xref: /openbmc/linux/arch/sparc/mm/init_64.c (revision 9ac17575)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  arch/sparc64/mm/init.c
4  *
5  *  Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu)
6  *  Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
7  */
8 
9 #include <linux/extable.h>
10 #include <linux/kernel.h>
11 #include <linux/sched.h>
12 #include <linux/string.h>
13 #include <linux/init.h>
14 #include <linux/memblock.h>
15 #include <linux/mm.h>
16 #include <linux/hugetlb.h>
17 #include <linux/initrd.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/poison.h>
21 #include <linux/fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/kprobes.h>
24 #include <linux/cache.h>
25 #include <linux/sort.h>
26 #include <linux/ioport.h>
27 #include <linux/percpu.h>
28 #include <linux/mmzone.h>
29 #include <linux/gfp.h>
30 
31 #include <asm/head.h>
32 #include <asm/page.h>
33 #include <asm/pgalloc.h>
34 #include <asm/pgtable.h>
35 #include <asm/oplib.h>
36 #include <asm/iommu.h>
37 #include <asm/io.h>
38 #include <linux/uaccess.h>
39 #include <asm/mmu_context.h>
40 #include <asm/tlbflush.h>
41 #include <asm/dma.h>
42 #include <asm/starfire.h>
43 #include <asm/tlb.h>
44 #include <asm/spitfire.h>
45 #include <asm/sections.h>
46 #include <asm/tsb.h>
47 #include <asm/hypervisor.h>
48 #include <asm/prom.h>
49 #include <asm/mdesc.h>
50 #include <asm/cpudata.h>
51 #include <asm/setup.h>
52 #include <asm/irq.h>
53 
54 #include "init_64.h"
55 
56 unsigned long kern_linear_pte_xor[4] __read_mostly;
57 static unsigned long page_cache4v_flag;
58 
59 /* A bitmap, two bits for every 256MB of physical memory.  These two
60  * bits determine what page size we use for kernel linear
61  * translations.  They form an index into kern_linear_pte_xor[].  The
62  * value in the indexed slot is XOR'd with the TLB miss virtual
63  * address to form the resulting TTE.  The mapping is:
64  *
65  *	0	==>	4MB
66  *	1	==>	256MB
67  *	2	==>	2GB
68  *	3	==>	16GB
69  *
70  * All sun4v chips support 256MB pages.  Only SPARC-T4 and later
71  * support 2GB pages, and hopefully future cpus will support the 16GB
72  * pages as well.  For slots 2 and 3, we encode a 256MB TTE xor there
73  * if these larger page sizes are not supported by the cpu.
74  *
75  * It would be nice to determine this from the machine description
76  * 'cpu' properties, but we need to have this table setup before the
77  * MDESC is initialized.
78  */
79 
80 #ifndef CONFIG_DEBUG_PAGEALLOC
81 /* A special kernel TSB for 4MB, 256MB, 2GB and 16GB linear mappings.
82  * Space is allocated for this right after the trap table in
83  * arch/sparc64/kernel/head.S
84  */
85 extern struct tsb swapper_4m_tsb[KERNEL_TSB4M_NENTRIES];
86 #endif
87 extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
88 
89 static unsigned long cpu_pgsz_mask;
90 
91 #define MAX_BANKS	1024
92 
93 static struct linux_prom64_registers pavail[MAX_BANKS];
94 static int pavail_ents;
95 
96 u64 numa_latency[MAX_NUMNODES][MAX_NUMNODES];
97 
98 static int cmp_p64(const void *a, const void *b)
99 {
100 	const struct linux_prom64_registers *x = a, *y = b;
101 
102 	if (x->phys_addr > y->phys_addr)
103 		return 1;
104 	if (x->phys_addr < y->phys_addr)
105 		return -1;
106 	return 0;
107 }
108 
109 static void __init read_obp_memory(const char *property,
110 				   struct linux_prom64_registers *regs,
111 				   int *num_ents)
112 {
113 	phandle node = prom_finddevice("/memory");
114 	int prop_size = prom_getproplen(node, property);
115 	int ents, ret, i;
116 
117 	ents = prop_size / sizeof(struct linux_prom64_registers);
118 	if (ents > MAX_BANKS) {
119 		prom_printf("The machine has more %s property entries than "
120 			    "this kernel can support (%d).\n",
121 			    property, MAX_BANKS);
122 		prom_halt();
123 	}
124 
125 	ret = prom_getproperty(node, property, (char *) regs, prop_size);
126 	if (ret == -1) {
127 		prom_printf("Couldn't get %s property from /memory.\n",
128 				property);
129 		prom_halt();
130 	}
131 
132 	/* Sanitize what we got from the firmware, by page aligning
133 	 * everything.
134 	 */
135 	for (i = 0; i < ents; i++) {
136 		unsigned long base, size;
137 
138 		base = regs[i].phys_addr;
139 		size = regs[i].reg_size;
140 
141 		size &= PAGE_MASK;
142 		if (base & ~PAGE_MASK) {
143 			unsigned long new_base = PAGE_ALIGN(base);
144 
145 			size -= new_base - base;
146 			if ((long) size < 0L)
147 				size = 0UL;
148 			base = new_base;
149 		}
150 		if (size == 0UL) {
151 			/* If it is empty, simply get rid of it.
152 			 * This simplifies the logic of the other
153 			 * functions that process these arrays.
154 			 */
155 			memmove(&regs[i], &regs[i + 1],
156 				(ents - i - 1) * sizeof(regs[0]));
157 			i--;
158 			ents--;
159 			continue;
160 		}
161 		regs[i].phys_addr = base;
162 		regs[i].reg_size = size;
163 	}
164 
165 	*num_ents = ents;
166 
167 	sort(regs, ents, sizeof(struct linux_prom64_registers),
168 	     cmp_p64, NULL);
169 }
170 
171 /* Kernel physical address base and size in bytes.  */
172 unsigned long kern_base __read_mostly;
173 unsigned long kern_size __read_mostly;
174 
175 /* Initial ramdisk setup */
176 extern unsigned long sparc_ramdisk_image64;
177 extern unsigned int sparc_ramdisk_image;
178 extern unsigned int sparc_ramdisk_size;
179 
180 struct page *mem_map_zero __read_mostly;
181 EXPORT_SYMBOL(mem_map_zero);
182 
183 unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly;
184 
185 unsigned long sparc64_kern_pri_context __read_mostly;
186 unsigned long sparc64_kern_pri_nuc_bits __read_mostly;
187 unsigned long sparc64_kern_sec_context __read_mostly;
188 
189 int num_kernel_image_mappings;
190 
191 #ifdef CONFIG_DEBUG_DCFLUSH
192 atomic_t dcpage_flushes = ATOMIC_INIT(0);
193 #ifdef CONFIG_SMP
194 atomic_t dcpage_flushes_xcall = ATOMIC_INIT(0);
195 #endif
196 #endif
197 
198 inline void flush_dcache_page_impl(struct page *page)
199 {
200 	BUG_ON(tlb_type == hypervisor);
201 #ifdef CONFIG_DEBUG_DCFLUSH
202 	atomic_inc(&dcpage_flushes);
203 #endif
204 
205 #ifdef DCACHE_ALIASING_POSSIBLE
206 	__flush_dcache_page(page_address(page),
207 			    ((tlb_type == spitfire) &&
208 			     page_mapping_file(page) != NULL));
209 #else
210 	if (page_mapping_file(page) != NULL &&
211 	    tlb_type == spitfire)
212 		__flush_icache_page(__pa(page_address(page)));
213 #endif
214 }
215 
216 #define PG_dcache_dirty		PG_arch_1
217 #define PG_dcache_cpu_shift	32UL
218 #define PG_dcache_cpu_mask	\
219 	((1UL<<ilog2(roundup_pow_of_two(NR_CPUS)))-1UL)
220 
221 #define dcache_dirty_cpu(page) \
222 	(((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask)
223 
224 static inline void set_dcache_dirty(struct page *page, int this_cpu)
225 {
226 	unsigned long mask = this_cpu;
227 	unsigned long non_cpu_bits;
228 
229 	non_cpu_bits = ~(PG_dcache_cpu_mask << PG_dcache_cpu_shift);
230 	mask = (mask << PG_dcache_cpu_shift) | (1UL << PG_dcache_dirty);
231 
232 	__asm__ __volatile__("1:\n\t"
233 			     "ldx	[%2], %%g7\n\t"
234 			     "and	%%g7, %1, %%g1\n\t"
235 			     "or	%%g1, %0, %%g1\n\t"
236 			     "casx	[%2], %%g7, %%g1\n\t"
237 			     "cmp	%%g7, %%g1\n\t"
238 			     "bne,pn	%%xcc, 1b\n\t"
239 			     " nop"
240 			     : /* no outputs */
241 			     : "r" (mask), "r" (non_cpu_bits), "r" (&page->flags)
242 			     : "g1", "g7");
243 }
244 
245 static inline void clear_dcache_dirty_cpu(struct page *page, unsigned long cpu)
246 {
247 	unsigned long mask = (1UL << PG_dcache_dirty);
248 
249 	__asm__ __volatile__("! test_and_clear_dcache_dirty\n"
250 			     "1:\n\t"
251 			     "ldx	[%2], %%g7\n\t"
252 			     "srlx	%%g7, %4, %%g1\n\t"
253 			     "and	%%g1, %3, %%g1\n\t"
254 			     "cmp	%%g1, %0\n\t"
255 			     "bne,pn	%%icc, 2f\n\t"
256 			     " andn	%%g7, %1, %%g1\n\t"
257 			     "casx	[%2], %%g7, %%g1\n\t"
258 			     "cmp	%%g7, %%g1\n\t"
259 			     "bne,pn	%%xcc, 1b\n\t"
260 			     " nop\n"
261 			     "2:"
262 			     : /* no outputs */
263 			     : "r" (cpu), "r" (mask), "r" (&page->flags),
264 			       "i" (PG_dcache_cpu_mask),
265 			       "i" (PG_dcache_cpu_shift)
266 			     : "g1", "g7");
267 }
268 
269 static inline void tsb_insert(struct tsb *ent, unsigned long tag, unsigned long pte)
270 {
271 	unsigned long tsb_addr = (unsigned long) ent;
272 
273 	if (tlb_type == cheetah_plus || tlb_type == hypervisor)
274 		tsb_addr = __pa(tsb_addr);
275 
276 	__tsb_insert(tsb_addr, tag, pte);
277 }
278 
279 unsigned long _PAGE_ALL_SZ_BITS __read_mostly;
280 
281 static void flush_dcache(unsigned long pfn)
282 {
283 	struct page *page;
284 
285 	page = pfn_to_page(pfn);
286 	if (page) {
287 		unsigned long pg_flags;
288 
289 		pg_flags = page->flags;
290 		if (pg_flags & (1UL << PG_dcache_dirty)) {
291 			int cpu = ((pg_flags >> PG_dcache_cpu_shift) &
292 				   PG_dcache_cpu_mask);
293 			int this_cpu = get_cpu();
294 
295 			/* This is just to optimize away some function calls
296 			 * in the SMP case.
297 			 */
298 			if (cpu == this_cpu)
299 				flush_dcache_page_impl(page);
300 			else
301 				smp_flush_dcache_page_impl(page, cpu);
302 
303 			clear_dcache_dirty_cpu(page, cpu);
304 
305 			put_cpu();
306 		}
307 	}
308 }
309 
310 /* mm->context.lock must be held */
311 static void __update_mmu_tsb_insert(struct mm_struct *mm, unsigned long tsb_index,
312 				    unsigned long tsb_hash_shift, unsigned long address,
313 				    unsigned long tte)
314 {
315 	struct tsb *tsb = mm->context.tsb_block[tsb_index].tsb;
316 	unsigned long tag;
317 
318 	if (unlikely(!tsb))
319 		return;
320 
321 	tsb += ((address >> tsb_hash_shift) &
322 		(mm->context.tsb_block[tsb_index].tsb_nentries - 1UL));
323 	tag = (address >> 22UL);
324 	tsb_insert(tsb, tag, tte);
325 }
326 
327 #ifdef CONFIG_HUGETLB_PAGE
328 static int __init hugetlbpage_init(void)
329 {
330 	hugetlb_add_hstate(HPAGE_64K_SHIFT - PAGE_SHIFT);
331 	hugetlb_add_hstate(HPAGE_SHIFT - PAGE_SHIFT);
332 	hugetlb_add_hstate(HPAGE_256MB_SHIFT - PAGE_SHIFT);
333 	hugetlb_add_hstate(HPAGE_2GB_SHIFT - PAGE_SHIFT);
334 
335 	return 0;
336 }
337 
338 arch_initcall(hugetlbpage_init);
339 
340 static void __init pud_huge_patch(void)
341 {
342 	struct pud_huge_patch_entry *p;
343 	unsigned long addr;
344 
345 	p = &__pud_huge_patch;
346 	addr = p->addr;
347 	*(unsigned int *)addr = p->insn;
348 
349 	__asm__ __volatile__("flush %0" : : "r" (addr));
350 }
351 
352 bool __init arch_hugetlb_valid_size(unsigned long size)
353 {
354 	unsigned int hugepage_shift = ilog2(size);
355 	unsigned short hv_pgsz_idx;
356 	unsigned int hv_pgsz_mask;
357 
358 	switch (hugepage_shift) {
359 	case HPAGE_16GB_SHIFT:
360 		hv_pgsz_mask = HV_PGSZ_MASK_16GB;
361 		hv_pgsz_idx = HV_PGSZ_IDX_16GB;
362 		pud_huge_patch();
363 		break;
364 	case HPAGE_2GB_SHIFT:
365 		hv_pgsz_mask = HV_PGSZ_MASK_2GB;
366 		hv_pgsz_idx = HV_PGSZ_IDX_2GB;
367 		break;
368 	case HPAGE_256MB_SHIFT:
369 		hv_pgsz_mask = HV_PGSZ_MASK_256MB;
370 		hv_pgsz_idx = HV_PGSZ_IDX_256MB;
371 		break;
372 	case HPAGE_SHIFT:
373 		hv_pgsz_mask = HV_PGSZ_MASK_4MB;
374 		hv_pgsz_idx = HV_PGSZ_IDX_4MB;
375 		break;
376 	case HPAGE_64K_SHIFT:
377 		hv_pgsz_mask = HV_PGSZ_MASK_64K;
378 		hv_pgsz_idx = HV_PGSZ_IDX_64K;
379 		break;
380 	default:
381 		hv_pgsz_mask = 0;
382 	}
383 
384 	if ((hv_pgsz_mask & cpu_pgsz_mask) == 0U)
385 		return false;
386 
387 	return true;
388 }
389 #endif	/* CONFIG_HUGETLB_PAGE */
390 
391 void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t *ptep)
392 {
393 	struct mm_struct *mm;
394 	unsigned long flags;
395 	bool is_huge_tsb;
396 	pte_t pte = *ptep;
397 
398 	if (tlb_type != hypervisor) {
399 		unsigned long pfn = pte_pfn(pte);
400 
401 		if (pfn_valid(pfn))
402 			flush_dcache(pfn);
403 	}
404 
405 	mm = vma->vm_mm;
406 
407 	/* Don't insert a non-valid PTE into the TSB, we'll deadlock.  */
408 	if (!pte_accessible(mm, pte))
409 		return;
410 
411 	spin_lock_irqsave(&mm->context.lock, flags);
412 
413 	is_huge_tsb = false;
414 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
415 	if (mm->context.hugetlb_pte_count || mm->context.thp_pte_count) {
416 		unsigned long hugepage_size = PAGE_SIZE;
417 
418 		if (is_vm_hugetlb_page(vma))
419 			hugepage_size = huge_page_size(hstate_vma(vma));
420 
421 		if (hugepage_size >= PUD_SIZE) {
422 			unsigned long mask = 0x1ffc00000UL;
423 
424 			/* Transfer bits [32:22] from address to resolve
425 			 * at 4M granularity.
426 			 */
427 			pte_val(pte) &= ~mask;
428 			pte_val(pte) |= (address & mask);
429 		} else if (hugepage_size >= PMD_SIZE) {
430 			/* We are fabricating 8MB pages using 4MB
431 			 * real hw pages.
432 			 */
433 			pte_val(pte) |= (address & (1UL << REAL_HPAGE_SHIFT));
434 		}
435 
436 		if (hugepage_size >= PMD_SIZE) {
437 			__update_mmu_tsb_insert(mm, MM_TSB_HUGE,
438 				REAL_HPAGE_SHIFT, address, pte_val(pte));
439 			is_huge_tsb = true;
440 		}
441 	}
442 #endif
443 	if (!is_huge_tsb)
444 		__update_mmu_tsb_insert(mm, MM_TSB_BASE, PAGE_SHIFT,
445 					address, pte_val(pte));
446 
447 	spin_unlock_irqrestore(&mm->context.lock, flags);
448 }
449 
450 void flush_dcache_page(struct page *page)
451 {
452 	struct address_space *mapping;
453 	int this_cpu;
454 
455 	if (tlb_type == hypervisor)
456 		return;
457 
458 	/* Do not bother with the expensive D-cache flush if it
459 	 * is merely the zero page.  The 'bigcore' testcase in GDB
460 	 * causes this case to run millions of times.
461 	 */
462 	if (page == ZERO_PAGE(0))
463 		return;
464 
465 	this_cpu = get_cpu();
466 
467 	mapping = page_mapping_file(page);
468 	if (mapping && !mapping_mapped(mapping)) {
469 		int dirty = test_bit(PG_dcache_dirty, &page->flags);
470 		if (dirty) {
471 			int dirty_cpu = dcache_dirty_cpu(page);
472 
473 			if (dirty_cpu == this_cpu)
474 				goto out;
475 			smp_flush_dcache_page_impl(page, dirty_cpu);
476 		}
477 		set_dcache_dirty(page, this_cpu);
478 	} else {
479 		/* We could delay the flush for the !page_mapping
480 		 * case too.  But that case is for exec env/arg
481 		 * pages and those are %99 certainly going to get
482 		 * faulted into the tlb (and thus flushed) anyways.
483 		 */
484 		flush_dcache_page_impl(page);
485 	}
486 
487 out:
488 	put_cpu();
489 }
490 EXPORT_SYMBOL(flush_dcache_page);
491 
492 void __kprobes flush_icache_range(unsigned long start, unsigned long end)
493 {
494 	/* Cheetah and Hypervisor platform cpus have coherent I-cache. */
495 	if (tlb_type == spitfire) {
496 		unsigned long kaddr;
497 
498 		/* This code only runs on Spitfire cpus so this is
499 		 * why we can assume _PAGE_PADDR_4U.
500 		 */
501 		for (kaddr = start; kaddr < end; kaddr += PAGE_SIZE) {
502 			unsigned long paddr, mask = _PAGE_PADDR_4U;
503 
504 			if (kaddr >= PAGE_OFFSET)
505 				paddr = kaddr & mask;
506 			else {
507 				pgd_t *pgdp = pgd_offset_k(kaddr);
508 				p4d_t *p4dp = p4d_offset(pgdp, kaddr);
509 				pud_t *pudp = pud_offset(p4dp, kaddr);
510 				pmd_t *pmdp = pmd_offset(pudp, kaddr);
511 				pte_t *ptep = pte_offset_kernel(pmdp, kaddr);
512 
513 				paddr = pte_val(*ptep) & mask;
514 			}
515 			__flush_icache_page(paddr);
516 		}
517 	}
518 }
519 EXPORT_SYMBOL(flush_icache_range);
520 
521 void mmu_info(struct seq_file *m)
522 {
523 	static const char *pgsz_strings[] = {
524 		"8K", "64K", "512K", "4MB", "32MB",
525 		"256MB", "2GB", "16GB",
526 	};
527 	int i, printed;
528 
529 	if (tlb_type == cheetah)
530 		seq_printf(m, "MMU Type\t: Cheetah\n");
531 	else if (tlb_type == cheetah_plus)
532 		seq_printf(m, "MMU Type\t: Cheetah+\n");
533 	else if (tlb_type == spitfire)
534 		seq_printf(m, "MMU Type\t: Spitfire\n");
535 	else if (tlb_type == hypervisor)
536 		seq_printf(m, "MMU Type\t: Hypervisor (sun4v)\n");
537 	else
538 		seq_printf(m, "MMU Type\t: ???\n");
539 
540 	seq_printf(m, "MMU PGSZs\t: ");
541 	printed = 0;
542 	for (i = 0; i < ARRAY_SIZE(pgsz_strings); i++) {
543 		if (cpu_pgsz_mask & (1UL << i)) {
544 			seq_printf(m, "%s%s",
545 				   printed ? "," : "", pgsz_strings[i]);
546 			printed++;
547 		}
548 	}
549 	seq_putc(m, '\n');
550 
551 #ifdef CONFIG_DEBUG_DCFLUSH
552 	seq_printf(m, "DCPageFlushes\t: %d\n",
553 		   atomic_read(&dcpage_flushes));
554 #ifdef CONFIG_SMP
555 	seq_printf(m, "DCPageFlushesXC\t: %d\n",
556 		   atomic_read(&dcpage_flushes_xcall));
557 #endif /* CONFIG_SMP */
558 #endif /* CONFIG_DEBUG_DCFLUSH */
559 }
560 
561 struct linux_prom_translation prom_trans[512] __read_mostly;
562 unsigned int prom_trans_ents __read_mostly;
563 
564 unsigned long kern_locked_tte_data;
565 
566 /* The obp translations are saved based on 8k pagesize, since obp can
567  * use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS ->
568  * HI_OBP_ADDRESS range are handled in ktlb.S.
569  */
570 static inline int in_obp_range(unsigned long vaddr)
571 {
572 	return (vaddr >= LOW_OBP_ADDRESS &&
573 		vaddr < HI_OBP_ADDRESS);
574 }
575 
576 static int cmp_ptrans(const void *a, const void *b)
577 {
578 	const struct linux_prom_translation *x = a, *y = b;
579 
580 	if (x->virt > y->virt)
581 		return 1;
582 	if (x->virt < y->virt)
583 		return -1;
584 	return 0;
585 }
586 
587 /* Read OBP translations property into 'prom_trans[]'.  */
588 static void __init read_obp_translations(void)
589 {
590 	int n, node, ents, first, last, i;
591 
592 	node = prom_finddevice("/virtual-memory");
593 	n = prom_getproplen(node, "translations");
594 	if (unlikely(n == 0 || n == -1)) {
595 		prom_printf("prom_mappings: Couldn't get size.\n");
596 		prom_halt();
597 	}
598 	if (unlikely(n > sizeof(prom_trans))) {
599 		prom_printf("prom_mappings: Size %d is too big.\n", n);
600 		prom_halt();
601 	}
602 
603 	if ((n = prom_getproperty(node, "translations",
604 				  (char *)&prom_trans[0],
605 				  sizeof(prom_trans))) == -1) {
606 		prom_printf("prom_mappings: Couldn't get property.\n");
607 		prom_halt();
608 	}
609 
610 	n = n / sizeof(struct linux_prom_translation);
611 
612 	ents = n;
613 
614 	sort(prom_trans, ents, sizeof(struct linux_prom_translation),
615 	     cmp_ptrans, NULL);
616 
617 	/* Now kick out all the non-OBP entries.  */
618 	for (i = 0; i < ents; i++) {
619 		if (in_obp_range(prom_trans[i].virt))
620 			break;
621 	}
622 	first = i;
623 	for (; i < ents; i++) {
624 		if (!in_obp_range(prom_trans[i].virt))
625 			break;
626 	}
627 	last = i;
628 
629 	for (i = 0; i < (last - first); i++) {
630 		struct linux_prom_translation *src = &prom_trans[i + first];
631 		struct linux_prom_translation *dest = &prom_trans[i];
632 
633 		*dest = *src;
634 	}
635 	for (; i < ents; i++) {
636 		struct linux_prom_translation *dest = &prom_trans[i];
637 		dest->virt = dest->size = dest->data = 0x0UL;
638 	}
639 
640 	prom_trans_ents = last - first;
641 
642 	if (tlb_type == spitfire) {
643 		/* Clear diag TTE bits. */
644 		for (i = 0; i < prom_trans_ents; i++)
645 			prom_trans[i].data &= ~0x0003fe0000000000UL;
646 	}
647 
648 	/* Force execute bit on.  */
649 	for (i = 0; i < prom_trans_ents; i++)
650 		prom_trans[i].data |= (tlb_type == hypervisor ?
651 				       _PAGE_EXEC_4V : _PAGE_EXEC_4U);
652 }
653 
654 static void __init hypervisor_tlb_lock(unsigned long vaddr,
655 				       unsigned long pte,
656 				       unsigned long mmu)
657 {
658 	unsigned long ret = sun4v_mmu_map_perm_addr(vaddr, 0, pte, mmu);
659 
660 	if (ret != 0) {
661 		prom_printf("hypervisor_tlb_lock[%lx:%x:%lx:%lx]: "
662 			    "errors with %lx\n", vaddr, 0, pte, mmu, ret);
663 		prom_halt();
664 	}
665 }
666 
667 static unsigned long kern_large_tte(unsigned long paddr);
668 
669 static void __init remap_kernel(void)
670 {
671 	unsigned long phys_page, tte_vaddr, tte_data;
672 	int i, tlb_ent = sparc64_highest_locked_tlbent();
673 
674 	tte_vaddr = (unsigned long) KERNBASE;
675 	phys_page = (prom_boot_mapping_phys_low >> ILOG2_4MB) << ILOG2_4MB;
676 	tte_data = kern_large_tte(phys_page);
677 
678 	kern_locked_tte_data = tte_data;
679 
680 	/* Now lock us into the TLBs via Hypervisor or OBP. */
681 	if (tlb_type == hypervisor) {
682 		for (i = 0; i < num_kernel_image_mappings; i++) {
683 			hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU);
684 			hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU);
685 			tte_vaddr += 0x400000;
686 			tte_data += 0x400000;
687 		}
688 	} else {
689 		for (i = 0; i < num_kernel_image_mappings; i++) {
690 			prom_dtlb_load(tlb_ent - i, tte_data, tte_vaddr);
691 			prom_itlb_load(tlb_ent - i, tte_data, tte_vaddr);
692 			tte_vaddr += 0x400000;
693 			tte_data += 0x400000;
694 		}
695 		sparc64_highest_unlocked_tlb_ent = tlb_ent - i;
696 	}
697 	if (tlb_type == cheetah_plus) {
698 		sparc64_kern_pri_context = (CTX_CHEETAH_PLUS_CTX0 |
699 					    CTX_CHEETAH_PLUS_NUC);
700 		sparc64_kern_pri_nuc_bits = CTX_CHEETAH_PLUS_NUC;
701 		sparc64_kern_sec_context = CTX_CHEETAH_PLUS_CTX0;
702 	}
703 }
704 
705 
706 static void __init inherit_prom_mappings(void)
707 {
708 	/* Now fixup OBP's idea about where we really are mapped. */
709 	printk("Remapping the kernel... ");
710 	remap_kernel();
711 	printk("done.\n");
712 }
713 
714 void prom_world(int enter)
715 {
716 	if (!enter)
717 		set_fs(get_fs());
718 
719 	__asm__ __volatile__("flushw");
720 }
721 
722 void __flush_dcache_range(unsigned long start, unsigned long end)
723 {
724 	unsigned long va;
725 
726 	if (tlb_type == spitfire) {
727 		int n = 0;
728 
729 		for (va = start; va < end; va += 32) {
730 			spitfire_put_dcache_tag(va & 0x3fe0, 0x0);
731 			if (++n >= 512)
732 				break;
733 		}
734 	} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
735 		start = __pa(start);
736 		end = __pa(end);
737 		for (va = start; va < end; va += 32)
738 			__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
739 					     "membar #Sync"
740 					     : /* no outputs */
741 					     : "r" (va),
742 					       "i" (ASI_DCACHE_INVALIDATE));
743 	}
744 }
745 EXPORT_SYMBOL(__flush_dcache_range);
746 
747 /* get_new_mmu_context() uses "cache + 1".  */
748 DEFINE_SPINLOCK(ctx_alloc_lock);
749 unsigned long tlb_context_cache = CTX_FIRST_VERSION;
750 #define MAX_CTX_NR	(1UL << CTX_NR_BITS)
751 #define CTX_BMAP_SLOTS	BITS_TO_LONGS(MAX_CTX_NR)
752 DECLARE_BITMAP(mmu_context_bmap, MAX_CTX_NR);
753 DEFINE_PER_CPU(struct mm_struct *, per_cpu_secondary_mm) = {0};
754 
755 static void mmu_context_wrap(void)
756 {
757 	unsigned long old_ver = tlb_context_cache & CTX_VERSION_MASK;
758 	unsigned long new_ver, new_ctx, old_ctx;
759 	struct mm_struct *mm;
760 	int cpu;
761 
762 	bitmap_zero(mmu_context_bmap, 1 << CTX_NR_BITS);
763 
764 	/* Reserve kernel context */
765 	set_bit(0, mmu_context_bmap);
766 
767 	new_ver = (tlb_context_cache & CTX_VERSION_MASK) + CTX_FIRST_VERSION;
768 	if (unlikely(new_ver == 0))
769 		new_ver = CTX_FIRST_VERSION;
770 	tlb_context_cache = new_ver;
771 
772 	/*
773 	 * Make sure that any new mm that are added into per_cpu_secondary_mm,
774 	 * are going to go through get_new_mmu_context() path.
775 	 */
776 	mb();
777 
778 	/*
779 	 * Updated versions to current on those CPUs that had valid secondary
780 	 * contexts
781 	 */
782 	for_each_online_cpu(cpu) {
783 		/*
784 		 * If a new mm is stored after we took this mm from the array,
785 		 * it will go into get_new_mmu_context() path, because we
786 		 * already bumped the version in tlb_context_cache.
787 		 */
788 		mm = per_cpu(per_cpu_secondary_mm, cpu);
789 
790 		if (unlikely(!mm || mm == &init_mm))
791 			continue;
792 
793 		old_ctx = mm->context.sparc64_ctx_val;
794 		if (likely((old_ctx & CTX_VERSION_MASK) == old_ver)) {
795 			new_ctx = (old_ctx & ~CTX_VERSION_MASK) | new_ver;
796 			set_bit(new_ctx & CTX_NR_MASK, mmu_context_bmap);
797 			mm->context.sparc64_ctx_val = new_ctx;
798 		}
799 	}
800 }
801 
802 /* Caller does TLB context flushing on local CPU if necessary.
803  * The caller also ensures that CTX_VALID(mm->context) is false.
804  *
805  * We must be careful about boundary cases so that we never
806  * let the user have CTX 0 (nucleus) or we ever use a CTX
807  * version of zero (and thus NO_CONTEXT would not be caught
808  * by version mis-match tests in mmu_context.h).
809  *
810  * Always invoked with interrupts disabled.
811  */
812 void get_new_mmu_context(struct mm_struct *mm)
813 {
814 	unsigned long ctx, new_ctx;
815 	unsigned long orig_pgsz_bits;
816 
817 	spin_lock(&ctx_alloc_lock);
818 retry:
819 	/* wrap might have happened, test again if our context became valid */
820 	if (unlikely(CTX_VALID(mm->context)))
821 		goto out;
822 	orig_pgsz_bits = (mm->context.sparc64_ctx_val & CTX_PGSZ_MASK);
823 	ctx = (tlb_context_cache + 1) & CTX_NR_MASK;
824 	new_ctx = find_next_zero_bit(mmu_context_bmap, 1 << CTX_NR_BITS, ctx);
825 	if (new_ctx >= (1 << CTX_NR_BITS)) {
826 		new_ctx = find_next_zero_bit(mmu_context_bmap, ctx, 1);
827 		if (new_ctx >= ctx) {
828 			mmu_context_wrap();
829 			goto retry;
830 		}
831 	}
832 	if (mm->context.sparc64_ctx_val)
833 		cpumask_clear(mm_cpumask(mm));
834 	mmu_context_bmap[new_ctx>>6] |= (1UL << (new_ctx & 63));
835 	new_ctx |= (tlb_context_cache & CTX_VERSION_MASK);
836 	tlb_context_cache = new_ctx;
837 	mm->context.sparc64_ctx_val = new_ctx | orig_pgsz_bits;
838 out:
839 	spin_unlock(&ctx_alloc_lock);
840 }
841 
842 static int numa_enabled = 1;
843 static int numa_debug;
844 
845 static int __init early_numa(char *p)
846 {
847 	if (!p)
848 		return 0;
849 
850 	if (strstr(p, "off"))
851 		numa_enabled = 0;
852 
853 	if (strstr(p, "debug"))
854 		numa_debug = 1;
855 
856 	return 0;
857 }
858 early_param("numa", early_numa);
859 
860 #define numadbg(f, a...) \
861 do {	if (numa_debug) \
862 		printk(KERN_INFO f, ## a); \
863 } while (0)
864 
865 static void __init find_ramdisk(unsigned long phys_base)
866 {
867 #ifdef CONFIG_BLK_DEV_INITRD
868 	if (sparc_ramdisk_image || sparc_ramdisk_image64) {
869 		unsigned long ramdisk_image;
870 
871 		/* Older versions of the bootloader only supported a
872 		 * 32-bit physical address for the ramdisk image
873 		 * location, stored at sparc_ramdisk_image.  Newer
874 		 * SILO versions set sparc_ramdisk_image to zero and
875 		 * provide a full 64-bit physical address at
876 		 * sparc_ramdisk_image64.
877 		 */
878 		ramdisk_image = sparc_ramdisk_image;
879 		if (!ramdisk_image)
880 			ramdisk_image = sparc_ramdisk_image64;
881 
882 		/* Another bootloader quirk.  The bootloader normalizes
883 		 * the physical address to KERNBASE, so we have to
884 		 * factor that back out and add in the lowest valid
885 		 * physical page address to get the true physical address.
886 		 */
887 		ramdisk_image -= KERNBASE;
888 		ramdisk_image += phys_base;
889 
890 		numadbg("Found ramdisk at physical address 0x%lx, size %u\n",
891 			ramdisk_image, sparc_ramdisk_size);
892 
893 		initrd_start = ramdisk_image;
894 		initrd_end = ramdisk_image + sparc_ramdisk_size;
895 
896 		memblock_reserve(initrd_start, sparc_ramdisk_size);
897 
898 		initrd_start += PAGE_OFFSET;
899 		initrd_end += PAGE_OFFSET;
900 	}
901 #endif
902 }
903 
904 struct node_mem_mask {
905 	unsigned long mask;
906 	unsigned long match;
907 };
908 static struct node_mem_mask node_masks[MAX_NUMNODES];
909 static int num_node_masks;
910 
911 #ifdef CONFIG_NEED_MULTIPLE_NODES
912 
913 struct mdesc_mlgroup {
914 	u64	node;
915 	u64	latency;
916 	u64	match;
917 	u64	mask;
918 };
919 
920 static struct mdesc_mlgroup *mlgroups;
921 static int num_mlgroups;
922 
923 int numa_cpu_lookup_table[NR_CPUS];
924 cpumask_t numa_cpumask_lookup_table[MAX_NUMNODES];
925 
926 struct mdesc_mblock {
927 	u64	base;
928 	u64	size;
929 	u64	offset; /* RA-to-PA */
930 };
931 static struct mdesc_mblock *mblocks;
932 static int num_mblocks;
933 
934 static struct mdesc_mblock * __init addr_to_mblock(unsigned long addr)
935 {
936 	struct mdesc_mblock *m = NULL;
937 	int i;
938 
939 	for (i = 0; i < num_mblocks; i++) {
940 		m = &mblocks[i];
941 
942 		if (addr >= m->base &&
943 		    addr < (m->base + m->size)) {
944 			break;
945 		}
946 	}
947 
948 	return m;
949 }
950 
951 static u64 __init memblock_nid_range_sun4u(u64 start, u64 end, int *nid)
952 {
953 	int prev_nid, new_nid;
954 
955 	prev_nid = NUMA_NO_NODE;
956 	for ( ; start < end; start += PAGE_SIZE) {
957 		for (new_nid = 0; new_nid < num_node_masks; new_nid++) {
958 			struct node_mem_mask *p = &node_masks[new_nid];
959 
960 			if ((start & p->mask) == p->match) {
961 				if (prev_nid == NUMA_NO_NODE)
962 					prev_nid = new_nid;
963 				break;
964 			}
965 		}
966 
967 		if (new_nid == num_node_masks) {
968 			prev_nid = 0;
969 			WARN_ONCE(1, "addr[%Lx] doesn't match a NUMA node rule. Some memory will be owned by node 0.",
970 				  start);
971 			break;
972 		}
973 
974 		if (prev_nid != new_nid)
975 			break;
976 	}
977 	*nid = prev_nid;
978 
979 	return start > end ? end : start;
980 }
981 
982 static u64 __init memblock_nid_range(u64 start, u64 end, int *nid)
983 {
984 	u64 ret_end, pa_start, m_mask, m_match, m_end;
985 	struct mdesc_mblock *mblock;
986 	int _nid, i;
987 
988 	if (tlb_type != hypervisor)
989 		return memblock_nid_range_sun4u(start, end, nid);
990 
991 	mblock = addr_to_mblock(start);
992 	if (!mblock) {
993 		WARN_ONCE(1, "memblock_nid_range: Can't find mblock addr[%Lx]",
994 			  start);
995 
996 		_nid = 0;
997 		ret_end = end;
998 		goto done;
999 	}
1000 
1001 	pa_start = start + mblock->offset;
1002 	m_match = 0;
1003 	m_mask = 0;
1004 
1005 	for (_nid = 0; _nid < num_node_masks; _nid++) {
1006 		struct node_mem_mask *const m = &node_masks[_nid];
1007 
1008 		if ((pa_start & m->mask) == m->match) {
1009 			m_match = m->match;
1010 			m_mask = m->mask;
1011 			break;
1012 		}
1013 	}
1014 
1015 	if (num_node_masks == _nid) {
1016 		/* We could not find NUMA group, so default to 0, but lets
1017 		 * search for latency group, so we could calculate the correct
1018 		 * end address that we return
1019 		 */
1020 		_nid = 0;
1021 
1022 		for (i = 0; i < num_mlgroups; i++) {
1023 			struct mdesc_mlgroup *const m = &mlgroups[i];
1024 
1025 			if ((pa_start & m->mask) == m->match) {
1026 				m_match = m->match;
1027 				m_mask = m->mask;
1028 				break;
1029 			}
1030 		}
1031 
1032 		if (i == num_mlgroups) {
1033 			WARN_ONCE(1, "memblock_nid_range: Can't find latency group addr[%Lx]",
1034 				  start);
1035 
1036 			ret_end = end;
1037 			goto done;
1038 		}
1039 	}
1040 
1041 	/*
1042 	 * Each latency group has match and mask, and each memory block has an
1043 	 * offset.  An address belongs to a latency group if its address matches
1044 	 * the following formula: ((addr + offset) & mask) == match
1045 	 * It is, however, slow to check every single page if it matches a
1046 	 * particular latency group. As optimization we calculate end value by
1047 	 * using bit arithmetics.
1048 	 */
1049 	m_end = m_match + (1ul << __ffs(m_mask)) - mblock->offset;
1050 	m_end += pa_start & ~((1ul << fls64(m_mask)) - 1);
1051 	ret_end = m_end > end ? end : m_end;
1052 
1053 done:
1054 	*nid = _nid;
1055 	return ret_end;
1056 }
1057 #endif
1058 
1059 /* This must be invoked after performing all of the necessary
1060  * memblock_set_node() calls for 'nid'.  We need to be able to get
1061  * correct data from get_pfn_range_for_nid().
1062  */
1063 static void __init allocate_node_data(int nid)
1064 {
1065 	struct pglist_data *p;
1066 	unsigned long start_pfn, end_pfn;
1067 #ifdef CONFIG_NEED_MULTIPLE_NODES
1068 
1069 	NODE_DATA(nid) = memblock_alloc_node(sizeof(struct pglist_data),
1070 					     SMP_CACHE_BYTES, nid);
1071 	if (!NODE_DATA(nid)) {
1072 		prom_printf("Cannot allocate pglist_data for nid[%d]\n", nid);
1073 		prom_halt();
1074 	}
1075 
1076 	NODE_DATA(nid)->node_id = nid;
1077 #endif
1078 
1079 	p = NODE_DATA(nid);
1080 
1081 	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
1082 	p->node_start_pfn = start_pfn;
1083 	p->node_spanned_pages = end_pfn - start_pfn;
1084 }
1085 
1086 static void init_node_masks_nonnuma(void)
1087 {
1088 #ifdef CONFIG_NEED_MULTIPLE_NODES
1089 	int i;
1090 #endif
1091 
1092 	numadbg("Initializing tables for non-numa.\n");
1093 
1094 	node_masks[0].mask = 0;
1095 	node_masks[0].match = 0;
1096 	num_node_masks = 1;
1097 
1098 #ifdef CONFIG_NEED_MULTIPLE_NODES
1099 	for (i = 0; i < NR_CPUS; i++)
1100 		numa_cpu_lookup_table[i] = 0;
1101 
1102 	cpumask_setall(&numa_cpumask_lookup_table[0]);
1103 #endif
1104 }
1105 
1106 #ifdef CONFIG_NEED_MULTIPLE_NODES
1107 struct pglist_data *node_data[MAX_NUMNODES];
1108 
1109 EXPORT_SYMBOL(numa_cpu_lookup_table);
1110 EXPORT_SYMBOL(numa_cpumask_lookup_table);
1111 EXPORT_SYMBOL(node_data);
1112 
1113 static int scan_pio_for_cfg_handle(struct mdesc_handle *md, u64 pio,
1114 				   u32 cfg_handle)
1115 {
1116 	u64 arc;
1117 
1118 	mdesc_for_each_arc(arc, md, pio, MDESC_ARC_TYPE_FWD) {
1119 		u64 target = mdesc_arc_target(md, arc);
1120 		const u64 *val;
1121 
1122 		val = mdesc_get_property(md, target,
1123 					 "cfg-handle", NULL);
1124 		if (val && *val == cfg_handle)
1125 			return 0;
1126 	}
1127 	return -ENODEV;
1128 }
1129 
1130 static int scan_arcs_for_cfg_handle(struct mdesc_handle *md, u64 grp,
1131 				    u32 cfg_handle)
1132 {
1133 	u64 arc, candidate, best_latency = ~(u64)0;
1134 
1135 	candidate = MDESC_NODE_NULL;
1136 	mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1137 		u64 target = mdesc_arc_target(md, arc);
1138 		const char *name = mdesc_node_name(md, target);
1139 		const u64 *val;
1140 
1141 		if (strcmp(name, "pio-latency-group"))
1142 			continue;
1143 
1144 		val = mdesc_get_property(md, target, "latency", NULL);
1145 		if (!val)
1146 			continue;
1147 
1148 		if (*val < best_latency) {
1149 			candidate = target;
1150 			best_latency = *val;
1151 		}
1152 	}
1153 
1154 	if (candidate == MDESC_NODE_NULL)
1155 		return -ENODEV;
1156 
1157 	return scan_pio_for_cfg_handle(md, candidate, cfg_handle);
1158 }
1159 
1160 int of_node_to_nid(struct device_node *dp)
1161 {
1162 	const struct linux_prom64_registers *regs;
1163 	struct mdesc_handle *md;
1164 	u32 cfg_handle;
1165 	int count, nid;
1166 	u64 grp;
1167 
1168 	/* This is the right thing to do on currently supported
1169 	 * SUN4U NUMA platforms as well, as the PCI controller does
1170 	 * not sit behind any particular memory controller.
1171 	 */
1172 	if (!mlgroups)
1173 		return -1;
1174 
1175 	regs = of_get_property(dp, "reg", NULL);
1176 	if (!regs)
1177 		return -1;
1178 
1179 	cfg_handle = (regs->phys_addr >> 32UL) & 0x0fffffff;
1180 
1181 	md = mdesc_grab();
1182 
1183 	count = 0;
1184 	nid = NUMA_NO_NODE;
1185 	mdesc_for_each_node_by_name(md, grp, "group") {
1186 		if (!scan_arcs_for_cfg_handle(md, grp, cfg_handle)) {
1187 			nid = count;
1188 			break;
1189 		}
1190 		count++;
1191 	}
1192 
1193 	mdesc_release(md);
1194 
1195 	return nid;
1196 }
1197 
1198 static void __init add_node_ranges(void)
1199 {
1200 	struct memblock_region *reg;
1201 	unsigned long prev_max;
1202 
1203 memblock_resized:
1204 	prev_max = memblock.memory.max;
1205 
1206 	for_each_memblock(memory, reg) {
1207 		unsigned long size = reg->size;
1208 		unsigned long start, end;
1209 
1210 		start = reg->base;
1211 		end = start + size;
1212 		while (start < end) {
1213 			unsigned long this_end;
1214 			int nid;
1215 
1216 			this_end = memblock_nid_range(start, end, &nid);
1217 
1218 			numadbg("Setting memblock NUMA node nid[%d] "
1219 				"start[%lx] end[%lx]\n",
1220 				nid, start, this_end);
1221 
1222 			memblock_set_node(start, this_end - start,
1223 					  &memblock.memory, nid);
1224 			if (memblock.memory.max != prev_max)
1225 				goto memblock_resized;
1226 			start = this_end;
1227 		}
1228 	}
1229 }
1230 
1231 static int __init grab_mlgroups(struct mdesc_handle *md)
1232 {
1233 	unsigned long paddr;
1234 	int count = 0;
1235 	u64 node;
1236 
1237 	mdesc_for_each_node_by_name(md, node, "memory-latency-group")
1238 		count++;
1239 	if (!count)
1240 		return -ENOENT;
1241 
1242 	paddr = memblock_phys_alloc(count * sizeof(struct mdesc_mlgroup),
1243 				    SMP_CACHE_BYTES);
1244 	if (!paddr)
1245 		return -ENOMEM;
1246 
1247 	mlgroups = __va(paddr);
1248 	num_mlgroups = count;
1249 
1250 	count = 0;
1251 	mdesc_for_each_node_by_name(md, node, "memory-latency-group") {
1252 		struct mdesc_mlgroup *m = &mlgroups[count++];
1253 		const u64 *val;
1254 
1255 		m->node = node;
1256 
1257 		val = mdesc_get_property(md, node, "latency", NULL);
1258 		m->latency = *val;
1259 		val = mdesc_get_property(md, node, "address-match", NULL);
1260 		m->match = *val;
1261 		val = mdesc_get_property(md, node, "address-mask", NULL);
1262 		m->mask = *val;
1263 
1264 		numadbg("MLGROUP[%d]: node[%llx] latency[%llx] "
1265 			"match[%llx] mask[%llx]\n",
1266 			count - 1, m->node, m->latency, m->match, m->mask);
1267 	}
1268 
1269 	return 0;
1270 }
1271 
1272 static int __init grab_mblocks(struct mdesc_handle *md)
1273 {
1274 	unsigned long paddr;
1275 	int count = 0;
1276 	u64 node;
1277 
1278 	mdesc_for_each_node_by_name(md, node, "mblock")
1279 		count++;
1280 	if (!count)
1281 		return -ENOENT;
1282 
1283 	paddr = memblock_phys_alloc(count * sizeof(struct mdesc_mblock),
1284 				    SMP_CACHE_BYTES);
1285 	if (!paddr)
1286 		return -ENOMEM;
1287 
1288 	mblocks = __va(paddr);
1289 	num_mblocks = count;
1290 
1291 	count = 0;
1292 	mdesc_for_each_node_by_name(md, node, "mblock") {
1293 		struct mdesc_mblock *m = &mblocks[count++];
1294 		const u64 *val;
1295 
1296 		val = mdesc_get_property(md, node, "base", NULL);
1297 		m->base = *val;
1298 		val = mdesc_get_property(md, node, "size", NULL);
1299 		m->size = *val;
1300 		val = mdesc_get_property(md, node,
1301 					 "address-congruence-offset", NULL);
1302 
1303 		/* The address-congruence-offset property is optional.
1304 		 * Explicity zero it be identifty this.
1305 		 */
1306 		if (val)
1307 			m->offset = *val;
1308 		else
1309 			m->offset = 0UL;
1310 
1311 		numadbg("MBLOCK[%d]: base[%llx] size[%llx] offset[%llx]\n",
1312 			count - 1, m->base, m->size, m->offset);
1313 	}
1314 
1315 	return 0;
1316 }
1317 
1318 static void __init numa_parse_mdesc_group_cpus(struct mdesc_handle *md,
1319 					       u64 grp, cpumask_t *mask)
1320 {
1321 	u64 arc;
1322 
1323 	cpumask_clear(mask);
1324 
1325 	mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_BACK) {
1326 		u64 target = mdesc_arc_target(md, arc);
1327 		const char *name = mdesc_node_name(md, target);
1328 		const u64 *id;
1329 
1330 		if (strcmp(name, "cpu"))
1331 			continue;
1332 		id = mdesc_get_property(md, target, "id", NULL);
1333 		if (*id < nr_cpu_ids)
1334 			cpumask_set_cpu(*id, mask);
1335 	}
1336 }
1337 
1338 static struct mdesc_mlgroup * __init find_mlgroup(u64 node)
1339 {
1340 	int i;
1341 
1342 	for (i = 0; i < num_mlgroups; i++) {
1343 		struct mdesc_mlgroup *m = &mlgroups[i];
1344 		if (m->node == node)
1345 			return m;
1346 	}
1347 	return NULL;
1348 }
1349 
1350 int __node_distance(int from, int to)
1351 {
1352 	if ((from >= MAX_NUMNODES) || (to >= MAX_NUMNODES)) {
1353 		pr_warn("Returning default NUMA distance value for %d->%d\n",
1354 			from, to);
1355 		return (from == to) ? LOCAL_DISTANCE : REMOTE_DISTANCE;
1356 	}
1357 	return numa_latency[from][to];
1358 }
1359 EXPORT_SYMBOL(__node_distance);
1360 
1361 static int __init find_best_numa_node_for_mlgroup(struct mdesc_mlgroup *grp)
1362 {
1363 	int i;
1364 
1365 	for (i = 0; i < MAX_NUMNODES; i++) {
1366 		struct node_mem_mask *n = &node_masks[i];
1367 
1368 		if ((grp->mask == n->mask) && (grp->match == n->match))
1369 			break;
1370 	}
1371 	return i;
1372 }
1373 
1374 static void __init find_numa_latencies_for_group(struct mdesc_handle *md,
1375 						 u64 grp, int index)
1376 {
1377 	u64 arc;
1378 
1379 	mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1380 		int tnode;
1381 		u64 target = mdesc_arc_target(md, arc);
1382 		struct mdesc_mlgroup *m = find_mlgroup(target);
1383 
1384 		if (!m)
1385 			continue;
1386 		tnode = find_best_numa_node_for_mlgroup(m);
1387 		if (tnode == MAX_NUMNODES)
1388 			continue;
1389 		numa_latency[index][tnode] = m->latency;
1390 	}
1391 }
1392 
1393 static int __init numa_attach_mlgroup(struct mdesc_handle *md, u64 grp,
1394 				      int index)
1395 {
1396 	struct mdesc_mlgroup *candidate = NULL;
1397 	u64 arc, best_latency = ~(u64)0;
1398 	struct node_mem_mask *n;
1399 
1400 	mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1401 		u64 target = mdesc_arc_target(md, arc);
1402 		struct mdesc_mlgroup *m = find_mlgroup(target);
1403 		if (!m)
1404 			continue;
1405 		if (m->latency < best_latency) {
1406 			candidate = m;
1407 			best_latency = m->latency;
1408 		}
1409 	}
1410 	if (!candidate)
1411 		return -ENOENT;
1412 
1413 	if (num_node_masks != index) {
1414 		printk(KERN_ERR "Inconsistent NUMA state, "
1415 		       "index[%d] != num_node_masks[%d]\n",
1416 		       index, num_node_masks);
1417 		return -EINVAL;
1418 	}
1419 
1420 	n = &node_masks[num_node_masks++];
1421 
1422 	n->mask = candidate->mask;
1423 	n->match = candidate->match;
1424 
1425 	numadbg("NUMA NODE[%d]: mask[%lx] match[%lx] (latency[%llx])\n",
1426 		index, n->mask, n->match, candidate->latency);
1427 
1428 	return 0;
1429 }
1430 
1431 static int __init numa_parse_mdesc_group(struct mdesc_handle *md, u64 grp,
1432 					 int index)
1433 {
1434 	cpumask_t mask;
1435 	int cpu;
1436 
1437 	numa_parse_mdesc_group_cpus(md, grp, &mask);
1438 
1439 	for_each_cpu(cpu, &mask)
1440 		numa_cpu_lookup_table[cpu] = index;
1441 	cpumask_copy(&numa_cpumask_lookup_table[index], &mask);
1442 
1443 	if (numa_debug) {
1444 		printk(KERN_INFO "NUMA GROUP[%d]: cpus [ ", index);
1445 		for_each_cpu(cpu, &mask)
1446 			printk("%d ", cpu);
1447 		printk("]\n");
1448 	}
1449 
1450 	return numa_attach_mlgroup(md, grp, index);
1451 }
1452 
1453 static int __init numa_parse_mdesc(void)
1454 {
1455 	struct mdesc_handle *md = mdesc_grab();
1456 	int i, j, err, count;
1457 	u64 node;
1458 
1459 	node = mdesc_node_by_name(md, MDESC_NODE_NULL, "latency-groups");
1460 	if (node == MDESC_NODE_NULL) {
1461 		mdesc_release(md);
1462 		return -ENOENT;
1463 	}
1464 
1465 	err = grab_mblocks(md);
1466 	if (err < 0)
1467 		goto out;
1468 
1469 	err = grab_mlgroups(md);
1470 	if (err < 0)
1471 		goto out;
1472 
1473 	count = 0;
1474 	mdesc_for_each_node_by_name(md, node, "group") {
1475 		err = numa_parse_mdesc_group(md, node, count);
1476 		if (err < 0)
1477 			break;
1478 		count++;
1479 	}
1480 
1481 	count = 0;
1482 	mdesc_for_each_node_by_name(md, node, "group") {
1483 		find_numa_latencies_for_group(md, node, count);
1484 		count++;
1485 	}
1486 
1487 	/* Normalize numa latency matrix according to ACPI SLIT spec. */
1488 	for (i = 0; i < MAX_NUMNODES; i++) {
1489 		u64 self_latency = numa_latency[i][i];
1490 
1491 		for (j = 0; j < MAX_NUMNODES; j++) {
1492 			numa_latency[i][j] =
1493 				(numa_latency[i][j] * LOCAL_DISTANCE) /
1494 				self_latency;
1495 		}
1496 	}
1497 
1498 	add_node_ranges();
1499 
1500 	for (i = 0; i < num_node_masks; i++) {
1501 		allocate_node_data(i);
1502 		node_set_online(i);
1503 	}
1504 
1505 	err = 0;
1506 out:
1507 	mdesc_release(md);
1508 	return err;
1509 }
1510 
1511 static int __init numa_parse_jbus(void)
1512 {
1513 	unsigned long cpu, index;
1514 
1515 	/* NUMA node id is encoded in bits 36 and higher, and there is
1516 	 * a 1-to-1 mapping from CPU ID to NUMA node ID.
1517 	 */
1518 	index = 0;
1519 	for_each_present_cpu(cpu) {
1520 		numa_cpu_lookup_table[cpu] = index;
1521 		cpumask_copy(&numa_cpumask_lookup_table[index], cpumask_of(cpu));
1522 		node_masks[index].mask = ~((1UL << 36UL) - 1UL);
1523 		node_masks[index].match = cpu << 36UL;
1524 
1525 		index++;
1526 	}
1527 	num_node_masks = index;
1528 
1529 	add_node_ranges();
1530 
1531 	for (index = 0; index < num_node_masks; index++) {
1532 		allocate_node_data(index);
1533 		node_set_online(index);
1534 	}
1535 
1536 	return 0;
1537 }
1538 
1539 static int __init numa_parse_sun4u(void)
1540 {
1541 	if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1542 		unsigned long ver;
1543 
1544 		__asm__ ("rdpr %%ver, %0" : "=r" (ver));
1545 		if ((ver >> 32UL) == __JALAPENO_ID ||
1546 		    (ver >> 32UL) == __SERRANO_ID)
1547 			return numa_parse_jbus();
1548 	}
1549 	return -1;
1550 }
1551 
1552 static int __init bootmem_init_numa(void)
1553 {
1554 	int i, j;
1555 	int err = -1;
1556 
1557 	numadbg("bootmem_init_numa()\n");
1558 
1559 	/* Some sane defaults for numa latency values */
1560 	for (i = 0; i < MAX_NUMNODES; i++) {
1561 		for (j = 0; j < MAX_NUMNODES; j++)
1562 			numa_latency[i][j] = (i == j) ?
1563 				LOCAL_DISTANCE : REMOTE_DISTANCE;
1564 	}
1565 
1566 	if (numa_enabled) {
1567 		if (tlb_type == hypervisor)
1568 			err = numa_parse_mdesc();
1569 		else
1570 			err = numa_parse_sun4u();
1571 	}
1572 	return err;
1573 }
1574 
1575 #else
1576 
1577 static int bootmem_init_numa(void)
1578 {
1579 	return -1;
1580 }
1581 
1582 #endif
1583 
1584 static void __init bootmem_init_nonnuma(void)
1585 {
1586 	unsigned long top_of_ram = memblock_end_of_DRAM();
1587 	unsigned long total_ram = memblock_phys_mem_size();
1588 
1589 	numadbg("bootmem_init_nonnuma()\n");
1590 
1591 	printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
1592 	       top_of_ram, total_ram);
1593 	printk(KERN_INFO "Memory hole size: %ldMB\n",
1594 	       (top_of_ram - total_ram) >> 20);
1595 
1596 	init_node_masks_nonnuma();
1597 	memblock_set_node(0, PHYS_ADDR_MAX, &memblock.memory, 0);
1598 	allocate_node_data(0);
1599 	node_set_online(0);
1600 }
1601 
1602 static unsigned long __init bootmem_init(unsigned long phys_base)
1603 {
1604 	unsigned long end_pfn;
1605 
1606 	end_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
1607 	max_pfn = max_low_pfn = end_pfn;
1608 	min_low_pfn = (phys_base >> PAGE_SHIFT);
1609 
1610 	if (bootmem_init_numa() < 0)
1611 		bootmem_init_nonnuma();
1612 
1613 	/* Dump memblock with node info. */
1614 	memblock_dump_all();
1615 
1616 	/* XXX cpu notifier XXX */
1617 
1618 	sparse_memory_present_with_active_regions(MAX_NUMNODES);
1619 	sparse_init();
1620 
1621 	return end_pfn;
1622 }
1623 
1624 static struct linux_prom64_registers pall[MAX_BANKS] __initdata;
1625 static int pall_ents __initdata;
1626 
1627 static unsigned long max_phys_bits = 40;
1628 
1629 bool kern_addr_valid(unsigned long addr)
1630 {
1631 	pgd_t *pgd;
1632 	p4d_t *p4d;
1633 	pud_t *pud;
1634 	pmd_t *pmd;
1635 	pte_t *pte;
1636 
1637 	if ((long)addr < 0L) {
1638 		unsigned long pa = __pa(addr);
1639 
1640 		if ((pa >> max_phys_bits) != 0UL)
1641 			return false;
1642 
1643 		return pfn_valid(pa >> PAGE_SHIFT);
1644 	}
1645 
1646 	if (addr >= (unsigned long) KERNBASE &&
1647 	    addr < (unsigned long)&_end)
1648 		return true;
1649 
1650 	pgd = pgd_offset_k(addr);
1651 	if (pgd_none(*pgd))
1652 		return 0;
1653 
1654 	p4d = p4d_offset(pgd, addr);
1655 	if (p4d_none(*p4d))
1656 		return 0;
1657 
1658 	pud = pud_offset(p4d, addr);
1659 	if (pud_none(*pud))
1660 		return 0;
1661 
1662 	if (pud_large(*pud))
1663 		return pfn_valid(pud_pfn(*pud));
1664 
1665 	pmd = pmd_offset(pud, addr);
1666 	if (pmd_none(*pmd))
1667 		return 0;
1668 
1669 	if (pmd_large(*pmd))
1670 		return pfn_valid(pmd_pfn(*pmd));
1671 
1672 	pte = pte_offset_kernel(pmd, addr);
1673 	if (pte_none(*pte))
1674 		return 0;
1675 
1676 	return pfn_valid(pte_pfn(*pte));
1677 }
1678 EXPORT_SYMBOL(kern_addr_valid);
1679 
1680 static unsigned long __ref kernel_map_hugepud(unsigned long vstart,
1681 					      unsigned long vend,
1682 					      pud_t *pud)
1683 {
1684 	const unsigned long mask16gb = (1UL << 34) - 1UL;
1685 	u64 pte_val = vstart;
1686 
1687 	/* Each PUD is 8GB */
1688 	if ((vstart & mask16gb) ||
1689 	    (vend - vstart <= mask16gb)) {
1690 		pte_val ^= kern_linear_pte_xor[2];
1691 		pud_val(*pud) = pte_val | _PAGE_PUD_HUGE;
1692 
1693 		return vstart + PUD_SIZE;
1694 	}
1695 
1696 	pte_val ^= kern_linear_pte_xor[3];
1697 	pte_val |= _PAGE_PUD_HUGE;
1698 
1699 	vend = vstart + mask16gb + 1UL;
1700 	while (vstart < vend) {
1701 		pud_val(*pud) = pte_val;
1702 
1703 		pte_val += PUD_SIZE;
1704 		vstart += PUD_SIZE;
1705 		pud++;
1706 	}
1707 	return vstart;
1708 }
1709 
1710 static bool kernel_can_map_hugepud(unsigned long vstart, unsigned long vend,
1711 				   bool guard)
1712 {
1713 	if (guard && !(vstart & ~PUD_MASK) && (vend - vstart) >= PUD_SIZE)
1714 		return true;
1715 
1716 	return false;
1717 }
1718 
1719 static unsigned long __ref kernel_map_hugepmd(unsigned long vstart,
1720 					      unsigned long vend,
1721 					      pmd_t *pmd)
1722 {
1723 	const unsigned long mask256mb = (1UL << 28) - 1UL;
1724 	const unsigned long mask2gb = (1UL << 31) - 1UL;
1725 	u64 pte_val = vstart;
1726 
1727 	/* Each PMD is 8MB */
1728 	if ((vstart & mask256mb) ||
1729 	    (vend - vstart <= mask256mb)) {
1730 		pte_val ^= kern_linear_pte_xor[0];
1731 		pmd_val(*pmd) = pte_val | _PAGE_PMD_HUGE;
1732 
1733 		return vstart + PMD_SIZE;
1734 	}
1735 
1736 	if ((vstart & mask2gb) ||
1737 	    (vend - vstart <= mask2gb)) {
1738 		pte_val ^= kern_linear_pte_xor[1];
1739 		pte_val |= _PAGE_PMD_HUGE;
1740 		vend = vstart + mask256mb + 1UL;
1741 	} else {
1742 		pte_val ^= kern_linear_pte_xor[2];
1743 		pte_val |= _PAGE_PMD_HUGE;
1744 		vend = vstart + mask2gb + 1UL;
1745 	}
1746 
1747 	while (vstart < vend) {
1748 		pmd_val(*pmd) = pte_val;
1749 
1750 		pte_val += PMD_SIZE;
1751 		vstart += PMD_SIZE;
1752 		pmd++;
1753 	}
1754 
1755 	return vstart;
1756 }
1757 
1758 static bool kernel_can_map_hugepmd(unsigned long vstart, unsigned long vend,
1759 				   bool guard)
1760 {
1761 	if (guard && !(vstart & ~PMD_MASK) && (vend - vstart) >= PMD_SIZE)
1762 		return true;
1763 
1764 	return false;
1765 }
1766 
1767 static unsigned long __ref kernel_map_range(unsigned long pstart,
1768 					    unsigned long pend, pgprot_t prot,
1769 					    bool use_huge)
1770 {
1771 	unsigned long vstart = PAGE_OFFSET + pstart;
1772 	unsigned long vend = PAGE_OFFSET + pend;
1773 	unsigned long alloc_bytes = 0UL;
1774 
1775 	if ((vstart & ~PAGE_MASK) || (vend & ~PAGE_MASK)) {
1776 		prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n",
1777 			    vstart, vend);
1778 		prom_halt();
1779 	}
1780 
1781 	while (vstart < vend) {
1782 		unsigned long this_end, paddr = __pa(vstart);
1783 		pgd_t *pgd = pgd_offset_k(vstart);
1784 		p4d_t *p4d;
1785 		pud_t *pud;
1786 		pmd_t *pmd;
1787 		pte_t *pte;
1788 
1789 		if (pgd_none(*pgd)) {
1790 			pud_t *new;
1791 
1792 			new = memblock_alloc_from(PAGE_SIZE, PAGE_SIZE,
1793 						  PAGE_SIZE);
1794 			if (!new)
1795 				goto err_alloc;
1796 			alloc_bytes += PAGE_SIZE;
1797 			pgd_populate(&init_mm, pgd, new);
1798 		}
1799 
1800 		p4d = p4d_offset(pgd, vstart);
1801 		if (p4d_none(*p4d)) {
1802 			pud_t *new;
1803 
1804 			new = memblock_alloc_from(PAGE_SIZE, PAGE_SIZE,
1805 						  PAGE_SIZE);
1806 			if (!new)
1807 				goto err_alloc;
1808 			alloc_bytes += PAGE_SIZE;
1809 			p4d_populate(&init_mm, p4d, new);
1810 		}
1811 
1812 		pud = pud_offset(p4d, vstart);
1813 		if (pud_none(*pud)) {
1814 			pmd_t *new;
1815 
1816 			if (kernel_can_map_hugepud(vstart, vend, use_huge)) {
1817 				vstart = kernel_map_hugepud(vstart, vend, pud);
1818 				continue;
1819 			}
1820 			new = memblock_alloc_from(PAGE_SIZE, PAGE_SIZE,
1821 						  PAGE_SIZE);
1822 			if (!new)
1823 				goto err_alloc;
1824 			alloc_bytes += PAGE_SIZE;
1825 			pud_populate(&init_mm, pud, new);
1826 		}
1827 
1828 		pmd = pmd_offset(pud, vstart);
1829 		if (pmd_none(*pmd)) {
1830 			pte_t *new;
1831 
1832 			if (kernel_can_map_hugepmd(vstart, vend, use_huge)) {
1833 				vstart = kernel_map_hugepmd(vstart, vend, pmd);
1834 				continue;
1835 			}
1836 			new = memblock_alloc_from(PAGE_SIZE, PAGE_SIZE,
1837 						  PAGE_SIZE);
1838 			if (!new)
1839 				goto err_alloc;
1840 			alloc_bytes += PAGE_SIZE;
1841 			pmd_populate_kernel(&init_mm, pmd, new);
1842 		}
1843 
1844 		pte = pte_offset_kernel(pmd, vstart);
1845 		this_end = (vstart + PMD_SIZE) & PMD_MASK;
1846 		if (this_end > vend)
1847 			this_end = vend;
1848 
1849 		while (vstart < this_end) {
1850 			pte_val(*pte) = (paddr | pgprot_val(prot));
1851 
1852 			vstart += PAGE_SIZE;
1853 			paddr += PAGE_SIZE;
1854 			pte++;
1855 		}
1856 	}
1857 
1858 	return alloc_bytes;
1859 
1860 err_alloc:
1861 	panic("%s: Failed to allocate %lu bytes align=%lx from=%lx\n",
1862 	      __func__, PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1863 	return -ENOMEM;
1864 }
1865 
1866 static void __init flush_all_kernel_tsbs(void)
1867 {
1868 	int i;
1869 
1870 	for (i = 0; i < KERNEL_TSB_NENTRIES; i++) {
1871 		struct tsb *ent = &swapper_tsb[i];
1872 
1873 		ent->tag = (1UL << TSB_TAG_INVALID_BIT);
1874 	}
1875 #ifndef CONFIG_DEBUG_PAGEALLOC
1876 	for (i = 0; i < KERNEL_TSB4M_NENTRIES; i++) {
1877 		struct tsb *ent = &swapper_4m_tsb[i];
1878 
1879 		ent->tag = (1UL << TSB_TAG_INVALID_BIT);
1880 	}
1881 #endif
1882 }
1883 
1884 extern unsigned int kvmap_linear_patch[1];
1885 
1886 static void __init kernel_physical_mapping_init(void)
1887 {
1888 	unsigned long i, mem_alloced = 0UL;
1889 	bool use_huge = true;
1890 
1891 #ifdef CONFIG_DEBUG_PAGEALLOC
1892 	use_huge = false;
1893 #endif
1894 	for (i = 0; i < pall_ents; i++) {
1895 		unsigned long phys_start, phys_end;
1896 
1897 		phys_start = pall[i].phys_addr;
1898 		phys_end = phys_start + pall[i].reg_size;
1899 
1900 		mem_alloced += kernel_map_range(phys_start, phys_end,
1901 						PAGE_KERNEL, use_huge);
1902 	}
1903 
1904 	printk("Allocated %ld bytes for kernel page tables.\n",
1905 	       mem_alloced);
1906 
1907 	kvmap_linear_patch[0] = 0x01000000; /* nop */
1908 	flushi(&kvmap_linear_patch[0]);
1909 
1910 	flush_all_kernel_tsbs();
1911 
1912 	__flush_tlb_all();
1913 }
1914 
1915 #ifdef CONFIG_DEBUG_PAGEALLOC
1916 void __kernel_map_pages(struct page *page, int numpages, int enable)
1917 {
1918 	unsigned long phys_start = page_to_pfn(page) << PAGE_SHIFT;
1919 	unsigned long phys_end = phys_start + (numpages * PAGE_SIZE);
1920 
1921 	kernel_map_range(phys_start, phys_end,
1922 			 (enable ? PAGE_KERNEL : __pgprot(0)), false);
1923 
1924 	flush_tsb_kernel_range(PAGE_OFFSET + phys_start,
1925 			       PAGE_OFFSET + phys_end);
1926 
1927 	/* we should perform an IPI and flush all tlbs,
1928 	 * but that can deadlock->flush only current cpu.
1929 	 */
1930 	__flush_tlb_kernel_range(PAGE_OFFSET + phys_start,
1931 				 PAGE_OFFSET + phys_end);
1932 }
1933 #endif
1934 
1935 unsigned long __init find_ecache_flush_span(unsigned long size)
1936 {
1937 	int i;
1938 
1939 	for (i = 0; i < pavail_ents; i++) {
1940 		if (pavail[i].reg_size >= size)
1941 			return pavail[i].phys_addr;
1942 	}
1943 
1944 	return ~0UL;
1945 }
1946 
1947 unsigned long PAGE_OFFSET;
1948 EXPORT_SYMBOL(PAGE_OFFSET);
1949 
1950 unsigned long VMALLOC_END   = 0x0000010000000000UL;
1951 EXPORT_SYMBOL(VMALLOC_END);
1952 
1953 unsigned long sparc64_va_hole_top =    0xfffff80000000000UL;
1954 unsigned long sparc64_va_hole_bottom = 0x0000080000000000UL;
1955 
1956 static void __init setup_page_offset(void)
1957 {
1958 	if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1959 		/* Cheetah/Panther support a full 64-bit virtual
1960 		 * address, so we can use all that our page tables
1961 		 * support.
1962 		 */
1963 		sparc64_va_hole_top =    0xfff0000000000000UL;
1964 		sparc64_va_hole_bottom = 0x0010000000000000UL;
1965 
1966 		max_phys_bits = 42;
1967 	} else if (tlb_type == hypervisor) {
1968 		switch (sun4v_chip_type) {
1969 		case SUN4V_CHIP_NIAGARA1:
1970 		case SUN4V_CHIP_NIAGARA2:
1971 			/* T1 and T2 support 48-bit virtual addresses.  */
1972 			sparc64_va_hole_top =    0xffff800000000000UL;
1973 			sparc64_va_hole_bottom = 0x0000800000000000UL;
1974 
1975 			max_phys_bits = 39;
1976 			break;
1977 		case SUN4V_CHIP_NIAGARA3:
1978 			/* T3 supports 48-bit virtual addresses.  */
1979 			sparc64_va_hole_top =    0xffff800000000000UL;
1980 			sparc64_va_hole_bottom = 0x0000800000000000UL;
1981 
1982 			max_phys_bits = 43;
1983 			break;
1984 		case SUN4V_CHIP_NIAGARA4:
1985 		case SUN4V_CHIP_NIAGARA5:
1986 		case SUN4V_CHIP_SPARC64X:
1987 		case SUN4V_CHIP_SPARC_M6:
1988 			/* T4 and later support 52-bit virtual addresses.  */
1989 			sparc64_va_hole_top =    0xfff8000000000000UL;
1990 			sparc64_va_hole_bottom = 0x0008000000000000UL;
1991 			max_phys_bits = 47;
1992 			break;
1993 		case SUN4V_CHIP_SPARC_M7:
1994 		case SUN4V_CHIP_SPARC_SN:
1995 			/* M7 and later support 52-bit virtual addresses.  */
1996 			sparc64_va_hole_top =    0xfff8000000000000UL;
1997 			sparc64_va_hole_bottom = 0x0008000000000000UL;
1998 			max_phys_bits = 49;
1999 			break;
2000 		case SUN4V_CHIP_SPARC_M8:
2001 		default:
2002 			/* M8 and later support 54-bit virtual addresses.
2003 			 * However, restricting M8 and above VA bits to 53
2004 			 * as 4-level page table cannot support more than
2005 			 * 53 VA bits.
2006 			 */
2007 			sparc64_va_hole_top =    0xfff0000000000000UL;
2008 			sparc64_va_hole_bottom = 0x0010000000000000UL;
2009 			max_phys_bits = 51;
2010 			break;
2011 		}
2012 	}
2013 
2014 	if (max_phys_bits > MAX_PHYS_ADDRESS_BITS) {
2015 		prom_printf("MAX_PHYS_ADDRESS_BITS is too small, need %lu\n",
2016 			    max_phys_bits);
2017 		prom_halt();
2018 	}
2019 
2020 	PAGE_OFFSET = sparc64_va_hole_top;
2021 	VMALLOC_END = ((sparc64_va_hole_bottom >> 1) +
2022 		       (sparc64_va_hole_bottom >> 2));
2023 
2024 	pr_info("MM: PAGE_OFFSET is 0x%016lx (max_phys_bits == %lu)\n",
2025 		PAGE_OFFSET, max_phys_bits);
2026 	pr_info("MM: VMALLOC [0x%016lx --> 0x%016lx]\n",
2027 		VMALLOC_START, VMALLOC_END);
2028 	pr_info("MM: VMEMMAP [0x%016lx --> 0x%016lx]\n",
2029 		VMEMMAP_BASE, VMEMMAP_BASE << 1);
2030 }
2031 
2032 static void __init tsb_phys_patch(void)
2033 {
2034 	struct tsb_ldquad_phys_patch_entry *pquad;
2035 	struct tsb_phys_patch_entry *p;
2036 
2037 	pquad = &__tsb_ldquad_phys_patch;
2038 	while (pquad < &__tsb_ldquad_phys_patch_end) {
2039 		unsigned long addr = pquad->addr;
2040 
2041 		if (tlb_type == hypervisor)
2042 			*(unsigned int *) addr = pquad->sun4v_insn;
2043 		else
2044 			*(unsigned int *) addr = pquad->sun4u_insn;
2045 		wmb();
2046 		__asm__ __volatile__("flush	%0"
2047 				     : /* no outputs */
2048 				     : "r" (addr));
2049 
2050 		pquad++;
2051 	}
2052 
2053 	p = &__tsb_phys_patch;
2054 	while (p < &__tsb_phys_patch_end) {
2055 		unsigned long addr = p->addr;
2056 
2057 		*(unsigned int *) addr = p->insn;
2058 		wmb();
2059 		__asm__ __volatile__("flush	%0"
2060 				     : /* no outputs */
2061 				     : "r" (addr));
2062 
2063 		p++;
2064 	}
2065 }
2066 
2067 /* Don't mark as init, we give this to the Hypervisor.  */
2068 #ifndef CONFIG_DEBUG_PAGEALLOC
2069 #define NUM_KTSB_DESCR	2
2070 #else
2071 #define NUM_KTSB_DESCR	1
2072 #endif
2073 static struct hv_tsb_descr ktsb_descr[NUM_KTSB_DESCR];
2074 
2075 /* The swapper TSBs are loaded with a base sequence of:
2076  *
2077  *	sethi	%uhi(SYMBOL), REG1
2078  *	sethi	%hi(SYMBOL), REG2
2079  *	or	REG1, %ulo(SYMBOL), REG1
2080  *	or	REG2, %lo(SYMBOL), REG2
2081  *	sllx	REG1, 32, REG1
2082  *	or	REG1, REG2, REG1
2083  *
2084  * When we use physical addressing for the TSB accesses, we patch the
2085  * first four instructions in the above sequence.
2086  */
2087 
2088 static void patch_one_ktsb_phys(unsigned int *start, unsigned int *end, unsigned long pa)
2089 {
2090 	unsigned long high_bits, low_bits;
2091 
2092 	high_bits = (pa >> 32) & 0xffffffff;
2093 	low_bits = (pa >> 0) & 0xffffffff;
2094 
2095 	while (start < end) {
2096 		unsigned int *ia = (unsigned int *)(unsigned long)*start;
2097 
2098 		ia[0] = (ia[0] & ~0x3fffff) | (high_bits >> 10);
2099 		__asm__ __volatile__("flush	%0" : : "r" (ia));
2100 
2101 		ia[1] = (ia[1] & ~0x3fffff) | (low_bits >> 10);
2102 		__asm__ __volatile__("flush	%0" : : "r" (ia + 1));
2103 
2104 		ia[2] = (ia[2] & ~0x1fff) | (high_bits & 0x3ff);
2105 		__asm__ __volatile__("flush	%0" : : "r" (ia + 2));
2106 
2107 		ia[3] = (ia[3] & ~0x1fff) | (low_bits & 0x3ff);
2108 		__asm__ __volatile__("flush	%0" : : "r" (ia + 3));
2109 
2110 		start++;
2111 	}
2112 }
2113 
2114 static void ktsb_phys_patch(void)
2115 {
2116 	extern unsigned int __swapper_tsb_phys_patch;
2117 	extern unsigned int __swapper_tsb_phys_patch_end;
2118 	unsigned long ktsb_pa;
2119 
2120 	ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
2121 	patch_one_ktsb_phys(&__swapper_tsb_phys_patch,
2122 			    &__swapper_tsb_phys_patch_end, ktsb_pa);
2123 #ifndef CONFIG_DEBUG_PAGEALLOC
2124 	{
2125 	extern unsigned int __swapper_4m_tsb_phys_patch;
2126 	extern unsigned int __swapper_4m_tsb_phys_patch_end;
2127 	ktsb_pa = (kern_base +
2128 		   ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
2129 	patch_one_ktsb_phys(&__swapper_4m_tsb_phys_patch,
2130 			    &__swapper_4m_tsb_phys_patch_end, ktsb_pa);
2131 	}
2132 #endif
2133 }
2134 
2135 static void __init sun4v_ktsb_init(void)
2136 {
2137 	unsigned long ktsb_pa;
2138 
2139 	/* First KTSB for PAGE_SIZE mappings.  */
2140 	ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
2141 
2142 	switch (PAGE_SIZE) {
2143 	case 8 * 1024:
2144 	default:
2145 		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_8K;
2146 		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_8K;
2147 		break;
2148 
2149 	case 64 * 1024:
2150 		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_64K;
2151 		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_64K;
2152 		break;
2153 
2154 	case 512 * 1024:
2155 		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_512K;
2156 		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_512K;
2157 		break;
2158 
2159 	case 4 * 1024 * 1024:
2160 		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_4MB;
2161 		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_4MB;
2162 		break;
2163 	}
2164 
2165 	ktsb_descr[0].assoc = 1;
2166 	ktsb_descr[0].num_ttes = KERNEL_TSB_NENTRIES;
2167 	ktsb_descr[0].ctx_idx = 0;
2168 	ktsb_descr[0].tsb_base = ktsb_pa;
2169 	ktsb_descr[0].resv = 0;
2170 
2171 #ifndef CONFIG_DEBUG_PAGEALLOC
2172 	/* Second KTSB for 4MB/256MB/2GB/16GB mappings.  */
2173 	ktsb_pa = (kern_base +
2174 		   ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
2175 
2176 	ktsb_descr[1].pgsz_idx = HV_PGSZ_IDX_4MB;
2177 	ktsb_descr[1].pgsz_mask = ((HV_PGSZ_MASK_4MB |
2178 				    HV_PGSZ_MASK_256MB |
2179 				    HV_PGSZ_MASK_2GB |
2180 				    HV_PGSZ_MASK_16GB) &
2181 				   cpu_pgsz_mask);
2182 	ktsb_descr[1].assoc = 1;
2183 	ktsb_descr[1].num_ttes = KERNEL_TSB4M_NENTRIES;
2184 	ktsb_descr[1].ctx_idx = 0;
2185 	ktsb_descr[1].tsb_base = ktsb_pa;
2186 	ktsb_descr[1].resv = 0;
2187 #endif
2188 }
2189 
2190 void sun4v_ktsb_register(void)
2191 {
2192 	unsigned long pa, ret;
2193 
2194 	pa = kern_base + ((unsigned long)&ktsb_descr[0] - KERNBASE);
2195 
2196 	ret = sun4v_mmu_tsb_ctx0(NUM_KTSB_DESCR, pa);
2197 	if (ret != 0) {
2198 		prom_printf("hypervisor_mmu_tsb_ctx0[%lx]: "
2199 			    "errors with %lx\n", pa, ret);
2200 		prom_halt();
2201 	}
2202 }
2203 
2204 static void __init sun4u_linear_pte_xor_finalize(void)
2205 {
2206 #ifndef CONFIG_DEBUG_PAGEALLOC
2207 	/* This is where we would add Panther support for
2208 	 * 32MB and 256MB pages.
2209 	 */
2210 #endif
2211 }
2212 
2213 static void __init sun4v_linear_pte_xor_finalize(void)
2214 {
2215 	unsigned long pagecv_flag;
2216 
2217 	/* Bit 9 of TTE is no longer CV bit on M7 processor and it instead
2218 	 * enables MCD error. Do not set bit 9 on M7 processor.
2219 	 */
2220 	switch (sun4v_chip_type) {
2221 	case SUN4V_CHIP_SPARC_M7:
2222 	case SUN4V_CHIP_SPARC_M8:
2223 	case SUN4V_CHIP_SPARC_SN:
2224 		pagecv_flag = 0x00;
2225 		break;
2226 	default:
2227 		pagecv_flag = _PAGE_CV_4V;
2228 		break;
2229 	}
2230 #ifndef CONFIG_DEBUG_PAGEALLOC
2231 	if (cpu_pgsz_mask & HV_PGSZ_MASK_256MB) {
2232 		kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZ256MB_4V) ^
2233 			PAGE_OFFSET;
2234 		kern_linear_pte_xor[1] |= (_PAGE_CP_4V | pagecv_flag |
2235 					   _PAGE_P_4V | _PAGE_W_4V);
2236 	} else {
2237 		kern_linear_pte_xor[1] = kern_linear_pte_xor[0];
2238 	}
2239 
2240 	if (cpu_pgsz_mask & HV_PGSZ_MASK_2GB) {
2241 		kern_linear_pte_xor[2] = (_PAGE_VALID | _PAGE_SZ2GB_4V) ^
2242 			PAGE_OFFSET;
2243 		kern_linear_pte_xor[2] |= (_PAGE_CP_4V | pagecv_flag |
2244 					   _PAGE_P_4V | _PAGE_W_4V);
2245 	} else {
2246 		kern_linear_pte_xor[2] = kern_linear_pte_xor[1];
2247 	}
2248 
2249 	if (cpu_pgsz_mask & HV_PGSZ_MASK_16GB) {
2250 		kern_linear_pte_xor[3] = (_PAGE_VALID | _PAGE_SZ16GB_4V) ^
2251 			PAGE_OFFSET;
2252 		kern_linear_pte_xor[3] |= (_PAGE_CP_4V | pagecv_flag |
2253 					   _PAGE_P_4V | _PAGE_W_4V);
2254 	} else {
2255 		kern_linear_pte_xor[3] = kern_linear_pte_xor[2];
2256 	}
2257 #endif
2258 }
2259 
2260 /* paging_init() sets up the page tables */
2261 
2262 static unsigned long last_valid_pfn;
2263 
2264 static void sun4u_pgprot_init(void);
2265 static void sun4v_pgprot_init(void);
2266 
2267 #define _PAGE_CACHE_4U	(_PAGE_CP_4U | _PAGE_CV_4U)
2268 #define _PAGE_CACHE_4V	(_PAGE_CP_4V | _PAGE_CV_4V)
2269 #define __DIRTY_BITS_4U	 (_PAGE_MODIFIED_4U | _PAGE_WRITE_4U | _PAGE_W_4U)
2270 #define __DIRTY_BITS_4V	 (_PAGE_MODIFIED_4V | _PAGE_WRITE_4V | _PAGE_W_4V)
2271 #define __ACCESS_BITS_4U (_PAGE_ACCESSED_4U | _PAGE_READ_4U | _PAGE_R)
2272 #define __ACCESS_BITS_4V (_PAGE_ACCESSED_4V | _PAGE_READ_4V | _PAGE_R)
2273 
2274 /* We need to exclude reserved regions. This exclusion will include
2275  * vmlinux and initrd. To be more precise the initrd size could be used to
2276  * compute a new lower limit because it is freed later during initialization.
2277  */
2278 static void __init reduce_memory(phys_addr_t limit_ram)
2279 {
2280 	limit_ram += memblock_reserved_size();
2281 	memblock_enforce_memory_limit(limit_ram);
2282 }
2283 
2284 void __init paging_init(void)
2285 {
2286 	unsigned long end_pfn, shift, phys_base;
2287 	unsigned long real_end, i;
2288 
2289 	setup_page_offset();
2290 
2291 	/* These build time checkes make sure that the dcache_dirty_cpu()
2292 	 * page->flags usage will work.
2293 	 *
2294 	 * When a page gets marked as dcache-dirty, we store the
2295 	 * cpu number starting at bit 32 in the page->flags.  Also,
2296 	 * functions like clear_dcache_dirty_cpu use the cpu mask
2297 	 * in 13-bit signed-immediate instruction fields.
2298 	 */
2299 
2300 	/*
2301 	 * Page flags must not reach into upper 32 bits that are used
2302 	 * for the cpu number
2303 	 */
2304 	BUILD_BUG_ON(NR_PAGEFLAGS > 32);
2305 
2306 	/*
2307 	 * The bit fields placed in the high range must not reach below
2308 	 * the 32 bit boundary. Otherwise we cannot place the cpu field
2309 	 * at the 32 bit boundary.
2310 	 */
2311 	BUILD_BUG_ON(SECTIONS_WIDTH + NODES_WIDTH + ZONES_WIDTH +
2312 		ilog2(roundup_pow_of_two(NR_CPUS)) > 32);
2313 
2314 	BUILD_BUG_ON(NR_CPUS > 4096);
2315 
2316 	kern_base = (prom_boot_mapping_phys_low >> ILOG2_4MB) << ILOG2_4MB;
2317 	kern_size = (unsigned long)&_end - (unsigned long)KERNBASE;
2318 
2319 	/* Invalidate both kernel TSBs.  */
2320 	memset(swapper_tsb, 0x40, sizeof(swapper_tsb));
2321 #ifndef CONFIG_DEBUG_PAGEALLOC
2322 	memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
2323 #endif
2324 
2325 	/* TTE.cv bit on sparc v9 occupies the same position as TTE.mcde
2326 	 * bit on M7 processor. This is a conflicting usage of the same
2327 	 * bit. Enabling TTE.cv on M7 would turn on Memory Corruption
2328 	 * Detection error on all pages and this will lead to problems
2329 	 * later. Kernel does not run with MCD enabled and hence rest
2330 	 * of the required steps to fully configure memory corruption
2331 	 * detection are not taken. We need to ensure TTE.mcde is not
2332 	 * set on M7 processor. Compute the value of cacheability
2333 	 * flag for use later taking this into consideration.
2334 	 */
2335 	switch (sun4v_chip_type) {
2336 	case SUN4V_CHIP_SPARC_M7:
2337 	case SUN4V_CHIP_SPARC_M8:
2338 	case SUN4V_CHIP_SPARC_SN:
2339 		page_cache4v_flag = _PAGE_CP_4V;
2340 		break;
2341 	default:
2342 		page_cache4v_flag = _PAGE_CACHE_4V;
2343 		break;
2344 	}
2345 
2346 	if (tlb_type == hypervisor)
2347 		sun4v_pgprot_init();
2348 	else
2349 		sun4u_pgprot_init();
2350 
2351 	if (tlb_type == cheetah_plus ||
2352 	    tlb_type == hypervisor) {
2353 		tsb_phys_patch();
2354 		ktsb_phys_patch();
2355 	}
2356 
2357 	if (tlb_type == hypervisor)
2358 		sun4v_patch_tlb_handlers();
2359 
2360 	/* Find available physical memory...
2361 	 *
2362 	 * Read it twice in order to work around a bug in openfirmware.
2363 	 * The call to grab this table itself can cause openfirmware to
2364 	 * allocate memory, which in turn can take away some space from
2365 	 * the list of available memory.  Reading it twice makes sure
2366 	 * we really do get the final value.
2367 	 */
2368 	read_obp_translations();
2369 	read_obp_memory("reg", &pall[0], &pall_ents);
2370 	read_obp_memory("available", &pavail[0], &pavail_ents);
2371 	read_obp_memory("available", &pavail[0], &pavail_ents);
2372 
2373 	phys_base = 0xffffffffffffffffUL;
2374 	for (i = 0; i < pavail_ents; i++) {
2375 		phys_base = min(phys_base, pavail[i].phys_addr);
2376 		memblock_add(pavail[i].phys_addr, pavail[i].reg_size);
2377 	}
2378 
2379 	memblock_reserve(kern_base, kern_size);
2380 
2381 	find_ramdisk(phys_base);
2382 
2383 	if (cmdline_memory_size)
2384 		reduce_memory(cmdline_memory_size);
2385 
2386 	memblock_allow_resize();
2387 	memblock_dump_all();
2388 
2389 	set_bit(0, mmu_context_bmap);
2390 
2391 	shift = kern_base + PAGE_OFFSET - ((unsigned long)KERNBASE);
2392 
2393 	real_end = (unsigned long)_end;
2394 	num_kernel_image_mappings = DIV_ROUND_UP(real_end - KERNBASE, 1 << ILOG2_4MB);
2395 	printk("Kernel: Using %d locked TLB entries for main kernel image.\n",
2396 	       num_kernel_image_mappings);
2397 
2398 	/* Set kernel pgd to upper alias so physical page computations
2399 	 * work.
2400 	 */
2401 	init_mm.pgd += ((shift) / (sizeof(pgd_t)));
2402 
2403 	memset(swapper_pg_dir, 0, sizeof(swapper_pg_dir));
2404 
2405 	inherit_prom_mappings();
2406 
2407 	/* Ok, we can use our TLB miss and window trap handlers safely.  */
2408 	setup_tba();
2409 
2410 	__flush_tlb_all();
2411 
2412 	prom_build_devicetree();
2413 	of_populate_present_mask();
2414 #ifndef CONFIG_SMP
2415 	of_fill_in_cpu_data();
2416 #endif
2417 
2418 	if (tlb_type == hypervisor) {
2419 		sun4v_mdesc_init();
2420 		mdesc_populate_present_mask(cpu_all_mask);
2421 #ifndef CONFIG_SMP
2422 		mdesc_fill_in_cpu_data(cpu_all_mask);
2423 #endif
2424 		mdesc_get_page_sizes(cpu_all_mask, &cpu_pgsz_mask);
2425 
2426 		sun4v_linear_pte_xor_finalize();
2427 
2428 		sun4v_ktsb_init();
2429 		sun4v_ktsb_register();
2430 	} else {
2431 		unsigned long impl, ver;
2432 
2433 		cpu_pgsz_mask = (HV_PGSZ_MASK_8K | HV_PGSZ_MASK_64K |
2434 				 HV_PGSZ_MASK_512K | HV_PGSZ_MASK_4MB);
2435 
2436 		__asm__ __volatile__("rdpr %%ver, %0" : "=r" (ver));
2437 		impl = ((ver >> 32) & 0xffff);
2438 		if (impl == PANTHER_IMPL)
2439 			cpu_pgsz_mask |= (HV_PGSZ_MASK_32MB |
2440 					  HV_PGSZ_MASK_256MB);
2441 
2442 		sun4u_linear_pte_xor_finalize();
2443 	}
2444 
2445 	/* Flush the TLBs and the 4M TSB so that the updated linear
2446 	 * pte XOR settings are realized for all mappings.
2447 	 */
2448 	__flush_tlb_all();
2449 #ifndef CONFIG_DEBUG_PAGEALLOC
2450 	memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
2451 #endif
2452 	__flush_tlb_all();
2453 
2454 	/* Setup bootmem... */
2455 	last_valid_pfn = end_pfn = bootmem_init(phys_base);
2456 
2457 	kernel_physical_mapping_init();
2458 
2459 	{
2460 		unsigned long max_zone_pfns[MAX_NR_ZONES];
2461 
2462 		memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
2463 
2464 		max_zone_pfns[ZONE_NORMAL] = end_pfn;
2465 
2466 		free_area_init(max_zone_pfns);
2467 	}
2468 
2469 	printk("Booting Linux...\n");
2470 }
2471 
2472 int page_in_phys_avail(unsigned long paddr)
2473 {
2474 	int i;
2475 
2476 	paddr &= PAGE_MASK;
2477 
2478 	for (i = 0; i < pavail_ents; i++) {
2479 		unsigned long start, end;
2480 
2481 		start = pavail[i].phys_addr;
2482 		end = start + pavail[i].reg_size;
2483 
2484 		if (paddr >= start && paddr < end)
2485 			return 1;
2486 	}
2487 	if (paddr >= kern_base && paddr < (kern_base + kern_size))
2488 		return 1;
2489 #ifdef CONFIG_BLK_DEV_INITRD
2490 	if (paddr >= __pa(initrd_start) &&
2491 	    paddr < __pa(PAGE_ALIGN(initrd_end)))
2492 		return 1;
2493 #endif
2494 
2495 	return 0;
2496 }
2497 
2498 static void __init register_page_bootmem_info(void)
2499 {
2500 #ifdef CONFIG_NEED_MULTIPLE_NODES
2501 	int i;
2502 
2503 	for_each_online_node(i)
2504 		if (NODE_DATA(i)->node_spanned_pages)
2505 			register_page_bootmem_info_node(NODE_DATA(i));
2506 #endif
2507 }
2508 void __init mem_init(void)
2509 {
2510 	high_memory = __va(last_valid_pfn << PAGE_SHIFT);
2511 
2512 	memblock_free_all();
2513 
2514 	/*
2515 	 * Must be done after boot memory is put on freelist, because here we
2516 	 * might set fields in deferred struct pages that have not yet been
2517 	 * initialized, and memblock_free_all() initializes all the reserved
2518 	 * deferred pages for us.
2519 	 */
2520 	register_page_bootmem_info();
2521 
2522 	/*
2523 	 * Set up the zero page, mark it reserved, so that page count
2524 	 * is not manipulated when freeing the page from user ptes.
2525 	 */
2526 	mem_map_zero = alloc_pages(GFP_KERNEL|__GFP_ZERO, 0);
2527 	if (mem_map_zero == NULL) {
2528 		prom_printf("paging_init: Cannot alloc zero page.\n");
2529 		prom_halt();
2530 	}
2531 	mark_page_reserved(mem_map_zero);
2532 
2533 	mem_init_print_info(NULL);
2534 
2535 	if (tlb_type == cheetah || tlb_type == cheetah_plus)
2536 		cheetah_ecache_flush_init();
2537 }
2538 
2539 void free_initmem(void)
2540 {
2541 	unsigned long addr, initend;
2542 	int do_free = 1;
2543 
2544 	/* If the physical memory maps were trimmed by kernel command
2545 	 * line options, don't even try freeing this initmem stuff up.
2546 	 * The kernel image could have been in the trimmed out region
2547 	 * and if so the freeing below will free invalid page structs.
2548 	 */
2549 	if (cmdline_memory_size)
2550 		do_free = 0;
2551 
2552 	/*
2553 	 * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes.
2554 	 */
2555 	addr = PAGE_ALIGN((unsigned long)(__init_begin));
2556 	initend = (unsigned long)(__init_end) & PAGE_MASK;
2557 	for (; addr < initend; addr += PAGE_SIZE) {
2558 		unsigned long page;
2559 
2560 		page = (addr +
2561 			((unsigned long) __va(kern_base)) -
2562 			((unsigned long) KERNBASE));
2563 		memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
2564 
2565 		if (do_free)
2566 			free_reserved_page(virt_to_page(page));
2567 	}
2568 }
2569 
2570 pgprot_t PAGE_KERNEL __read_mostly;
2571 EXPORT_SYMBOL(PAGE_KERNEL);
2572 
2573 pgprot_t PAGE_KERNEL_LOCKED __read_mostly;
2574 pgprot_t PAGE_COPY __read_mostly;
2575 
2576 pgprot_t PAGE_SHARED __read_mostly;
2577 EXPORT_SYMBOL(PAGE_SHARED);
2578 
2579 unsigned long pg_iobits __read_mostly;
2580 
2581 unsigned long _PAGE_IE __read_mostly;
2582 EXPORT_SYMBOL(_PAGE_IE);
2583 
2584 unsigned long _PAGE_E __read_mostly;
2585 EXPORT_SYMBOL(_PAGE_E);
2586 
2587 unsigned long _PAGE_CACHE __read_mostly;
2588 EXPORT_SYMBOL(_PAGE_CACHE);
2589 
2590 #ifdef CONFIG_SPARSEMEM_VMEMMAP
2591 int __meminit vmemmap_populate(unsigned long vstart, unsigned long vend,
2592 			       int node, struct vmem_altmap *altmap)
2593 {
2594 	unsigned long pte_base;
2595 
2596 	pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2597 		    _PAGE_CP_4U | _PAGE_CV_4U |
2598 		    _PAGE_P_4U | _PAGE_W_4U);
2599 	if (tlb_type == hypervisor)
2600 		pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2601 			    page_cache4v_flag | _PAGE_P_4V | _PAGE_W_4V);
2602 
2603 	pte_base |= _PAGE_PMD_HUGE;
2604 
2605 	vstart = vstart & PMD_MASK;
2606 	vend = ALIGN(vend, PMD_SIZE);
2607 	for (; vstart < vend; vstart += PMD_SIZE) {
2608 		pgd_t *pgd = vmemmap_pgd_populate(vstart, node);
2609 		unsigned long pte;
2610 		p4d_t *p4d;
2611 		pud_t *pud;
2612 		pmd_t *pmd;
2613 
2614 		if (!pgd)
2615 			return -ENOMEM;
2616 
2617 		p4d = vmemmap_p4d_populate(pgd, vstart, node);
2618 		if (!p4d)
2619 			return -ENOMEM;
2620 
2621 		pud = vmemmap_pud_populate(p4d, vstart, node);
2622 		if (!pud)
2623 			return -ENOMEM;
2624 
2625 		pmd = pmd_offset(pud, vstart);
2626 		pte = pmd_val(*pmd);
2627 		if (!(pte & _PAGE_VALID)) {
2628 			void *block = vmemmap_alloc_block(PMD_SIZE, node);
2629 
2630 			if (!block)
2631 				return -ENOMEM;
2632 
2633 			pmd_val(*pmd) = pte_base | __pa(block);
2634 		}
2635 	}
2636 
2637 	return 0;
2638 }
2639 
2640 void vmemmap_free(unsigned long start, unsigned long end,
2641 		struct vmem_altmap *altmap)
2642 {
2643 }
2644 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
2645 
2646 static void prot_init_common(unsigned long page_none,
2647 			     unsigned long page_shared,
2648 			     unsigned long page_copy,
2649 			     unsigned long page_readonly,
2650 			     unsigned long page_exec_bit)
2651 {
2652 	PAGE_COPY = __pgprot(page_copy);
2653 	PAGE_SHARED = __pgprot(page_shared);
2654 
2655 	protection_map[0x0] = __pgprot(page_none);
2656 	protection_map[0x1] = __pgprot(page_readonly & ~page_exec_bit);
2657 	protection_map[0x2] = __pgprot(page_copy & ~page_exec_bit);
2658 	protection_map[0x3] = __pgprot(page_copy & ~page_exec_bit);
2659 	protection_map[0x4] = __pgprot(page_readonly);
2660 	protection_map[0x5] = __pgprot(page_readonly);
2661 	protection_map[0x6] = __pgprot(page_copy);
2662 	protection_map[0x7] = __pgprot(page_copy);
2663 	protection_map[0x8] = __pgprot(page_none);
2664 	protection_map[0x9] = __pgprot(page_readonly & ~page_exec_bit);
2665 	protection_map[0xa] = __pgprot(page_shared & ~page_exec_bit);
2666 	protection_map[0xb] = __pgprot(page_shared & ~page_exec_bit);
2667 	protection_map[0xc] = __pgprot(page_readonly);
2668 	protection_map[0xd] = __pgprot(page_readonly);
2669 	protection_map[0xe] = __pgprot(page_shared);
2670 	protection_map[0xf] = __pgprot(page_shared);
2671 }
2672 
2673 static void __init sun4u_pgprot_init(void)
2674 {
2675 	unsigned long page_none, page_shared, page_copy, page_readonly;
2676 	unsigned long page_exec_bit;
2677 	int i;
2678 
2679 	PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2680 				_PAGE_CACHE_4U | _PAGE_P_4U |
2681 				__ACCESS_BITS_4U | __DIRTY_BITS_4U |
2682 				_PAGE_EXEC_4U);
2683 	PAGE_KERNEL_LOCKED = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2684 				       _PAGE_CACHE_4U | _PAGE_P_4U |
2685 				       __ACCESS_BITS_4U | __DIRTY_BITS_4U |
2686 				       _PAGE_EXEC_4U | _PAGE_L_4U);
2687 
2688 	_PAGE_IE = _PAGE_IE_4U;
2689 	_PAGE_E = _PAGE_E_4U;
2690 	_PAGE_CACHE = _PAGE_CACHE_4U;
2691 
2692 	pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4U | __DIRTY_BITS_4U |
2693 		     __ACCESS_BITS_4U | _PAGE_E_4U);
2694 
2695 #ifdef CONFIG_DEBUG_PAGEALLOC
2696 	kern_linear_pte_xor[0] = _PAGE_VALID ^ PAGE_OFFSET;
2697 #else
2698 	kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4U) ^
2699 		PAGE_OFFSET;
2700 #endif
2701 	kern_linear_pte_xor[0] |= (_PAGE_CP_4U | _PAGE_CV_4U |
2702 				   _PAGE_P_4U | _PAGE_W_4U);
2703 
2704 	for (i = 1; i < 4; i++)
2705 		kern_linear_pte_xor[i] = kern_linear_pte_xor[0];
2706 
2707 	_PAGE_ALL_SZ_BITS =  (_PAGE_SZ4MB_4U | _PAGE_SZ512K_4U |
2708 			      _PAGE_SZ64K_4U | _PAGE_SZ8K_4U |
2709 			      _PAGE_SZ32MB_4U | _PAGE_SZ256MB_4U);
2710 
2711 
2712 	page_none = _PAGE_PRESENT_4U | _PAGE_ACCESSED_4U | _PAGE_CACHE_4U;
2713 	page_shared = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2714 		       __ACCESS_BITS_4U | _PAGE_WRITE_4U | _PAGE_EXEC_4U);
2715 	page_copy   = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2716 		       __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2717 	page_readonly   = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2718 			   __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2719 
2720 	page_exec_bit = _PAGE_EXEC_4U;
2721 
2722 	prot_init_common(page_none, page_shared, page_copy, page_readonly,
2723 			 page_exec_bit);
2724 }
2725 
2726 static void __init sun4v_pgprot_init(void)
2727 {
2728 	unsigned long page_none, page_shared, page_copy, page_readonly;
2729 	unsigned long page_exec_bit;
2730 	int i;
2731 
2732 	PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4V | _PAGE_VALID |
2733 				page_cache4v_flag | _PAGE_P_4V |
2734 				__ACCESS_BITS_4V | __DIRTY_BITS_4V |
2735 				_PAGE_EXEC_4V);
2736 	PAGE_KERNEL_LOCKED = PAGE_KERNEL;
2737 
2738 	_PAGE_IE = _PAGE_IE_4V;
2739 	_PAGE_E = _PAGE_E_4V;
2740 	_PAGE_CACHE = page_cache4v_flag;
2741 
2742 #ifdef CONFIG_DEBUG_PAGEALLOC
2743 	kern_linear_pte_xor[0] = _PAGE_VALID ^ PAGE_OFFSET;
2744 #else
2745 	kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4V) ^
2746 		PAGE_OFFSET;
2747 #endif
2748 	kern_linear_pte_xor[0] |= (page_cache4v_flag | _PAGE_P_4V |
2749 				   _PAGE_W_4V);
2750 
2751 	for (i = 1; i < 4; i++)
2752 		kern_linear_pte_xor[i] = kern_linear_pte_xor[0];
2753 
2754 	pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4V | __DIRTY_BITS_4V |
2755 		     __ACCESS_BITS_4V | _PAGE_E_4V);
2756 
2757 	_PAGE_ALL_SZ_BITS = (_PAGE_SZ16GB_4V | _PAGE_SZ2GB_4V |
2758 			     _PAGE_SZ256MB_4V | _PAGE_SZ32MB_4V |
2759 			     _PAGE_SZ4MB_4V | _PAGE_SZ512K_4V |
2760 			     _PAGE_SZ64K_4V | _PAGE_SZ8K_4V);
2761 
2762 	page_none = _PAGE_PRESENT_4V | _PAGE_ACCESSED_4V | page_cache4v_flag;
2763 	page_shared = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag |
2764 		       __ACCESS_BITS_4V | _PAGE_WRITE_4V | _PAGE_EXEC_4V);
2765 	page_copy   = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag |
2766 		       __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2767 	page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag |
2768 			 __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2769 
2770 	page_exec_bit = _PAGE_EXEC_4V;
2771 
2772 	prot_init_common(page_none, page_shared, page_copy, page_readonly,
2773 			 page_exec_bit);
2774 }
2775 
2776 unsigned long pte_sz_bits(unsigned long sz)
2777 {
2778 	if (tlb_type == hypervisor) {
2779 		switch (sz) {
2780 		case 8 * 1024:
2781 		default:
2782 			return _PAGE_SZ8K_4V;
2783 		case 64 * 1024:
2784 			return _PAGE_SZ64K_4V;
2785 		case 512 * 1024:
2786 			return _PAGE_SZ512K_4V;
2787 		case 4 * 1024 * 1024:
2788 			return _PAGE_SZ4MB_4V;
2789 		}
2790 	} else {
2791 		switch (sz) {
2792 		case 8 * 1024:
2793 		default:
2794 			return _PAGE_SZ8K_4U;
2795 		case 64 * 1024:
2796 			return _PAGE_SZ64K_4U;
2797 		case 512 * 1024:
2798 			return _PAGE_SZ512K_4U;
2799 		case 4 * 1024 * 1024:
2800 			return _PAGE_SZ4MB_4U;
2801 		}
2802 	}
2803 }
2804 
2805 pte_t mk_pte_io(unsigned long page, pgprot_t prot, int space, unsigned long page_size)
2806 {
2807 	pte_t pte;
2808 
2809 	pte_val(pte)  = page | pgprot_val(pgprot_noncached(prot));
2810 	pte_val(pte) |= (((unsigned long)space) << 32);
2811 	pte_val(pte) |= pte_sz_bits(page_size);
2812 
2813 	return pte;
2814 }
2815 
2816 static unsigned long kern_large_tte(unsigned long paddr)
2817 {
2818 	unsigned long val;
2819 
2820 	val = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2821 	       _PAGE_CP_4U | _PAGE_CV_4U | _PAGE_P_4U |
2822 	       _PAGE_EXEC_4U | _PAGE_L_4U | _PAGE_W_4U);
2823 	if (tlb_type == hypervisor)
2824 		val = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2825 		       page_cache4v_flag | _PAGE_P_4V |
2826 		       _PAGE_EXEC_4V | _PAGE_W_4V);
2827 
2828 	return val | paddr;
2829 }
2830 
2831 /* If not locked, zap it. */
2832 void __flush_tlb_all(void)
2833 {
2834 	unsigned long pstate;
2835 	int i;
2836 
2837 	__asm__ __volatile__("flushw\n\t"
2838 			     "rdpr	%%pstate, %0\n\t"
2839 			     "wrpr	%0, %1, %%pstate"
2840 			     : "=r" (pstate)
2841 			     : "i" (PSTATE_IE));
2842 	if (tlb_type == hypervisor) {
2843 		sun4v_mmu_demap_all();
2844 	} else if (tlb_type == spitfire) {
2845 		for (i = 0; i < 64; i++) {
2846 			/* Spitfire Errata #32 workaround */
2847 			/* NOTE: Always runs on spitfire, so no
2848 			 *       cheetah+ page size encodings.
2849 			 */
2850 			__asm__ __volatile__("stxa	%0, [%1] %2\n\t"
2851 					     "flush	%%g6"
2852 					     : /* No outputs */
2853 					     : "r" (0),
2854 					     "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2855 
2856 			if (!(spitfire_get_dtlb_data(i) & _PAGE_L_4U)) {
2857 				__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2858 						     "membar #Sync"
2859 						     : /* no outputs */
2860 						     : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
2861 				spitfire_put_dtlb_data(i, 0x0UL);
2862 			}
2863 
2864 			/* Spitfire Errata #32 workaround */
2865 			/* NOTE: Always runs on spitfire, so no
2866 			 *       cheetah+ page size encodings.
2867 			 */
2868 			__asm__ __volatile__("stxa	%0, [%1] %2\n\t"
2869 					     "flush	%%g6"
2870 					     : /* No outputs */
2871 					     : "r" (0),
2872 					     "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2873 
2874 			if (!(spitfire_get_itlb_data(i) & _PAGE_L_4U)) {
2875 				__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2876 						     "membar #Sync"
2877 						     : /* no outputs */
2878 						     : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU));
2879 				spitfire_put_itlb_data(i, 0x0UL);
2880 			}
2881 		}
2882 	} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
2883 		cheetah_flush_dtlb_all();
2884 		cheetah_flush_itlb_all();
2885 	}
2886 	__asm__ __volatile__("wrpr	%0, 0, %%pstate"
2887 			     : : "r" (pstate));
2888 }
2889 
2890 pte_t *pte_alloc_one_kernel(struct mm_struct *mm)
2891 {
2892 	struct page *page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2893 	pte_t *pte = NULL;
2894 
2895 	if (page)
2896 		pte = (pte_t *) page_address(page);
2897 
2898 	return pte;
2899 }
2900 
2901 pgtable_t pte_alloc_one(struct mm_struct *mm)
2902 {
2903 	struct page *page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2904 	if (!page)
2905 		return NULL;
2906 	if (!pgtable_pte_page_ctor(page)) {
2907 		free_unref_page(page);
2908 		return NULL;
2909 	}
2910 	return (pte_t *) page_address(page);
2911 }
2912 
2913 void pte_free_kernel(struct mm_struct *mm, pte_t *pte)
2914 {
2915 	free_page((unsigned long)pte);
2916 }
2917 
2918 static void __pte_free(pgtable_t pte)
2919 {
2920 	struct page *page = virt_to_page(pte);
2921 
2922 	pgtable_pte_page_dtor(page);
2923 	__free_page(page);
2924 }
2925 
2926 void pte_free(struct mm_struct *mm, pgtable_t pte)
2927 {
2928 	__pte_free(pte);
2929 }
2930 
2931 void pgtable_free(void *table, bool is_page)
2932 {
2933 	if (is_page)
2934 		__pte_free(table);
2935 	else
2936 		kmem_cache_free(pgtable_cache, table);
2937 }
2938 
2939 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2940 void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr,
2941 			  pmd_t *pmd)
2942 {
2943 	unsigned long pte, flags;
2944 	struct mm_struct *mm;
2945 	pmd_t entry = *pmd;
2946 
2947 	if (!pmd_large(entry) || !pmd_young(entry))
2948 		return;
2949 
2950 	pte = pmd_val(entry);
2951 
2952 	/* Don't insert a non-valid PMD into the TSB, we'll deadlock.  */
2953 	if (!(pte & _PAGE_VALID))
2954 		return;
2955 
2956 	/* We are fabricating 8MB pages using 4MB real hw pages.  */
2957 	pte |= (addr & (1UL << REAL_HPAGE_SHIFT));
2958 
2959 	mm = vma->vm_mm;
2960 
2961 	spin_lock_irqsave(&mm->context.lock, flags);
2962 
2963 	if (mm->context.tsb_block[MM_TSB_HUGE].tsb != NULL)
2964 		__update_mmu_tsb_insert(mm, MM_TSB_HUGE, REAL_HPAGE_SHIFT,
2965 					addr, pte);
2966 
2967 	spin_unlock_irqrestore(&mm->context.lock, flags);
2968 }
2969 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2970 
2971 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
2972 static void context_reload(void *__data)
2973 {
2974 	struct mm_struct *mm = __data;
2975 
2976 	if (mm == current->mm)
2977 		load_secondary_context(mm);
2978 }
2979 
2980 void hugetlb_setup(struct pt_regs *regs)
2981 {
2982 	struct mm_struct *mm = current->mm;
2983 	struct tsb_config *tp;
2984 
2985 	if (faulthandler_disabled() || !mm) {
2986 		const struct exception_table_entry *entry;
2987 
2988 		entry = search_exception_tables(regs->tpc);
2989 		if (entry) {
2990 			regs->tpc = entry->fixup;
2991 			regs->tnpc = regs->tpc + 4;
2992 			return;
2993 		}
2994 		pr_alert("Unexpected HugeTLB setup in atomic context.\n");
2995 		die_if_kernel("HugeTSB in atomic", regs);
2996 	}
2997 
2998 	tp = &mm->context.tsb_block[MM_TSB_HUGE];
2999 	if (likely(tp->tsb == NULL))
3000 		tsb_grow(mm, MM_TSB_HUGE, 0);
3001 
3002 	tsb_context_switch(mm);
3003 	smp_tsb_sync(mm);
3004 
3005 	/* On UltraSPARC-III+ and later, configure the second half of
3006 	 * the Data-TLB for huge pages.
3007 	 */
3008 	if (tlb_type == cheetah_plus) {
3009 		bool need_context_reload = false;
3010 		unsigned long ctx;
3011 
3012 		spin_lock_irq(&ctx_alloc_lock);
3013 		ctx = mm->context.sparc64_ctx_val;
3014 		ctx &= ~CTX_PGSZ_MASK;
3015 		ctx |= CTX_PGSZ_BASE << CTX_PGSZ0_SHIFT;
3016 		ctx |= CTX_PGSZ_HUGE << CTX_PGSZ1_SHIFT;
3017 
3018 		if (ctx != mm->context.sparc64_ctx_val) {
3019 			/* When changing the page size fields, we
3020 			 * must perform a context flush so that no
3021 			 * stale entries match.  This flush must
3022 			 * occur with the original context register
3023 			 * settings.
3024 			 */
3025 			do_flush_tlb_mm(mm);
3026 
3027 			/* Reload the context register of all processors
3028 			 * also executing in this address space.
3029 			 */
3030 			mm->context.sparc64_ctx_val = ctx;
3031 			need_context_reload = true;
3032 		}
3033 		spin_unlock_irq(&ctx_alloc_lock);
3034 
3035 		if (need_context_reload)
3036 			on_each_cpu(context_reload, mm, 0);
3037 	}
3038 }
3039 #endif
3040 
3041 static struct resource code_resource = {
3042 	.name	= "Kernel code",
3043 	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
3044 };
3045 
3046 static struct resource data_resource = {
3047 	.name	= "Kernel data",
3048 	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
3049 };
3050 
3051 static struct resource bss_resource = {
3052 	.name	= "Kernel bss",
3053 	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
3054 };
3055 
3056 static inline resource_size_t compute_kern_paddr(void *addr)
3057 {
3058 	return (resource_size_t) (addr - KERNBASE + kern_base);
3059 }
3060 
3061 static void __init kernel_lds_init(void)
3062 {
3063 	code_resource.start = compute_kern_paddr(_text);
3064 	code_resource.end   = compute_kern_paddr(_etext - 1);
3065 	data_resource.start = compute_kern_paddr(_etext);
3066 	data_resource.end   = compute_kern_paddr(_edata - 1);
3067 	bss_resource.start  = compute_kern_paddr(__bss_start);
3068 	bss_resource.end    = compute_kern_paddr(_end - 1);
3069 }
3070 
3071 static int __init report_memory(void)
3072 {
3073 	int i;
3074 	struct resource *res;
3075 
3076 	kernel_lds_init();
3077 
3078 	for (i = 0; i < pavail_ents; i++) {
3079 		res = kzalloc(sizeof(struct resource), GFP_KERNEL);
3080 
3081 		if (!res) {
3082 			pr_warn("Failed to allocate source.\n");
3083 			break;
3084 		}
3085 
3086 		res->name = "System RAM";
3087 		res->start = pavail[i].phys_addr;
3088 		res->end = pavail[i].phys_addr + pavail[i].reg_size - 1;
3089 		res->flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM;
3090 
3091 		if (insert_resource(&iomem_resource, res) < 0) {
3092 			pr_warn("Resource insertion failed.\n");
3093 			break;
3094 		}
3095 
3096 		insert_resource(res, &code_resource);
3097 		insert_resource(res, &data_resource);
3098 		insert_resource(res, &bss_resource);
3099 	}
3100 
3101 	return 0;
3102 }
3103 arch_initcall(report_memory);
3104 
3105 #ifdef CONFIG_SMP
3106 #define do_flush_tlb_kernel_range	smp_flush_tlb_kernel_range
3107 #else
3108 #define do_flush_tlb_kernel_range	__flush_tlb_kernel_range
3109 #endif
3110 
3111 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
3112 {
3113 	if (start < HI_OBP_ADDRESS && end > LOW_OBP_ADDRESS) {
3114 		if (start < LOW_OBP_ADDRESS) {
3115 			flush_tsb_kernel_range(start, LOW_OBP_ADDRESS);
3116 			do_flush_tlb_kernel_range(start, LOW_OBP_ADDRESS);
3117 		}
3118 		if (end > HI_OBP_ADDRESS) {
3119 			flush_tsb_kernel_range(HI_OBP_ADDRESS, end);
3120 			do_flush_tlb_kernel_range(HI_OBP_ADDRESS, end);
3121 		}
3122 	} else {
3123 		flush_tsb_kernel_range(start, end);
3124 		do_flush_tlb_kernel_range(start, end);
3125 	}
3126 }
3127 
3128 void copy_user_highpage(struct page *to, struct page *from,
3129 	unsigned long vaddr, struct vm_area_struct *vma)
3130 {
3131 	char *vfrom, *vto;
3132 
3133 	vfrom = kmap_atomic(from);
3134 	vto = kmap_atomic(to);
3135 	copy_user_page(vto, vfrom, vaddr, to);
3136 	kunmap_atomic(vto);
3137 	kunmap_atomic(vfrom);
3138 
3139 	/* If this page has ADI enabled, copy over any ADI tags
3140 	 * as well
3141 	 */
3142 	if (vma->vm_flags & VM_SPARC_ADI) {
3143 		unsigned long pfrom, pto, i, adi_tag;
3144 
3145 		pfrom = page_to_phys(from);
3146 		pto = page_to_phys(to);
3147 
3148 		for (i = pfrom; i < (pfrom + PAGE_SIZE); i += adi_blksize()) {
3149 			asm volatile("ldxa [%1] %2, %0\n\t"
3150 					: "=r" (adi_tag)
3151 					:  "r" (i), "i" (ASI_MCD_REAL));
3152 			asm volatile("stxa %0, [%1] %2\n\t"
3153 					:
3154 					: "r" (adi_tag), "r" (pto),
3155 					  "i" (ASI_MCD_REAL));
3156 			pto += adi_blksize();
3157 		}
3158 		asm volatile("membar #Sync\n\t");
3159 	}
3160 }
3161 EXPORT_SYMBOL(copy_user_highpage);
3162 
3163 void copy_highpage(struct page *to, struct page *from)
3164 {
3165 	char *vfrom, *vto;
3166 
3167 	vfrom = kmap_atomic(from);
3168 	vto = kmap_atomic(to);
3169 	copy_page(vto, vfrom);
3170 	kunmap_atomic(vto);
3171 	kunmap_atomic(vfrom);
3172 
3173 	/* If this platform is ADI enabled, copy any ADI tags
3174 	 * as well
3175 	 */
3176 	if (adi_capable()) {
3177 		unsigned long pfrom, pto, i, adi_tag;
3178 
3179 		pfrom = page_to_phys(from);
3180 		pto = page_to_phys(to);
3181 
3182 		for (i = pfrom; i < (pfrom + PAGE_SIZE); i += adi_blksize()) {
3183 			asm volatile("ldxa [%1] %2, %0\n\t"
3184 					: "=r" (adi_tag)
3185 					:  "r" (i), "i" (ASI_MCD_REAL));
3186 			asm volatile("stxa %0, [%1] %2\n\t"
3187 					:
3188 					: "r" (adi_tag), "r" (pto),
3189 					  "i" (ASI_MCD_REAL));
3190 			pto += adi_blksize();
3191 		}
3192 		asm volatile("membar #Sync\n\t");
3193 	}
3194 }
3195 EXPORT_SYMBOL(copy_highpage);
3196