xref: /openbmc/linux/arch/sparc/mm/init_64.c (revision a2cce7a9)
1 /*
2  *  arch/sparc64/mm/init.c
3  *
4  *  Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu)
5  *  Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
6  */
7 
8 #include <linux/module.h>
9 #include <linux/kernel.h>
10 #include <linux/sched.h>
11 #include <linux/string.h>
12 #include <linux/init.h>
13 #include <linux/bootmem.h>
14 #include <linux/mm.h>
15 #include <linux/hugetlb.h>
16 #include <linux/initrd.h>
17 #include <linux/swap.h>
18 #include <linux/pagemap.h>
19 #include <linux/poison.h>
20 #include <linux/fs.h>
21 #include <linux/seq_file.h>
22 #include <linux/kprobes.h>
23 #include <linux/cache.h>
24 #include <linux/sort.h>
25 #include <linux/ioport.h>
26 #include <linux/percpu.h>
27 #include <linux/memblock.h>
28 #include <linux/mmzone.h>
29 #include <linux/gfp.h>
30 
31 #include <asm/head.h>
32 #include <asm/page.h>
33 #include <asm/pgalloc.h>
34 #include <asm/pgtable.h>
35 #include <asm/oplib.h>
36 #include <asm/iommu.h>
37 #include <asm/io.h>
38 #include <asm/uaccess.h>
39 #include <asm/mmu_context.h>
40 #include <asm/tlbflush.h>
41 #include <asm/dma.h>
42 #include <asm/starfire.h>
43 #include <asm/tlb.h>
44 #include <asm/spitfire.h>
45 #include <asm/sections.h>
46 #include <asm/tsb.h>
47 #include <asm/hypervisor.h>
48 #include <asm/prom.h>
49 #include <asm/mdesc.h>
50 #include <asm/cpudata.h>
51 #include <asm/setup.h>
52 #include <asm/irq.h>
53 
54 #include "init_64.h"
55 
56 unsigned long kern_linear_pte_xor[4] __read_mostly;
57 static unsigned long page_cache4v_flag;
58 
59 /* A bitmap, two bits for every 256MB of physical memory.  These two
60  * bits determine what page size we use for kernel linear
61  * translations.  They form an index into kern_linear_pte_xor[].  The
62  * value in the indexed slot is XOR'd with the TLB miss virtual
63  * address to form the resulting TTE.  The mapping is:
64  *
65  *	0	==>	4MB
66  *	1	==>	256MB
67  *	2	==>	2GB
68  *	3	==>	16GB
69  *
70  * All sun4v chips support 256MB pages.  Only SPARC-T4 and later
71  * support 2GB pages, and hopefully future cpus will support the 16GB
72  * pages as well.  For slots 2 and 3, we encode a 256MB TTE xor there
73  * if these larger page sizes are not supported by the cpu.
74  *
75  * It would be nice to determine this from the machine description
76  * 'cpu' properties, but we need to have this table setup before the
77  * MDESC is initialized.
78  */
79 
80 #ifndef CONFIG_DEBUG_PAGEALLOC
81 /* A special kernel TSB for 4MB, 256MB, 2GB and 16GB linear mappings.
82  * Space is allocated for this right after the trap table in
83  * arch/sparc64/kernel/head.S
84  */
85 extern struct tsb swapper_4m_tsb[KERNEL_TSB4M_NENTRIES];
86 #endif
87 extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
88 
89 static unsigned long cpu_pgsz_mask;
90 
91 #define MAX_BANKS	1024
92 
93 static struct linux_prom64_registers pavail[MAX_BANKS];
94 static int pavail_ents;
95 
96 static int cmp_p64(const void *a, const void *b)
97 {
98 	const struct linux_prom64_registers *x = a, *y = b;
99 
100 	if (x->phys_addr > y->phys_addr)
101 		return 1;
102 	if (x->phys_addr < y->phys_addr)
103 		return -1;
104 	return 0;
105 }
106 
107 static void __init read_obp_memory(const char *property,
108 				   struct linux_prom64_registers *regs,
109 				   int *num_ents)
110 {
111 	phandle node = prom_finddevice("/memory");
112 	int prop_size = prom_getproplen(node, property);
113 	int ents, ret, i;
114 
115 	ents = prop_size / sizeof(struct linux_prom64_registers);
116 	if (ents > MAX_BANKS) {
117 		prom_printf("The machine has more %s property entries than "
118 			    "this kernel can support (%d).\n",
119 			    property, MAX_BANKS);
120 		prom_halt();
121 	}
122 
123 	ret = prom_getproperty(node, property, (char *) regs, prop_size);
124 	if (ret == -1) {
125 		prom_printf("Couldn't get %s property from /memory.\n",
126 				property);
127 		prom_halt();
128 	}
129 
130 	/* Sanitize what we got from the firmware, by page aligning
131 	 * everything.
132 	 */
133 	for (i = 0; i < ents; i++) {
134 		unsigned long base, size;
135 
136 		base = regs[i].phys_addr;
137 		size = regs[i].reg_size;
138 
139 		size &= PAGE_MASK;
140 		if (base & ~PAGE_MASK) {
141 			unsigned long new_base = PAGE_ALIGN(base);
142 
143 			size -= new_base - base;
144 			if ((long) size < 0L)
145 				size = 0UL;
146 			base = new_base;
147 		}
148 		if (size == 0UL) {
149 			/* If it is empty, simply get rid of it.
150 			 * This simplifies the logic of the other
151 			 * functions that process these arrays.
152 			 */
153 			memmove(&regs[i], &regs[i + 1],
154 				(ents - i - 1) * sizeof(regs[0]));
155 			i--;
156 			ents--;
157 			continue;
158 		}
159 		regs[i].phys_addr = base;
160 		regs[i].reg_size = size;
161 	}
162 
163 	*num_ents = ents;
164 
165 	sort(regs, ents, sizeof(struct linux_prom64_registers),
166 	     cmp_p64, NULL);
167 }
168 
169 /* Kernel physical address base and size in bytes.  */
170 unsigned long kern_base __read_mostly;
171 unsigned long kern_size __read_mostly;
172 
173 /* Initial ramdisk setup */
174 extern unsigned long sparc_ramdisk_image64;
175 extern unsigned int sparc_ramdisk_image;
176 extern unsigned int sparc_ramdisk_size;
177 
178 struct page *mem_map_zero __read_mostly;
179 EXPORT_SYMBOL(mem_map_zero);
180 
181 unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly;
182 
183 unsigned long sparc64_kern_pri_context __read_mostly;
184 unsigned long sparc64_kern_pri_nuc_bits __read_mostly;
185 unsigned long sparc64_kern_sec_context __read_mostly;
186 
187 int num_kernel_image_mappings;
188 
189 #ifdef CONFIG_DEBUG_DCFLUSH
190 atomic_t dcpage_flushes = ATOMIC_INIT(0);
191 #ifdef CONFIG_SMP
192 atomic_t dcpage_flushes_xcall = ATOMIC_INIT(0);
193 #endif
194 #endif
195 
196 inline void flush_dcache_page_impl(struct page *page)
197 {
198 	BUG_ON(tlb_type == hypervisor);
199 #ifdef CONFIG_DEBUG_DCFLUSH
200 	atomic_inc(&dcpage_flushes);
201 #endif
202 
203 #ifdef DCACHE_ALIASING_POSSIBLE
204 	__flush_dcache_page(page_address(page),
205 			    ((tlb_type == spitfire) &&
206 			     page_mapping(page) != NULL));
207 #else
208 	if (page_mapping(page) != NULL &&
209 	    tlb_type == spitfire)
210 		__flush_icache_page(__pa(page_address(page)));
211 #endif
212 }
213 
214 #define PG_dcache_dirty		PG_arch_1
215 #define PG_dcache_cpu_shift	32UL
216 #define PG_dcache_cpu_mask	\
217 	((1UL<<ilog2(roundup_pow_of_two(NR_CPUS)))-1UL)
218 
219 #define dcache_dirty_cpu(page) \
220 	(((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask)
221 
222 static inline void set_dcache_dirty(struct page *page, int this_cpu)
223 {
224 	unsigned long mask = this_cpu;
225 	unsigned long non_cpu_bits;
226 
227 	non_cpu_bits = ~(PG_dcache_cpu_mask << PG_dcache_cpu_shift);
228 	mask = (mask << PG_dcache_cpu_shift) | (1UL << PG_dcache_dirty);
229 
230 	__asm__ __volatile__("1:\n\t"
231 			     "ldx	[%2], %%g7\n\t"
232 			     "and	%%g7, %1, %%g1\n\t"
233 			     "or	%%g1, %0, %%g1\n\t"
234 			     "casx	[%2], %%g7, %%g1\n\t"
235 			     "cmp	%%g7, %%g1\n\t"
236 			     "bne,pn	%%xcc, 1b\n\t"
237 			     " nop"
238 			     : /* no outputs */
239 			     : "r" (mask), "r" (non_cpu_bits), "r" (&page->flags)
240 			     : "g1", "g7");
241 }
242 
243 static inline void clear_dcache_dirty_cpu(struct page *page, unsigned long cpu)
244 {
245 	unsigned long mask = (1UL << PG_dcache_dirty);
246 
247 	__asm__ __volatile__("! test_and_clear_dcache_dirty\n"
248 			     "1:\n\t"
249 			     "ldx	[%2], %%g7\n\t"
250 			     "srlx	%%g7, %4, %%g1\n\t"
251 			     "and	%%g1, %3, %%g1\n\t"
252 			     "cmp	%%g1, %0\n\t"
253 			     "bne,pn	%%icc, 2f\n\t"
254 			     " andn	%%g7, %1, %%g1\n\t"
255 			     "casx	[%2], %%g7, %%g1\n\t"
256 			     "cmp	%%g7, %%g1\n\t"
257 			     "bne,pn	%%xcc, 1b\n\t"
258 			     " nop\n"
259 			     "2:"
260 			     : /* no outputs */
261 			     : "r" (cpu), "r" (mask), "r" (&page->flags),
262 			       "i" (PG_dcache_cpu_mask),
263 			       "i" (PG_dcache_cpu_shift)
264 			     : "g1", "g7");
265 }
266 
267 static inline void tsb_insert(struct tsb *ent, unsigned long tag, unsigned long pte)
268 {
269 	unsigned long tsb_addr = (unsigned long) ent;
270 
271 	if (tlb_type == cheetah_plus || tlb_type == hypervisor)
272 		tsb_addr = __pa(tsb_addr);
273 
274 	__tsb_insert(tsb_addr, tag, pte);
275 }
276 
277 unsigned long _PAGE_ALL_SZ_BITS __read_mostly;
278 
279 static void flush_dcache(unsigned long pfn)
280 {
281 	struct page *page;
282 
283 	page = pfn_to_page(pfn);
284 	if (page) {
285 		unsigned long pg_flags;
286 
287 		pg_flags = page->flags;
288 		if (pg_flags & (1UL << PG_dcache_dirty)) {
289 			int cpu = ((pg_flags >> PG_dcache_cpu_shift) &
290 				   PG_dcache_cpu_mask);
291 			int this_cpu = get_cpu();
292 
293 			/* This is just to optimize away some function calls
294 			 * in the SMP case.
295 			 */
296 			if (cpu == this_cpu)
297 				flush_dcache_page_impl(page);
298 			else
299 				smp_flush_dcache_page_impl(page, cpu);
300 
301 			clear_dcache_dirty_cpu(page, cpu);
302 
303 			put_cpu();
304 		}
305 	}
306 }
307 
308 /* mm->context.lock must be held */
309 static void __update_mmu_tsb_insert(struct mm_struct *mm, unsigned long tsb_index,
310 				    unsigned long tsb_hash_shift, unsigned long address,
311 				    unsigned long tte)
312 {
313 	struct tsb *tsb = mm->context.tsb_block[tsb_index].tsb;
314 	unsigned long tag;
315 
316 	if (unlikely(!tsb))
317 		return;
318 
319 	tsb += ((address >> tsb_hash_shift) &
320 		(mm->context.tsb_block[tsb_index].tsb_nentries - 1UL));
321 	tag = (address >> 22UL);
322 	tsb_insert(tsb, tag, tte);
323 }
324 
325 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
326 static inline bool is_hugetlb_pte(pte_t pte)
327 {
328 	if ((tlb_type == hypervisor &&
329 	     (pte_val(pte) & _PAGE_SZALL_4V) == _PAGE_SZHUGE_4V) ||
330 	    (tlb_type != hypervisor &&
331 	     (pte_val(pte) & _PAGE_SZALL_4U) == _PAGE_SZHUGE_4U))
332 		return true;
333 	return false;
334 }
335 #endif
336 
337 void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t *ptep)
338 {
339 	struct mm_struct *mm;
340 	unsigned long flags;
341 	pte_t pte = *ptep;
342 
343 	if (tlb_type != hypervisor) {
344 		unsigned long pfn = pte_pfn(pte);
345 
346 		if (pfn_valid(pfn))
347 			flush_dcache(pfn);
348 	}
349 
350 	mm = vma->vm_mm;
351 
352 	/* Don't insert a non-valid PTE into the TSB, we'll deadlock.  */
353 	if (!pte_accessible(mm, pte))
354 		return;
355 
356 	spin_lock_irqsave(&mm->context.lock, flags);
357 
358 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
359 	if (mm->context.huge_pte_count && is_hugetlb_pte(pte))
360 		__update_mmu_tsb_insert(mm, MM_TSB_HUGE, REAL_HPAGE_SHIFT,
361 					address, pte_val(pte));
362 	else
363 #endif
364 		__update_mmu_tsb_insert(mm, MM_TSB_BASE, PAGE_SHIFT,
365 					address, pte_val(pte));
366 
367 	spin_unlock_irqrestore(&mm->context.lock, flags);
368 }
369 
370 void flush_dcache_page(struct page *page)
371 {
372 	struct address_space *mapping;
373 	int this_cpu;
374 
375 	if (tlb_type == hypervisor)
376 		return;
377 
378 	/* Do not bother with the expensive D-cache flush if it
379 	 * is merely the zero page.  The 'bigcore' testcase in GDB
380 	 * causes this case to run millions of times.
381 	 */
382 	if (page == ZERO_PAGE(0))
383 		return;
384 
385 	this_cpu = get_cpu();
386 
387 	mapping = page_mapping(page);
388 	if (mapping && !mapping_mapped(mapping)) {
389 		int dirty = test_bit(PG_dcache_dirty, &page->flags);
390 		if (dirty) {
391 			int dirty_cpu = dcache_dirty_cpu(page);
392 
393 			if (dirty_cpu == this_cpu)
394 				goto out;
395 			smp_flush_dcache_page_impl(page, dirty_cpu);
396 		}
397 		set_dcache_dirty(page, this_cpu);
398 	} else {
399 		/* We could delay the flush for the !page_mapping
400 		 * case too.  But that case is for exec env/arg
401 		 * pages and those are %99 certainly going to get
402 		 * faulted into the tlb (and thus flushed) anyways.
403 		 */
404 		flush_dcache_page_impl(page);
405 	}
406 
407 out:
408 	put_cpu();
409 }
410 EXPORT_SYMBOL(flush_dcache_page);
411 
412 void __kprobes flush_icache_range(unsigned long start, unsigned long end)
413 {
414 	/* Cheetah and Hypervisor platform cpus have coherent I-cache. */
415 	if (tlb_type == spitfire) {
416 		unsigned long kaddr;
417 
418 		/* This code only runs on Spitfire cpus so this is
419 		 * why we can assume _PAGE_PADDR_4U.
420 		 */
421 		for (kaddr = start; kaddr < end; kaddr += PAGE_SIZE) {
422 			unsigned long paddr, mask = _PAGE_PADDR_4U;
423 
424 			if (kaddr >= PAGE_OFFSET)
425 				paddr = kaddr & mask;
426 			else {
427 				pgd_t *pgdp = pgd_offset_k(kaddr);
428 				pud_t *pudp = pud_offset(pgdp, kaddr);
429 				pmd_t *pmdp = pmd_offset(pudp, kaddr);
430 				pte_t *ptep = pte_offset_kernel(pmdp, kaddr);
431 
432 				paddr = pte_val(*ptep) & mask;
433 			}
434 			__flush_icache_page(paddr);
435 		}
436 	}
437 }
438 EXPORT_SYMBOL(flush_icache_range);
439 
440 void mmu_info(struct seq_file *m)
441 {
442 	static const char *pgsz_strings[] = {
443 		"8K", "64K", "512K", "4MB", "32MB",
444 		"256MB", "2GB", "16GB",
445 	};
446 	int i, printed;
447 
448 	if (tlb_type == cheetah)
449 		seq_printf(m, "MMU Type\t: Cheetah\n");
450 	else if (tlb_type == cheetah_plus)
451 		seq_printf(m, "MMU Type\t: Cheetah+\n");
452 	else if (tlb_type == spitfire)
453 		seq_printf(m, "MMU Type\t: Spitfire\n");
454 	else if (tlb_type == hypervisor)
455 		seq_printf(m, "MMU Type\t: Hypervisor (sun4v)\n");
456 	else
457 		seq_printf(m, "MMU Type\t: ???\n");
458 
459 	seq_printf(m, "MMU PGSZs\t: ");
460 	printed = 0;
461 	for (i = 0; i < ARRAY_SIZE(pgsz_strings); i++) {
462 		if (cpu_pgsz_mask & (1UL << i)) {
463 			seq_printf(m, "%s%s",
464 				   printed ? "," : "", pgsz_strings[i]);
465 			printed++;
466 		}
467 	}
468 	seq_putc(m, '\n');
469 
470 #ifdef CONFIG_DEBUG_DCFLUSH
471 	seq_printf(m, "DCPageFlushes\t: %d\n",
472 		   atomic_read(&dcpage_flushes));
473 #ifdef CONFIG_SMP
474 	seq_printf(m, "DCPageFlushesXC\t: %d\n",
475 		   atomic_read(&dcpage_flushes_xcall));
476 #endif /* CONFIG_SMP */
477 #endif /* CONFIG_DEBUG_DCFLUSH */
478 }
479 
480 struct linux_prom_translation prom_trans[512] __read_mostly;
481 unsigned int prom_trans_ents __read_mostly;
482 
483 unsigned long kern_locked_tte_data;
484 
485 /* The obp translations are saved based on 8k pagesize, since obp can
486  * use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS ->
487  * HI_OBP_ADDRESS range are handled in ktlb.S.
488  */
489 static inline int in_obp_range(unsigned long vaddr)
490 {
491 	return (vaddr >= LOW_OBP_ADDRESS &&
492 		vaddr < HI_OBP_ADDRESS);
493 }
494 
495 static int cmp_ptrans(const void *a, const void *b)
496 {
497 	const struct linux_prom_translation *x = a, *y = b;
498 
499 	if (x->virt > y->virt)
500 		return 1;
501 	if (x->virt < y->virt)
502 		return -1;
503 	return 0;
504 }
505 
506 /* Read OBP translations property into 'prom_trans[]'.  */
507 static void __init read_obp_translations(void)
508 {
509 	int n, node, ents, first, last, i;
510 
511 	node = prom_finddevice("/virtual-memory");
512 	n = prom_getproplen(node, "translations");
513 	if (unlikely(n == 0 || n == -1)) {
514 		prom_printf("prom_mappings: Couldn't get size.\n");
515 		prom_halt();
516 	}
517 	if (unlikely(n > sizeof(prom_trans))) {
518 		prom_printf("prom_mappings: Size %d is too big.\n", n);
519 		prom_halt();
520 	}
521 
522 	if ((n = prom_getproperty(node, "translations",
523 				  (char *)&prom_trans[0],
524 				  sizeof(prom_trans))) == -1) {
525 		prom_printf("prom_mappings: Couldn't get property.\n");
526 		prom_halt();
527 	}
528 
529 	n = n / sizeof(struct linux_prom_translation);
530 
531 	ents = n;
532 
533 	sort(prom_trans, ents, sizeof(struct linux_prom_translation),
534 	     cmp_ptrans, NULL);
535 
536 	/* Now kick out all the non-OBP entries.  */
537 	for (i = 0; i < ents; i++) {
538 		if (in_obp_range(prom_trans[i].virt))
539 			break;
540 	}
541 	first = i;
542 	for (; i < ents; i++) {
543 		if (!in_obp_range(prom_trans[i].virt))
544 			break;
545 	}
546 	last = i;
547 
548 	for (i = 0; i < (last - first); i++) {
549 		struct linux_prom_translation *src = &prom_trans[i + first];
550 		struct linux_prom_translation *dest = &prom_trans[i];
551 
552 		*dest = *src;
553 	}
554 	for (; i < ents; i++) {
555 		struct linux_prom_translation *dest = &prom_trans[i];
556 		dest->virt = dest->size = dest->data = 0x0UL;
557 	}
558 
559 	prom_trans_ents = last - first;
560 
561 	if (tlb_type == spitfire) {
562 		/* Clear diag TTE bits. */
563 		for (i = 0; i < prom_trans_ents; i++)
564 			prom_trans[i].data &= ~0x0003fe0000000000UL;
565 	}
566 
567 	/* Force execute bit on.  */
568 	for (i = 0; i < prom_trans_ents; i++)
569 		prom_trans[i].data |= (tlb_type == hypervisor ?
570 				       _PAGE_EXEC_4V : _PAGE_EXEC_4U);
571 }
572 
573 static void __init hypervisor_tlb_lock(unsigned long vaddr,
574 				       unsigned long pte,
575 				       unsigned long mmu)
576 {
577 	unsigned long ret = sun4v_mmu_map_perm_addr(vaddr, 0, pte, mmu);
578 
579 	if (ret != 0) {
580 		prom_printf("hypervisor_tlb_lock[%lx:%x:%lx:%lx]: "
581 			    "errors with %lx\n", vaddr, 0, pte, mmu, ret);
582 		prom_halt();
583 	}
584 }
585 
586 static unsigned long kern_large_tte(unsigned long paddr);
587 
588 static void __init remap_kernel(void)
589 {
590 	unsigned long phys_page, tte_vaddr, tte_data;
591 	int i, tlb_ent = sparc64_highest_locked_tlbent();
592 
593 	tte_vaddr = (unsigned long) KERNBASE;
594 	phys_page = (prom_boot_mapping_phys_low >> ILOG2_4MB) << ILOG2_4MB;
595 	tte_data = kern_large_tte(phys_page);
596 
597 	kern_locked_tte_data = tte_data;
598 
599 	/* Now lock us into the TLBs via Hypervisor or OBP. */
600 	if (tlb_type == hypervisor) {
601 		for (i = 0; i < num_kernel_image_mappings; i++) {
602 			hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU);
603 			hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU);
604 			tte_vaddr += 0x400000;
605 			tte_data += 0x400000;
606 		}
607 	} else {
608 		for (i = 0; i < num_kernel_image_mappings; i++) {
609 			prom_dtlb_load(tlb_ent - i, tte_data, tte_vaddr);
610 			prom_itlb_load(tlb_ent - i, tte_data, tte_vaddr);
611 			tte_vaddr += 0x400000;
612 			tte_data += 0x400000;
613 		}
614 		sparc64_highest_unlocked_tlb_ent = tlb_ent - i;
615 	}
616 	if (tlb_type == cheetah_plus) {
617 		sparc64_kern_pri_context = (CTX_CHEETAH_PLUS_CTX0 |
618 					    CTX_CHEETAH_PLUS_NUC);
619 		sparc64_kern_pri_nuc_bits = CTX_CHEETAH_PLUS_NUC;
620 		sparc64_kern_sec_context = CTX_CHEETAH_PLUS_CTX0;
621 	}
622 }
623 
624 
625 static void __init inherit_prom_mappings(void)
626 {
627 	/* Now fixup OBP's idea about where we really are mapped. */
628 	printk("Remapping the kernel... ");
629 	remap_kernel();
630 	printk("done.\n");
631 }
632 
633 void prom_world(int enter)
634 {
635 	if (!enter)
636 		set_fs(get_fs());
637 
638 	__asm__ __volatile__("flushw");
639 }
640 
641 void __flush_dcache_range(unsigned long start, unsigned long end)
642 {
643 	unsigned long va;
644 
645 	if (tlb_type == spitfire) {
646 		int n = 0;
647 
648 		for (va = start; va < end; va += 32) {
649 			spitfire_put_dcache_tag(va & 0x3fe0, 0x0);
650 			if (++n >= 512)
651 				break;
652 		}
653 	} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
654 		start = __pa(start);
655 		end = __pa(end);
656 		for (va = start; va < end; va += 32)
657 			__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
658 					     "membar #Sync"
659 					     : /* no outputs */
660 					     : "r" (va),
661 					       "i" (ASI_DCACHE_INVALIDATE));
662 	}
663 }
664 EXPORT_SYMBOL(__flush_dcache_range);
665 
666 /* get_new_mmu_context() uses "cache + 1".  */
667 DEFINE_SPINLOCK(ctx_alloc_lock);
668 unsigned long tlb_context_cache = CTX_FIRST_VERSION - 1;
669 #define MAX_CTX_NR	(1UL << CTX_NR_BITS)
670 #define CTX_BMAP_SLOTS	BITS_TO_LONGS(MAX_CTX_NR)
671 DECLARE_BITMAP(mmu_context_bmap, MAX_CTX_NR);
672 
673 /* Caller does TLB context flushing on local CPU if necessary.
674  * The caller also ensures that CTX_VALID(mm->context) is false.
675  *
676  * We must be careful about boundary cases so that we never
677  * let the user have CTX 0 (nucleus) or we ever use a CTX
678  * version of zero (and thus NO_CONTEXT would not be caught
679  * by version mis-match tests in mmu_context.h).
680  *
681  * Always invoked with interrupts disabled.
682  */
683 void get_new_mmu_context(struct mm_struct *mm)
684 {
685 	unsigned long ctx, new_ctx;
686 	unsigned long orig_pgsz_bits;
687 	int new_version;
688 
689 	spin_lock(&ctx_alloc_lock);
690 	orig_pgsz_bits = (mm->context.sparc64_ctx_val & CTX_PGSZ_MASK);
691 	ctx = (tlb_context_cache + 1) & CTX_NR_MASK;
692 	new_ctx = find_next_zero_bit(mmu_context_bmap, 1 << CTX_NR_BITS, ctx);
693 	new_version = 0;
694 	if (new_ctx >= (1 << CTX_NR_BITS)) {
695 		new_ctx = find_next_zero_bit(mmu_context_bmap, ctx, 1);
696 		if (new_ctx >= ctx) {
697 			int i;
698 			new_ctx = (tlb_context_cache & CTX_VERSION_MASK) +
699 				CTX_FIRST_VERSION;
700 			if (new_ctx == 1)
701 				new_ctx = CTX_FIRST_VERSION;
702 
703 			/* Don't call memset, for 16 entries that's just
704 			 * plain silly...
705 			 */
706 			mmu_context_bmap[0] = 3;
707 			mmu_context_bmap[1] = 0;
708 			mmu_context_bmap[2] = 0;
709 			mmu_context_bmap[3] = 0;
710 			for (i = 4; i < CTX_BMAP_SLOTS; i += 4) {
711 				mmu_context_bmap[i + 0] = 0;
712 				mmu_context_bmap[i + 1] = 0;
713 				mmu_context_bmap[i + 2] = 0;
714 				mmu_context_bmap[i + 3] = 0;
715 			}
716 			new_version = 1;
717 			goto out;
718 		}
719 	}
720 	mmu_context_bmap[new_ctx>>6] |= (1UL << (new_ctx & 63));
721 	new_ctx |= (tlb_context_cache & CTX_VERSION_MASK);
722 out:
723 	tlb_context_cache = new_ctx;
724 	mm->context.sparc64_ctx_val = new_ctx | orig_pgsz_bits;
725 	spin_unlock(&ctx_alloc_lock);
726 
727 	if (unlikely(new_version))
728 		smp_new_mmu_context_version();
729 }
730 
731 static int numa_enabled = 1;
732 static int numa_debug;
733 
734 static int __init early_numa(char *p)
735 {
736 	if (!p)
737 		return 0;
738 
739 	if (strstr(p, "off"))
740 		numa_enabled = 0;
741 
742 	if (strstr(p, "debug"))
743 		numa_debug = 1;
744 
745 	return 0;
746 }
747 early_param("numa", early_numa);
748 
749 #define numadbg(f, a...) \
750 do {	if (numa_debug) \
751 		printk(KERN_INFO f, ## a); \
752 } while (0)
753 
754 static void __init find_ramdisk(unsigned long phys_base)
755 {
756 #ifdef CONFIG_BLK_DEV_INITRD
757 	if (sparc_ramdisk_image || sparc_ramdisk_image64) {
758 		unsigned long ramdisk_image;
759 
760 		/* Older versions of the bootloader only supported a
761 		 * 32-bit physical address for the ramdisk image
762 		 * location, stored at sparc_ramdisk_image.  Newer
763 		 * SILO versions set sparc_ramdisk_image to zero and
764 		 * provide a full 64-bit physical address at
765 		 * sparc_ramdisk_image64.
766 		 */
767 		ramdisk_image = sparc_ramdisk_image;
768 		if (!ramdisk_image)
769 			ramdisk_image = sparc_ramdisk_image64;
770 
771 		/* Another bootloader quirk.  The bootloader normalizes
772 		 * the physical address to KERNBASE, so we have to
773 		 * factor that back out and add in the lowest valid
774 		 * physical page address to get the true physical address.
775 		 */
776 		ramdisk_image -= KERNBASE;
777 		ramdisk_image += phys_base;
778 
779 		numadbg("Found ramdisk at physical address 0x%lx, size %u\n",
780 			ramdisk_image, sparc_ramdisk_size);
781 
782 		initrd_start = ramdisk_image;
783 		initrd_end = ramdisk_image + sparc_ramdisk_size;
784 
785 		memblock_reserve(initrd_start, sparc_ramdisk_size);
786 
787 		initrd_start += PAGE_OFFSET;
788 		initrd_end += PAGE_OFFSET;
789 	}
790 #endif
791 }
792 
793 struct node_mem_mask {
794 	unsigned long mask;
795 	unsigned long val;
796 };
797 static struct node_mem_mask node_masks[MAX_NUMNODES];
798 static int num_node_masks;
799 
800 #ifdef CONFIG_NEED_MULTIPLE_NODES
801 
802 int numa_cpu_lookup_table[NR_CPUS];
803 cpumask_t numa_cpumask_lookup_table[MAX_NUMNODES];
804 
805 struct mdesc_mblock {
806 	u64	base;
807 	u64	size;
808 	u64	offset; /* RA-to-PA */
809 };
810 static struct mdesc_mblock *mblocks;
811 static int num_mblocks;
812 
813 static unsigned long ra_to_pa(unsigned long addr)
814 {
815 	int i;
816 
817 	for (i = 0; i < num_mblocks; i++) {
818 		struct mdesc_mblock *m = &mblocks[i];
819 
820 		if (addr >= m->base &&
821 		    addr < (m->base + m->size)) {
822 			addr += m->offset;
823 			break;
824 		}
825 	}
826 	return addr;
827 }
828 
829 static int find_node(unsigned long addr)
830 {
831 	int i;
832 
833 	addr = ra_to_pa(addr);
834 	for (i = 0; i < num_node_masks; i++) {
835 		struct node_mem_mask *p = &node_masks[i];
836 
837 		if ((addr & p->mask) == p->val)
838 			return i;
839 	}
840 	/* The following condition has been observed on LDOM guests.*/
841 	WARN_ONCE(1, "find_node: A physical address doesn't match a NUMA node"
842 		" rule. Some physical memory will be owned by node 0.");
843 	return 0;
844 }
845 
846 static u64 memblock_nid_range(u64 start, u64 end, int *nid)
847 {
848 	*nid = find_node(start);
849 	start += PAGE_SIZE;
850 	while (start < end) {
851 		int n = find_node(start);
852 
853 		if (n != *nid)
854 			break;
855 		start += PAGE_SIZE;
856 	}
857 
858 	if (start > end)
859 		start = end;
860 
861 	return start;
862 }
863 #endif
864 
865 /* This must be invoked after performing all of the necessary
866  * memblock_set_node() calls for 'nid'.  We need to be able to get
867  * correct data from get_pfn_range_for_nid().
868  */
869 static void __init allocate_node_data(int nid)
870 {
871 	struct pglist_data *p;
872 	unsigned long start_pfn, end_pfn;
873 #ifdef CONFIG_NEED_MULTIPLE_NODES
874 	unsigned long paddr;
875 
876 	paddr = memblock_alloc_try_nid(sizeof(struct pglist_data), SMP_CACHE_BYTES, nid);
877 	if (!paddr) {
878 		prom_printf("Cannot allocate pglist_data for nid[%d]\n", nid);
879 		prom_halt();
880 	}
881 	NODE_DATA(nid) = __va(paddr);
882 	memset(NODE_DATA(nid), 0, sizeof(struct pglist_data));
883 
884 	NODE_DATA(nid)->node_id = nid;
885 #endif
886 
887 	p = NODE_DATA(nid);
888 
889 	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
890 	p->node_start_pfn = start_pfn;
891 	p->node_spanned_pages = end_pfn - start_pfn;
892 }
893 
894 static void init_node_masks_nonnuma(void)
895 {
896 #ifdef CONFIG_NEED_MULTIPLE_NODES
897 	int i;
898 #endif
899 
900 	numadbg("Initializing tables for non-numa.\n");
901 
902 	node_masks[0].mask = node_masks[0].val = 0;
903 	num_node_masks = 1;
904 
905 #ifdef CONFIG_NEED_MULTIPLE_NODES
906 	for (i = 0; i < NR_CPUS; i++)
907 		numa_cpu_lookup_table[i] = 0;
908 
909 	cpumask_setall(&numa_cpumask_lookup_table[0]);
910 #endif
911 }
912 
913 #ifdef CONFIG_NEED_MULTIPLE_NODES
914 struct pglist_data *node_data[MAX_NUMNODES];
915 
916 EXPORT_SYMBOL(numa_cpu_lookup_table);
917 EXPORT_SYMBOL(numa_cpumask_lookup_table);
918 EXPORT_SYMBOL(node_data);
919 
920 struct mdesc_mlgroup {
921 	u64	node;
922 	u64	latency;
923 	u64	match;
924 	u64	mask;
925 };
926 static struct mdesc_mlgroup *mlgroups;
927 static int num_mlgroups;
928 
929 static int scan_pio_for_cfg_handle(struct mdesc_handle *md, u64 pio,
930 				   u32 cfg_handle)
931 {
932 	u64 arc;
933 
934 	mdesc_for_each_arc(arc, md, pio, MDESC_ARC_TYPE_FWD) {
935 		u64 target = mdesc_arc_target(md, arc);
936 		const u64 *val;
937 
938 		val = mdesc_get_property(md, target,
939 					 "cfg-handle", NULL);
940 		if (val && *val == cfg_handle)
941 			return 0;
942 	}
943 	return -ENODEV;
944 }
945 
946 static int scan_arcs_for_cfg_handle(struct mdesc_handle *md, u64 grp,
947 				    u32 cfg_handle)
948 {
949 	u64 arc, candidate, best_latency = ~(u64)0;
950 
951 	candidate = MDESC_NODE_NULL;
952 	mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
953 		u64 target = mdesc_arc_target(md, arc);
954 		const char *name = mdesc_node_name(md, target);
955 		const u64 *val;
956 
957 		if (strcmp(name, "pio-latency-group"))
958 			continue;
959 
960 		val = mdesc_get_property(md, target, "latency", NULL);
961 		if (!val)
962 			continue;
963 
964 		if (*val < best_latency) {
965 			candidate = target;
966 			best_latency = *val;
967 		}
968 	}
969 
970 	if (candidate == MDESC_NODE_NULL)
971 		return -ENODEV;
972 
973 	return scan_pio_for_cfg_handle(md, candidate, cfg_handle);
974 }
975 
976 int of_node_to_nid(struct device_node *dp)
977 {
978 	const struct linux_prom64_registers *regs;
979 	struct mdesc_handle *md;
980 	u32 cfg_handle;
981 	int count, nid;
982 	u64 grp;
983 
984 	/* This is the right thing to do on currently supported
985 	 * SUN4U NUMA platforms as well, as the PCI controller does
986 	 * not sit behind any particular memory controller.
987 	 */
988 	if (!mlgroups)
989 		return -1;
990 
991 	regs = of_get_property(dp, "reg", NULL);
992 	if (!regs)
993 		return -1;
994 
995 	cfg_handle = (regs->phys_addr >> 32UL) & 0x0fffffff;
996 
997 	md = mdesc_grab();
998 
999 	count = 0;
1000 	nid = -1;
1001 	mdesc_for_each_node_by_name(md, grp, "group") {
1002 		if (!scan_arcs_for_cfg_handle(md, grp, cfg_handle)) {
1003 			nid = count;
1004 			break;
1005 		}
1006 		count++;
1007 	}
1008 
1009 	mdesc_release(md);
1010 
1011 	return nid;
1012 }
1013 
1014 static void __init add_node_ranges(void)
1015 {
1016 	struct memblock_region *reg;
1017 
1018 	for_each_memblock(memory, reg) {
1019 		unsigned long size = reg->size;
1020 		unsigned long start, end;
1021 
1022 		start = reg->base;
1023 		end = start + size;
1024 		while (start < end) {
1025 			unsigned long this_end;
1026 			int nid;
1027 
1028 			this_end = memblock_nid_range(start, end, &nid);
1029 
1030 			numadbg("Setting memblock NUMA node nid[%d] "
1031 				"start[%lx] end[%lx]\n",
1032 				nid, start, this_end);
1033 
1034 			memblock_set_node(start, this_end - start,
1035 					  &memblock.memory, nid);
1036 			start = this_end;
1037 		}
1038 	}
1039 }
1040 
1041 static int __init grab_mlgroups(struct mdesc_handle *md)
1042 {
1043 	unsigned long paddr;
1044 	int count = 0;
1045 	u64 node;
1046 
1047 	mdesc_for_each_node_by_name(md, node, "memory-latency-group")
1048 		count++;
1049 	if (!count)
1050 		return -ENOENT;
1051 
1052 	paddr = memblock_alloc(count * sizeof(struct mdesc_mlgroup),
1053 			  SMP_CACHE_BYTES);
1054 	if (!paddr)
1055 		return -ENOMEM;
1056 
1057 	mlgroups = __va(paddr);
1058 	num_mlgroups = count;
1059 
1060 	count = 0;
1061 	mdesc_for_each_node_by_name(md, node, "memory-latency-group") {
1062 		struct mdesc_mlgroup *m = &mlgroups[count++];
1063 		const u64 *val;
1064 
1065 		m->node = node;
1066 
1067 		val = mdesc_get_property(md, node, "latency", NULL);
1068 		m->latency = *val;
1069 		val = mdesc_get_property(md, node, "address-match", NULL);
1070 		m->match = *val;
1071 		val = mdesc_get_property(md, node, "address-mask", NULL);
1072 		m->mask = *val;
1073 
1074 		numadbg("MLGROUP[%d]: node[%llx] latency[%llx] "
1075 			"match[%llx] mask[%llx]\n",
1076 			count - 1, m->node, m->latency, m->match, m->mask);
1077 	}
1078 
1079 	return 0;
1080 }
1081 
1082 static int __init grab_mblocks(struct mdesc_handle *md)
1083 {
1084 	unsigned long paddr;
1085 	int count = 0;
1086 	u64 node;
1087 
1088 	mdesc_for_each_node_by_name(md, node, "mblock")
1089 		count++;
1090 	if (!count)
1091 		return -ENOENT;
1092 
1093 	paddr = memblock_alloc(count * sizeof(struct mdesc_mblock),
1094 			  SMP_CACHE_BYTES);
1095 	if (!paddr)
1096 		return -ENOMEM;
1097 
1098 	mblocks = __va(paddr);
1099 	num_mblocks = count;
1100 
1101 	count = 0;
1102 	mdesc_for_each_node_by_name(md, node, "mblock") {
1103 		struct mdesc_mblock *m = &mblocks[count++];
1104 		const u64 *val;
1105 
1106 		val = mdesc_get_property(md, node, "base", NULL);
1107 		m->base = *val;
1108 		val = mdesc_get_property(md, node, "size", NULL);
1109 		m->size = *val;
1110 		val = mdesc_get_property(md, node,
1111 					 "address-congruence-offset", NULL);
1112 
1113 		/* The address-congruence-offset property is optional.
1114 		 * Explicity zero it be identifty this.
1115 		 */
1116 		if (val)
1117 			m->offset = *val;
1118 		else
1119 			m->offset = 0UL;
1120 
1121 		numadbg("MBLOCK[%d]: base[%llx] size[%llx] offset[%llx]\n",
1122 			count - 1, m->base, m->size, m->offset);
1123 	}
1124 
1125 	return 0;
1126 }
1127 
1128 static void __init numa_parse_mdesc_group_cpus(struct mdesc_handle *md,
1129 					       u64 grp, cpumask_t *mask)
1130 {
1131 	u64 arc;
1132 
1133 	cpumask_clear(mask);
1134 
1135 	mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_BACK) {
1136 		u64 target = mdesc_arc_target(md, arc);
1137 		const char *name = mdesc_node_name(md, target);
1138 		const u64 *id;
1139 
1140 		if (strcmp(name, "cpu"))
1141 			continue;
1142 		id = mdesc_get_property(md, target, "id", NULL);
1143 		if (*id < nr_cpu_ids)
1144 			cpumask_set_cpu(*id, mask);
1145 	}
1146 }
1147 
1148 static struct mdesc_mlgroup * __init find_mlgroup(u64 node)
1149 {
1150 	int i;
1151 
1152 	for (i = 0; i < num_mlgroups; i++) {
1153 		struct mdesc_mlgroup *m = &mlgroups[i];
1154 		if (m->node == node)
1155 			return m;
1156 	}
1157 	return NULL;
1158 }
1159 
1160 static int __init numa_attach_mlgroup(struct mdesc_handle *md, u64 grp,
1161 				      int index)
1162 {
1163 	struct mdesc_mlgroup *candidate = NULL;
1164 	u64 arc, best_latency = ~(u64)0;
1165 	struct node_mem_mask *n;
1166 
1167 	mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1168 		u64 target = mdesc_arc_target(md, arc);
1169 		struct mdesc_mlgroup *m = find_mlgroup(target);
1170 		if (!m)
1171 			continue;
1172 		if (m->latency < best_latency) {
1173 			candidate = m;
1174 			best_latency = m->latency;
1175 		}
1176 	}
1177 	if (!candidate)
1178 		return -ENOENT;
1179 
1180 	if (num_node_masks != index) {
1181 		printk(KERN_ERR "Inconsistent NUMA state, "
1182 		       "index[%d] != num_node_masks[%d]\n",
1183 		       index, num_node_masks);
1184 		return -EINVAL;
1185 	}
1186 
1187 	n = &node_masks[num_node_masks++];
1188 
1189 	n->mask = candidate->mask;
1190 	n->val = candidate->match;
1191 
1192 	numadbg("NUMA NODE[%d]: mask[%lx] val[%lx] (latency[%llx])\n",
1193 		index, n->mask, n->val, candidate->latency);
1194 
1195 	return 0;
1196 }
1197 
1198 static int __init numa_parse_mdesc_group(struct mdesc_handle *md, u64 grp,
1199 					 int index)
1200 {
1201 	cpumask_t mask;
1202 	int cpu;
1203 
1204 	numa_parse_mdesc_group_cpus(md, grp, &mask);
1205 
1206 	for_each_cpu(cpu, &mask)
1207 		numa_cpu_lookup_table[cpu] = index;
1208 	cpumask_copy(&numa_cpumask_lookup_table[index], &mask);
1209 
1210 	if (numa_debug) {
1211 		printk(KERN_INFO "NUMA GROUP[%d]: cpus [ ", index);
1212 		for_each_cpu(cpu, &mask)
1213 			printk("%d ", cpu);
1214 		printk("]\n");
1215 	}
1216 
1217 	return numa_attach_mlgroup(md, grp, index);
1218 }
1219 
1220 static int __init numa_parse_mdesc(void)
1221 {
1222 	struct mdesc_handle *md = mdesc_grab();
1223 	int i, err, count;
1224 	u64 node;
1225 
1226 	node = mdesc_node_by_name(md, MDESC_NODE_NULL, "latency-groups");
1227 	if (node == MDESC_NODE_NULL) {
1228 		mdesc_release(md);
1229 		return -ENOENT;
1230 	}
1231 
1232 	err = grab_mblocks(md);
1233 	if (err < 0)
1234 		goto out;
1235 
1236 	err = grab_mlgroups(md);
1237 	if (err < 0)
1238 		goto out;
1239 
1240 	count = 0;
1241 	mdesc_for_each_node_by_name(md, node, "group") {
1242 		err = numa_parse_mdesc_group(md, node, count);
1243 		if (err < 0)
1244 			break;
1245 		count++;
1246 	}
1247 
1248 	add_node_ranges();
1249 
1250 	for (i = 0; i < num_node_masks; i++) {
1251 		allocate_node_data(i);
1252 		node_set_online(i);
1253 	}
1254 
1255 	err = 0;
1256 out:
1257 	mdesc_release(md);
1258 	return err;
1259 }
1260 
1261 static int __init numa_parse_jbus(void)
1262 {
1263 	unsigned long cpu, index;
1264 
1265 	/* NUMA node id is encoded in bits 36 and higher, and there is
1266 	 * a 1-to-1 mapping from CPU ID to NUMA node ID.
1267 	 */
1268 	index = 0;
1269 	for_each_present_cpu(cpu) {
1270 		numa_cpu_lookup_table[cpu] = index;
1271 		cpumask_copy(&numa_cpumask_lookup_table[index], cpumask_of(cpu));
1272 		node_masks[index].mask = ~((1UL << 36UL) - 1UL);
1273 		node_masks[index].val = cpu << 36UL;
1274 
1275 		index++;
1276 	}
1277 	num_node_masks = index;
1278 
1279 	add_node_ranges();
1280 
1281 	for (index = 0; index < num_node_masks; index++) {
1282 		allocate_node_data(index);
1283 		node_set_online(index);
1284 	}
1285 
1286 	return 0;
1287 }
1288 
1289 static int __init numa_parse_sun4u(void)
1290 {
1291 	if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1292 		unsigned long ver;
1293 
1294 		__asm__ ("rdpr %%ver, %0" : "=r" (ver));
1295 		if ((ver >> 32UL) == __JALAPENO_ID ||
1296 		    (ver >> 32UL) == __SERRANO_ID)
1297 			return numa_parse_jbus();
1298 	}
1299 	return -1;
1300 }
1301 
1302 static int __init bootmem_init_numa(void)
1303 {
1304 	int err = -1;
1305 
1306 	numadbg("bootmem_init_numa()\n");
1307 
1308 	if (numa_enabled) {
1309 		if (tlb_type == hypervisor)
1310 			err = numa_parse_mdesc();
1311 		else
1312 			err = numa_parse_sun4u();
1313 	}
1314 	return err;
1315 }
1316 
1317 #else
1318 
1319 static int bootmem_init_numa(void)
1320 {
1321 	return -1;
1322 }
1323 
1324 #endif
1325 
1326 static void __init bootmem_init_nonnuma(void)
1327 {
1328 	unsigned long top_of_ram = memblock_end_of_DRAM();
1329 	unsigned long total_ram = memblock_phys_mem_size();
1330 
1331 	numadbg("bootmem_init_nonnuma()\n");
1332 
1333 	printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
1334 	       top_of_ram, total_ram);
1335 	printk(KERN_INFO "Memory hole size: %ldMB\n",
1336 	       (top_of_ram - total_ram) >> 20);
1337 
1338 	init_node_masks_nonnuma();
1339 	memblock_set_node(0, (phys_addr_t)ULLONG_MAX, &memblock.memory, 0);
1340 	allocate_node_data(0);
1341 	node_set_online(0);
1342 }
1343 
1344 static unsigned long __init bootmem_init(unsigned long phys_base)
1345 {
1346 	unsigned long end_pfn;
1347 
1348 	end_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
1349 	max_pfn = max_low_pfn = end_pfn;
1350 	min_low_pfn = (phys_base >> PAGE_SHIFT);
1351 
1352 	if (bootmem_init_numa() < 0)
1353 		bootmem_init_nonnuma();
1354 
1355 	/* Dump memblock with node info. */
1356 	memblock_dump_all();
1357 
1358 	/* XXX cpu notifier XXX */
1359 
1360 	sparse_memory_present_with_active_regions(MAX_NUMNODES);
1361 	sparse_init();
1362 
1363 	return end_pfn;
1364 }
1365 
1366 static struct linux_prom64_registers pall[MAX_BANKS] __initdata;
1367 static int pall_ents __initdata;
1368 
1369 static unsigned long max_phys_bits = 40;
1370 
1371 bool kern_addr_valid(unsigned long addr)
1372 {
1373 	pgd_t *pgd;
1374 	pud_t *pud;
1375 	pmd_t *pmd;
1376 	pte_t *pte;
1377 
1378 	if ((long)addr < 0L) {
1379 		unsigned long pa = __pa(addr);
1380 
1381 		if ((addr >> max_phys_bits) != 0UL)
1382 			return false;
1383 
1384 		return pfn_valid(pa >> PAGE_SHIFT);
1385 	}
1386 
1387 	if (addr >= (unsigned long) KERNBASE &&
1388 	    addr < (unsigned long)&_end)
1389 		return true;
1390 
1391 	pgd = pgd_offset_k(addr);
1392 	if (pgd_none(*pgd))
1393 		return 0;
1394 
1395 	pud = pud_offset(pgd, addr);
1396 	if (pud_none(*pud))
1397 		return 0;
1398 
1399 	if (pud_large(*pud))
1400 		return pfn_valid(pud_pfn(*pud));
1401 
1402 	pmd = pmd_offset(pud, addr);
1403 	if (pmd_none(*pmd))
1404 		return 0;
1405 
1406 	if (pmd_large(*pmd))
1407 		return pfn_valid(pmd_pfn(*pmd));
1408 
1409 	pte = pte_offset_kernel(pmd, addr);
1410 	if (pte_none(*pte))
1411 		return 0;
1412 
1413 	return pfn_valid(pte_pfn(*pte));
1414 }
1415 EXPORT_SYMBOL(kern_addr_valid);
1416 
1417 static unsigned long __ref kernel_map_hugepud(unsigned long vstart,
1418 					      unsigned long vend,
1419 					      pud_t *pud)
1420 {
1421 	const unsigned long mask16gb = (1UL << 34) - 1UL;
1422 	u64 pte_val = vstart;
1423 
1424 	/* Each PUD is 8GB */
1425 	if ((vstart & mask16gb) ||
1426 	    (vend - vstart <= mask16gb)) {
1427 		pte_val ^= kern_linear_pte_xor[2];
1428 		pud_val(*pud) = pte_val | _PAGE_PUD_HUGE;
1429 
1430 		return vstart + PUD_SIZE;
1431 	}
1432 
1433 	pte_val ^= kern_linear_pte_xor[3];
1434 	pte_val |= _PAGE_PUD_HUGE;
1435 
1436 	vend = vstart + mask16gb + 1UL;
1437 	while (vstart < vend) {
1438 		pud_val(*pud) = pte_val;
1439 
1440 		pte_val += PUD_SIZE;
1441 		vstart += PUD_SIZE;
1442 		pud++;
1443 	}
1444 	return vstart;
1445 }
1446 
1447 static bool kernel_can_map_hugepud(unsigned long vstart, unsigned long vend,
1448 				   bool guard)
1449 {
1450 	if (guard && !(vstart & ~PUD_MASK) && (vend - vstart) >= PUD_SIZE)
1451 		return true;
1452 
1453 	return false;
1454 }
1455 
1456 static unsigned long __ref kernel_map_hugepmd(unsigned long vstart,
1457 					      unsigned long vend,
1458 					      pmd_t *pmd)
1459 {
1460 	const unsigned long mask256mb = (1UL << 28) - 1UL;
1461 	const unsigned long mask2gb = (1UL << 31) - 1UL;
1462 	u64 pte_val = vstart;
1463 
1464 	/* Each PMD is 8MB */
1465 	if ((vstart & mask256mb) ||
1466 	    (vend - vstart <= mask256mb)) {
1467 		pte_val ^= kern_linear_pte_xor[0];
1468 		pmd_val(*pmd) = pte_val | _PAGE_PMD_HUGE;
1469 
1470 		return vstart + PMD_SIZE;
1471 	}
1472 
1473 	if ((vstart & mask2gb) ||
1474 	    (vend - vstart <= mask2gb)) {
1475 		pte_val ^= kern_linear_pte_xor[1];
1476 		pte_val |= _PAGE_PMD_HUGE;
1477 		vend = vstart + mask256mb + 1UL;
1478 	} else {
1479 		pte_val ^= kern_linear_pte_xor[2];
1480 		pte_val |= _PAGE_PMD_HUGE;
1481 		vend = vstart + mask2gb + 1UL;
1482 	}
1483 
1484 	while (vstart < vend) {
1485 		pmd_val(*pmd) = pte_val;
1486 
1487 		pte_val += PMD_SIZE;
1488 		vstart += PMD_SIZE;
1489 		pmd++;
1490 	}
1491 
1492 	return vstart;
1493 }
1494 
1495 static bool kernel_can_map_hugepmd(unsigned long vstart, unsigned long vend,
1496 				   bool guard)
1497 {
1498 	if (guard && !(vstart & ~PMD_MASK) && (vend - vstart) >= PMD_SIZE)
1499 		return true;
1500 
1501 	return false;
1502 }
1503 
1504 static unsigned long __ref kernel_map_range(unsigned long pstart,
1505 					    unsigned long pend, pgprot_t prot,
1506 					    bool use_huge)
1507 {
1508 	unsigned long vstart = PAGE_OFFSET + pstart;
1509 	unsigned long vend = PAGE_OFFSET + pend;
1510 	unsigned long alloc_bytes = 0UL;
1511 
1512 	if ((vstart & ~PAGE_MASK) || (vend & ~PAGE_MASK)) {
1513 		prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n",
1514 			    vstart, vend);
1515 		prom_halt();
1516 	}
1517 
1518 	while (vstart < vend) {
1519 		unsigned long this_end, paddr = __pa(vstart);
1520 		pgd_t *pgd = pgd_offset_k(vstart);
1521 		pud_t *pud;
1522 		pmd_t *pmd;
1523 		pte_t *pte;
1524 
1525 		if (pgd_none(*pgd)) {
1526 			pud_t *new;
1527 
1528 			new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1529 			alloc_bytes += PAGE_SIZE;
1530 			pgd_populate(&init_mm, pgd, new);
1531 		}
1532 		pud = pud_offset(pgd, vstart);
1533 		if (pud_none(*pud)) {
1534 			pmd_t *new;
1535 
1536 			if (kernel_can_map_hugepud(vstart, vend, use_huge)) {
1537 				vstart = kernel_map_hugepud(vstart, vend, pud);
1538 				continue;
1539 			}
1540 			new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1541 			alloc_bytes += PAGE_SIZE;
1542 			pud_populate(&init_mm, pud, new);
1543 		}
1544 
1545 		pmd = pmd_offset(pud, vstart);
1546 		if (pmd_none(*pmd)) {
1547 			pte_t *new;
1548 
1549 			if (kernel_can_map_hugepmd(vstart, vend, use_huge)) {
1550 				vstart = kernel_map_hugepmd(vstart, vend, pmd);
1551 				continue;
1552 			}
1553 			new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1554 			alloc_bytes += PAGE_SIZE;
1555 			pmd_populate_kernel(&init_mm, pmd, new);
1556 		}
1557 
1558 		pte = pte_offset_kernel(pmd, vstart);
1559 		this_end = (vstart + PMD_SIZE) & PMD_MASK;
1560 		if (this_end > vend)
1561 			this_end = vend;
1562 
1563 		while (vstart < this_end) {
1564 			pte_val(*pte) = (paddr | pgprot_val(prot));
1565 
1566 			vstart += PAGE_SIZE;
1567 			paddr += PAGE_SIZE;
1568 			pte++;
1569 		}
1570 	}
1571 
1572 	return alloc_bytes;
1573 }
1574 
1575 static void __init flush_all_kernel_tsbs(void)
1576 {
1577 	int i;
1578 
1579 	for (i = 0; i < KERNEL_TSB_NENTRIES; i++) {
1580 		struct tsb *ent = &swapper_tsb[i];
1581 
1582 		ent->tag = (1UL << TSB_TAG_INVALID_BIT);
1583 	}
1584 #ifndef CONFIG_DEBUG_PAGEALLOC
1585 	for (i = 0; i < KERNEL_TSB4M_NENTRIES; i++) {
1586 		struct tsb *ent = &swapper_4m_tsb[i];
1587 
1588 		ent->tag = (1UL << TSB_TAG_INVALID_BIT);
1589 	}
1590 #endif
1591 }
1592 
1593 extern unsigned int kvmap_linear_patch[1];
1594 
1595 static void __init kernel_physical_mapping_init(void)
1596 {
1597 	unsigned long i, mem_alloced = 0UL;
1598 	bool use_huge = true;
1599 
1600 #ifdef CONFIG_DEBUG_PAGEALLOC
1601 	use_huge = false;
1602 #endif
1603 	for (i = 0; i < pall_ents; i++) {
1604 		unsigned long phys_start, phys_end;
1605 
1606 		phys_start = pall[i].phys_addr;
1607 		phys_end = phys_start + pall[i].reg_size;
1608 
1609 		mem_alloced += kernel_map_range(phys_start, phys_end,
1610 						PAGE_KERNEL, use_huge);
1611 	}
1612 
1613 	printk("Allocated %ld bytes for kernel page tables.\n",
1614 	       mem_alloced);
1615 
1616 	kvmap_linear_patch[0] = 0x01000000; /* nop */
1617 	flushi(&kvmap_linear_patch[0]);
1618 
1619 	flush_all_kernel_tsbs();
1620 
1621 	__flush_tlb_all();
1622 }
1623 
1624 #ifdef CONFIG_DEBUG_PAGEALLOC
1625 void __kernel_map_pages(struct page *page, int numpages, int enable)
1626 {
1627 	unsigned long phys_start = page_to_pfn(page) << PAGE_SHIFT;
1628 	unsigned long phys_end = phys_start + (numpages * PAGE_SIZE);
1629 
1630 	kernel_map_range(phys_start, phys_end,
1631 			 (enable ? PAGE_KERNEL : __pgprot(0)), false);
1632 
1633 	flush_tsb_kernel_range(PAGE_OFFSET + phys_start,
1634 			       PAGE_OFFSET + phys_end);
1635 
1636 	/* we should perform an IPI and flush all tlbs,
1637 	 * but that can deadlock->flush only current cpu.
1638 	 */
1639 	__flush_tlb_kernel_range(PAGE_OFFSET + phys_start,
1640 				 PAGE_OFFSET + phys_end);
1641 }
1642 #endif
1643 
1644 unsigned long __init find_ecache_flush_span(unsigned long size)
1645 {
1646 	int i;
1647 
1648 	for (i = 0; i < pavail_ents; i++) {
1649 		if (pavail[i].reg_size >= size)
1650 			return pavail[i].phys_addr;
1651 	}
1652 
1653 	return ~0UL;
1654 }
1655 
1656 unsigned long PAGE_OFFSET;
1657 EXPORT_SYMBOL(PAGE_OFFSET);
1658 
1659 unsigned long VMALLOC_END   = 0x0000010000000000UL;
1660 EXPORT_SYMBOL(VMALLOC_END);
1661 
1662 unsigned long sparc64_va_hole_top =    0xfffff80000000000UL;
1663 unsigned long sparc64_va_hole_bottom = 0x0000080000000000UL;
1664 
1665 static void __init setup_page_offset(void)
1666 {
1667 	if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1668 		/* Cheetah/Panther support a full 64-bit virtual
1669 		 * address, so we can use all that our page tables
1670 		 * support.
1671 		 */
1672 		sparc64_va_hole_top =    0xfff0000000000000UL;
1673 		sparc64_va_hole_bottom = 0x0010000000000000UL;
1674 
1675 		max_phys_bits = 42;
1676 	} else if (tlb_type == hypervisor) {
1677 		switch (sun4v_chip_type) {
1678 		case SUN4V_CHIP_NIAGARA1:
1679 		case SUN4V_CHIP_NIAGARA2:
1680 			/* T1 and T2 support 48-bit virtual addresses.  */
1681 			sparc64_va_hole_top =    0xffff800000000000UL;
1682 			sparc64_va_hole_bottom = 0x0000800000000000UL;
1683 
1684 			max_phys_bits = 39;
1685 			break;
1686 		case SUN4V_CHIP_NIAGARA3:
1687 			/* T3 supports 48-bit virtual addresses.  */
1688 			sparc64_va_hole_top =    0xffff800000000000UL;
1689 			sparc64_va_hole_bottom = 0x0000800000000000UL;
1690 
1691 			max_phys_bits = 43;
1692 			break;
1693 		case SUN4V_CHIP_NIAGARA4:
1694 		case SUN4V_CHIP_NIAGARA5:
1695 		case SUN4V_CHIP_SPARC64X:
1696 		case SUN4V_CHIP_SPARC_M6:
1697 			/* T4 and later support 52-bit virtual addresses.  */
1698 			sparc64_va_hole_top =    0xfff8000000000000UL;
1699 			sparc64_va_hole_bottom = 0x0008000000000000UL;
1700 			max_phys_bits = 47;
1701 			break;
1702 		case SUN4V_CHIP_SPARC_M7:
1703 		default:
1704 			/* M7 and later support 52-bit virtual addresses.  */
1705 			sparc64_va_hole_top =    0xfff8000000000000UL;
1706 			sparc64_va_hole_bottom = 0x0008000000000000UL;
1707 			max_phys_bits = 49;
1708 			break;
1709 		}
1710 	}
1711 
1712 	if (max_phys_bits > MAX_PHYS_ADDRESS_BITS) {
1713 		prom_printf("MAX_PHYS_ADDRESS_BITS is too small, need %lu\n",
1714 			    max_phys_bits);
1715 		prom_halt();
1716 	}
1717 
1718 	PAGE_OFFSET = sparc64_va_hole_top;
1719 	VMALLOC_END = ((sparc64_va_hole_bottom >> 1) +
1720 		       (sparc64_va_hole_bottom >> 2));
1721 
1722 	pr_info("MM: PAGE_OFFSET is 0x%016lx (max_phys_bits == %lu)\n",
1723 		PAGE_OFFSET, max_phys_bits);
1724 	pr_info("MM: VMALLOC [0x%016lx --> 0x%016lx]\n",
1725 		VMALLOC_START, VMALLOC_END);
1726 	pr_info("MM: VMEMMAP [0x%016lx --> 0x%016lx]\n",
1727 		VMEMMAP_BASE, VMEMMAP_BASE << 1);
1728 }
1729 
1730 static void __init tsb_phys_patch(void)
1731 {
1732 	struct tsb_ldquad_phys_patch_entry *pquad;
1733 	struct tsb_phys_patch_entry *p;
1734 
1735 	pquad = &__tsb_ldquad_phys_patch;
1736 	while (pquad < &__tsb_ldquad_phys_patch_end) {
1737 		unsigned long addr = pquad->addr;
1738 
1739 		if (tlb_type == hypervisor)
1740 			*(unsigned int *) addr = pquad->sun4v_insn;
1741 		else
1742 			*(unsigned int *) addr = pquad->sun4u_insn;
1743 		wmb();
1744 		__asm__ __volatile__("flush	%0"
1745 				     : /* no outputs */
1746 				     : "r" (addr));
1747 
1748 		pquad++;
1749 	}
1750 
1751 	p = &__tsb_phys_patch;
1752 	while (p < &__tsb_phys_patch_end) {
1753 		unsigned long addr = p->addr;
1754 
1755 		*(unsigned int *) addr = p->insn;
1756 		wmb();
1757 		__asm__ __volatile__("flush	%0"
1758 				     : /* no outputs */
1759 				     : "r" (addr));
1760 
1761 		p++;
1762 	}
1763 }
1764 
1765 /* Don't mark as init, we give this to the Hypervisor.  */
1766 #ifndef CONFIG_DEBUG_PAGEALLOC
1767 #define NUM_KTSB_DESCR	2
1768 #else
1769 #define NUM_KTSB_DESCR	1
1770 #endif
1771 static struct hv_tsb_descr ktsb_descr[NUM_KTSB_DESCR];
1772 
1773 /* The swapper TSBs are loaded with a base sequence of:
1774  *
1775  *	sethi	%uhi(SYMBOL), REG1
1776  *	sethi	%hi(SYMBOL), REG2
1777  *	or	REG1, %ulo(SYMBOL), REG1
1778  *	or	REG2, %lo(SYMBOL), REG2
1779  *	sllx	REG1, 32, REG1
1780  *	or	REG1, REG2, REG1
1781  *
1782  * When we use physical addressing for the TSB accesses, we patch the
1783  * first four instructions in the above sequence.
1784  */
1785 
1786 static void patch_one_ktsb_phys(unsigned int *start, unsigned int *end, unsigned long pa)
1787 {
1788 	unsigned long high_bits, low_bits;
1789 
1790 	high_bits = (pa >> 32) & 0xffffffff;
1791 	low_bits = (pa >> 0) & 0xffffffff;
1792 
1793 	while (start < end) {
1794 		unsigned int *ia = (unsigned int *)(unsigned long)*start;
1795 
1796 		ia[0] = (ia[0] & ~0x3fffff) | (high_bits >> 10);
1797 		__asm__ __volatile__("flush	%0" : : "r" (ia));
1798 
1799 		ia[1] = (ia[1] & ~0x3fffff) | (low_bits >> 10);
1800 		__asm__ __volatile__("flush	%0" : : "r" (ia + 1));
1801 
1802 		ia[2] = (ia[2] & ~0x1fff) | (high_bits & 0x3ff);
1803 		__asm__ __volatile__("flush	%0" : : "r" (ia + 2));
1804 
1805 		ia[3] = (ia[3] & ~0x1fff) | (low_bits & 0x3ff);
1806 		__asm__ __volatile__("flush	%0" : : "r" (ia + 3));
1807 
1808 		start++;
1809 	}
1810 }
1811 
1812 static void ktsb_phys_patch(void)
1813 {
1814 	extern unsigned int __swapper_tsb_phys_patch;
1815 	extern unsigned int __swapper_tsb_phys_patch_end;
1816 	unsigned long ktsb_pa;
1817 
1818 	ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
1819 	patch_one_ktsb_phys(&__swapper_tsb_phys_patch,
1820 			    &__swapper_tsb_phys_patch_end, ktsb_pa);
1821 #ifndef CONFIG_DEBUG_PAGEALLOC
1822 	{
1823 	extern unsigned int __swapper_4m_tsb_phys_patch;
1824 	extern unsigned int __swapper_4m_tsb_phys_patch_end;
1825 	ktsb_pa = (kern_base +
1826 		   ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
1827 	patch_one_ktsb_phys(&__swapper_4m_tsb_phys_patch,
1828 			    &__swapper_4m_tsb_phys_patch_end, ktsb_pa);
1829 	}
1830 #endif
1831 }
1832 
1833 static void __init sun4v_ktsb_init(void)
1834 {
1835 	unsigned long ktsb_pa;
1836 
1837 	/* First KTSB for PAGE_SIZE mappings.  */
1838 	ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
1839 
1840 	switch (PAGE_SIZE) {
1841 	case 8 * 1024:
1842 	default:
1843 		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_8K;
1844 		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_8K;
1845 		break;
1846 
1847 	case 64 * 1024:
1848 		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_64K;
1849 		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_64K;
1850 		break;
1851 
1852 	case 512 * 1024:
1853 		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_512K;
1854 		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_512K;
1855 		break;
1856 
1857 	case 4 * 1024 * 1024:
1858 		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_4MB;
1859 		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_4MB;
1860 		break;
1861 	}
1862 
1863 	ktsb_descr[0].assoc = 1;
1864 	ktsb_descr[0].num_ttes = KERNEL_TSB_NENTRIES;
1865 	ktsb_descr[0].ctx_idx = 0;
1866 	ktsb_descr[0].tsb_base = ktsb_pa;
1867 	ktsb_descr[0].resv = 0;
1868 
1869 #ifndef CONFIG_DEBUG_PAGEALLOC
1870 	/* Second KTSB for 4MB/256MB/2GB/16GB mappings.  */
1871 	ktsb_pa = (kern_base +
1872 		   ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
1873 
1874 	ktsb_descr[1].pgsz_idx = HV_PGSZ_IDX_4MB;
1875 	ktsb_descr[1].pgsz_mask = ((HV_PGSZ_MASK_4MB |
1876 				    HV_PGSZ_MASK_256MB |
1877 				    HV_PGSZ_MASK_2GB |
1878 				    HV_PGSZ_MASK_16GB) &
1879 				   cpu_pgsz_mask);
1880 	ktsb_descr[1].assoc = 1;
1881 	ktsb_descr[1].num_ttes = KERNEL_TSB4M_NENTRIES;
1882 	ktsb_descr[1].ctx_idx = 0;
1883 	ktsb_descr[1].tsb_base = ktsb_pa;
1884 	ktsb_descr[1].resv = 0;
1885 #endif
1886 }
1887 
1888 void sun4v_ktsb_register(void)
1889 {
1890 	unsigned long pa, ret;
1891 
1892 	pa = kern_base + ((unsigned long)&ktsb_descr[0] - KERNBASE);
1893 
1894 	ret = sun4v_mmu_tsb_ctx0(NUM_KTSB_DESCR, pa);
1895 	if (ret != 0) {
1896 		prom_printf("hypervisor_mmu_tsb_ctx0[%lx]: "
1897 			    "errors with %lx\n", pa, ret);
1898 		prom_halt();
1899 	}
1900 }
1901 
1902 static void __init sun4u_linear_pte_xor_finalize(void)
1903 {
1904 #ifndef CONFIG_DEBUG_PAGEALLOC
1905 	/* This is where we would add Panther support for
1906 	 * 32MB and 256MB pages.
1907 	 */
1908 #endif
1909 }
1910 
1911 static void __init sun4v_linear_pte_xor_finalize(void)
1912 {
1913 	unsigned long pagecv_flag;
1914 
1915 	/* Bit 9 of TTE is no longer CV bit on M7 processor and it instead
1916 	 * enables MCD error. Do not set bit 9 on M7 processor.
1917 	 */
1918 	switch (sun4v_chip_type) {
1919 	case SUN4V_CHIP_SPARC_M7:
1920 		pagecv_flag = 0x00;
1921 		break;
1922 	default:
1923 		pagecv_flag = _PAGE_CV_4V;
1924 		break;
1925 	}
1926 #ifndef CONFIG_DEBUG_PAGEALLOC
1927 	if (cpu_pgsz_mask & HV_PGSZ_MASK_256MB) {
1928 		kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZ256MB_4V) ^
1929 			PAGE_OFFSET;
1930 		kern_linear_pte_xor[1] |= (_PAGE_CP_4V | pagecv_flag |
1931 					   _PAGE_P_4V | _PAGE_W_4V);
1932 	} else {
1933 		kern_linear_pte_xor[1] = kern_linear_pte_xor[0];
1934 	}
1935 
1936 	if (cpu_pgsz_mask & HV_PGSZ_MASK_2GB) {
1937 		kern_linear_pte_xor[2] = (_PAGE_VALID | _PAGE_SZ2GB_4V) ^
1938 			PAGE_OFFSET;
1939 		kern_linear_pte_xor[2] |= (_PAGE_CP_4V | pagecv_flag |
1940 					   _PAGE_P_4V | _PAGE_W_4V);
1941 	} else {
1942 		kern_linear_pte_xor[2] = kern_linear_pte_xor[1];
1943 	}
1944 
1945 	if (cpu_pgsz_mask & HV_PGSZ_MASK_16GB) {
1946 		kern_linear_pte_xor[3] = (_PAGE_VALID | _PAGE_SZ16GB_4V) ^
1947 			PAGE_OFFSET;
1948 		kern_linear_pte_xor[3] |= (_PAGE_CP_4V | pagecv_flag |
1949 					   _PAGE_P_4V | _PAGE_W_4V);
1950 	} else {
1951 		kern_linear_pte_xor[3] = kern_linear_pte_xor[2];
1952 	}
1953 #endif
1954 }
1955 
1956 /* paging_init() sets up the page tables */
1957 
1958 static unsigned long last_valid_pfn;
1959 
1960 static void sun4u_pgprot_init(void);
1961 static void sun4v_pgprot_init(void);
1962 
1963 static phys_addr_t __init available_memory(void)
1964 {
1965 	phys_addr_t available = 0ULL;
1966 	phys_addr_t pa_start, pa_end;
1967 	u64 i;
1968 
1969 	for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &pa_start,
1970 				&pa_end, NULL)
1971 		available = available + (pa_end  - pa_start);
1972 
1973 	return available;
1974 }
1975 
1976 #define _PAGE_CACHE_4U	(_PAGE_CP_4U | _PAGE_CV_4U)
1977 #define _PAGE_CACHE_4V	(_PAGE_CP_4V | _PAGE_CV_4V)
1978 #define __DIRTY_BITS_4U	 (_PAGE_MODIFIED_4U | _PAGE_WRITE_4U | _PAGE_W_4U)
1979 #define __DIRTY_BITS_4V	 (_PAGE_MODIFIED_4V | _PAGE_WRITE_4V | _PAGE_W_4V)
1980 #define __ACCESS_BITS_4U (_PAGE_ACCESSED_4U | _PAGE_READ_4U | _PAGE_R)
1981 #define __ACCESS_BITS_4V (_PAGE_ACCESSED_4V | _PAGE_READ_4V | _PAGE_R)
1982 
1983 /* We need to exclude reserved regions. This exclusion will include
1984  * vmlinux and initrd. To be more precise the initrd size could be used to
1985  * compute a new lower limit because it is freed later during initialization.
1986  */
1987 static void __init reduce_memory(phys_addr_t limit_ram)
1988 {
1989 	phys_addr_t avail_ram = available_memory();
1990 	phys_addr_t pa_start, pa_end;
1991 	u64 i;
1992 
1993 	if (limit_ram >= avail_ram)
1994 		return;
1995 
1996 	for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &pa_start,
1997 				&pa_end, NULL) {
1998 		phys_addr_t region_size = pa_end - pa_start;
1999 		phys_addr_t clip_start = pa_start;
2000 
2001 		avail_ram = avail_ram - region_size;
2002 		/* Are we consuming too much? */
2003 		if (avail_ram < limit_ram) {
2004 			phys_addr_t give_back = limit_ram - avail_ram;
2005 
2006 			region_size = region_size - give_back;
2007 			clip_start = clip_start + give_back;
2008 		}
2009 
2010 		memblock_remove(clip_start, region_size);
2011 
2012 		if (avail_ram <= limit_ram)
2013 			break;
2014 		i = 0UL;
2015 	}
2016 }
2017 
2018 void __init paging_init(void)
2019 {
2020 	unsigned long end_pfn, shift, phys_base;
2021 	unsigned long real_end, i;
2022 	int node;
2023 
2024 	setup_page_offset();
2025 
2026 	/* These build time checkes make sure that the dcache_dirty_cpu()
2027 	 * page->flags usage will work.
2028 	 *
2029 	 * When a page gets marked as dcache-dirty, we store the
2030 	 * cpu number starting at bit 32 in the page->flags.  Also,
2031 	 * functions like clear_dcache_dirty_cpu use the cpu mask
2032 	 * in 13-bit signed-immediate instruction fields.
2033 	 */
2034 
2035 	/*
2036 	 * Page flags must not reach into upper 32 bits that are used
2037 	 * for the cpu number
2038 	 */
2039 	BUILD_BUG_ON(NR_PAGEFLAGS > 32);
2040 
2041 	/*
2042 	 * The bit fields placed in the high range must not reach below
2043 	 * the 32 bit boundary. Otherwise we cannot place the cpu field
2044 	 * at the 32 bit boundary.
2045 	 */
2046 	BUILD_BUG_ON(SECTIONS_WIDTH + NODES_WIDTH + ZONES_WIDTH +
2047 		ilog2(roundup_pow_of_two(NR_CPUS)) > 32);
2048 
2049 	BUILD_BUG_ON(NR_CPUS > 4096);
2050 
2051 	kern_base = (prom_boot_mapping_phys_low >> ILOG2_4MB) << ILOG2_4MB;
2052 	kern_size = (unsigned long)&_end - (unsigned long)KERNBASE;
2053 
2054 	/* Invalidate both kernel TSBs.  */
2055 	memset(swapper_tsb, 0x40, sizeof(swapper_tsb));
2056 #ifndef CONFIG_DEBUG_PAGEALLOC
2057 	memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
2058 #endif
2059 
2060 	/* TTE.cv bit on sparc v9 occupies the same position as TTE.mcde
2061 	 * bit on M7 processor. This is a conflicting usage of the same
2062 	 * bit. Enabling TTE.cv on M7 would turn on Memory Corruption
2063 	 * Detection error on all pages and this will lead to problems
2064 	 * later. Kernel does not run with MCD enabled and hence rest
2065 	 * of the required steps to fully configure memory corruption
2066 	 * detection are not taken. We need to ensure TTE.mcde is not
2067 	 * set on M7 processor. Compute the value of cacheability
2068 	 * flag for use later taking this into consideration.
2069 	 */
2070 	switch (sun4v_chip_type) {
2071 	case SUN4V_CHIP_SPARC_M7:
2072 		page_cache4v_flag = _PAGE_CP_4V;
2073 		break;
2074 	default:
2075 		page_cache4v_flag = _PAGE_CACHE_4V;
2076 		break;
2077 	}
2078 
2079 	if (tlb_type == hypervisor)
2080 		sun4v_pgprot_init();
2081 	else
2082 		sun4u_pgprot_init();
2083 
2084 	if (tlb_type == cheetah_plus ||
2085 	    tlb_type == hypervisor) {
2086 		tsb_phys_patch();
2087 		ktsb_phys_patch();
2088 	}
2089 
2090 	if (tlb_type == hypervisor)
2091 		sun4v_patch_tlb_handlers();
2092 
2093 	/* Find available physical memory...
2094 	 *
2095 	 * Read it twice in order to work around a bug in openfirmware.
2096 	 * The call to grab this table itself can cause openfirmware to
2097 	 * allocate memory, which in turn can take away some space from
2098 	 * the list of available memory.  Reading it twice makes sure
2099 	 * we really do get the final value.
2100 	 */
2101 	read_obp_translations();
2102 	read_obp_memory("reg", &pall[0], &pall_ents);
2103 	read_obp_memory("available", &pavail[0], &pavail_ents);
2104 	read_obp_memory("available", &pavail[0], &pavail_ents);
2105 
2106 	phys_base = 0xffffffffffffffffUL;
2107 	for (i = 0; i < pavail_ents; i++) {
2108 		phys_base = min(phys_base, pavail[i].phys_addr);
2109 		memblock_add(pavail[i].phys_addr, pavail[i].reg_size);
2110 	}
2111 
2112 	memblock_reserve(kern_base, kern_size);
2113 
2114 	find_ramdisk(phys_base);
2115 
2116 	if (cmdline_memory_size)
2117 		reduce_memory(cmdline_memory_size);
2118 
2119 	memblock_allow_resize();
2120 	memblock_dump_all();
2121 
2122 	set_bit(0, mmu_context_bmap);
2123 
2124 	shift = kern_base + PAGE_OFFSET - ((unsigned long)KERNBASE);
2125 
2126 	real_end = (unsigned long)_end;
2127 	num_kernel_image_mappings = DIV_ROUND_UP(real_end - KERNBASE, 1 << ILOG2_4MB);
2128 	printk("Kernel: Using %d locked TLB entries for main kernel image.\n",
2129 	       num_kernel_image_mappings);
2130 
2131 	/* Set kernel pgd to upper alias so physical page computations
2132 	 * work.
2133 	 */
2134 	init_mm.pgd += ((shift) / (sizeof(pgd_t)));
2135 
2136 	memset(swapper_pg_dir, 0, sizeof(swapper_pg_dir));
2137 
2138 	inherit_prom_mappings();
2139 
2140 	/* Ok, we can use our TLB miss and window trap handlers safely.  */
2141 	setup_tba();
2142 
2143 	__flush_tlb_all();
2144 
2145 	prom_build_devicetree();
2146 	of_populate_present_mask();
2147 #ifndef CONFIG_SMP
2148 	of_fill_in_cpu_data();
2149 #endif
2150 
2151 	if (tlb_type == hypervisor) {
2152 		sun4v_mdesc_init();
2153 		mdesc_populate_present_mask(cpu_all_mask);
2154 #ifndef CONFIG_SMP
2155 		mdesc_fill_in_cpu_data(cpu_all_mask);
2156 #endif
2157 		mdesc_get_page_sizes(cpu_all_mask, &cpu_pgsz_mask);
2158 
2159 		sun4v_linear_pte_xor_finalize();
2160 
2161 		sun4v_ktsb_init();
2162 		sun4v_ktsb_register();
2163 	} else {
2164 		unsigned long impl, ver;
2165 
2166 		cpu_pgsz_mask = (HV_PGSZ_MASK_8K | HV_PGSZ_MASK_64K |
2167 				 HV_PGSZ_MASK_512K | HV_PGSZ_MASK_4MB);
2168 
2169 		__asm__ __volatile__("rdpr %%ver, %0" : "=r" (ver));
2170 		impl = ((ver >> 32) & 0xffff);
2171 		if (impl == PANTHER_IMPL)
2172 			cpu_pgsz_mask |= (HV_PGSZ_MASK_32MB |
2173 					  HV_PGSZ_MASK_256MB);
2174 
2175 		sun4u_linear_pte_xor_finalize();
2176 	}
2177 
2178 	/* Flush the TLBs and the 4M TSB so that the updated linear
2179 	 * pte XOR settings are realized for all mappings.
2180 	 */
2181 	__flush_tlb_all();
2182 #ifndef CONFIG_DEBUG_PAGEALLOC
2183 	memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
2184 #endif
2185 	__flush_tlb_all();
2186 
2187 	/* Setup bootmem... */
2188 	last_valid_pfn = end_pfn = bootmem_init(phys_base);
2189 
2190 	/* Once the OF device tree and MDESC have been setup, we know
2191 	 * the list of possible cpus.  Therefore we can allocate the
2192 	 * IRQ stacks.
2193 	 */
2194 	for_each_possible_cpu(i) {
2195 		node = cpu_to_node(i);
2196 
2197 		softirq_stack[i] = __alloc_bootmem_node(NODE_DATA(node),
2198 							THREAD_SIZE,
2199 							THREAD_SIZE, 0);
2200 		hardirq_stack[i] = __alloc_bootmem_node(NODE_DATA(node),
2201 							THREAD_SIZE,
2202 							THREAD_SIZE, 0);
2203 	}
2204 
2205 	kernel_physical_mapping_init();
2206 
2207 	{
2208 		unsigned long max_zone_pfns[MAX_NR_ZONES];
2209 
2210 		memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
2211 
2212 		max_zone_pfns[ZONE_NORMAL] = end_pfn;
2213 
2214 		free_area_init_nodes(max_zone_pfns);
2215 	}
2216 
2217 	printk("Booting Linux...\n");
2218 }
2219 
2220 int page_in_phys_avail(unsigned long paddr)
2221 {
2222 	int i;
2223 
2224 	paddr &= PAGE_MASK;
2225 
2226 	for (i = 0; i < pavail_ents; i++) {
2227 		unsigned long start, end;
2228 
2229 		start = pavail[i].phys_addr;
2230 		end = start + pavail[i].reg_size;
2231 
2232 		if (paddr >= start && paddr < end)
2233 			return 1;
2234 	}
2235 	if (paddr >= kern_base && paddr < (kern_base + kern_size))
2236 		return 1;
2237 #ifdef CONFIG_BLK_DEV_INITRD
2238 	if (paddr >= __pa(initrd_start) &&
2239 	    paddr < __pa(PAGE_ALIGN(initrd_end)))
2240 		return 1;
2241 #endif
2242 
2243 	return 0;
2244 }
2245 
2246 static void __init register_page_bootmem_info(void)
2247 {
2248 #ifdef CONFIG_NEED_MULTIPLE_NODES
2249 	int i;
2250 
2251 	for_each_online_node(i)
2252 		if (NODE_DATA(i)->node_spanned_pages)
2253 			register_page_bootmem_info_node(NODE_DATA(i));
2254 #endif
2255 }
2256 void __init mem_init(void)
2257 {
2258 	high_memory = __va(last_valid_pfn << PAGE_SHIFT);
2259 
2260 	register_page_bootmem_info();
2261 	free_all_bootmem();
2262 
2263 	/*
2264 	 * Set up the zero page, mark it reserved, so that page count
2265 	 * is not manipulated when freeing the page from user ptes.
2266 	 */
2267 	mem_map_zero = alloc_pages(GFP_KERNEL|__GFP_ZERO, 0);
2268 	if (mem_map_zero == NULL) {
2269 		prom_printf("paging_init: Cannot alloc zero page.\n");
2270 		prom_halt();
2271 	}
2272 	mark_page_reserved(mem_map_zero);
2273 
2274 	mem_init_print_info(NULL);
2275 
2276 	if (tlb_type == cheetah || tlb_type == cheetah_plus)
2277 		cheetah_ecache_flush_init();
2278 }
2279 
2280 void free_initmem(void)
2281 {
2282 	unsigned long addr, initend;
2283 	int do_free = 1;
2284 
2285 	/* If the physical memory maps were trimmed by kernel command
2286 	 * line options, don't even try freeing this initmem stuff up.
2287 	 * The kernel image could have been in the trimmed out region
2288 	 * and if so the freeing below will free invalid page structs.
2289 	 */
2290 	if (cmdline_memory_size)
2291 		do_free = 0;
2292 
2293 	/*
2294 	 * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes.
2295 	 */
2296 	addr = PAGE_ALIGN((unsigned long)(__init_begin));
2297 	initend = (unsigned long)(__init_end) & PAGE_MASK;
2298 	for (; addr < initend; addr += PAGE_SIZE) {
2299 		unsigned long page;
2300 
2301 		page = (addr +
2302 			((unsigned long) __va(kern_base)) -
2303 			((unsigned long) KERNBASE));
2304 		memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
2305 
2306 		if (do_free)
2307 			free_reserved_page(virt_to_page(page));
2308 	}
2309 }
2310 
2311 #ifdef CONFIG_BLK_DEV_INITRD
2312 void free_initrd_mem(unsigned long start, unsigned long end)
2313 {
2314 	free_reserved_area((void *)start, (void *)end, POISON_FREE_INITMEM,
2315 			   "initrd");
2316 }
2317 #endif
2318 
2319 pgprot_t PAGE_KERNEL __read_mostly;
2320 EXPORT_SYMBOL(PAGE_KERNEL);
2321 
2322 pgprot_t PAGE_KERNEL_LOCKED __read_mostly;
2323 pgprot_t PAGE_COPY __read_mostly;
2324 
2325 pgprot_t PAGE_SHARED __read_mostly;
2326 EXPORT_SYMBOL(PAGE_SHARED);
2327 
2328 unsigned long pg_iobits __read_mostly;
2329 
2330 unsigned long _PAGE_IE __read_mostly;
2331 EXPORT_SYMBOL(_PAGE_IE);
2332 
2333 unsigned long _PAGE_E __read_mostly;
2334 EXPORT_SYMBOL(_PAGE_E);
2335 
2336 unsigned long _PAGE_CACHE __read_mostly;
2337 EXPORT_SYMBOL(_PAGE_CACHE);
2338 
2339 #ifdef CONFIG_SPARSEMEM_VMEMMAP
2340 int __meminit vmemmap_populate(unsigned long vstart, unsigned long vend,
2341 			       int node)
2342 {
2343 	unsigned long pte_base;
2344 
2345 	pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2346 		    _PAGE_CP_4U | _PAGE_CV_4U |
2347 		    _PAGE_P_4U | _PAGE_W_4U);
2348 	if (tlb_type == hypervisor)
2349 		pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2350 			    page_cache4v_flag | _PAGE_P_4V | _PAGE_W_4V);
2351 
2352 	pte_base |= _PAGE_PMD_HUGE;
2353 
2354 	vstart = vstart & PMD_MASK;
2355 	vend = ALIGN(vend, PMD_SIZE);
2356 	for (; vstart < vend; vstart += PMD_SIZE) {
2357 		pgd_t *pgd = pgd_offset_k(vstart);
2358 		unsigned long pte;
2359 		pud_t *pud;
2360 		pmd_t *pmd;
2361 
2362 		if (pgd_none(*pgd)) {
2363 			pud_t *new = vmemmap_alloc_block(PAGE_SIZE, node);
2364 
2365 			if (!new)
2366 				return -ENOMEM;
2367 			pgd_populate(&init_mm, pgd, new);
2368 		}
2369 
2370 		pud = pud_offset(pgd, vstart);
2371 		if (pud_none(*pud)) {
2372 			pmd_t *new = vmemmap_alloc_block(PAGE_SIZE, node);
2373 
2374 			if (!new)
2375 				return -ENOMEM;
2376 			pud_populate(&init_mm, pud, new);
2377 		}
2378 
2379 		pmd = pmd_offset(pud, vstart);
2380 
2381 		pte = pmd_val(*pmd);
2382 		if (!(pte & _PAGE_VALID)) {
2383 			void *block = vmemmap_alloc_block(PMD_SIZE, node);
2384 
2385 			if (!block)
2386 				return -ENOMEM;
2387 
2388 			pmd_val(*pmd) = pte_base | __pa(block);
2389 		}
2390 	}
2391 
2392 	return 0;
2393 }
2394 
2395 void vmemmap_free(unsigned long start, unsigned long end)
2396 {
2397 }
2398 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
2399 
2400 static void prot_init_common(unsigned long page_none,
2401 			     unsigned long page_shared,
2402 			     unsigned long page_copy,
2403 			     unsigned long page_readonly,
2404 			     unsigned long page_exec_bit)
2405 {
2406 	PAGE_COPY = __pgprot(page_copy);
2407 	PAGE_SHARED = __pgprot(page_shared);
2408 
2409 	protection_map[0x0] = __pgprot(page_none);
2410 	protection_map[0x1] = __pgprot(page_readonly & ~page_exec_bit);
2411 	protection_map[0x2] = __pgprot(page_copy & ~page_exec_bit);
2412 	protection_map[0x3] = __pgprot(page_copy & ~page_exec_bit);
2413 	protection_map[0x4] = __pgprot(page_readonly);
2414 	protection_map[0x5] = __pgprot(page_readonly);
2415 	protection_map[0x6] = __pgprot(page_copy);
2416 	protection_map[0x7] = __pgprot(page_copy);
2417 	protection_map[0x8] = __pgprot(page_none);
2418 	protection_map[0x9] = __pgprot(page_readonly & ~page_exec_bit);
2419 	protection_map[0xa] = __pgprot(page_shared & ~page_exec_bit);
2420 	protection_map[0xb] = __pgprot(page_shared & ~page_exec_bit);
2421 	protection_map[0xc] = __pgprot(page_readonly);
2422 	protection_map[0xd] = __pgprot(page_readonly);
2423 	protection_map[0xe] = __pgprot(page_shared);
2424 	protection_map[0xf] = __pgprot(page_shared);
2425 }
2426 
2427 static void __init sun4u_pgprot_init(void)
2428 {
2429 	unsigned long page_none, page_shared, page_copy, page_readonly;
2430 	unsigned long page_exec_bit;
2431 	int i;
2432 
2433 	PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2434 				_PAGE_CACHE_4U | _PAGE_P_4U |
2435 				__ACCESS_BITS_4U | __DIRTY_BITS_4U |
2436 				_PAGE_EXEC_4U);
2437 	PAGE_KERNEL_LOCKED = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2438 				       _PAGE_CACHE_4U | _PAGE_P_4U |
2439 				       __ACCESS_BITS_4U | __DIRTY_BITS_4U |
2440 				       _PAGE_EXEC_4U | _PAGE_L_4U);
2441 
2442 	_PAGE_IE = _PAGE_IE_4U;
2443 	_PAGE_E = _PAGE_E_4U;
2444 	_PAGE_CACHE = _PAGE_CACHE_4U;
2445 
2446 	pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4U | __DIRTY_BITS_4U |
2447 		     __ACCESS_BITS_4U | _PAGE_E_4U);
2448 
2449 #ifdef CONFIG_DEBUG_PAGEALLOC
2450 	kern_linear_pte_xor[0] = _PAGE_VALID ^ PAGE_OFFSET;
2451 #else
2452 	kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4U) ^
2453 		PAGE_OFFSET;
2454 #endif
2455 	kern_linear_pte_xor[0] |= (_PAGE_CP_4U | _PAGE_CV_4U |
2456 				   _PAGE_P_4U | _PAGE_W_4U);
2457 
2458 	for (i = 1; i < 4; i++)
2459 		kern_linear_pte_xor[i] = kern_linear_pte_xor[0];
2460 
2461 	_PAGE_ALL_SZ_BITS =  (_PAGE_SZ4MB_4U | _PAGE_SZ512K_4U |
2462 			      _PAGE_SZ64K_4U | _PAGE_SZ8K_4U |
2463 			      _PAGE_SZ32MB_4U | _PAGE_SZ256MB_4U);
2464 
2465 
2466 	page_none = _PAGE_PRESENT_4U | _PAGE_ACCESSED_4U | _PAGE_CACHE_4U;
2467 	page_shared = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2468 		       __ACCESS_BITS_4U | _PAGE_WRITE_4U | _PAGE_EXEC_4U);
2469 	page_copy   = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2470 		       __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2471 	page_readonly   = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2472 			   __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2473 
2474 	page_exec_bit = _PAGE_EXEC_4U;
2475 
2476 	prot_init_common(page_none, page_shared, page_copy, page_readonly,
2477 			 page_exec_bit);
2478 }
2479 
2480 static void __init sun4v_pgprot_init(void)
2481 {
2482 	unsigned long page_none, page_shared, page_copy, page_readonly;
2483 	unsigned long page_exec_bit;
2484 	int i;
2485 
2486 	PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4V | _PAGE_VALID |
2487 				page_cache4v_flag | _PAGE_P_4V |
2488 				__ACCESS_BITS_4V | __DIRTY_BITS_4V |
2489 				_PAGE_EXEC_4V);
2490 	PAGE_KERNEL_LOCKED = PAGE_KERNEL;
2491 
2492 	_PAGE_IE = _PAGE_IE_4V;
2493 	_PAGE_E = _PAGE_E_4V;
2494 	_PAGE_CACHE = page_cache4v_flag;
2495 
2496 #ifdef CONFIG_DEBUG_PAGEALLOC
2497 	kern_linear_pte_xor[0] = _PAGE_VALID ^ PAGE_OFFSET;
2498 #else
2499 	kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4V) ^
2500 		PAGE_OFFSET;
2501 #endif
2502 	kern_linear_pte_xor[0] |= (page_cache4v_flag | _PAGE_P_4V |
2503 				   _PAGE_W_4V);
2504 
2505 	for (i = 1; i < 4; i++)
2506 		kern_linear_pte_xor[i] = kern_linear_pte_xor[0];
2507 
2508 	pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4V | __DIRTY_BITS_4V |
2509 		     __ACCESS_BITS_4V | _PAGE_E_4V);
2510 
2511 	_PAGE_ALL_SZ_BITS = (_PAGE_SZ16GB_4V | _PAGE_SZ2GB_4V |
2512 			     _PAGE_SZ256MB_4V | _PAGE_SZ32MB_4V |
2513 			     _PAGE_SZ4MB_4V | _PAGE_SZ512K_4V |
2514 			     _PAGE_SZ64K_4V | _PAGE_SZ8K_4V);
2515 
2516 	page_none = _PAGE_PRESENT_4V | _PAGE_ACCESSED_4V | page_cache4v_flag;
2517 	page_shared = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag |
2518 		       __ACCESS_BITS_4V | _PAGE_WRITE_4V | _PAGE_EXEC_4V);
2519 	page_copy   = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag |
2520 		       __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2521 	page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag |
2522 			 __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2523 
2524 	page_exec_bit = _PAGE_EXEC_4V;
2525 
2526 	prot_init_common(page_none, page_shared, page_copy, page_readonly,
2527 			 page_exec_bit);
2528 }
2529 
2530 unsigned long pte_sz_bits(unsigned long sz)
2531 {
2532 	if (tlb_type == hypervisor) {
2533 		switch (sz) {
2534 		case 8 * 1024:
2535 		default:
2536 			return _PAGE_SZ8K_4V;
2537 		case 64 * 1024:
2538 			return _PAGE_SZ64K_4V;
2539 		case 512 * 1024:
2540 			return _PAGE_SZ512K_4V;
2541 		case 4 * 1024 * 1024:
2542 			return _PAGE_SZ4MB_4V;
2543 		}
2544 	} else {
2545 		switch (sz) {
2546 		case 8 * 1024:
2547 		default:
2548 			return _PAGE_SZ8K_4U;
2549 		case 64 * 1024:
2550 			return _PAGE_SZ64K_4U;
2551 		case 512 * 1024:
2552 			return _PAGE_SZ512K_4U;
2553 		case 4 * 1024 * 1024:
2554 			return _PAGE_SZ4MB_4U;
2555 		}
2556 	}
2557 }
2558 
2559 pte_t mk_pte_io(unsigned long page, pgprot_t prot, int space, unsigned long page_size)
2560 {
2561 	pte_t pte;
2562 
2563 	pte_val(pte)  = page | pgprot_val(pgprot_noncached(prot));
2564 	pte_val(pte) |= (((unsigned long)space) << 32);
2565 	pte_val(pte) |= pte_sz_bits(page_size);
2566 
2567 	return pte;
2568 }
2569 
2570 static unsigned long kern_large_tte(unsigned long paddr)
2571 {
2572 	unsigned long val;
2573 
2574 	val = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2575 	       _PAGE_CP_4U | _PAGE_CV_4U | _PAGE_P_4U |
2576 	       _PAGE_EXEC_4U | _PAGE_L_4U | _PAGE_W_4U);
2577 	if (tlb_type == hypervisor)
2578 		val = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2579 		       page_cache4v_flag | _PAGE_P_4V |
2580 		       _PAGE_EXEC_4V | _PAGE_W_4V);
2581 
2582 	return val | paddr;
2583 }
2584 
2585 /* If not locked, zap it. */
2586 void __flush_tlb_all(void)
2587 {
2588 	unsigned long pstate;
2589 	int i;
2590 
2591 	__asm__ __volatile__("flushw\n\t"
2592 			     "rdpr	%%pstate, %0\n\t"
2593 			     "wrpr	%0, %1, %%pstate"
2594 			     : "=r" (pstate)
2595 			     : "i" (PSTATE_IE));
2596 	if (tlb_type == hypervisor) {
2597 		sun4v_mmu_demap_all();
2598 	} else if (tlb_type == spitfire) {
2599 		for (i = 0; i < 64; i++) {
2600 			/* Spitfire Errata #32 workaround */
2601 			/* NOTE: Always runs on spitfire, so no
2602 			 *       cheetah+ page size encodings.
2603 			 */
2604 			__asm__ __volatile__("stxa	%0, [%1] %2\n\t"
2605 					     "flush	%%g6"
2606 					     : /* No outputs */
2607 					     : "r" (0),
2608 					     "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2609 
2610 			if (!(spitfire_get_dtlb_data(i) & _PAGE_L_4U)) {
2611 				__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2612 						     "membar #Sync"
2613 						     : /* no outputs */
2614 						     : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
2615 				spitfire_put_dtlb_data(i, 0x0UL);
2616 			}
2617 
2618 			/* Spitfire Errata #32 workaround */
2619 			/* NOTE: Always runs on spitfire, so no
2620 			 *       cheetah+ page size encodings.
2621 			 */
2622 			__asm__ __volatile__("stxa	%0, [%1] %2\n\t"
2623 					     "flush	%%g6"
2624 					     : /* No outputs */
2625 					     : "r" (0),
2626 					     "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2627 
2628 			if (!(spitfire_get_itlb_data(i) & _PAGE_L_4U)) {
2629 				__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2630 						     "membar #Sync"
2631 						     : /* no outputs */
2632 						     : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU));
2633 				spitfire_put_itlb_data(i, 0x0UL);
2634 			}
2635 		}
2636 	} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
2637 		cheetah_flush_dtlb_all();
2638 		cheetah_flush_itlb_all();
2639 	}
2640 	__asm__ __volatile__("wrpr	%0, 0, %%pstate"
2641 			     : : "r" (pstate));
2642 }
2643 
2644 pte_t *pte_alloc_one_kernel(struct mm_struct *mm,
2645 			    unsigned long address)
2646 {
2647 	struct page *page = alloc_page(GFP_KERNEL | __GFP_NOTRACK |
2648 				       __GFP_REPEAT | __GFP_ZERO);
2649 	pte_t *pte = NULL;
2650 
2651 	if (page)
2652 		pte = (pte_t *) page_address(page);
2653 
2654 	return pte;
2655 }
2656 
2657 pgtable_t pte_alloc_one(struct mm_struct *mm,
2658 			unsigned long address)
2659 {
2660 	struct page *page = alloc_page(GFP_KERNEL | __GFP_NOTRACK |
2661 				       __GFP_REPEAT | __GFP_ZERO);
2662 	if (!page)
2663 		return NULL;
2664 	if (!pgtable_page_ctor(page)) {
2665 		free_hot_cold_page(page, 0);
2666 		return NULL;
2667 	}
2668 	return (pte_t *) page_address(page);
2669 }
2670 
2671 void pte_free_kernel(struct mm_struct *mm, pte_t *pte)
2672 {
2673 	free_page((unsigned long)pte);
2674 }
2675 
2676 static void __pte_free(pgtable_t pte)
2677 {
2678 	struct page *page = virt_to_page(pte);
2679 
2680 	pgtable_page_dtor(page);
2681 	__free_page(page);
2682 }
2683 
2684 void pte_free(struct mm_struct *mm, pgtable_t pte)
2685 {
2686 	__pte_free(pte);
2687 }
2688 
2689 void pgtable_free(void *table, bool is_page)
2690 {
2691 	if (is_page)
2692 		__pte_free(table);
2693 	else
2694 		kmem_cache_free(pgtable_cache, table);
2695 }
2696 
2697 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2698 void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr,
2699 			  pmd_t *pmd)
2700 {
2701 	unsigned long pte, flags;
2702 	struct mm_struct *mm;
2703 	pmd_t entry = *pmd;
2704 
2705 	if (!pmd_large(entry) || !pmd_young(entry))
2706 		return;
2707 
2708 	pte = pmd_val(entry);
2709 
2710 	/* Don't insert a non-valid PMD into the TSB, we'll deadlock.  */
2711 	if (!(pte & _PAGE_VALID))
2712 		return;
2713 
2714 	/* We are fabricating 8MB pages using 4MB real hw pages.  */
2715 	pte |= (addr & (1UL << REAL_HPAGE_SHIFT));
2716 
2717 	mm = vma->vm_mm;
2718 
2719 	spin_lock_irqsave(&mm->context.lock, flags);
2720 
2721 	if (mm->context.tsb_block[MM_TSB_HUGE].tsb != NULL)
2722 		__update_mmu_tsb_insert(mm, MM_TSB_HUGE, REAL_HPAGE_SHIFT,
2723 					addr, pte);
2724 
2725 	spin_unlock_irqrestore(&mm->context.lock, flags);
2726 }
2727 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2728 
2729 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
2730 static void context_reload(void *__data)
2731 {
2732 	struct mm_struct *mm = __data;
2733 
2734 	if (mm == current->mm)
2735 		load_secondary_context(mm);
2736 }
2737 
2738 void hugetlb_setup(struct pt_regs *regs)
2739 {
2740 	struct mm_struct *mm = current->mm;
2741 	struct tsb_config *tp;
2742 
2743 	if (faulthandler_disabled() || !mm) {
2744 		const struct exception_table_entry *entry;
2745 
2746 		entry = search_exception_tables(regs->tpc);
2747 		if (entry) {
2748 			regs->tpc = entry->fixup;
2749 			regs->tnpc = regs->tpc + 4;
2750 			return;
2751 		}
2752 		pr_alert("Unexpected HugeTLB setup in atomic context.\n");
2753 		die_if_kernel("HugeTSB in atomic", regs);
2754 	}
2755 
2756 	tp = &mm->context.tsb_block[MM_TSB_HUGE];
2757 	if (likely(tp->tsb == NULL))
2758 		tsb_grow(mm, MM_TSB_HUGE, 0);
2759 
2760 	tsb_context_switch(mm);
2761 	smp_tsb_sync(mm);
2762 
2763 	/* On UltraSPARC-III+ and later, configure the second half of
2764 	 * the Data-TLB for huge pages.
2765 	 */
2766 	if (tlb_type == cheetah_plus) {
2767 		unsigned long ctx;
2768 
2769 		spin_lock(&ctx_alloc_lock);
2770 		ctx = mm->context.sparc64_ctx_val;
2771 		ctx &= ~CTX_PGSZ_MASK;
2772 		ctx |= CTX_PGSZ_BASE << CTX_PGSZ0_SHIFT;
2773 		ctx |= CTX_PGSZ_HUGE << CTX_PGSZ1_SHIFT;
2774 
2775 		if (ctx != mm->context.sparc64_ctx_val) {
2776 			/* When changing the page size fields, we
2777 			 * must perform a context flush so that no
2778 			 * stale entries match.  This flush must
2779 			 * occur with the original context register
2780 			 * settings.
2781 			 */
2782 			do_flush_tlb_mm(mm);
2783 
2784 			/* Reload the context register of all processors
2785 			 * also executing in this address space.
2786 			 */
2787 			mm->context.sparc64_ctx_val = ctx;
2788 			on_each_cpu(context_reload, mm, 0);
2789 		}
2790 		spin_unlock(&ctx_alloc_lock);
2791 	}
2792 }
2793 #endif
2794 
2795 static struct resource code_resource = {
2796 	.name	= "Kernel code",
2797 	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM
2798 };
2799 
2800 static struct resource data_resource = {
2801 	.name	= "Kernel data",
2802 	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM
2803 };
2804 
2805 static struct resource bss_resource = {
2806 	.name	= "Kernel bss",
2807 	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM
2808 };
2809 
2810 static inline resource_size_t compute_kern_paddr(void *addr)
2811 {
2812 	return (resource_size_t) (addr - KERNBASE + kern_base);
2813 }
2814 
2815 static void __init kernel_lds_init(void)
2816 {
2817 	code_resource.start = compute_kern_paddr(_text);
2818 	code_resource.end   = compute_kern_paddr(_etext - 1);
2819 	data_resource.start = compute_kern_paddr(_etext);
2820 	data_resource.end   = compute_kern_paddr(_edata - 1);
2821 	bss_resource.start  = compute_kern_paddr(__bss_start);
2822 	bss_resource.end    = compute_kern_paddr(_end - 1);
2823 }
2824 
2825 static int __init report_memory(void)
2826 {
2827 	int i;
2828 	struct resource *res;
2829 
2830 	kernel_lds_init();
2831 
2832 	for (i = 0; i < pavail_ents; i++) {
2833 		res = kzalloc(sizeof(struct resource), GFP_KERNEL);
2834 
2835 		if (!res) {
2836 			pr_warn("Failed to allocate source.\n");
2837 			break;
2838 		}
2839 
2840 		res->name = "System RAM";
2841 		res->start = pavail[i].phys_addr;
2842 		res->end = pavail[i].phys_addr + pavail[i].reg_size - 1;
2843 		res->flags = IORESOURCE_BUSY | IORESOURCE_MEM;
2844 
2845 		if (insert_resource(&iomem_resource, res) < 0) {
2846 			pr_warn("Resource insertion failed.\n");
2847 			break;
2848 		}
2849 
2850 		insert_resource(res, &code_resource);
2851 		insert_resource(res, &data_resource);
2852 		insert_resource(res, &bss_resource);
2853 	}
2854 
2855 	return 0;
2856 }
2857 arch_initcall(report_memory);
2858 
2859 #ifdef CONFIG_SMP
2860 #define do_flush_tlb_kernel_range	smp_flush_tlb_kernel_range
2861 #else
2862 #define do_flush_tlb_kernel_range	__flush_tlb_kernel_range
2863 #endif
2864 
2865 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
2866 {
2867 	if (start < HI_OBP_ADDRESS && end > LOW_OBP_ADDRESS) {
2868 		if (start < LOW_OBP_ADDRESS) {
2869 			flush_tsb_kernel_range(start, LOW_OBP_ADDRESS);
2870 			do_flush_tlb_kernel_range(start, LOW_OBP_ADDRESS);
2871 		}
2872 		if (end > HI_OBP_ADDRESS) {
2873 			flush_tsb_kernel_range(HI_OBP_ADDRESS, end);
2874 			do_flush_tlb_kernel_range(HI_OBP_ADDRESS, end);
2875 		}
2876 	} else {
2877 		flush_tsb_kernel_range(start, end);
2878 		do_flush_tlb_kernel_range(start, end);
2879 	}
2880 }
2881