1859 1860 for (i = 0; i < KERNEL_TSB_NENTRIES; i++) { 1861 struct tsb *ent = &swapper_tsb[i]; 1862 1863 ent->tag = (1UL << TSB_TAG_INVALID_BIT); 1864 } 1865 #ifndef CONFIG_DEBUG_PAGEALLOC 1866 for (i = 0; i < KERNEL_TSB4M_NENTRIES; i++) { 1867 struct tsb *ent = &swapper_4m_tsb[i]; 1868 1869 ent->tag = (1UL << TSB_TAG_INVALID_BIT); 1870 } 1871 #endif 1872 } 1873 1874 extern unsigned int kvmap_linear_patch[1]; 1875 1876 static void __init kernel_physical_mapping_init(void) 1877 { 1878 unsigned long i, mem_alloced = 0UL; 1879 bool use_huge = true; 1880 1881 #ifdef CONFIG_DEBUG_PAGEALLOC 1882 use_huge = false; 1883 #endif 1884 for (i = 0; i < pall_ents; i++) { 1885 unsigned long phys_start, phys_end; 1886 1887 phys_start = pall[i].phys_addr; 1888 phys_end = phys_start + pall[i].reg_size; 1889 1890 mem_alloced += kernel_map_range(phys_start, phys_end, 1891 PAGE_KERNEL, use_huge); 1892 } 1893 1894 printk("Allocated %ld bytes for kernel page tables.\n", 1895 mem_alloced); 1896 1897 kvmap_linear_patch[0] = 0x01000000; /* nop */ 1898 flushi(&kvmap_linear_patch[0]); 1899 1900 flush_all_kernel_tsbs(); 1901 1902 __flush_tlb_all(); 1903 } 1904 1905 #ifdef CONFIG_DEBUG_PAGEALLOC 1906 void __kernel_map_pages(struct page *page, int numpages, int enable) 1907 { 1908 unsigned long phys_start = page_to_pfn(page) << PAGE_SHIFT; 1909 unsigned long phys_end = phys_start + (numpages * PAGE_SIZE); 1910 1911 kernel_map_range(phys_start, phys_end, 1912 (enable ? PAGE_KERNEL : __pgprot(0)), false); 1913 1914 flush_tsb_kernel_range(PAGE_OFFSET + phys_start, 1915 PAGE_OFFSET + phys_end); 1916 1917 /* we should perform an IPI and flush all tlbs, 1918 * but that can deadlock->flush only current cpu. 1919 */ 1920 __flush_tlb_kernel_range(PAGE_OFFSET + phys_start, 1921 PAGE_OFFSET + phys_end); 1922 } 1923 #endif 1924 1925 unsigned long __init find_ecache_flush_span(unsigned long size) 1926 { 1927 int i; 1928 1929 for (i = 0; i < pavail_ents; i++) { 1930 if (pavail[i].reg_size >= size) 1931 return pavail[i].phys_addr; 1932 } 1933 1934 return ~0UL; 1935 } 1936 1937 unsigned long PAGE_OFFSET; 1938 EXPORT_SYMBOL(PAGE_OFFSET); 1939 1940 unsigned long VMALLOC_END = 0x0000010000000000UL; 1941 EXPORT_SYMBOL(VMALLOC_END); 1942 1943 unsigned long sparc64_va_hole_top = 0xfffff80000000000UL; 1944 unsigned long sparc64_va_hole_bottom = 0x0000080000000000UL; 1945 1946 static void __init setup_page_offset(void) 1947 { 1948 if (tlb_type == cheetah || tlb_type == cheetah_plus) { 1949 /* Cheetah/Panther support a full 64-bit virtual 1950 * address, so we can use all that our page tables 1951 * support. 1952 */ 1953 sparc64_va_hole_top = 0xfff0000000000000UL; 1954 sparc64_va_hole_bottom = 0x0010000000000000UL; 1955 1956 max_phys_bits = 42; 1957 } else if (tlb_type == hypervisor) { 1958 switch (sun4v_chip_type) { 1959 case SUN4V_CHIP_NIAGARA1: 1960 case SUN4V_CHIP_NIAGARA2: 1961 /* T1 and T2 support 48-bit virtual addresses. */ 1962 sparc64_va_hole_top = 0xffff800000000000UL; 1963 sparc64_va_hole_bottom = 0x0000800000000000UL; 1964 1965 max_phys_bits = 39; 1966 break; 1967 case SUN4V_CHIP_NIAGARA3: 1968 /* T3 supports 48-bit virtual addresses. */ 1969 sparc64_va_hole_top = 0xffff800000000000UL; 1970 sparc64_va_hole_bottom = 0x0000800000000000UL; 1971 1972 max_phys_bits = 43; 1973 break; 1974 case SUN4V_CHIP_NIAGARA4: 1975 case SUN4V_CHIP_NIAGARA5: 1976 case SUN4V_CHIP_SPARC64X: 1977 case SUN4V_CHIP_SPARC_M6: 1978 /* T4 and later support 52-bit virtual addresses. */ 1979 sparc64_va_hole_top = 0xfff8000000000000UL; 1980 sparc64_va_hole_bottom = 0x0008000000000000UL; 1981 max_phys_bits = 47; 1982 break; 1983 case SUN4V_CHIP_SPARC_M7: 1984 case SUN4V_CHIP_SPARC_SN: 1985 /* M7 and later support 52-bit virtual addresses. */ 1986 sparc64_va_hole_top = 0xfff8000000000000UL; 1987 sparc64_va_hole_bottom = 0x0008000000000000UL; 1988 max_phys_bits = 49; 1989 break; 1990 case SUN4V_CHIP_SPARC_M8: 1991 default: 1992 /* M8 and later support 54-bit virtual addresses. 1993 * However, restricting M8 and above VA bits to 53 1994 * as 4-level page table cannot support more than 1995 * 53 VA bits. 1996 */ 1997 sparc64_va_hole_top = 0xfff0000000000000UL; 1998 sparc64_va_hole_bottom = 0x0010000000000000UL; 1999 max_phys_bits = 51; 2000 break; 2001 } 2002 } 2003 2004 if (max_phys_bits > MAX_PHYS_ADDRESS_BITS) { 2005 prom_printf("MAX_PHYS_ADDRESS_BITS is too small, need %lu\n", 2006 max_phys_bits); 2007 prom_halt(); 2008 } 2009 2010 PAGE_OFFSET = sparc64_va_hole_top; 2011 VMALLOC_END = ((sparc64_va_hole_bottom >> 1) + 2012 (sparc64_va_hole_bottom >> 2)); 2013 2014 pr_info("MM: PAGE_OFFSET is 0x%016lx (max_phys_bits == %lu)\n", 2015 PAGE_OFFSET, max_phys_bits); 2016 pr_info("MM: VMALLOC [0x%016lx --> 0x%016lx]\n", 2017 VMALLOC_START, VMALLOC_END); 2018 pr_info("MM: VMEMMAP [0x%016lx --> 0x%016lx]\n", 2019 VMEMMAP_BASE, VMEMMAP_BASE << 1); 2020 } 2021 2022 static void __init tsb_phys_patch(void) 2023 { 2024 struct tsb_ldquad_phys_patch_entry *pquad; 2025 struct tsb_phys_patch_entry *p; 2026 2027 pquad = &__tsb_ldquad_phys_patch; 2028 while (pquad < &__tsb_ldquad_phys_patch_end) { 2029 unsigned long addr = pquad->addr; 2030 2031 if (tlb_type == hypervisor) 2032 *(unsigned int *) addr = pquad->sun4v_insn; 2033 else 2034 *(unsigned int *) addr = pquad->sun4u_insn; 2035 wmb(); 2036 __asm__ __volatile__("flush %0" 2037 : /* no outputs */ 2038 : "r" (addr)); 2039 2040 pquad++; 2041 } 2042 2043 p = &__tsb_phys_patch; 2044 while (p < &__tsb_phys_patch_end) { 2045 unsigned long addr = p->addr; 2046 2047 *(unsigned int *) addr = p->insn; 2048 wmb(); 2049 __asm__ __volatile__("flush %0" 2050 : /* no outputs */ 2051 : "r" (addr)); 2052 2053 p++; 2054 } 2055 } 2056 2057 /* Don't mark as init, we give this to the Hypervisor. */ 2058 #ifndef CONFIG_DEBUG_PAGEALLOC 2059 #define NUM_KTSB_DESCR 2 2060 #else 2061 #define NUM_KTSB_DESCR 1 2062 #endif 2063 static struct hv_tsb_descr ktsb_descr[NUM_KTSB_DESCR]; 2064 2065 /* The swapper TSBs are loaded with a base sequence of: 2066 * 2067 * sethi %uhi(SYMBOL), REG1 2068 * sethi %hi(SYMBOL), REG2 2069 * or REG1, %ulo(SYMBOL), REG1 2070 * or REG2, %lo(SYMBOL), REG2 2071 * sllx REG1, 32, REG1 2072 * or REG1, REG2, REG1 2073 * 2074 * When we use physical addressing for the TSB accesses, we patch the 2075 * first four instructions in the above sequence. 2076 */ 2077 2078 static void patch_one_ktsb_phys(unsigned int *start, unsigned int *end, unsigned long pa) 2079 { 2080 unsigned long high_bits, low_bits; 2081 2082 high_bits = (pa >> 32) & 0xffffffff; 2083 low_bits = (pa >> 0) & 0xffffffff; 2084 2085 while (start < end) { 2086 unsigned int *ia = (unsigned int *)(unsigned long)*start; 2087 2088 ia[0] = (ia[0] & ~0x3fffff) | (high_bits >> 10); 2089 __asm__ __volatile__("flush %0" : : "r" (ia)); 2090 2091 ia[1] = (ia[1] & ~0x3fffff) | (low_bits >> 10); 2092 __asm__ __volatile__("flush %0" : : "r" (ia + 1)); 2093 2094 ia[2] = (ia[2] & ~0x1fff) | (high_bits & 0x3ff); 2095 __asm__ __volatile__("flush %0" : : "r" (ia + 2)); 2096 2097 ia[3] = (ia[3] & ~0x1fff) | (low_bits & 0x3ff); 2098 __asm__ __volatile__("flush %0" : : "r" (ia + 3)); 2099 2100 start++; 2101 } 2102 } 2103 2104 static void ktsb_phys_patch(void) 2105 { 2106 extern unsigned int __swapper_tsb_phys_patch; 2107 extern unsigned int __swapper_tsb_phys_patch_end; 2108 unsigned long ktsb_pa; 2109 2110 ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE); 2111 patch_one_ktsb_phys(&__swapper_tsb_phys_patch, 2112 &__swapper_tsb_phys_patch_end, ktsb_pa); 2113 #ifndef CONFIG_DEBUG_PAGEALLOC 2114 { 2115 extern unsigned int __swapper_4m_tsb_phys_patch; 2116 extern unsigned int __swapper_4m_tsb_phys_patch_end; 2117 ktsb_pa = (kern_base + 2118 ((unsigned long)&swapper_4m_tsb[0] - KERNBASE)); 2119 patch_one_ktsb_phys(&__swapper_4m_tsb_phys_patch, 2120 &__swapper_4m_tsb_phys_patch_end, ktsb_pa); 2121 } 2122 #endif 2123 } 2124 2125 static void __init sun4v_ktsb_init(void) 2126 { 2127 unsigned long ktsb_pa; 2128 2129 /* First KTSB for PAGE_SIZE mappings. */ 2130 ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE); 2131 2132 switch (PAGE_SIZE) { 2133 case 8 * 1024: 2134 default: 2135 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_8K; 2136 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_8K; 2137 break; 2138 2139 case 64 * 1024: 2140 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_64K; 2141 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_64K; 2142 break; 2143 2144 case 512 * 1024: 2145 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_512K; 2146 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_512K; 2147 break; 2148 2149 case 4 * 1024 * 1024: 2150 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_4MB; 2151 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_4MB; 2152 break; 2153 } 2154 2155 ktsb_descr[0].assoc = 1; 2156 ktsb_descr[0].num_ttes = KERNEL_TSB_NENTRIES; 2157 ktsb_descr[0].ctx_idx = 0; 2158 ktsb_descr[0].tsb_base = ktsb_pa; 2159 ktsb_descr[0].resv = 0; 2160 2161 #ifndef CONFIG_DEBUG_PAGEALLOC 2162 /* Second KTSB for 4MB/256MB/2GB/16GB mappings. */ 2163 ktsb_pa = (kern_base + 2164 ((unsigned long)&swapper_4m_tsb[0] - KERNBASE)); 2165 2166 ktsb_descr[1].pgsz_idx = HV_PGSZ_IDX_4MB; 2167 ktsb_descr[1].pgsz_mask = ((HV_PGSZ_MASK_4MB | 2168 HV_PGSZ_MASK_256MB | 2169 HV_PGSZ_MASK_2GB | 2170 HV_PGSZ_MASK_16GB) & 2171 cpu_pgsz_mask); 2172 ktsb_descr[1].assoc = 1; 2173 ktsb_descr[1].num_ttes = KERNEL_TSB4M_NENTRIES; 2174 ktsb_descr[1].ctx_idx = 0; 2175 ktsb_descr[1].tsb_base = ktsb_pa; 2176 ktsb_descr[1].resv = 0; 2177 #endif 2178 } 2179 2180 void sun4v_ktsb_register(void) 2181 { 2182 unsigned long pa, ret; 2183 2184 pa = kern_base + ((unsigned long)&ktsb_descr[0] - KERNBASE); 2185 2186 ret = sun4v_mmu_tsb_ctx0(NUM_KTSB_DESCR, pa); 2187 if (ret != 0) { 2188 prom_printf("hypervisor_mmu_tsb_ctx0[%lx]: " 2189 "errors with %lx\n", pa, ret); 2190 prom_halt(); 2191 } 2192 } 2193 2194 static void __init sun4u_linear_pte_xor_finalize(void) 2195 { 2196 #ifndef CONFIG_DEBUG_PAGEALLOC 2197 /* This is where we would add Panther support for 2198 * 32MB and 256MB pages. 2199 */ 2200 #endif 2201 } 2202 2203 static void __init sun4v_linear_pte_xor_finalize(void) 2204 { 2205 unsigned long pagecv_flag; 2206 2207 /* Bit 9 of TTE is no longer CV bit on M7 processor and it instead 2208 * enables MCD error. Do not set bit 9 on M7 processor. 2209 */ 2210 switch (sun4v_chip_type) { 2211 case SUN4V_CHIP_SPARC_M7: 2212 case SUN4V_CHIP_SPARC_M8: 2213 case SUN4V_CHIP_SPARC_SN: 2214 pagecv_flag = 0x00; 2215 break; 2216 default: 2217 pagecv_flag = _PAGE_CV_4V; 2218 break; 2219 } 2220 #ifndef CONFIG_DEBUG_PAGEALLOC 2221 if (cpu_pgsz_mask & HV_PGSZ_MASK_256MB) { 2222 kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZ256MB_4V) ^ 2223 PAGE_OFFSET; 2224 kern_linear_pte_xor[1] |= (_PAGE_CP_4V | pagecv_flag | 2225 _PAGE_P_4V | _PAGE_W_4V); 2226 } else { 2227 kern_linear_pte_xor[1] = kern_linear_pte_xor[0]; 2228 } 2229 2230 if (cpu_pgsz_mask & HV_PGSZ_MASK_2GB) { 2231 kern_linear_pte_xor[2] = (_PAGE_VALID | _PAGE_SZ2GB_4V) ^ 2232 PAGE_OFFSET; 2233 kern_linear_pte_xor[2] |= (_PAGE_CP_4V | pagecv_flag | 2234 _PAGE_P_4V | _PAGE_W_4V); 2235 } else { 2236 kern_linear_pte_xor[2] = kern_linear_pte_xor[1]; 2237 } 2238 2239 if (cpu_pgsz_mask & HV_PGSZ_MASK_16GB) { 2240 kern_linear_pte_xor[3] = (_PAGE_VALID | _PAGE_SZ16GB_4V) ^ 2241 PAGE_OFFSET; 2242 kern_linear_pte_xor[3] |= (_PAGE_CP_4V | pagecv_flag | 2243 _PAGE_P_4V | _PAGE_W_4V); 2244 } else { 2245 kern_linear_pte_xor[3] = kern_linear_pte_xor[2]; 2246 } 2247 #endif 2248 } 2249 2250 /* paging_init() sets up the page tables */ 2251 2252 static unsigned long last_valid_pfn; 2253 2254 static void sun4u_pgprot_init(void); 2255 static void sun4v_pgprot_init(void); 2256 2257 #define _PAGE_CACHE_4U (_PAGE_CP_4U | _PAGE_CV_4U) 2258 #define _PAGE_CACHE_4V (_PAGE_CP_4V | _PAGE_CV_4V) 2259 #define __DIRTY_BITS_4U (_PAGE_MODIFIED_4U | _PAGE_WRITE_4U | _PAGE_W_4U) 2260 #define __DIRTY_BITS_4V (_PAGE_MODIFIED_4V | _PAGE_WRITE_4V | _PAGE_W_4V) 2261 #define __ACCESS_BITS_4U (_PAGE_ACCESSED_4U | _PAGE_READ_4U | _PAGE_R) 2262 #define __ACCESS_BITS_4V (_PAGE_ACCESSED_4V | _PAGE_READ_4V | _PAGE_R) 2263 2264 /* We need to exclude reserved regions. This exclusion will include 2265 * vmlinux and initrd. To be more precise the initrd size could be used to 2266 * compute a new lower limit because it is freed later during initialization. 2267 */ 2268 static void __init reduce_memory(phys_addr_t limit_ram) 2269 { 2270 limit_ram += memblock_reserved_size(); 2271 memblock_enforce_memory_limit(limit_ram); 2272 } 2273 2274 void __init paging_init(void) 2275 { 2276 unsigned long end_pfn, shift, phys_base; 2277 unsigned long real_end, i; 2278 2279 setup_page_offset(); 2280 2281 /* These build time checkes make sure that the dcache_dirty_cpu() 2282 * page->flags usage will work. 2283 * 2284 * When a page gets marked as dcache-dirty, we store the 2285 * cpu number starting at bit 32 in the page->flags. Also, 2286 * functions like clear_dcache_dirty_cpu use the cpu mask 2287 * in 13-bit signed-immediate instruction fields. 2288 */ 2289 2290 /* 2291 * Page flags must not reach into upper 32 bits that are used 2292 * for the cpu number 2293 */ 2294 BUILD_BUG_ON(NR_PAGEFLAGS > 32); 2295 2296 /* 2297 * The bit fields placed in the high range must not reach below 2298 * the 32 bit boundary. Otherwise we cannot place the cpu field 2299 * at the 32 bit boundary. 2300 */ 2301 BUILD_BUG_ON(SECTIONS_WIDTH + NODES_WIDTH + ZONES_WIDTH + 2302 ilog2(roundup_pow_of_two(NR_CPUS)) > 32); 2303 2304 BUILD_BUG_ON(NR_CPUS > 4096); 2305 2306 kern_base = (prom_boot_mapping_phys_low >> ILOG2_4MB) << ILOG2_4MB; 2307 kern_size = (unsigned long)&_end - (unsigned long)KERNBASE; 2308 2309 /* Invalidate both kernel TSBs. */ 2310 memset(swapper_tsb, 0x40, sizeof(swapper_tsb)); 2311 #ifndef CONFIG_DEBUG_PAGEALLOC 2312 memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb)); 2313 #endif 2314 2315 /* TTE.cv bit on sparc v9 occupies the same position as TTE.mcde 2316 * bit on M7 processor. This is a conflicting usage of the same 2317 * bit. Enabling TTE.cv on M7 would turn on Memory Corruption 2318 * Detection error on all pages and this will lead to problems 2319 * later. Kernel does not run with MCD enabled and hence rest 2320 * of the required steps to fully configure memory corruption 2321 * detection are not taken. We need to ensure TTE.mcde is not 2322 * set on M7 processor. Compute the value of cacheability 2323 * flag for use later taking this into consideration. 2324 */ 2325 switch (sun4v_chip_type) { 2326 case SUN4V_CHIP_SPARC_M7: 2327 case SUN4V_CHIP_SPARC_M8: 2328 case SUN4V_CHIP_SPARC_SN: 2329 page_cache4v_flag = _PAGE_CP_4V; 2330 break; 2331 default: 2332 page_cache4v_flag = _PAGE_CACHE_4V; 2333 break; 2334 } 2335 2336 if (tlb_type == hypervisor) 2337 sun4v_pgprot_init(); 2338 else 2339 sun4u_pgprot_init(); 2340 2341 if (tlb_type == cheetah_plus || 2342 tlb_type == hypervisor) { 2343 tsb_phys_patch(); 2344 ktsb_phys_patch(); 2345 } 2346 2347 if (tlb_type == hypervisor) 2348 sun4v_patch_tlb_handlers(); 2349 2350 /* Find available physical memory... 2351 * 2352 * Read it twice in order to work around a bug in openfirmware. 2353 * The call to grab this table itself can cause openfirmware to 2354 * allocate memory, which in turn can take away some space from 2355 * the list of available memory. Reading it twice makes sure 2356 * we really do get the final value. 2357 */ 2358 read_obp_translations(); 2359 read_obp_memory("reg", &pall[0], &pall_ents); 2360 read_obp_memory("available", &pavail[0], &pavail_ents); 2361 read_obp_memory("available", &pavail[0], &pavail_ents); 2362 2363 phys_base = 0xffffffffffffffffUL; 2364 for (i = 0; i < pavail_ents; i++) { 2365 phys_base = min(phys_base, pavail[i].phys_addr); 2366 memblock_add(pavail[i].phys_addr, pavail[i].reg_size); 2367 } 2368 2369 memblock_reserve(kern_base, kern_size); 2370 2371 find_ramdisk(phys_base); 2372 2373 if (cmdline_memory_size) 2374 reduce_memory(cmdline_memory_size); 2375 2376 memblock_allow_resize(); 2377 memblock_dump_all(); 2378 2379 set_bit(0, mmu_context_bmap); 2380 2381 shift = kern_base + PAGE_OFFSET - ((unsigned long)KERNBASE); 2382 2383 real_end = (unsigned long)_end; 2384 num_kernel_image_mappings = DIV_ROUND_UP(real_end - KERNBASE, 1 << ILOG2_4MB); 2385 printk("Kernel: Using %d locked TLB entries for main kernel image.\n", 2386 num_kernel_image_mappings); 2387 2388 /* Set kernel pgd to upper alias so physical page computations 2389 * work. 2390 */ 2391 init_mm.pgd += ((shift) / (sizeof(pgd_t))); 2392 2393 memset(swapper_pg_dir, 0, sizeof(swapper_pg_dir)); 2394 2395 inherit_prom_mappings(); 2396 2397 /* Ok, we can use our TLB miss and window trap handlers safely. */ 2398 setup_tba(); 2399 2400 __flush_tlb_all(); 2401 2402 prom_build_devicetree(); 2403 of_populate_present_mask(); 2404 #ifndef CONFIG_SMP 2405 of_fill_in_cpu_data(); 2406 #endif 2407 2408 if (tlb_type == hypervisor) { 2409 sun4v_mdesc_init(); 2410 mdesc_populate_present_mask(cpu_all_mask); 2411 #ifndef CONFIG_SMP 2412 mdesc_fill_in_cpu_data(cpu_all_mask); 2413 #endif 2414 mdesc_get_page_sizes(cpu_all_mask, &cpu_pgsz_mask); 2415 2416 sun4v_linear_pte_xor_finalize(); 2417 2418 sun4v_ktsb_init(); 2419 sun4v_ktsb_register(); 2420 } else { 2421 unsigned long impl, ver; 2422 2423 cpu_pgsz_mask = (HV_PGSZ_MASK_8K | HV_PGSZ_MASK_64K | 2424 HV_PGSZ_MASK_512K | HV_PGSZ_MASK_4MB); 2425 2426 __asm__ __volatile__("rdpr %%ver, %0" : "=r" (ver)); 2427 impl = ((ver >> 32) & 0xffff); 2428 if (impl == PANTHER_IMPL) 2429 cpu_pgsz_mask |= (HV_PGSZ_MASK_32MB | 2430 HV_PGSZ_MASK_256MB); 2431 2432 sun4u_linear_pte_xor_finalize(); 2433 } 2434 2435 /* Flush the TLBs and the 4M TSB so that the updated linear 2436 * pte XOR settings are realized for all mappings. 2437 */ 2438 __flush_tlb_all(); 2439 #ifndef CONFIG_DEBUG_PAGEALLOC 2440 memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb)); 2441 #endif 2442 __flush_tlb_all(); 2443 2444 /* Setup bootmem... */ 2445 last_valid_pfn = end_pfn = bootmem_init(phys_base); 2446 2447 kernel_physical_mapping_init(); 2448 2449 { 2450 unsigned long max_zone_pfns[MAX_NR_ZONES]; 2451 2452 memset(max_zone_pfns, 0, sizeof(max_zone_pfns)); 2453 2454 max_zone_pfns[ZONE_NORMAL] = end_pfn; 2455 2456 free_area_init(max_zone_pfns); 2457 } 2458 2459 printk("Booting Linux...\n"); 2460 } 2461 2462 int page_in_phys_avail(unsigned long paddr) 2463 { 2464 int i; 2465 2466 paddr &= PAGE_MASK; 2467 2468 for (i = 0; i < pavail_ents; i++) { 2469 unsigned long start, end; 2470 2471 start = pavail[i].phys_addr; 2472 end = start + pavail[i].reg_size; 2473 2474 if (paddr >= start && paddr < end) 2475 return 1; 2476 } 2477 if (paddr >= kern_base && paddr < (kern_base + kern_size)) 2478 return 1; 2479 #ifdef CONFIG_BLK_DEV_INITRD 2480 if (paddr >= __pa(initrd_start) && 2481 paddr < __pa(PAGE_ALIGN(initrd_end))) 2482 return 1; 2483 #endif 2484 2485 return 0; 2486 } 2487 2488 static void __init register_page_bootmem_info(void) 2489 { 2490 #ifdef CONFIG_NEED_MULTIPLE_NODES 2491 int i; 2492 2493 for_each_online_node(i) 2494 if (NODE_DATA(i)->node_spanned_pages) 2495 register_page_bootmem_info_node(NODE_DATA(i)); 2496 #endif 2497 } 2498 void __init mem_init(void) 2499 { 2500 high_memory = __va(last_valid_pfn << PAGE_SHIFT); 2501 2502 memblock_free_all(); 2503 2504 /* 2505 * Must be done after boot memory is put on freelist, because here we 2506 * might set fields in deferred struct pages that have not yet been 2507 * initialized, and memblock_free_all() initializes all the reserved 2508 * deferred pages for us. 2509 */ 2510 register_page_bootmem_info(); 2511 2512 /* 2513 * Set up the zero page, mark it reserved, so that page count 2514 * is not manipulated when freeing the page from user ptes. 2515 */ 2516 mem_map_zero = alloc_pages(GFP_KERNEL|__GFP_ZERO, 0); 2517 if (mem_map_zero == NULL) { 2518 prom_printf("paging_init: Cannot alloc zero page.\n"); 2519 prom_halt(); 2520 } 2521 mark_page_reserved(mem_map_zero); 2522 2523 mem_init_print_info(NULL); 2524 2525 if (tlb_type == cheetah || tlb_type == cheetah_plus) 2526 cheetah_ecache_flush_init(); 2527 } 2528 2529 void free_initmem(void) 2530 { 2531 unsigned long addr, initend; 2532 int do_free = 1; 2533 2534 /* If the physical memory maps were trimmed by kernel command 2535 * line options, don't even try freeing this initmem stuff up. 2536 * The kernel image could have been in the trimmed out region 2537 * and if so the freeing below will free invalid page structs. 2538 */ 2539 if (cmdline_memory_size) 2540 do_free = 0; 2541 2542 /* 2543 * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes. 2544 */ 2545 addr = PAGE_ALIGN((unsigned long)(__init_begin)); 2546 initend = (unsigned long)(__init_end) & PAGE_MASK; 2547 for (; addr < initend; addr += PAGE_SIZE) { 2548 unsigned long page; 2549 2550 page = (addr + 2551 ((unsigned long) __va(kern_base)) - 2552 ((unsigned long) KERNBASE)); 2553 memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE); 2554 2555 if (do_free) 2556 free_reserved_page(virt_to_page(page)); 2557 } 2558 } 2559 2560 pgprot_t PAGE_KERNEL __read_mostly; 2561 EXPORT_SYMBOL(PAGE_KERNEL); 2562 2563 pgprot_t PAGE_KERNEL_LOCKED __read_mostly; 2564 pgprot_t PAGE_COPY __read_mostly; 2565 2566 pgprot_t PAGE_SHARED __read_mostly; 2567 EXPORT_SYMBOL(PAGE_SHARED); 2568 2569 unsigned long pg_iobits __read_mostly; 2570 2571 unsigned long _PAGE_IE __read_mostly; 2572 EXPORT_SYMBOL(_PAGE_IE); 2573 2574 unsigned long _PAGE_E __read_mostly; 2575 EXPORT_SYMBOL(_PAGE_E); 2576 2577 unsigned long _PAGE_CACHE __read_mostly; 2578 EXPORT_SYMBOL(_PAGE_CACHE); 2579 2580 #ifdef CONFIG_SPARSEMEM_VMEMMAP 2581 int __meminit vmemmap_populate(unsigned long vstart, unsigned long vend, 2582 int node, struct vmem_altmap *altmap) 2583 { 2584 unsigned long pte_base; 2585 2586 pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4U | 2587 _PAGE_CP_4U | _PAGE_CV_4U | 2588 _PAGE_P_4U | _PAGE_W_4U); 2589 if (tlb_type == hypervisor) 2590 pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4V | 2591 page_cache4v_flag | _PAGE_P_4V | _PAGE_W_4V); 2592 2593 pte_base |= _PAGE_PMD_HUGE; 2594 2595 vstart = vstart & PMD_MASK; 2596 vend = ALIGN(vend, PMD_SIZE); 2597 for (; vstart < vend; vstart += PMD_SIZE) { 2598 pgd_t *pgd = vmemmap_pgd_populate(vstart, node); 2599 unsigned long pte; 2600 p4d_t *p4d; 2601 pud_t *pud; 2602 pmd_t *pmd; 2603 2604 if (!pgd) 2605 return -ENOMEM; 2606 2607 p4d = vmemmap_p4d_populate(pgd, vstart, node); 2608 if (!p4d) 2609 return -ENOMEM; 2610 2611 pud = vmemmap_pud_populate(p4d, vstart, node); 2612 if (!pud) 2613 return -ENOMEM; 2614 2615 pmd = pmd_offset(pud, vstart); 2616 pte = pmd_val(*pmd); 2617 if (!(pte & _PAGE_VALID)) { 2618 void *block = vmemmap_alloc_block(PMD_SIZE, node); 2619 2620 if (!block) 2621 return -ENOMEM; 2622 2623 pmd_val(*pmd) = pte_base | __pa(block); 2624 } 2625 } 2626 2627 return 0; 2628 } 2629 2630 void vmemmap_free(unsigned long start, unsigned long end, 2631 struct vmem_altmap *altmap) 2632 { 2633 } 2634 #endif /* CONFIG_SPARSEMEM_VMEMMAP */ 2635 2636 static void prot_init_common(unsigned long page_none, 2637 unsigned long page_shared, 2638 unsigned long page_copy, 2639 unsigned long page_readonly, 2640 unsigned long page_exec_bit) 2641 { 2642 PAGE_COPY = __pgprot(page_copy); 2643 PAGE_SHARED = __pgprot(page_shared); 2644 2645 protection_map[0x0] = __pgprot(page_none); 2646 protection_map[0x1] = __pgprot(page_readonly & ~page_exec_bit); 2647 protection_map[0x2] = __pgprot(page_copy & ~page_exec_bit); 2648 protection_map[0x3] = __pgprot(page_copy & ~page_exec_bit); 2649 protection_map[0x4] = __pgprot(page_readonly); 2650 protection_map[0x5] = __pgprot(page_readonly); 2651 protection_map[0x6] = __pgprot(page_copy); 2652 protection_map[0x7] = __pgprot(page_copy); 2653 protection_map[0x8] = __pgprot(page_none); 2654 protection_map[0x9] = __pgprot(page_readonly & ~page_exec_bit); 2655 protection_map[0xa] = __pgprot(page_shared & ~page_exec_bit); 2656 protection_map[0xb] = __pgprot(page_shared & ~page_exec_bit); 2657 protection_map[0xc] = __pgprot(page_readonly); 2658 protection_map[0xd] = __pgprot(page_readonly); 2659 protection_map[0xe] = __pgprot(page_shared); 2660 protection_map[0xf] = __pgprot(page_shared); 2661 } 2662 2663 static void __init sun4u_pgprot_init(void) 2664 { 2665 unsigned long page_none, page_shared, page_copy, page_readonly; 2666 unsigned long page_exec_bit; 2667 int i; 2668 2669 PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID | 2670 _PAGE_CACHE_4U | _PAGE_P_4U | 2671 __ACCESS_BITS_4U | __DIRTY_BITS_4U | 2672 _PAGE_EXEC_4U); 2673 PAGE_KERNEL_LOCKED = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID | 2674 _PAGE_CACHE_4U | _PAGE_P_4U | 2675 __ACCESS_BITS_4U | __DIRTY_BITS_4U | 2676 _PAGE_EXEC_4U | _PAGE_L_4U); 2677 2678 _PAGE_IE = _PAGE_IE_4U; 2679 _PAGE_E = _PAGE_E_4U; 2680 _PAGE_CACHE = _PAGE_CACHE_4U; 2681 2682 pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4U | __DIRTY_BITS_4U | 2683 __ACCESS_BITS_4U | _PAGE_E_4U); 2684 2685 #ifdef CONFIG_DEBUG_PAGEALLOC 2686 kern_linear_pte_xor[0] = _PAGE_VALID ^ PAGE_OFFSET; 2687 #else 2688 kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4U) ^ 2689 PAGE_OFFSET; 2690 #endif 2691 kern_linear_pte_xor[0] |= (_PAGE_CP_4U | _PAGE_CV_4U | 2692 _PAGE_P_4U | _PAGE_W_4U); 2693 2694 for (i = 1; i < 4; i++) 2695 kern_linear_pte_xor[i] = kern_linear_pte_xor[0]; 2696 2697 _PAGE_ALL_SZ_BITS = (_PAGE_SZ4MB_4U | _PAGE_SZ512K_4U | 2698 _PAGE_SZ64K_4U | _PAGE_SZ8K_4U | 2699 _PAGE_SZ32MB_4U | _PAGE_SZ256MB_4U); 2700 2701 2702 page_none = _PAGE_PRESENT_4U | _PAGE_ACCESSED_4U | _PAGE_CACHE_4U; 2703 page_shared = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U | 2704 __ACCESS_BITS_4U | _PAGE_WRITE_4U | _PAGE_EXEC_4U); 2705 page_copy = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U | 2706 __ACCESS_BITS_4U | _PAGE_EXEC_4U); 2707 page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U | 2708 __ACCESS_BITS_4U | _PAGE_EXEC_4U); 2709 2710 page_exec_bit = _PAGE_EXEC_4U; 2711 2712 prot_init_common(page_none, page_shared, page_copy, page_readonly, 2713 page_exec_bit); 2714 } 2715 2716 static void __init sun4v_pgprot_init(void) 2717 { 2718 unsigned long page_none, page_shared, page_copy, page_readonly; 2719 unsigned long page_exec_bit; 2720 int i; 2721 2722 PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4V | _PAGE_VALID | 2723 page_cache4v_flag | _PAGE_P_4V | 2724 __ACCESS_BITS_4V | __DIRTY_BITS_4V | 2725 _PAGE_EXEC_4V); 2726 PAGE_KERNEL_LOCKED = PAGE_KERNEL; 2727 2728 _PAGE_IE = _PAGE_IE_4V; 2729 _PAGE_E = _PAGE_E_4V; 2730 _PAGE_CACHE = page_cache4v_flag; 2731 2732 #ifdef CONFIG_DEBUG_PAGEALLOC 2733 kern_linear_pte_xor[0] = _PAGE_VALID ^ PAGE_OFFSET; 2734 #else 2735 kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4V) ^ 2736 PAGE_OFFSET; 2737 #endif 2738 kern_linear_pte_xor[0] |= (page_cache4v_flag | _PAGE_P_4V | 2739 _PAGE_W_4V); 2740 2741 for (i = 1; i < 4; i++) 2742 kern_linear_pte_xor[i] = kern_linear_pte_xor[0]; 2743 2744 pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4V | __DIRTY_BITS_4V | 2745 __ACCESS_BITS_4V | _PAGE_E_4V); 2746 2747 _PAGE_ALL_SZ_BITS = (_PAGE_SZ16GB_4V | _PAGE_SZ2GB_4V | 2748 _PAGE_SZ256MB_4V | _PAGE_SZ32MB_4V | 2749 _PAGE_SZ4MB_4V | _PAGE_SZ512K_4V | 2750 _PAGE_SZ64K_4V | _PAGE_SZ8K_4V); 2751 2752 page_none = _PAGE_PRESENT_4V | _PAGE_ACCESSED_4V | page_cache4v_flag; 2753 page_shared = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag | 2754 __ACCESS_BITS_4V | _PAGE_WRITE_4V | _PAGE_EXEC_4V); 2755 page_copy = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag | 2756 __ACCESS_BITS_4V | _PAGE_EXEC_4V); 2757 page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag | 2758 __ACCESS_BITS_4V | _PAGE_EXEC_4V); 2759 2760 page_exec_bit = _PAGE_EXEC_4V; 2761 2762 prot_init_common(page_none, page_shared, page_copy, page_readonly, 2763 page_exec_bit); 2764 } 2765 2766 unsigned long pte_sz_bits(unsigned long sz) 2767 { 2768 if (tlb_type == hypervisor) { 2769 switch (sz) { 2770 case 8 * 1024: 2771 default: 2772 return _PAGE_SZ8K_4V; 2773 case 64 * 1024: 2774 return _PAGE_SZ64K_4V; 2775 case 512 * 1024: 2776 return _PAGE_SZ512K_4V; 2777 case 4 * 1024 * 1024: 2778 return _PAGE_SZ4MB_4V; 2779 } 2780 } else { 2781 switch (sz) { 2782 case 8 * 1024: 2783 default: 2784 return _PAGE_SZ8K_4U; 2785 case 64 * 1024: 2786 return _PAGE_SZ64K_4U; 2787 case 512 * 1024: 2788 return _PAGE_SZ512K_4U; 2789 case 4 * 1024 * 1024: 2790 return _PAGE_SZ4MB_4U; 2791 } 2792 } 2793 } 2794 2795 pte_t mk_pte_io(unsigned long page, pgprot_t prot, int space, unsigned long page_size) 2796 { 2797 pte_t pte; 2798 2799 pte_val(pte) = page | pgprot_val(pgprot_noncached(prot)); 2800 pte_val(pte) |= (((unsigned long)space) << 32); 2801 pte_val(pte) |= pte_sz_bits(page_size); 2802 2803 return pte; 2804 } 2805 2806 static unsigned long kern_large_tte(unsigned long paddr) 2807 { 2808 unsigned long val; 2809 2810 val = (_PAGE_VALID | _PAGE_SZ4MB_4U | 2811 _PAGE_CP_4U | _PAGE_CV_4U | _PAGE_P_4U | 2812 _PAGE_EXEC_4U | _PAGE_L_4U | _PAGE_W_4U); 2813 if (tlb_type == hypervisor) 2814 val = (_PAGE_VALID | _PAGE_SZ4MB_4V | 2815 page_cache4v_flag | _PAGE_P_4V | 2816 _PAGE_EXEC_4V | _PAGE_W_4V); 2817 2818 return val | paddr; 2819 } 2820 2821 /* If not locked, zap it. */ 2822 void __flush_tlb_all(void) 2823 { 2824 unsigned long pstate; 2825 int i; 2826 2827 __asm__ __volatile__("flushw\n\t" 2828 "rdpr %%pstate, %0\n\t" 2829 "wrpr %0, %1, %%pstate" 2830 : "=r" (pstate) 2831 : "i" (PSTATE_IE)); 2832 if (tlb_type == hypervisor) { 2833 sun4v_mmu_demap_all(); 2834 } else if (tlb_type == spitfire) { 2835 for (i = 0; i < 64; i++) { 2836 /* Spitfire Errata #32 workaround */ 2837 /* NOTE: Always runs on spitfire, so no 2838 * cheetah+ page size encodings. 2839 */ 2840 __asm__ __volatile__("stxa %0, [%1] %2\n\t" 2841 "flush %%g6" 2842 : /* No outputs */ 2843 : "r" (0), 2844 "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU)); 2845 2846 if (!(spitfire_get_dtlb_data(i) & _PAGE_L_4U)) { 2847 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t" 2848 "membar #Sync" 2849 : /* no outputs */ 2850 : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU)); 2851 spitfire_put_dtlb_data(i, 0x0UL); 2852 } 2853 2854 /* Spitfire Errata #32 workaround */ 2855 /* NOTE: Always runs on spitfire, so no 2856 * cheetah+ page size encodings. 2857 */ 2858 __asm__ __volatile__("stxa %0, [%1] %2\n\t" 2859 "flush %%g6" 2860 : /* No outputs */ 2861 : "r" (0), 2862 "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU)); 2863 2864 if (!(spitfire_get_itlb_data(i) & _PAGE_L_4U)) { 2865 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t" 2866 "membar #Sync" 2867 : /* no outputs */ 2868 : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU)); 2869 spitfire_put_itlb_data(i, 0x0UL); 2870 } 2871 } 2872 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) { 2873 cheetah_flush_dtlb_all(); 2874 cheetah_flush_itlb_all(); 2875 } 2876 __asm__ __volatile__("wrpr %0, 0, %%pstate" 2877 : : "r" (pstate)); 2878 } 2879 2880 pte_t *pte_alloc_one_kernel(struct mm_struct *mm) 2881 { 2882 struct page *page = alloc_page(GFP_KERNEL | __GFP_ZERO); 2883 pte_t *pte = NULL; 2884 2885 if (page) 2886 pte = (pte_t *) page_address(page); 2887 2888 return pte; 2889 } 2890 2891 pgtable_t pte_alloc_one(struct mm_struct *mm) 2892 { 2893 struct page *page = alloc_page(GFP_KERNEL | __GFP_ZERO); 2894 if (!page) 2895 return NULL; 2896 if (!pgtable_pte_page_ctor(page)) { 2897 free_unref_page(page); 2898 return NULL; 2899 } 2900 return (pte_t *) page_address(page); 2901 } 2902 2903 void pte_free_kernel(struct mm_struct *mm, pte_t *pte) 2904 { 2905 free_page((unsigned long)pte); 2906 } 2907 2908 static void __pte_free(pgtable_t pte) 2909 { 2910 struct page *page = virt_to_page(pte); 2911 2912 pgtable_pte_page_dtor(page); 2913 __free_page(page); 2914 } 2915 2916 void pte_free(struct mm_struct *mm, pgtable_t pte) 2917 { 2918 __pte_free(pte); 2919 } 2920 2921 void pgtable_free(void *table, bool is_page) 2922 { 2923 if (is_page) 2924 __pte_free(table); 2925 else 2926 kmem_cache_free(pgtable_cache, table); 2927 } 2928 2929 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2930 void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr, 2931 pmd_t *pmd) 2932 { 2933 unsigned long pte, flags; 2934 struct mm_struct *mm; 2935 pmd_t entry = *pmd; 2936 2937 if (!pmd_large(entry) || !pmd_young(entry)) 2938 return; 2939 2940 pte = pmd_val(entry); 2941 2942 /* Don't insert a non-valid PMD into the TSB, we'll deadlock. */ 2943 if (!(pte & _PAGE_VALID)) 2944 return; 2945 2946 /* We are fabricating 8MB pages using 4MB real hw pages. */ 2947 pte |= (addr & (1UL << REAL_HPAGE_SHIFT)); 2948 2949 mm = vma->vm_mm; 2950 2951 spin_lock_irqsave(&mm->context.lock, flags); 2952 2953 if (mm->context.tsb_block[MM_TSB_HUGE].tsb != NULL) 2954 __update_mmu_tsb_insert(mm, MM_TSB_HUGE, REAL_HPAGE_SHIFT, 2955 addr, pte); 2956 2957 spin_unlock_irqrestore(&mm->context.lock, flags); 2958 } 2959 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 2960 2961 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE) 2962 static void context_reload(void *__data) 2963 { 2964 struct mm_struct *mm = __data; 2965 2966 if (mm == current->mm) 2967 load_secondary_context(mm); 2968 } 2969 2970 void hugetlb_setup(struct pt_regs *regs) 2971 { 2972 struct mm_struct *mm = current->mm; 2973 struct tsb_config *tp; 2974 2975 if (faulthandler_disabled() || !mm) { 2976 const struct exception_table_entry *entry; 2977 2978 entry = search_exception_tables(regs->tpc); 2979 if (entry) { 2980 regs->tpc = entry->fixup; 2981 regs->tnpc = regs->tpc + 4; 2982 return; 2983 } 2984 pr_alert("Unexpected HugeTLB setup in atomic context.\n"); 2985 die_if_kernel("HugeTSB in atomic", regs); 2986 } 2987 2988 tp = &mm->context.tsb_block[MM_TSB_HUGE]; 2989 if (likely(tp->tsb == NULL)) 2990 tsb_grow(mm, MM_TSB_HUGE, 0); 2991 2992 tsb_context_switch(mm); 2993 smp_tsb_sync(mm); 2994 2995 /* On UltraSPARC-III+ and later, configure the second half of 2996 * the Data-TLB for huge pages. 2997 */ 2998 if (tlb_type == cheetah_plus) { 2999 bool need_context_reload = false; 3000 unsigned long ctx; 3001 3002 spin_lock_irq(&ctx_alloc_lock); 3003 ctx = mm->context.sparc64_ctx_val; 3004 ctx &= ~CTX_PGSZ_MASK; 3005 ctx |= CTX_PGSZ_BASE << CTX_PGSZ0_SHIFT; 3006 ctx |= CTX_PGSZ_HUGE << CTX_PGSZ1_SHIFT; 3007 3008 if (ctx != mm->context.sparc64_ctx_val) { 3009 /* When changing the page size fields, we 3010 * must perform a context flush so that no 3011 * stale entries match. This flush must 3012 * occur with the original context register 3013 * settings. 3014 */ 3015 do_flush_tlb_mm(mm); 3016 3017 /* Reload the context register of all processors 3018 * also executing in this address space. 3019 */ 3020 mm->context.sparc64_ctx_val = ctx; 3021 need_context_reload = true; 3022 } 3023 spin_unlock_irq(&ctx_alloc_lock); 3024 3025 if (need_context_reload) 3026 on_each_cpu(context_reload, mm, 0); 3027 } 3028 } 3029 #endif 3030 3031 static struct resource code_resource = { 3032 .name = "Kernel code", 3033 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM 3034 }; 3035 3036 static struct resource data_resource = { 3037 .name = "Kernel data", 3038 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM 3039 }; 3040 3041 static struct resource bss_resource = { 3042 .name = "Kernel bss", 3043 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM 3044 }; 3045 3046 static inline resource_size_t compute_kern_paddr(void *addr) 3047 { 3048 return (resource_size_t) (addr - KERNBASE + kern_base); 3049 } 3050 3051 static void __init kernel_lds_init(void) 3052 { 3053 code_resource.start = compute_kern_paddr(_text); 3054 code_resource.end = compute_kern_paddr(_etext - 1); 3055 data_resource.start = compute_kern_paddr(_etext); 3056 data_resource.end = compute_kern_paddr(_edata - 1); 3057 bss_resource.start = compute_kern_paddr(__bss_start); 3058 bss_resource.end = compute_kern_paddr(_end - 1); 3059 } 3060 3061 static int __init report_memory(void) 3062 { 3063 int i; 3064 struct resource *res; 3065 3066 kernel_lds_init(); 3067 3068 for (i = 0; i < pavail_ents; i++) { 3069 res = kzalloc(sizeof(struct resource), GFP_KERNEL); 3070 3071 if (!res) { 3072 pr_warn("Failed to allocate source.\n"); 3073 break; 3074 } 3075 3076 res->name = "System RAM"; 3077 res->start = pavail[i].phys_addr; 3078 res->end = pavail[i].phys_addr + pavail[i].reg_size - 1; 3079 res->flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM; 3080 3081 if (insert_resource(&iomem_resource, res) < 0) { 3082 pr_warn("Resource insertion failed.\n"); 3083 break; 3084 } 3085 3086 insert_resource(res, &code_resource); 3087 insert_resource(res, &data_resource); 3088 insert_resource(res, &bss_resource); 3089 } 3090 3091 return 0; 3092 } 3093 arch_initcall(report_memory); 3094 3095 #ifdef CONFIG_SMP 3096 #define do_flush_tlb_kernel_range smp_flush_tlb_kernel_range 3097 #else 3098 #define do_flush_tlb_kernel_range __flush_tlb_kernel_range 3099 #endif 3100 3101 void flush_tlb_kernel_range(unsigned long start, unsigned long end) 3102 { 3103 if (start < HI_OBP_ADDRESS && end > LOW_OBP_ADDRESS) { 3104 if (start < LOW_OBP_ADDRESS) { 3105 flush_tsb_kernel_range(start, LOW_OBP_ADDRESS); 3106 do_flush_tlb_kernel_range(start, LOW_OBP_ADDRESS); 3107 } 3108 if (end > HI_OBP_ADDRESS) { 3109 flush_tsb_kernel_range(HI_OBP_ADDRESS, end); 3110 do_flush_tlb_kernel_range(HI_OBP_ADDRESS, end); 3111 } 3112 } else { 3113 flush_tsb_kernel_range(start, end); 3114 do_flush_tlb_kernel_range(start, end); 3115 } 3116 } 3117 3118 void copy_user_highpage(struct page *to, struct page *from, 3119 unsigned long vaddr, struct vm_area_struct *vma) 3120 { 3121 char *vfrom, *vto; 3122 3123 vfrom = kmap_atomic(from); 3124 vto = kmap_atomic(to); 3125 copy_user_page(vto, vfrom, vaddr, to); 3126 kunmap_atomic(vto); 3127 kunmap_atomic(vfrom); 3128 3129 /* If this page has ADI enabled, copy over any ADI tags 3130 * as well 3131 */ 3132 if (vma->vm_flags & VM_SPARC_ADI) { 3133 unsigned long pfrom, pto, i, adi_tag; 3134 3135 pfrom = page_to_phys(from); 3136 pto = page_to_phys(to); 3137 3138 for (i = pfrom; i < (pfrom + PAGE_SIZE); i += adi_blksize()) { 3139 asm volatile("ldxa [%1] %2, %0\n\t" 3140 : "=r" (adi_tag) 3141 : "r" (i), "i" (ASI_MCD_REAL)); 3142 asm volatile("stxa %0, [%1] %2\n\t" 3143 : 3144 : "r" (adi_tag), "r" (pto), 3145 "i" (ASI_MCD_REAL)); 3146 pto += adi_blksize(); 3147 } 3148 asm volatile("membar #Sync\n\t"); 3149 } 3150 } 3151 EXPORT_SYMBOL(copy_user_highpage); 3152 3153 void copy_highpage(struct page *to, struct page *from) 3154 { 3155 char *vfrom, *vto; 3156 3157 vfrom = kmap_atomic(from); 3158 vto = kmap_atomic(to); 3159 copy_page(vto, vfrom); 3160 kunmap_atomic(vto); 3161 kunmap_atomic(vfrom); 3162 3163 /* If this platform is ADI enabled, copy any ADI tags 3164 * as well 3165 */ 3166 if (adi_capable()) { 3167 unsigned long pfrom, pto, i, adi_tag; 3168 3169 pfrom = page_to_phys(from); 3170 pto = page_to_phys(to); 3171 3172 for (i = pfrom; i < (pfrom + PAGE_SIZE); i += adi_blksize()) { 3173 asm volatile("ldxa [%1] %2, %0\n\t" 3174 : "=r" (adi_tag) 3175 : "r" (i), "i" (ASI_MCD_REAL)); 3176 asm volatile("stxa %0, [%1] %2\n\t" 3177 : 3178 : "r" (adi_tag), "r" (pto), 3179 "i" (ASI_MCD_REAL)); 3180 pto += adi_blksize(); 3181 } 3182 asm volatile("membar #Sync\n\t"); 3183 } 3184 } 3185 EXPORT_SYMBOL(copy_highpage); 3186