1 /* 2 * arch/sparc64/mm/init.c 3 * 4 * Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu) 5 * Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz) 6 */ 7 8 #include <linux/module.h> 9 #include <linux/kernel.h> 10 #include <linux/sched.h> 11 #include <linux/string.h> 12 #include <linux/init.h> 13 #include <linux/bootmem.h> 14 #include <linux/mm.h> 15 #include <linux/hugetlb.h> 16 #include <linux/initrd.h> 17 #include <linux/swap.h> 18 #include <linux/pagemap.h> 19 #include <linux/poison.h> 20 #include <linux/fs.h> 21 #include <linux/seq_file.h> 22 #include <linux/kprobes.h> 23 #include <linux/cache.h> 24 #include <linux/sort.h> 25 #include <linux/percpu.h> 26 #include <linux/memblock.h> 27 #include <linux/mmzone.h> 28 #include <linux/gfp.h> 29 30 #include <asm/head.h> 31 #include <asm/page.h> 32 #include <asm/pgalloc.h> 33 #include <asm/pgtable.h> 34 #include <asm/oplib.h> 35 #include <asm/iommu.h> 36 #include <asm/io.h> 37 #include <asm/uaccess.h> 38 #include <asm/mmu_context.h> 39 #include <asm/tlbflush.h> 40 #include <asm/dma.h> 41 #include <asm/starfire.h> 42 #include <asm/tlb.h> 43 #include <asm/spitfire.h> 44 #include <asm/sections.h> 45 #include <asm/tsb.h> 46 #include <asm/hypervisor.h> 47 #include <asm/prom.h> 48 #include <asm/mdesc.h> 49 #include <asm/cpudata.h> 50 #include <asm/irq.h> 51 52 #include "init_64.h" 53 54 unsigned long kern_linear_pte_xor[4] __read_mostly; 55 56 /* A bitmap, two bits for every 256MB of physical memory. These two 57 * bits determine what page size we use for kernel linear 58 * translations. They form an index into kern_linear_pte_xor[]. The 59 * value in the indexed slot is XOR'd with the TLB miss virtual 60 * address to form the resulting TTE. The mapping is: 61 * 62 * 0 ==> 4MB 63 * 1 ==> 256MB 64 * 2 ==> 2GB 65 * 3 ==> 16GB 66 * 67 * All sun4v chips support 256MB pages. Only SPARC-T4 and later 68 * support 2GB pages, and hopefully future cpus will support the 16GB 69 * pages as well. For slots 2 and 3, we encode a 256MB TTE xor there 70 * if these larger page sizes are not supported by the cpu. 71 * 72 * It would be nice to determine this from the machine description 73 * 'cpu' properties, but we need to have this table setup before the 74 * MDESC is initialized. 75 */ 76 unsigned long kpte_linear_bitmap[KPTE_BITMAP_BYTES / sizeof(unsigned long)]; 77 78 #ifndef CONFIG_DEBUG_PAGEALLOC 79 /* A special kernel TSB for 4MB, 256MB, 2GB and 16GB linear mappings. 80 * Space is allocated for this right after the trap table in 81 * arch/sparc64/kernel/head.S 82 */ 83 extern struct tsb swapper_4m_tsb[KERNEL_TSB4M_NENTRIES]; 84 #endif 85 86 static unsigned long cpu_pgsz_mask; 87 88 #define MAX_BANKS 32 89 90 static struct linux_prom64_registers pavail[MAX_BANKS]; 91 static int pavail_ents; 92 93 static int cmp_p64(const void *a, const void *b) 94 { 95 const struct linux_prom64_registers *x = a, *y = b; 96 97 if (x->phys_addr > y->phys_addr) 98 return 1; 99 if (x->phys_addr < y->phys_addr) 100 return -1; 101 return 0; 102 } 103 104 static void __init read_obp_memory(const char *property, 105 struct linux_prom64_registers *regs, 106 int *num_ents) 107 { 108 phandle node = prom_finddevice("/memory"); 109 int prop_size = prom_getproplen(node, property); 110 int ents, ret, i; 111 112 ents = prop_size / sizeof(struct linux_prom64_registers); 113 if (ents > MAX_BANKS) { 114 prom_printf("The machine has more %s property entries than " 115 "this kernel can support (%d).\n", 116 property, MAX_BANKS); 117 prom_halt(); 118 } 119 120 ret = prom_getproperty(node, property, (char *) regs, prop_size); 121 if (ret == -1) { 122 prom_printf("Couldn't get %s property from /memory.\n", 123 property); 124 prom_halt(); 125 } 126 127 /* Sanitize what we got from the firmware, by page aligning 128 * everything. 129 */ 130 for (i = 0; i < ents; i++) { 131 unsigned long base, size; 132 133 base = regs[i].phys_addr; 134 size = regs[i].reg_size; 135 136 size &= PAGE_MASK; 137 if (base & ~PAGE_MASK) { 138 unsigned long new_base = PAGE_ALIGN(base); 139 140 size -= new_base - base; 141 if ((long) size < 0L) 142 size = 0UL; 143 base = new_base; 144 } 145 if (size == 0UL) { 146 /* If it is empty, simply get rid of it. 147 * This simplifies the logic of the other 148 * functions that process these arrays. 149 */ 150 memmove(®s[i], ®s[i + 1], 151 (ents - i - 1) * sizeof(regs[0])); 152 i--; 153 ents--; 154 continue; 155 } 156 regs[i].phys_addr = base; 157 regs[i].reg_size = size; 158 } 159 160 *num_ents = ents; 161 162 sort(regs, ents, sizeof(struct linux_prom64_registers), 163 cmp_p64, NULL); 164 } 165 166 unsigned long sparc64_valid_addr_bitmap[VALID_ADDR_BITMAP_BYTES / 167 sizeof(unsigned long)]; 168 EXPORT_SYMBOL(sparc64_valid_addr_bitmap); 169 170 /* Kernel physical address base and size in bytes. */ 171 unsigned long kern_base __read_mostly; 172 unsigned long kern_size __read_mostly; 173 174 /* Initial ramdisk setup */ 175 extern unsigned long sparc_ramdisk_image64; 176 extern unsigned int sparc_ramdisk_image; 177 extern unsigned int sparc_ramdisk_size; 178 179 struct page *mem_map_zero __read_mostly; 180 EXPORT_SYMBOL(mem_map_zero); 181 182 unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly; 183 184 unsigned long sparc64_kern_pri_context __read_mostly; 185 unsigned long sparc64_kern_pri_nuc_bits __read_mostly; 186 unsigned long sparc64_kern_sec_context __read_mostly; 187 188 int num_kernel_image_mappings; 189 190 #ifdef CONFIG_DEBUG_DCFLUSH 191 atomic_t dcpage_flushes = ATOMIC_INIT(0); 192 #ifdef CONFIG_SMP 193 atomic_t dcpage_flushes_xcall = ATOMIC_INIT(0); 194 #endif 195 #endif 196 197 inline void flush_dcache_page_impl(struct page *page) 198 { 199 BUG_ON(tlb_type == hypervisor); 200 #ifdef CONFIG_DEBUG_DCFLUSH 201 atomic_inc(&dcpage_flushes); 202 #endif 203 204 #ifdef DCACHE_ALIASING_POSSIBLE 205 __flush_dcache_page(page_address(page), 206 ((tlb_type == spitfire) && 207 page_mapping(page) != NULL)); 208 #else 209 if (page_mapping(page) != NULL && 210 tlb_type == spitfire) 211 __flush_icache_page(__pa(page_address(page))); 212 #endif 213 } 214 215 #define PG_dcache_dirty PG_arch_1 216 #define PG_dcache_cpu_shift 32UL 217 #define PG_dcache_cpu_mask \ 218 ((1UL<<ilog2(roundup_pow_of_two(NR_CPUS)))-1UL) 219 220 #define dcache_dirty_cpu(page) \ 221 (((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask) 222 223 static inline void set_dcache_dirty(struct page *page, int this_cpu) 224 { 225 unsigned long mask = this_cpu; 226 unsigned long non_cpu_bits; 227 228 non_cpu_bits = ~(PG_dcache_cpu_mask << PG_dcache_cpu_shift); 229 mask = (mask << PG_dcache_cpu_shift) | (1UL << PG_dcache_dirty); 230 231 __asm__ __volatile__("1:\n\t" 232 "ldx [%2], %%g7\n\t" 233 "and %%g7, %1, %%g1\n\t" 234 "or %%g1, %0, %%g1\n\t" 235 "casx [%2], %%g7, %%g1\n\t" 236 "cmp %%g7, %%g1\n\t" 237 "bne,pn %%xcc, 1b\n\t" 238 " nop" 239 : /* no outputs */ 240 : "r" (mask), "r" (non_cpu_bits), "r" (&page->flags) 241 : "g1", "g7"); 242 } 243 244 static inline void clear_dcache_dirty_cpu(struct page *page, unsigned long cpu) 245 { 246 unsigned long mask = (1UL << PG_dcache_dirty); 247 248 __asm__ __volatile__("! test_and_clear_dcache_dirty\n" 249 "1:\n\t" 250 "ldx [%2], %%g7\n\t" 251 "srlx %%g7, %4, %%g1\n\t" 252 "and %%g1, %3, %%g1\n\t" 253 "cmp %%g1, %0\n\t" 254 "bne,pn %%icc, 2f\n\t" 255 " andn %%g7, %1, %%g1\n\t" 256 "casx [%2], %%g7, %%g1\n\t" 257 "cmp %%g7, %%g1\n\t" 258 "bne,pn %%xcc, 1b\n\t" 259 " nop\n" 260 "2:" 261 : /* no outputs */ 262 : "r" (cpu), "r" (mask), "r" (&page->flags), 263 "i" (PG_dcache_cpu_mask), 264 "i" (PG_dcache_cpu_shift) 265 : "g1", "g7"); 266 } 267 268 static inline void tsb_insert(struct tsb *ent, unsigned long tag, unsigned long pte) 269 { 270 unsigned long tsb_addr = (unsigned long) ent; 271 272 if (tlb_type == cheetah_plus || tlb_type == hypervisor) 273 tsb_addr = __pa(tsb_addr); 274 275 __tsb_insert(tsb_addr, tag, pte); 276 } 277 278 unsigned long _PAGE_ALL_SZ_BITS __read_mostly; 279 280 static void flush_dcache(unsigned long pfn) 281 { 282 struct page *page; 283 284 page = pfn_to_page(pfn); 285 if (page) { 286 unsigned long pg_flags; 287 288 pg_flags = page->flags; 289 if (pg_flags & (1UL << PG_dcache_dirty)) { 290 int cpu = ((pg_flags >> PG_dcache_cpu_shift) & 291 PG_dcache_cpu_mask); 292 int this_cpu = get_cpu(); 293 294 /* This is just to optimize away some function calls 295 * in the SMP case. 296 */ 297 if (cpu == this_cpu) 298 flush_dcache_page_impl(page); 299 else 300 smp_flush_dcache_page_impl(page, cpu); 301 302 clear_dcache_dirty_cpu(page, cpu); 303 304 put_cpu(); 305 } 306 } 307 } 308 309 /* mm->context.lock must be held */ 310 static void __update_mmu_tsb_insert(struct mm_struct *mm, unsigned long tsb_index, 311 unsigned long tsb_hash_shift, unsigned long address, 312 unsigned long tte) 313 { 314 struct tsb *tsb = mm->context.tsb_block[tsb_index].tsb; 315 unsigned long tag; 316 317 if (unlikely(!tsb)) 318 return; 319 320 tsb += ((address >> tsb_hash_shift) & 321 (mm->context.tsb_block[tsb_index].tsb_nentries - 1UL)); 322 tag = (address >> 22UL); 323 tsb_insert(tsb, tag, tte); 324 } 325 326 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE) 327 static inline bool is_hugetlb_pte(pte_t pte) 328 { 329 if ((tlb_type == hypervisor && 330 (pte_val(pte) & _PAGE_SZALL_4V) == _PAGE_SZHUGE_4V) || 331 (tlb_type != hypervisor && 332 (pte_val(pte) & _PAGE_SZALL_4U) == _PAGE_SZHUGE_4U)) 333 return true; 334 return false; 335 } 336 #endif 337 338 void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t *ptep) 339 { 340 struct mm_struct *mm; 341 unsigned long flags; 342 pte_t pte = *ptep; 343 344 if (tlb_type != hypervisor) { 345 unsigned long pfn = pte_pfn(pte); 346 347 if (pfn_valid(pfn)) 348 flush_dcache(pfn); 349 } 350 351 mm = vma->vm_mm; 352 353 spin_lock_irqsave(&mm->context.lock, flags); 354 355 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE) 356 if (mm->context.huge_pte_count && is_hugetlb_pte(pte)) 357 __update_mmu_tsb_insert(mm, MM_TSB_HUGE, REAL_HPAGE_SHIFT, 358 address, pte_val(pte)); 359 else 360 #endif 361 __update_mmu_tsb_insert(mm, MM_TSB_BASE, PAGE_SHIFT, 362 address, pte_val(pte)); 363 364 spin_unlock_irqrestore(&mm->context.lock, flags); 365 } 366 367 void flush_dcache_page(struct page *page) 368 { 369 struct address_space *mapping; 370 int this_cpu; 371 372 if (tlb_type == hypervisor) 373 return; 374 375 /* Do not bother with the expensive D-cache flush if it 376 * is merely the zero page. The 'bigcore' testcase in GDB 377 * causes this case to run millions of times. 378 */ 379 if (page == ZERO_PAGE(0)) 380 return; 381 382 this_cpu = get_cpu(); 383 384 mapping = page_mapping(page); 385 if (mapping && !mapping_mapped(mapping)) { 386 int dirty = test_bit(PG_dcache_dirty, &page->flags); 387 if (dirty) { 388 int dirty_cpu = dcache_dirty_cpu(page); 389 390 if (dirty_cpu == this_cpu) 391 goto out; 392 smp_flush_dcache_page_impl(page, dirty_cpu); 393 } 394 set_dcache_dirty(page, this_cpu); 395 } else { 396 /* We could delay the flush for the !page_mapping 397 * case too. But that case is for exec env/arg 398 * pages and those are %99 certainly going to get 399 * faulted into the tlb (and thus flushed) anyways. 400 */ 401 flush_dcache_page_impl(page); 402 } 403 404 out: 405 put_cpu(); 406 } 407 EXPORT_SYMBOL(flush_dcache_page); 408 409 void __kprobes flush_icache_range(unsigned long start, unsigned long end) 410 { 411 /* Cheetah and Hypervisor platform cpus have coherent I-cache. */ 412 if (tlb_type == spitfire) { 413 unsigned long kaddr; 414 415 /* This code only runs on Spitfire cpus so this is 416 * why we can assume _PAGE_PADDR_4U. 417 */ 418 for (kaddr = start; kaddr < end; kaddr += PAGE_SIZE) { 419 unsigned long paddr, mask = _PAGE_PADDR_4U; 420 421 if (kaddr >= PAGE_OFFSET) 422 paddr = kaddr & mask; 423 else { 424 pgd_t *pgdp = pgd_offset_k(kaddr); 425 pud_t *pudp = pud_offset(pgdp, kaddr); 426 pmd_t *pmdp = pmd_offset(pudp, kaddr); 427 pte_t *ptep = pte_offset_kernel(pmdp, kaddr); 428 429 paddr = pte_val(*ptep) & mask; 430 } 431 __flush_icache_page(paddr); 432 } 433 } 434 } 435 EXPORT_SYMBOL(flush_icache_range); 436 437 void mmu_info(struct seq_file *m) 438 { 439 static const char *pgsz_strings[] = { 440 "8K", "64K", "512K", "4MB", "32MB", 441 "256MB", "2GB", "16GB", 442 }; 443 int i, printed; 444 445 if (tlb_type == cheetah) 446 seq_printf(m, "MMU Type\t: Cheetah\n"); 447 else if (tlb_type == cheetah_plus) 448 seq_printf(m, "MMU Type\t: Cheetah+\n"); 449 else if (tlb_type == spitfire) 450 seq_printf(m, "MMU Type\t: Spitfire\n"); 451 else if (tlb_type == hypervisor) 452 seq_printf(m, "MMU Type\t: Hypervisor (sun4v)\n"); 453 else 454 seq_printf(m, "MMU Type\t: ???\n"); 455 456 seq_printf(m, "MMU PGSZs\t: "); 457 printed = 0; 458 for (i = 0; i < ARRAY_SIZE(pgsz_strings); i++) { 459 if (cpu_pgsz_mask & (1UL << i)) { 460 seq_printf(m, "%s%s", 461 printed ? "," : "", pgsz_strings[i]); 462 printed++; 463 } 464 } 465 seq_putc(m, '\n'); 466 467 #ifdef CONFIG_DEBUG_DCFLUSH 468 seq_printf(m, "DCPageFlushes\t: %d\n", 469 atomic_read(&dcpage_flushes)); 470 #ifdef CONFIG_SMP 471 seq_printf(m, "DCPageFlushesXC\t: %d\n", 472 atomic_read(&dcpage_flushes_xcall)); 473 #endif /* CONFIG_SMP */ 474 #endif /* CONFIG_DEBUG_DCFLUSH */ 475 } 476 477 struct linux_prom_translation prom_trans[512] __read_mostly; 478 unsigned int prom_trans_ents __read_mostly; 479 480 unsigned long kern_locked_tte_data; 481 482 /* The obp translations are saved based on 8k pagesize, since obp can 483 * use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS -> 484 * HI_OBP_ADDRESS range are handled in ktlb.S. 485 */ 486 static inline int in_obp_range(unsigned long vaddr) 487 { 488 return (vaddr >= LOW_OBP_ADDRESS && 489 vaddr < HI_OBP_ADDRESS); 490 } 491 492 static int cmp_ptrans(const void *a, const void *b) 493 { 494 const struct linux_prom_translation *x = a, *y = b; 495 496 if (x->virt > y->virt) 497 return 1; 498 if (x->virt < y->virt) 499 return -1; 500 return 0; 501 } 502 503 /* Read OBP translations property into 'prom_trans[]'. */ 504 static void __init read_obp_translations(void) 505 { 506 int n, node, ents, first, last, i; 507 508 node = prom_finddevice("/virtual-memory"); 509 n = prom_getproplen(node, "translations"); 510 if (unlikely(n == 0 || n == -1)) { 511 prom_printf("prom_mappings: Couldn't get size.\n"); 512 prom_halt(); 513 } 514 if (unlikely(n > sizeof(prom_trans))) { 515 prom_printf("prom_mappings: Size %d is too big.\n", n); 516 prom_halt(); 517 } 518 519 if ((n = prom_getproperty(node, "translations", 520 (char *)&prom_trans[0], 521 sizeof(prom_trans))) == -1) { 522 prom_printf("prom_mappings: Couldn't get property.\n"); 523 prom_halt(); 524 } 525 526 n = n / sizeof(struct linux_prom_translation); 527 528 ents = n; 529 530 sort(prom_trans, ents, sizeof(struct linux_prom_translation), 531 cmp_ptrans, NULL); 532 533 /* Now kick out all the non-OBP entries. */ 534 for (i = 0; i < ents; i++) { 535 if (in_obp_range(prom_trans[i].virt)) 536 break; 537 } 538 first = i; 539 for (; i < ents; i++) { 540 if (!in_obp_range(prom_trans[i].virt)) 541 break; 542 } 543 last = i; 544 545 for (i = 0; i < (last - first); i++) { 546 struct linux_prom_translation *src = &prom_trans[i + first]; 547 struct linux_prom_translation *dest = &prom_trans[i]; 548 549 *dest = *src; 550 } 551 for (; i < ents; i++) { 552 struct linux_prom_translation *dest = &prom_trans[i]; 553 dest->virt = dest->size = dest->data = 0x0UL; 554 } 555 556 prom_trans_ents = last - first; 557 558 if (tlb_type == spitfire) { 559 /* Clear diag TTE bits. */ 560 for (i = 0; i < prom_trans_ents; i++) 561 prom_trans[i].data &= ~0x0003fe0000000000UL; 562 } 563 564 /* Force execute bit on. */ 565 for (i = 0; i < prom_trans_ents; i++) 566 prom_trans[i].data |= (tlb_type == hypervisor ? 567 _PAGE_EXEC_4V : _PAGE_EXEC_4U); 568 } 569 570 static void __init hypervisor_tlb_lock(unsigned long vaddr, 571 unsigned long pte, 572 unsigned long mmu) 573 { 574 unsigned long ret = sun4v_mmu_map_perm_addr(vaddr, 0, pte, mmu); 575 576 if (ret != 0) { 577 prom_printf("hypervisor_tlb_lock[%lx:%x:%lx:%lx]: " 578 "errors with %lx\n", vaddr, 0, pte, mmu, ret); 579 prom_halt(); 580 } 581 } 582 583 static unsigned long kern_large_tte(unsigned long paddr); 584 585 static void __init remap_kernel(void) 586 { 587 unsigned long phys_page, tte_vaddr, tte_data; 588 int i, tlb_ent = sparc64_highest_locked_tlbent(); 589 590 tte_vaddr = (unsigned long) KERNBASE; 591 phys_page = (prom_boot_mapping_phys_low >> 22UL) << 22UL; 592 tte_data = kern_large_tte(phys_page); 593 594 kern_locked_tte_data = tte_data; 595 596 /* Now lock us into the TLBs via Hypervisor or OBP. */ 597 if (tlb_type == hypervisor) { 598 for (i = 0; i < num_kernel_image_mappings; i++) { 599 hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU); 600 hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU); 601 tte_vaddr += 0x400000; 602 tte_data += 0x400000; 603 } 604 } else { 605 for (i = 0; i < num_kernel_image_mappings; i++) { 606 prom_dtlb_load(tlb_ent - i, tte_data, tte_vaddr); 607 prom_itlb_load(tlb_ent - i, tte_data, tte_vaddr); 608 tte_vaddr += 0x400000; 609 tte_data += 0x400000; 610 } 611 sparc64_highest_unlocked_tlb_ent = tlb_ent - i; 612 } 613 if (tlb_type == cheetah_plus) { 614 sparc64_kern_pri_context = (CTX_CHEETAH_PLUS_CTX0 | 615 CTX_CHEETAH_PLUS_NUC); 616 sparc64_kern_pri_nuc_bits = CTX_CHEETAH_PLUS_NUC; 617 sparc64_kern_sec_context = CTX_CHEETAH_PLUS_CTX0; 618 } 619 } 620 621 622 static void __init inherit_prom_mappings(void) 623 { 624 /* Now fixup OBP's idea about where we really are mapped. */ 625 printk("Remapping the kernel... "); 626 remap_kernel(); 627 printk("done.\n"); 628 } 629 630 void prom_world(int enter) 631 { 632 if (!enter) 633 set_fs(get_fs()); 634 635 __asm__ __volatile__("flushw"); 636 } 637 638 void __flush_dcache_range(unsigned long start, unsigned long end) 639 { 640 unsigned long va; 641 642 if (tlb_type == spitfire) { 643 int n = 0; 644 645 for (va = start; va < end; va += 32) { 646 spitfire_put_dcache_tag(va & 0x3fe0, 0x0); 647 if (++n >= 512) 648 break; 649 } 650 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) { 651 start = __pa(start); 652 end = __pa(end); 653 for (va = start; va < end; va += 32) 654 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t" 655 "membar #Sync" 656 : /* no outputs */ 657 : "r" (va), 658 "i" (ASI_DCACHE_INVALIDATE)); 659 } 660 } 661 EXPORT_SYMBOL(__flush_dcache_range); 662 663 /* get_new_mmu_context() uses "cache + 1". */ 664 DEFINE_SPINLOCK(ctx_alloc_lock); 665 unsigned long tlb_context_cache = CTX_FIRST_VERSION - 1; 666 #define MAX_CTX_NR (1UL << CTX_NR_BITS) 667 #define CTX_BMAP_SLOTS BITS_TO_LONGS(MAX_CTX_NR) 668 DECLARE_BITMAP(mmu_context_bmap, MAX_CTX_NR); 669 670 /* Caller does TLB context flushing on local CPU if necessary. 671 * The caller also ensures that CTX_VALID(mm->context) is false. 672 * 673 * We must be careful about boundary cases so that we never 674 * let the user have CTX 0 (nucleus) or we ever use a CTX 675 * version of zero (and thus NO_CONTEXT would not be caught 676 * by version mis-match tests in mmu_context.h). 677 * 678 * Always invoked with interrupts disabled. 679 */ 680 void get_new_mmu_context(struct mm_struct *mm) 681 { 682 unsigned long ctx, new_ctx; 683 unsigned long orig_pgsz_bits; 684 int new_version; 685 686 spin_lock(&ctx_alloc_lock); 687 orig_pgsz_bits = (mm->context.sparc64_ctx_val & CTX_PGSZ_MASK); 688 ctx = (tlb_context_cache + 1) & CTX_NR_MASK; 689 new_ctx = find_next_zero_bit(mmu_context_bmap, 1 << CTX_NR_BITS, ctx); 690 new_version = 0; 691 if (new_ctx >= (1 << CTX_NR_BITS)) { 692 new_ctx = find_next_zero_bit(mmu_context_bmap, ctx, 1); 693 if (new_ctx >= ctx) { 694 int i; 695 new_ctx = (tlb_context_cache & CTX_VERSION_MASK) + 696 CTX_FIRST_VERSION; 697 if (new_ctx == 1) 698 new_ctx = CTX_FIRST_VERSION; 699 700 /* Don't call memset, for 16 entries that's just 701 * plain silly... 702 */ 703 mmu_context_bmap[0] = 3; 704 mmu_context_bmap[1] = 0; 705 mmu_context_bmap[2] = 0; 706 mmu_context_bmap[3] = 0; 707 for (i = 4; i < CTX_BMAP_SLOTS; i += 4) { 708 mmu_context_bmap[i + 0] = 0; 709 mmu_context_bmap[i + 1] = 0; 710 mmu_context_bmap[i + 2] = 0; 711 mmu_context_bmap[i + 3] = 0; 712 } 713 new_version = 1; 714 goto out; 715 } 716 } 717 mmu_context_bmap[new_ctx>>6] |= (1UL << (new_ctx & 63)); 718 new_ctx |= (tlb_context_cache & CTX_VERSION_MASK); 719 out: 720 tlb_context_cache = new_ctx; 721 mm->context.sparc64_ctx_val = new_ctx | orig_pgsz_bits; 722 spin_unlock(&ctx_alloc_lock); 723 724 if (unlikely(new_version)) 725 smp_new_mmu_context_version(); 726 } 727 728 static int numa_enabled = 1; 729 static int numa_debug; 730 731 static int __init early_numa(char *p) 732 { 733 if (!p) 734 return 0; 735 736 if (strstr(p, "off")) 737 numa_enabled = 0; 738 739 if (strstr(p, "debug")) 740 numa_debug = 1; 741 742 return 0; 743 } 744 early_param("numa", early_numa); 745 746 #define numadbg(f, a...) \ 747 do { if (numa_debug) \ 748 printk(KERN_INFO f, ## a); \ 749 } while (0) 750 751 static void __init find_ramdisk(unsigned long phys_base) 752 { 753 #ifdef CONFIG_BLK_DEV_INITRD 754 if (sparc_ramdisk_image || sparc_ramdisk_image64) { 755 unsigned long ramdisk_image; 756 757 /* Older versions of the bootloader only supported a 758 * 32-bit physical address for the ramdisk image 759 * location, stored at sparc_ramdisk_image. Newer 760 * SILO versions set sparc_ramdisk_image to zero and 761 * provide a full 64-bit physical address at 762 * sparc_ramdisk_image64. 763 */ 764 ramdisk_image = sparc_ramdisk_image; 765 if (!ramdisk_image) 766 ramdisk_image = sparc_ramdisk_image64; 767 768 /* Another bootloader quirk. The bootloader normalizes 769 * the physical address to KERNBASE, so we have to 770 * factor that back out and add in the lowest valid 771 * physical page address to get the true physical address. 772 */ 773 ramdisk_image -= KERNBASE; 774 ramdisk_image += phys_base; 775 776 numadbg("Found ramdisk at physical address 0x%lx, size %u\n", 777 ramdisk_image, sparc_ramdisk_size); 778 779 initrd_start = ramdisk_image; 780 initrd_end = ramdisk_image + sparc_ramdisk_size; 781 782 memblock_reserve(initrd_start, sparc_ramdisk_size); 783 784 initrd_start += PAGE_OFFSET; 785 initrd_end += PAGE_OFFSET; 786 } 787 #endif 788 } 789 790 struct node_mem_mask { 791 unsigned long mask; 792 unsigned long val; 793 }; 794 static struct node_mem_mask node_masks[MAX_NUMNODES]; 795 static int num_node_masks; 796 797 int numa_cpu_lookup_table[NR_CPUS]; 798 cpumask_t numa_cpumask_lookup_table[MAX_NUMNODES]; 799 800 #ifdef CONFIG_NEED_MULTIPLE_NODES 801 802 struct mdesc_mblock { 803 u64 base; 804 u64 size; 805 u64 offset; /* RA-to-PA */ 806 }; 807 static struct mdesc_mblock *mblocks; 808 static int num_mblocks; 809 810 static unsigned long ra_to_pa(unsigned long addr) 811 { 812 int i; 813 814 for (i = 0; i < num_mblocks; i++) { 815 struct mdesc_mblock *m = &mblocks[i]; 816 817 if (addr >= m->base && 818 addr < (m->base + m->size)) { 819 addr += m->offset; 820 break; 821 } 822 } 823 return addr; 824 } 825 826 static int find_node(unsigned long addr) 827 { 828 int i; 829 830 addr = ra_to_pa(addr); 831 for (i = 0; i < num_node_masks; i++) { 832 struct node_mem_mask *p = &node_masks[i]; 833 834 if ((addr & p->mask) == p->val) 835 return i; 836 } 837 return -1; 838 } 839 840 static u64 memblock_nid_range(u64 start, u64 end, int *nid) 841 { 842 *nid = find_node(start); 843 start += PAGE_SIZE; 844 while (start < end) { 845 int n = find_node(start); 846 847 if (n != *nid) 848 break; 849 start += PAGE_SIZE; 850 } 851 852 if (start > end) 853 start = end; 854 855 return start; 856 } 857 #endif 858 859 /* This must be invoked after performing all of the necessary 860 * memblock_set_node() calls for 'nid'. We need to be able to get 861 * correct data from get_pfn_range_for_nid(). 862 */ 863 static void __init allocate_node_data(int nid) 864 { 865 struct pglist_data *p; 866 unsigned long start_pfn, end_pfn; 867 #ifdef CONFIG_NEED_MULTIPLE_NODES 868 unsigned long paddr; 869 870 paddr = memblock_alloc_try_nid(sizeof(struct pglist_data), SMP_CACHE_BYTES, nid); 871 if (!paddr) { 872 prom_printf("Cannot allocate pglist_data for nid[%d]\n", nid); 873 prom_halt(); 874 } 875 NODE_DATA(nid) = __va(paddr); 876 memset(NODE_DATA(nid), 0, sizeof(struct pglist_data)); 877 878 NODE_DATA(nid)->node_id = nid; 879 #endif 880 881 p = NODE_DATA(nid); 882 883 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); 884 p->node_start_pfn = start_pfn; 885 p->node_spanned_pages = end_pfn - start_pfn; 886 } 887 888 static void init_node_masks_nonnuma(void) 889 { 890 int i; 891 892 numadbg("Initializing tables for non-numa.\n"); 893 894 node_masks[0].mask = node_masks[0].val = 0; 895 num_node_masks = 1; 896 897 for (i = 0; i < NR_CPUS; i++) 898 numa_cpu_lookup_table[i] = 0; 899 900 cpumask_setall(&numa_cpumask_lookup_table[0]); 901 } 902 903 #ifdef CONFIG_NEED_MULTIPLE_NODES 904 struct pglist_data *node_data[MAX_NUMNODES]; 905 906 EXPORT_SYMBOL(numa_cpu_lookup_table); 907 EXPORT_SYMBOL(numa_cpumask_lookup_table); 908 EXPORT_SYMBOL(node_data); 909 910 struct mdesc_mlgroup { 911 u64 node; 912 u64 latency; 913 u64 match; 914 u64 mask; 915 }; 916 static struct mdesc_mlgroup *mlgroups; 917 static int num_mlgroups; 918 919 static int scan_pio_for_cfg_handle(struct mdesc_handle *md, u64 pio, 920 u32 cfg_handle) 921 { 922 u64 arc; 923 924 mdesc_for_each_arc(arc, md, pio, MDESC_ARC_TYPE_FWD) { 925 u64 target = mdesc_arc_target(md, arc); 926 const u64 *val; 927 928 val = mdesc_get_property(md, target, 929 "cfg-handle", NULL); 930 if (val && *val == cfg_handle) 931 return 0; 932 } 933 return -ENODEV; 934 } 935 936 static int scan_arcs_for_cfg_handle(struct mdesc_handle *md, u64 grp, 937 u32 cfg_handle) 938 { 939 u64 arc, candidate, best_latency = ~(u64)0; 940 941 candidate = MDESC_NODE_NULL; 942 mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) { 943 u64 target = mdesc_arc_target(md, arc); 944 const char *name = mdesc_node_name(md, target); 945 const u64 *val; 946 947 if (strcmp(name, "pio-latency-group")) 948 continue; 949 950 val = mdesc_get_property(md, target, "latency", NULL); 951 if (!val) 952 continue; 953 954 if (*val < best_latency) { 955 candidate = target; 956 best_latency = *val; 957 } 958 } 959 960 if (candidate == MDESC_NODE_NULL) 961 return -ENODEV; 962 963 return scan_pio_for_cfg_handle(md, candidate, cfg_handle); 964 } 965 966 int of_node_to_nid(struct device_node *dp) 967 { 968 const struct linux_prom64_registers *regs; 969 struct mdesc_handle *md; 970 u32 cfg_handle; 971 int count, nid; 972 u64 grp; 973 974 /* This is the right thing to do on currently supported 975 * SUN4U NUMA platforms as well, as the PCI controller does 976 * not sit behind any particular memory controller. 977 */ 978 if (!mlgroups) 979 return -1; 980 981 regs = of_get_property(dp, "reg", NULL); 982 if (!regs) 983 return -1; 984 985 cfg_handle = (regs->phys_addr >> 32UL) & 0x0fffffff; 986 987 md = mdesc_grab(); 988 989 count = 0; 990 nid = -1; 991 mdesc_for_each_node_by_name(md, grp, "group") { 992 if (!scan_arcs_for_cfg_handle(md, grp, cfg_handle)) { 993 nid = count; 994 break; 995 } 996 count++; 997 } 998 999 mdesc_release(md); 1000 1001 return nid; 1002 } 1003 1004 static void __init add_node_ranges(void) 1005 { 1006 struct memblock_region *reg; 1007 1008 for_each_memblock(memory, reg) { 1009 unsigned long size = reg->size; 1010 unsigned long start, end; 1011 1012 start = reg->base; 1013 end = start + size; 1014 while (start < end) { 1015 unsigned long this_end; 1016 int nid; 1017 1018 this_end = memblock_nid_range(start, end, &nid); 1019 1020 numadbg("Setting memblock NUMA node nid[%d] " 1021 "start[%lx] end[%lx]\n", 1022 nid, start, this_end); 1023 1024 memblock_set_node(start, this_end - start, nid); 1025 start = this_end; 1026 } 1027 } 1028 } 1029 1030 static int __init grab_mlgroups(struct mdesc_handle *md) 1031 { 1032 unsigned long paddr; 1033 int count = 0; 1034 u64 node; 1035 1036 mdesc_for_each_node_by_name(md, node, "memory-latency-group") 1037 count++; 1038 if (!count) 1039 return -ENOENT; 1040 1041 paddr = memblock_alloc(count * sizeof(struct mdesc_mlgroup), 1042 SMP_CACHE_BYTES); 1043 if (!paddr) 1044 return -ENOMEM; 1045 1046 mlgroups = __va(paddr); 1047 num_mlgroups = count; 1048 1049 count = 0; 1050 mdesc_for_each_node_by_name(md, node, "memory-latency-group") { 1051 struct mdesc_mlgroup *m = &mlgroups[count++]; 1052 const u64 *val; 1053 1054 m->node = node; 1055 1056 val = mdesc_get_property(md, node, "latency", NULL); 1057 m->latency = *val; 1058 val = mdesc_get_property(md, node, "address-match", NULL); 1059 m->match = *val; 1060 val = mdesc_get_property(md, node, "address-mask", NULL); 1061 m->mask = *val; 1062 1063 numadbg("MLGROUP[%d]: node[%llx] latency[%llx] " 1064 "match[%llx] mask[%llx]\n", 1065 count - 1, m->node, m->latency, m->match, m->mask); 1066 } 1067 1068 return 0; 1069 } 1070 1071 static int __init grab_mblocks(struct mdesc_handle *md) 1072 { 1073 unsigned long paddr; 1074 int count = 0; 1075 u64 node; 1076 1077 mdesc_for_each_node_by_name(md, node, "mblock") 1078 count++; 1079 if (!count) 1080 return -ENOENT; 1081 1082 paddr = memblock_alloc(count * sizeof(struct mdesc_mblock), 1083 SMP_CACHE_BYTES); 1084 if (!paddr) 1085 return -ENOMEM; 1086 1087 mblocks = __va(paddr); 1088 num_mblocks = count; 1089 1090 count = 0; 1091 mdesc_for_each_node_by_name(md, node, "mblock") { 1092 struct mdesc_mblock *m = &mblocks[count++]; 1093 const u64 *val; 1094 1095 val = mdesc_get_property(md, node, "base", NULL); 1096 m->base = *val; 1097 val = mdesc_get_property(md, node, "size", NULL); 1098 m->size = *val; 1099 val = mdesc_get_property(md, node, 1100 "address-congruence-offset", NULL); 1101 1102 /* The address-congruence-offset property is optional. 1103 * Explicity zero it be identifty this. 1104 */ 1105 if (val) 1106 m->offset = *val; 1107 else 1108 m->offset = 0UL; 1109 1110 numadbg("MBLOCK[%d]: base[%llx] size[%llx] offset[%llx]\n", 1111 count - 1, m->base, m->size, m->offset); 1112 } 1113 1114 return 0; 1115 } 1116 1117 static void __init numa_parse_mdesc_group_cpus(struct mdesc_handle *md, 1118 u64 grp, cpumask_t *mask) 1119 { 1120 u64 arc; 1121 1122 cpumask_clear(mask); 1123 1124 mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_BACK) { 1125 u64 target = mdesc_arc_target(md, arc); 1126 const char *name = mdesc_node_name(md, target); 1127 const u64 *id; 1128 1129 if (strcmp(name, "cpu")) 1130 continue; 1131 id = mdesc_get_property(md, target, "id", NULL); 1132 if (*id < nr_cpu_ids) 1133 cpumask_set_cpu(*id, mask); 1134 } 1135 } 1136 1137 static struct mdesc_mlgroup * __init find_mlgroup(u64 node) 1138 { 1139 int i; 1140 1141 for (i = 0; i < num_mlgroups; i++) { 1142 struct mdesc_mlgroup *m = &mlgroups[i]; 1143 if (m->node == node) 1144 return m; 1145 } 1146 return NULL; 1147 } 1148 1149 static int __init numa_attach_mlgroup(struct mdesc_handle *md, u64 grp, 1150 int index) 1151 { 1152 struct mdesc_mlgroup *candidate = NULL; 1153 u64 arc, best_latency = ~(u64)0; 1154 struct node_mem_mask *n; 1155 1156 mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) { 1157 u64 target = mdesc_arc_target(md, arc); 1158 struct mdesc_mlgroup *m = find_mlgroup(target); 1159 if (!m) 1160 continue; 1161 if (m->latency < best_latency) { 1162 candidate = m; 1163 best_latency = m->latency; 1164 } 1165 } 1166 if (!candidate) 1167 return -ENOENT; 1168 1169 if (num_node_masks != index) { 1170 printk(KERN_ERR "Inconsistent NUMA state, " 1171 "index[%d] != num_node_masks[%d]\n", 1172 index, num_node_masks); 1173 return -EINVAL; 1174 } 1175 1176 n = &node_masks[num_node_masks++]; 1177 1178 n->mask = candidate->mask; 1179 n->val = candidate->match; 1180 1181 numadbg("NUMA NODE[%d]: mask[%lx] val[%lx] (latency[%llx])\n", 1182 index, n->mask, n->val, candidate->latency); 1183 1184 return 0; 1185 } 1186 1187 static int __init numa_parse_mdesc_group(struct mdesc_handle *md, u64 grp, 1188 int index) 1189 { 1190 cpumask_t mask; 1191 int cpu; 1192 1193 numa_parse_mdesc_group_cpus(md, grp, &mask); 1194 1195 for_each_cpu(cpu, &mask) 1196 numa_cpu_lookup_table[cpu] = index; 1197 cpumask_copy(&numa_cpumask_lookup_table[index], &mask); 1198 1199 if (numa_debug) { 1200 printk(KERN_INFO "NUMA GROUP[%d]: cpus [ ", index); 1201 for_each_cpu(cpu, &mask) 1202 printk("%d ", cpu); 1203 printk("]\n"); 1204 } 1205 1206 return numa_attach_mlgroup(md, grp, index); 1207 } 1208 1209 static int __init numa_parse_mdesc(void) 1210 { 1211 struct mdesc_handle *md = mdesc_grab(); 1212 int i, err, count; 1213 u64 node; 1214 1215 node = mdesc_node_by_name(md, MDESC_NODE_NULL, "latency-groups"); 1216 if (node == MDESC_NODE_NULL) { 1217 mdesc_release(md); 1218 return -ENOENT; 1219 } 1220 1221 err = grab_mblocks(md); 1222 if (err < 0) 1223 goto out; 1224 1225 err = grab_mlgroups(md); 1226 if (err < 0) 1227 goto out; 1228 1229 count = 0; 1230 mdesc_for_each_node_by_name(md, node, "group") { 1231 err = numa_parse_mdesc_group(md, node, count); 1232 if (err < 0) 1233 break; 1234 count++; 1235 } 1236 1237 add_node_ranges(); 1238 1239 for (i = 0; i < num_node_masks; i++) { 1240 allocate_node_data(i); 1241 node_set_online(i); 1242 } 1243 1244 err = 0; 1245 out: 1246 mdesc_release(md); 1247 return err; 1248 } 1249 1250 static int __init numa_parse_jbus(void) 1251 { 1252 unsigned long cpu, index; 1253 1254 /* NUMA node id is encoded in bits 36 and higher, and there is 1255 * a 1-to-1 mapping from CPU ID to NUMA node ID. 1256 */ 1257 index = 0; 1258 for_each_present_cpu(cpu) { 1259 numa_cpu_lookup_table[cpu] = index; 1260 cpumask_copy(&numa_cpumask_lookup_table[index], cpumask_of(cpu)); 1261 node_masks[index].mask = ~((1UL << 36UL) - 1UL); 1262 node_masks[index].val = cpu << 36UL; 1263 1264 index++; 1265 } 1266 num_node_masks = index; 1267 1268 add_node_ranges(); 1269 1270 for (index = 0; index < num_node_masks; index++) { 1271 allocate_node_data(index); 1272 node_set_online(index); 1273 } 1274 1275 return 0; 1276 } 1277 1278 static int __init numa_parse_sun4u(void) 1279 { 1280 if (tlb_type == cheetah || tlb_type == cheetah_plus) { 1281 unsigned long ver; 1282 1283 __asm__ ("rdpr %%ver, %0" : "=r" (ver)); 1284 if ((ver >> 32UL) == __JALAPENO_ID || 1285 (ver >> 32UL) == __SERRANO_ID) 1286 return numa_parse_jbus(); 1287 } 1288 return -1; 1289 } 1290 1291 static int __init bootmem_init_numa(void) 1292 { 1293 int err = -1; 1294 1295 numadbg("bootmem_init_numa()\n"); 1296 1297 if (numa_enabled) { 1298 if (tlb_type == hypervisor) 1299 err = numa_parse_mdesc(); 1300 else 1301 err = numa_parse_sun4u(); 1302 } 1303 return err; 1304 } 1305 1306 #else 1307 1308 static int bootmem_init_numa(void) 1309 { 1310 return -1; 1311 } 1312 1313 #endif 1314 1315 static void __init bootmem_init_nonnuma(void) 1316 { 1317 unsigned long top_of_ram = memblock_end_of_DRAM(); 1318 unsigned long total_ram = memblock_phys_mem_size(); 1319 1320 numadbg("bootmem_init_nonnuma()\n"); 1321 1322 printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n", 1323 top_of_ram, total_ram); 1324 printk(KERN_INFO "Memory hole size: %ldMB\n", 1325 (top_of_ram - total_ram) >> 20); 1326 1327 init_node_masks_nonnuma(); 1328 memblock_set_node(0, (phys_addr_t)ULLONG_MAX, 0); 1329 allocate_node_data(0); 1330 node_set_online(0); 1331 } 1332 1333 static unsigned long __init bootmem_init(unsigned long phys_base) 1334 { 1335 unsigned long end_pfn; 1336 1337 end_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT; 1338 max_pfn = max_low_pfn = end_pfn; 1339 min_low_pfn = (phys_base >> PAGE_SHIFT); 1340 1341 if (bootmem_init_numa() < 0) 1342 bootmem_init_nonnuma(); 1343 1344 /* Dump memblock with node info. */ 1345 memblock_dump_all(); 1346 1347 /* XXX cpu notifier XXX */ 1348 1349 sparse_memory_present_with_active_regions(MAX_NUMNODES); 1350 sparse_init(); 1351 1352 return end_pfn; 1353 } 1354 1355 static struct linux_prom64_registers pall[MAX_BANKS] __initdata; 1356 static int pall_ents __initdata; 1357 1358 #ifdef CONFIG_DEBUG_PAGEALLOC 1359 static unsigned long __ref kernel_map_range(unsigned long pstart, 1360 unsigned long pend, pgprot_t prot) 1361 { 1362 unsigned long vstart = PAGE_OFFSET + pstart; 1363 unsigned long vend = PAGE_OFFSET + pend; 1364 unsigned long alloc_bytes = 0UL; 1365 1366 if ((vstart & ~PAGE_MASK) || (vend & ~PAGE_MASK)) { 1367 prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n", 1368 vstart, vend); 1369 prom_halt(); 1370 } 1371 1372 while (vstart < vend) { 1373 unsigned long this_end, paddr = __pa(vstart); 1374 pgd_t *pgd = pgd_offset_k(vstart); 1375 pud_t *pud; 1376 pmd_t *pmd; 1377 pte_t *pte; 1378 1379 pud = pud_offset(pgd, vstart); 1380 if (pud_none(*pud)) { 1381 pmd_t *new; 1382 1383 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE); 1384 alloc_bytes += PAGE_SIZE; 1385 pud_populate(&init_mm, pud, new); 1386 } 1387 1388 pmd = pmd_offset(pud, vstart); 1389 if (!pmd_present(*pmd)) { 1390 pte_t *new; 1391 1392 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE); 1393 alloc_bytes += PAGE_SIZE; 1394 pmd_populate_kernel(&init_mm, pmd, new); 1395 } 1396 1397 pte = pte_offset_kernel(pmd, vstart); 1398 this_end = (vstart + PMD_SIZE) & PMD_MASK; 1399 if (this_end > vend) 1400 this_end = vend; 1401 1402 while (vstart < this_end) { 1403 pte_val(*pte) = (paddr | pgprot_val(prot)); 1404 1405 vstart += PAGE_SIZE; 1406 paddr += PAGE_SIZE; 1407 pte++; 1408 } 1409 } 1410 1411 return alloc_bytes; 1412 } 1413 1414 extern unsigned int kvmap_linear_patch[1]; 1415 #endif /* CONFIG_DEBUG_PAGEALLOC */ 1416 1417 static void __init kpte_set_val(unsigned long index, unsigned long val) 1418 { 1419 unsigned long *ptr = kpte_linear_bitmap; 1420 1421 val <<= ((index % (BITS_PER_LONG / 2)) * 2); 1422 ptr += (index / (BITS_PER_LONG / 2)); 1423 1424 *ptr |= val; 1425 } 1426 1427 static const unsigned long kpte_shift_min = 28; /* 256MB */ 1428 static const unsigned long kpte_shift_max = 34; /* 16GB */ 1429 static const unsigned long kpte_shift_incr = 3; 1430 1431 static unsigned long kpte_mark_using_shift(unsigned long start, unsigned long end, 1432 unsigned long shift) 1433 { 1434 unsigned long size = (1UL << shift); 1435 unsigned long mask = (size - 1UL); 1436 unsigned long remains = end - start; 1437 unsigned long val; 1438 1439 if (remains < size || (start & mask)) 1440 return start; 1441 1442 /* VAL maps: 1443 * 1444 * shift 28 --> kern_linear_pte_xor index 1 1445 * shift 31 --> kern_linear_pte_xor index 2 1446 * shift 34 --> kern_linear_pte_xor index 3 1447 */ 1448 val = ((shift - kpte_shift_min) / kpte_shift_incr) + 1; 1449 1450 remains &= ~mask; 1451 if (shift != kpte_shift_max) 1452 remains = size; 1453 1454 while (remains) { 1455 unsigned long index = start >> kpte_shift_min; 1456 1457 kpte_set_val(index, val); 1458 1459 start += 1UL << kpte_shift_min; 1460 remains -= 1UL << kpte_shift_min; 1461 } 1462 1463 return start; 1464 } 1465 1466 static void __init mark_kpte_bitmap(unsigned long start, unsigned long end) 1467 { 1468 unsigned long smallest_size, smallest_mask; 1469 unsigned long s; 1470 1471 smallest_size = (1UL << kpte_shift_min); 1472 smallest_mask = (smallest_size - 1UL); 1473 1474 while (start < end) { 1475 unsigned long orig_start = start; 1476 1477 for (s = kpte_shift_max; s >= kpte_shift_min; s -= kpte_shift_incr) { 1478 start = kpte_mark_using_shift(start, end, s); 1479 1480 if (start != orig_start) 1481 break; 1482 } 1483 1484 if (start == orig_start) 1485 start = (start + smallest_size) & ~smallest_mask; 1486 } 1487 } 1488 1489 static void __init init_kpte_bitmap(void) 1490 { 1491 unsigned long i; 1492 1493 for (i = 0; i < pall_ents; i++) { 1494 unsigned long phys_start, phys_end; 1495 1496 phys_start = pall[i].phys_addr; 1497 phys_end = phys_start + pall[i].reg_size; 1498 1499 mark_kpte_bitmap(phys_start, phys_end); 1500 } 1501 } 1502 1503 static void __init kernel_physical_mapping_init(void) 1504 { 1505 #ifdef CONFIG_DEBUG_PAGEALLOC 1506 unsigned long i, mem_alloced = 0UL; 1507 1508 for (i = 0; i < pall_ents; i++) { 1509 unsigned long phys_start, phys_end; 1510 1511 phys_start = pall[i].phys_addr; 1512 phys_end = phys_start + pall[i].reg_size; 1513 1514 mem_alloced += kernel_map_range(phys_start, phys_end, 1515 PAGE_KERNEL); 1516 } 1517 1518 printk("Allocated %ld bytes for kernel page tables.\n", 1519 mem_alloced); 1520 1521 kvmap_linear_patch[0] = 0x01000000; /* nop */ 1522 flushi(&kvmap_linear_patch[0]); 1523 1524 __flush_tlb_all(); 1525 #endif 1526 } 1527 1528 #ifdef CONFIG_DEBUG_PAGEALLOC 1529 void kernel_map_pages(struct page *page, int numpages, int enable) 1530 { 1531 unsigned long phys_start = page_to_pfn(page) << PAGE_SHIFT; 1532 unsigned long phys_end = phys_start + (numpages * PAGE_SIZE); 1533 1534 kernel_map_range(phys_start, phys_end, 1535 (enable ? PAGE_KERNEL : __pgprot(0))); 1536 1537 flush_tsb_kernel_range(PAGE_OFFSET + phys_start, 1538 PAGE_OFFSET + phys_end); 1539 1540 /* we should perform an IPI and flush all tlbs, 1541 * but that can deadlock->flush only current cpu. 1542 */ 1543 __flush_tlb_kernel_range(PAGE_OFFSET + phys_start, 1544 PAGE_OFFSET + phys_end); 1545 } 1546 #endif 1547 1548 unsigned long __init find_ecache_flush_span(unsigned long size) 1549 { 1550 int i; 1551 1552 for (i = 0; i < pavail_ents; i++) { 1553 if (pavail[i].reg_size >= size) 1554 return pavail[i].phys_addr; 1555 } 1556 1557 return ~0UL; 1558 } 1559 1560 unsigned long PAGE_OFFSET; 1561 EXPORT_SYMBOL(PAGE_OFFSET); 1562 1563 static void __init page_offset_shift_patch_one(unsigned int *insn, unsigned long phys_bits) 1564 { 1565 unsigned long final_shift; 1566 unsigned int val = *insn; 1567 unsigned int cnt; 1568 1569 /* We are patching in ilog2(max_supported_phys_address), and 1570 * we are doing so in a manner similar to a relocation addend. 1571 * That is, we are adding the shift value to whatever value 1572 * is in the shift instruction count field already. 1573 */ 1574 cnt = (val & 0x3f); 1575 val &= ~0x3f; 1576 1577 /* If we are trying to shift >= 64 bits, clear the destination 1578 * register. This can happen when phys_bits ends up being equal 1579 * to MAX_PHYS_ADDRESS_BITS. 1580 */ 1581 final_shift = (cnt + (64 - phys_bits)); 1582 if (final_shift >= 64) { 1583 unsigned int rd = (val >> 25) & 0x1f; 1584 1585 val = 0x80100000 | (rd << 25); 1586 } else { 1587 val |= final_shift; 1588 } 1589 *insn = val; 1590 1591 __asm__ __volatile__("flush %0" 1592 : /* no outputs */ 1593 : "r" (insn)); 1594 } 1595 1596 static void __init page_offset_shift_patch(unsigned long phys_bits) 1597 { 1598 extern unsigned int __page_offset_shift_patch; 1599 extern unsigned int __page_offset_shift_patch_end; 1600 unsigned int *p; 1601 1602 p = &__page_offset_shift_patch; 1603 while (p < &__page_offset_shift_patch_end) { 1604 unsigned int *insn = (unsigned int *)(unsigned long)*p; 1605 1606 page_offset_shift_patch_one(insn, phys_bits); 1607 1608 p++; 1609 } 1610 } 1611 1612 static void __init setup_page_offset(void) 1613 { 1614 unsigned long max_phys_bits = 40; 1615 1616 if (tlb_type == cheetah || tlb_type == cheetah_plus) { 1617 max_phys_bits = 42; 1618 } else if (tlb_type == hypervisor) { 1619 switch (sun4v_chip_type) { 1620 case SUN4V_CHIP_NIAGARA1: 1621 case SUN4V_CHIP_NIAGARA2: 1622 max_phys_bits = 39; 1623 break; 1624 case SUN4V_CHIP_NIAGARA3: 1625 max_phys_bits = 43; 1626 break; 1627 case SUN4V_CHIP_NIAGARA4: 1628 case SUN4V_CHIP_NIAGARA5: 1629 case SUN4V_CHIP_SPARC64X: 1630 default: 1631 max_phys_bits = 47; 1632 break; 1633 } 1634 } 1635 1636 if (max_phys_bits > MAX_PHYS_ADDRESS_BITS) { 1637 prom_printf("MAX_PHYS_ADDRESS_BITS is too small, need %lu\n", 1638 max_phys_bits); 1639 prom_halt(); 1640 } 1641 1642 PAGE_OFFSET = PAGE_OFFSET_BY_BITS(max_phys_bits); 1643 1644 pr_info("PAGE_OFFSET is 0x%016lx (max_phys_bits == %lu)\n", 1645 PAGE_OFFSET, max_phys_bits); 1646 1647 page_offset_shift_patch(max_phys_bits); 1648 } 1649 1650 static void __init tsb_phys_patch(void) 1651 { 1652 struct tsb_ldquad_phys_patch_entry *pquad; 1653 struct tsb_phys_patch_entry *p; 1654 1655 pquad = &__tsb_ldquad_phys_patch; 1656 while (pquad < &__tsb_ldquad_phys_patch_end) { 1657 unsigned long addr = pquad->addr; 1658 1659 if (tlb_type == hypervisor) 1660 *(unsigned int *) addr = pquad->sun4v_insn; 1661 else 1662 *(unsigned int *) addr = pquad->sun4u_insn; 1663 wmb(); 1664 __asm__ __volatile__("flush %0" 1665 : /* no outputs */ 1666 : "r" (addr)); 1667 1668 pquad++; 1669 } 1670 1671 p = &__tsb_phys_patch; 1672 while (p < &__tsb_phys_patch_end) { 1673 unsigned long addr = p->addr; 1674 1675 *(unsigned int *) addr = p->insn; 1676 wmb(); 1677 __asm__ __volatile__("flush %0" 1678 : /* no outputs */ 1679 : "r" (addr)); 1680 1681 p++; 1682 } 1683 } 1684 1685 /* Don't mark as init, we give this to the Hypervisor. */ 1686 #ifndef CONFIG_DEBUG_PAGEALLOC 1687 #define NUM_KTSB_DESCR 2 1688 #else 1689 #define NUM_KTSB_DESCR 1 1690 #endif 1691 static struct hv_tsb_descr ktsb_descr[NUM_KTSB_DESCR]; 1692 extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES]; 1693 1694 static void patch_one_ktsb_phys(unsigned int *start, unsigned int *end, unsigned long pa) 1695 { 1696 pa >>= KTSB_PHYS_SHIFT; 1697 1698 while (start < end) { 1699 unsigned int *ia = (unsigned int *)(unsigned long)*start; 1700 1701 ia[0] = (ia[0] & ~0x3fffff) | (pa >> 10); 1702 __asm__ __volatile__("flush %0" : : "r" (ia)); 1703 1704 ia[1] = (ia[1] & ~0x3ff) | (pa & 0x3ff); 1705 __asm__ __volatile__("flush %0" : : "r" (ia + 1)); 1706 1707 start++; 1708 } 1709 } 1710 1711 static void ktsb_phys_patch(void) 1712 { 1713 extern unsigned int __swapper_tsb_phys_patch; 1714 extern unsigned int __swapper_tsb_phys_patch_end; 1715 unsigned long ktsb_pa; 1716 1717 ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE); 1718 patch_one_ktsb_phys(&__swapper_tsb_phys_patch, 1719 &__swapper_tsb_phys_patch_end, ktsb_pa); 1720 #ifndef CONFIG_DEBUG_PAGEALLOC 1721 { 1722 extern unsigned int __swapper_4m_tsb_phys_patch; 1723 extern unsigned int __swapper_4m_tsb_phys_patch_end; 1724 ktsb_pa = (kern_base + 1725 ((unsigned long)&swapper_4m_tsb[0] - KERNBASE)); 1726 patch_one_ktsb_phys(&__swapper_4m_tsb_phys_patch, 1727 &__swapper_4m_tsb_phys_patch_end, ktsb_pa); 1728 } 1729 #endif 1730 } 1731 1732 static void __init sun4v_ktsb_init(void) 1733 { 1734 unsigned long ktsb_pa; 1735 1736 /* First KTSB for PAGE_SIZE mappings. */ 1737 ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE); 1738 1739 switch (PAGE_SIZE) { 1740 case 8 * 1024: 1741 default: 1742 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_8K; 1743 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_8K; 1744 break; 1745 1746 case 64 * 1024: 1747 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_64K; 1748 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_64K; 1749 break; 1750 1751 case 512 * 1024: 1752 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_512K; 1753 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_512K; 1754 break; 1755 1756 case 4 * 1024 * 1024: 1757 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_4MB; 1758 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_4MB; 1759 break; 1760 } 1761 1762 ktsb_descr[0].assoc = 1; 1763 ktsb_descr[0].num_ttes = KERNEL_TSB_NENTRIES; 1764 ktsb_descr[0].ctx_idx = 0; 1765 ktsb_descr[0].tsb_base = ktsb_pa; 1766 ktsb_descr[0].resv = 0; 1767 1768 #ifndef CONFIG_DEBUG_PAGEALLOC 1769 /* Second KTSB for 4MB/256MB/2GB/16GB mappings. */ 1770 ktsb_pa = (kern_base + 1771 ((unsigned long)&swapper_4m_tsb[0] - KERNBASE)); 1772 1773 ktsb_descr[1].pgsz_idx = HV_PGSZ_IDX_4MB; 1774 ktsb_descr[1].pgsz_mask = ((HV_PGSZ_MASK_4MB | 1775 HV_PGSZ_MASK_256MB | 1776 HV_PGSZ_MASK_2GB | 1777 HV_PGSZ_MASK_16GB) & 1778 cpu_pgsz_mask); 1779 ktsb_descr[1].assoc = 1; 1780 ktsb_descr[1].num_ttes = KERNEL_TSB4M_NENTRIES; 1781 ktsb_descr[1].ctx_idx = 0; 1782 ktsb_descr[1].tsb_base = ktsb_pa; 1783 ktsb_descr[1].resv = 0; 1784 #endif 1785 } 1786 1787 void sun4v_ktsb_register(void) 1788 { 1789 unsigned long pa, ret; 1790 1791 pa = kern_base + ((unsigned long)&ktsb_descr[0] - KERNBASE); 1792 1793 ret = sun4v_mmu_tsb_ctx0(NUM_KTSB_DESCR, pa); 1794 if (ret != 0) { 1795 prom_printf("hypervisor_mmu_tsb_ctx0[%lx]: " 1796 "errors with %lx\n", pa, ret); 1797 prom_halt(); 1798 } 1799 } 1800 1801 static void __init sun4u_linear_pte_xor_finalize(void) 1802 { 1803 #ifndef CONFIG_DEBUG_PAGEALLOC 1804 /* This is where we would add Panther support for 1805 * 32MB and 256MB pages. 1806 */ 1807 #endif 1808 } 1809 1810 static void __init sun4v_linear_pte_xor_finalize(void) 1811 { 1812 #ifndef CONFIG_DEBUG_PAGEALLOC 1813 if (cpu_pgsz_mask & HV_PGSZ_MASK_256MB) { 1814 kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZ256MB_4V) ^ 1815 PAGE_OFFSET; 1816 kern_linear_pte_xor[1] |= (_PAGE_CP_4V | _PAGE_CV_4V | 1817 _PAGE_P_4V | _PAGE_W_4V); 1818 } else { 1819 kern_linear_pte_xor[1] = kern_linear_pte_xor[0]; 1820 } 1821 1822 if (cpu_pgsz_mask & HV_PGSZ_MASK_2GB) { 1823 kern_linear_pte_xor[2] = (_PAGE_VALID | _PAGE_SZ2GB_4V) ^ 1824 PAGE_OFFSET; 1825 kern_linear_pte_xor[2] |= (_PAGE_CP_4V | _PAGE_CV_4V | 1826 _PAGE_P_4V | _PAGE_W_4V); 1827 } else { 1828 kern_linear_pte_xor[2] = kern_linear_pte_xor[1]; 1829 } 1830 1831 if (cpu_pgsz_mask & HV_PGSZ_MASK_16GB) { 1832 kern_linear_pte_xor[3] = (_PAGE_VALID | _PAGE_SZ16GB_4V) ^ 1833 PAGE_OFFSET; 1834 kern_linear_pte_xor[3] |= (_PAGE_CP_4V | _PAGE_CV_4V | 1835 _PAGE_P_4V | _PAGE_W_4V); 1836 } else { 1837 kern_linear_pte_xor[3] = kern_linear_pte_xor[2]; 1838 } 1839 #endif 1840 } 1841 1842 /* paging_init() sets up the page tables */ 1843 1844 static unsigned long last_valid_pfn; 1845 pgd_t swapper_pg_dir[PTRS_PER_PGD]; 1846 1847 static void sun4u_pgprot_init(void); 1848 static void sun4v_pgprot_init(void); 1849 1850 void __init paging_init(void) 1851 { 1852 unsigned long end_pfn, shift, phys_base; 1853 unsigned long real_end, i; 1854 int node; 1855 1856 setup_page_offset(); 1857 1858 /* These build time checkes make sure that the dcache_dirty_cpu() 1859 * page->flags usage will work. 1860 * 1861 * When a page gets marked as dcache-dirty, we store the 1862 * cpu number starting at bit 32 in the page->flags. Also, 1863 * functions like clear_dcache_dirty_cpu use the cpu mask 1864 * in 13-bit signed-immediate instruction fields. 1865 */ 1866 1867 /* 1868 * Page flags must not reach into upper 32 bits that are used 1869 * for the cpu number 1870 */ 1871 BUILD_BUG_ON(NR_PAGEFLAGS > 32); 1872 1873 /* 1874 * The bit fields placed in the high range must not reach below 1875 * the 32 bit boundary. Otherwise we cannot place the cpu field 1876 * at the 32 bit boundary. 1877 */ 1878 BUILD_BUG_ON(SECTIONS_WIDTH + NODES_WIDTH + ZONES_WIDTH + 1879 ilog2(roundup_pow_of_two(NR_CPUS)) > 32); 1880 1881 BUILD_BUG_ON(NR_CPUS > 4096); 1882 1883 kern_base = (prom_boot_mapping_phys_low >> 22UL) << 22UL; 1884 kern_size = (unsigned long)&_end - (unsigned long)KERNBASE; 1885 1886 /* Invalidate both kernel TSBs. */ 1887 memset(swapper_tsb, 0x40, sizeof(swapper_tsb)); 1888 #ifndef CONFIG_DEBUG_PAGEALLOC 1889 memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb)); 1890 #endif 1891 1892 if (tlb_type == hypervisor) 1893 sun4v_pgprot_init(); 1894 else 1895 sun4u_pgprot_init(); 1896 1897 if (tlb_type == cheetah_plus || 1898 tlb_type == hypervisor) { 1899 tsb_phys_patch(); 1900 ktsb_phys_patch(); 1901 } 1902 1903 if (tlb_type == hypervisor) 1904 sun4v_patch_tlb_handlers(); 1905 1906 /* Find available physical memory... 1907 * 1908 * Read it twice in order to work around a bug in openfirmware. 1909 * The call to grab this table itself can cause openfirmware to 1910 * allocate memory, which in turn can take away some space from 1911 * the list of available memory. Reading it twice makes sure 1912 * we really do get the final value. 1913 */ 1914 read_obp_translations(); 1915 read_obp_memory("reg", &pall[0], &pall_ents); 1916 read_obp_memory("available", &pavail[0], &pavail_ents); 1917 read_obp_memory("available", &pavail[0], &pavail_ents); 1918 1919 phys_base = 0xffffffffffffffffUL; 1920 for (i = 0; i < pavail_ents; i++) { 1921 phys_base = min(phys_base, pavail[i].phys_addr); 1922 memblock_add(pavail[i].phys_addr, pavail[i].reg_size); 1923 } 1924 1925 memblock_reserve(kern_base, kern_size); 1926 1927 find_ramdisk(phys_base); 1928 1929 memblock_enforce_memory_limit(cmdline_memory_size); 1930 1931 memblock_allow_resize(); 1932 memblock_dump_all(); 1933 1934 set_bit(0, mmu_context_bmap); 1935 1936 shift = kern_base + PAGE_OFFSET - ((unsigned long)KERNBASE); 1937 1938 real_end = (unsigned long)_end; 1939 num_kernel_image_mappings = DIV_ROUND_UP(real_end - KERNBASE, 1 << 22); 1940 printk("Kernel: Using %d locked TLB entries for main kernel image.\n", 1941 num_kernel_image_mappings); 1942 1943 /* Set kernel pgd to upper alias so physical page computations 1944 * work. 1945 */ 1946 init_mm.pgd += ((shift) / (sizeof(pgd_t))); 1947 1948 memset(swapper_low_pmd_dir, 0, sizeof(swapper_low_pmd_dir)); 1949 1950 /* Now can init the kernel/bad page tables. */ 1951 pud_set(pud_offset(&swapper_pg_dir[0], 0), 1952 swapper_low_pmd_dir + (shift / sizeof(pgd_t))); 1953 1954 inherit_prom_mappings(); 1955 1956 init_kpte_bitmap(); 1957 1958 /* Ok, we can use our TLB miss and window trap handlers safely. */ 1959 setup_tba(); 1960 1961 __flush_tlb_all(); 1962 1963 prom_build_devicetree(); 1964 of_populate_present_mask(); 1965 #ifndef CONFIG_SMP 1966 of_fill_in_cpu_data(); 1967 #endif 1968 1969 if (tlb_type == hypervisor) { 1970 sun4v_mdesc_init(); 1971 mdesc_populate_present_mask(cpu_all_mask); 1972 #ifndef CONFIG_SMP 1973 mdesc_fill_in_cpu_data(cpu_all_mask); 1974 #endif 1975 mdesc_get_page_sizes(cpu_all_mask, &cpu_pgsz_mask); 1976 1977 sun4v_linear_pte_xor_finalize(); 1978 1979 sun4v_ktsb_init(); 1980 sun4v_ktsb_register(); 1981 } else { 1982 unsigned long impl, ver; 1983 1984 cpu_pgsz_mask = (HV_PGSZ_MASK_8K | HV_PGSZ_MASK_64K | 1985 HV_PGSZ_MASK_512K | HV_PGSZ_MASK_4MB); 1986 1987 __asm__ __volatile__("rdpr %%ver, %0" : "=r" (ver)); 1988 impl = ((ver >> 32) & 0xffff); 1989 if (impl == PANTHER_IMPL) 1990 cpu_pgsz_mask |= (HV_PGSZ_MASK_32MB | 1991 HV_PGSZ_MASK_256MB); 1992 1993 sun4u_linear_pte_xor_finalize(); 1994 } 1995 1996 /* Flush the TLBs and the 4M TSB so that the updated linear 1997 * pte XOR settings are realized for all mappings. 1998 */ 1999 __flush_tlb_all(); 2000 #ifndef CONFIG_DEBUG_PAGEALLOC 2001 memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb)); 2002 #endif 2003 __flush_tlb_all(); 2004 2005 /* Setup bootmem... */ 2006 last_valid_pfn = end_pfn = bootmem_init(phys_base); 2007 2008 /* Once the OF device tree and MDESC have been setup, we know 2009 * the list of possible cpus. Therefore we can allocate the 2010 * IRQ stacks. 2011 */ 2012 for_each_possible_cpu(i) { 2013 node = cpu_to_node(i); 2014 2015 softirq_stack[i] = __alloc_bootmem_node(NODE_DATA(node), 2016 THREAD_SIZE, 2017 THREAD_SIZE, 0); 2018 hardirq_stack[i] = __alloc_bootmem_node(NODE_DATA(node), 2019 THREAD_SIZE, 2020 THREAD_SIZE, 0); 2021 } 2022 2023 kernel_physical_mapping_init(); 2024 2025 { 2026 unsigned long max_zone_pfns[MAX_NR_ZONES]; 2027 2028 memset(max_zone_pfns, 0, sizeof(max_zone_pfns)); 2029 2030 max_zone_pfns[ZONE_NORMAL] = end_pfn; 2031 2032 free_area_init_nodes(max_zone_pfns); 2033 } 2034 2035 printk("Booting Linux...\n"); 2036 } 2037 2038 int page_in_phys_avail(unsigned long paddr) 2039 { 2040 int i; 2041 2042 paddr &= PAGE_MASK; 2043 2044 for (i = 0; i < pavail_ents; i++) { 2045 unsigned long start, end; 2046 2047 start = pavail[i].phys_addr; 2048 end = start + pavail[i].reg_size; 2049 2050 if (paddr >= start && paddr < end) 2051 return 1; 2052 } 2053 if (paddr >= kern_base && paddr < (kern_base + kern_size)) 2054 return 1; 2055 #ifdef CONFIG_BLK_DEV_INITRD 2056 if (paddr >= __pa(initrd_start) && 2057 paddr < __pa(PAGE_ALIGN(initrd_end))) 2058 return 1; 2059 #endif 2060 2061 return 0; 2062 } 2063 2064 static struct linux_prom64_registers pavail_rescan[MAX_BANKS] __initdata; 2065 static int pavail_rescan_ents __initdata; 2066 2067 /* Certain OBP calls, such as fetching "available" properties, can 2068 * claim physical memory. So, along with initializing the valid 2069 * address bitmap, what we do here is refetch the physical available 2070 * memory list again, and make sure it provides at least as much 2071 * memory as 'pavail' does. 2072 */ 2073 static void __init setup_valid_addr_bitmap_from_pavail(unsigned long *bitmap) 2074 { 2075 int i; 2076 2077 read_obp_memory("available", &pavail_rescan[0], &pavail_rescan_ents); 2078 2079 for (i = 0; i < pavail_ents; i++) { 2080 unsigned long old_start, old_end; 2081 2082 old_start = pavail[i].phys_addr; 2083 old_end = old_start + pavail[i].reg_size; 2084 while (old_start < old_end) { 2085 int n; 2086 2087 for (n = 0; n < pavail_rescan_ents; n++) { 2088 unsigned long new_start, new_end; 2089 2090 new_start = pavail_rescan[n].phys_addr; 2091 new_end = new_start + 2092 pavail_rescan[n].reg_size; 2093 2094 if (new_start <= old_start && 2095 new_end >= (old_start + PAGE_SIZE)) { 2096 set_bit(old_start >> 22, bitmap); 2097 goto do_next_page; 2098 } 2099 } 2100 2101 prom_printf("mem_init: Lost memory in pavail\n"); 2102 prom_printf("mem_init: OLD start[%lx] size[%lx]\n", 2103 pavail[i].phys_addr, 2104 pavail[i].reg_size); 2105 prom_printf("mem_init: NEW start[%lx] size[%lx]\n", 2106 pavail_rescan[i].phys_addr, 2107 pavail_rescan[i].reg_size); 2108 prom_printf("mem_init: Cannot continue, aborting.\n"); 2109 prom_halt(); 2110 2111 do_next_page: 2112 old_start += PAGE_SIZE; 2113 } 2114 } 2115 } 2116 2117 static void __init patch_tlb_miss_handler_bitmap(void) 2118 { 2119 extern unsigned int valid_addr_bitmap_insn[]; 2120 extern unsigned int valid_addr_bitmap_patch[]; 2121 2122 valid_addr_bitmap_insn[1] = valid_addr_bitmap_patch[1]; 2123 mb(); 2124 valid_addr_bitmap_insn[0] = valid_addr_bitmap_patch[0]; 2125 flushi(&valid_addr_bitmap_insn[0]); 2126 } 2127 2128 static void __init register_page_bootmem_info(void) 2129 { 2130 #ifdef CONFIG_NEED_MULTIPLE_NODES 2131 int i; 2132 2133 for_each_online_node(i) 2134 if (NODE_DATA(i)->node_spanned_pages) 2135 register_page_bootmem_info_node(NODE_DATA(i)); 2136 #endif 2137 } 2138 void __init mem_init(void) 2139 { 2140 unsigned long addr, last; 2141 2142 addr = PAGE_OFFSET + kern_base; 2143 last = PAGE_ALIGN(kern_size) + addr; 2144 while (addr < last) { 2145 set_bit(__pa(addr) >> 22, sparc64_valid_addr_bitmap); 2146 addr += PAGE_SIZE; 2147 } 2148 2149 setup_valid_addr_bitmap_from_pavail(sparc64_valid_addr_bitmap); 2150 patch_tlb_miss_handler_bitmap(); 2151 2152 high_memory = __va(last_valid_pfn << PAGE_SHIFT); 2153 2154 register_page_bootmem_info(); 2155 free_all_bootmem(); 2156 2157 /* 2158 * Set up the zero page, mark it reserved, so that page count 2159 * is not manipulated when freeing the page from user ptes. 2160 */ 2161 mem_map_zero = alloc_pages(GFP_KERNEL|__GFP_ZERO, 0); 2162 if (mem_map_zero == NULL) { 2163 prom_printf("paging_init: Cannot alloc zero page.\n"); 2164 prom_halt(); 2165 } 2166 mark_page_reserved(mem_map_zero); 2167 2168 mem_init_print_info(NULL); 2169 2170 if (tlb_type == cheetah || tlb_type == cheetah_plus) 2171 cheetah_ecache_flush_init(); 2172 } 2173 2174 void free_initmem(void) 2175 { 2176 unsigned long addr, initend; 2177 int do_free = 1; 2178 2179 /* If the physical memory maps were trimmed by kernel command 2180 * line options, don't even try freeing this initmem stuff up. 2181 * The kernel image could have been in the trimmed out region 2182 * and if so the freeing below will free invalid page structs. 2183 */ 2184 if (cmdline_memory_size) 2185 do_free = 0; 2186 2187 /* 2188 * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes. 2189 */ 2190 addr = PAGE_ALIGN((unsigned long)(__init_begin)); 2191 initend = (unsigned long)(__init_end) & PAGE_MASK; 2192 for (; addr < initend; addr += PAGE_SIZE) { 2193 unsigned long page; 2194 2195 page = (addr + 2196 ((unsigned long) __va(kern_base)) - 2197 ((unsigned long) KERNBASE)); 2198 memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE); 2199 2200 if (do_free) 2201 free_reserved_page(virt_to_page(page)); 2202 } 2203 } 2204 2205 #ifdef CONFIG_BLK_DEV_INITRD 2206 void free_initrd_mem(unsigned long start, unsigned long end) 2207 { 2208 free_reserved_area((void *)start, (void *)end, POISON_FREE_INITMEM, 2209 "initrd"); 2210 } 2211 #endif 2212 2213 #define _PAGE_CACHE_4U (_PAGE_CP_4U | _PAGE_CV_4U) 2214 #define _PAGE_CACHE_4V (_PAGE_CP_4V | _PAGE_CV_4V) 2215 #define __DIRTY_BITS_4U (_PAGE_MODIFIED_4U | _PAGE_WRITE_4U | _PAGE_W_4U) 2216 #define __DIRTY_BITS_4V (_PAGE_MODIFIED_4V | _PAGE_WRITE_4V | _PAGE_W_4V) 2217 #define __ACCESS_BITS_4U (_PAGE_ACCESSED_4U | _PAGE_READ_4U | _PAGE_R) 2218 #define __ACCESS_BITS_4V (_PAGE_ACCESSED_4V | _PAGE_READ_4V | _PAGE_R) 2219 2220 pgprot_t PAGE_KERNEL __read_mostly; 2221 EXPORT_SYMBOL(PAGE_KERNEL); 2222 2223 pgprot_t PAGE_KERNEL_LOCKED __read_mostly; 2224 pgprot_t PAGE_COPY __read_mostly; 2225 2226 pgprot_t PAGE_SHARED __read_mostly; 2227 EXPORT_SYMBOL(PAGE_SHARED); 2228 2229 unsigned long pg_iobits __read_mostly; 2230 2231 unsigned long _PAGE_IE __read_mostly; 2232 EXPORT_SYMBOL(_PAGE_IE); 2233 2234 unsigned long _PAGE_E __read_mostly; 2235 EXPORT_SYMBOL(_PAGE_E); 2236 2237 unsigned long _PAGE_CACHE __read_mostly; 2238 EXPORT_SYMBOL(_PAGE_CACHE); 2239 2240 #ifdef CONFIG_SPARSEMEM_VMEMMAP 2241 unsigned long vmemmap_table[VMEMMAP_SIZE]; 2242 2243 static long __meminitdata addr_start, addr_end; 2244 static int __meminitdata node_start; 2245 2246 int __meminit vmemmap_populate(unsigned long vstart, unsigned long vend, 2247 int node) 2248 { 2249 unsigned long phys_start = (vstart - VMEMMAP_BASE); 2250 unsigned long phys_end = (vend - VMEMMAP_BASE); 2251 unsigned long addr = phys_start & VMEMMAP_CHUNK_MASK; 2252 unsigned long end = VMEMMAP_ALIGN(phys_end); 2253 unsigned long pte_base; 2254 2255 pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4U | 2256 _PAGE_CP_4U | _PAGE_CV_4U | 2257 _PAGE_P_4U | _PAGE_W_4U); 2258 if (tlb_type == hypervisor) 2259 pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4V | 2260 _PAGE_CP_4V | _PAGE_CV_4V | 2261 _PAGE_P_4V | _PAGE_W_4V); 2262 2263 for (; addr < end; addr += VMEMMAP_CHUNK) { 2264 unsigned long *vmem_pp = 2265 vmemmap_table + (addr >> VMEMMAP_CHUNK_SHIFT); 2266 void *block; 2267 2268 if (!(*vmem_pp & _PAGE_VALID)) { 2269 block = vmemmap_alloc_block(1UL << 22, node); 2270 if (!block) 2271 return -ENOMEM; 2272 2273 *vmem_pp = pte_base | __pa(block); 2274 2275 /* check to see if we have contiguous blocks */ 2276 if (addr_end != addr || node_start != node) { 2277 if (addr_start) 2278 printk(KERN_DEBUG " [%lx-%lx] on node %d\n", 2279 addr_start, addr_end-1, node_start); 2280 addr_start = addr; 2281 node_start = node; 2282 } 2283 addr_end = addr + VMEMMAP_CHUNK; 2284 } 2285 } 2286 return 0; 2287 } 2288 2289 void __meminit vmemmap_populate_print_last(void) 2290 { 2291 if (addr_start) { 2292 printk(KERN_DEBUG " [%lx-%lx] on node %d\n", 2293 addr_start, addr_end-1, node_start); 2294 addr_start = 0; 2295 addr_end = 0; 2296 node_start = 0; 2297 } 2298 } 2299 2300 void vmemmap_free(unsigned long start, unsigned long end) 2301 { 2302 } 2303 2304 #endif /* CONFIG_SPARSEMEM_VMEMMAP */ 2305 2306 static void prot_init_common(unsigned long page_none, 2307 unsigned long page_shared, 2308 unsigned long page_copy, 2309 unsigned long page_readonly, 2310 unsigned long page_exec_bit) 2311 { 2312 PAGE_COPY = __pgprot(page_copy); 2313 PAGE_SHARED = __pgprot(page_shared); 2314 2315 protection_map[0x0] = __pgprot(page_none); 2316 protection_map[0x1] = __pgprot(page_readonly & ~page_exec_bit); 2317 protection_map[0x2] = __pgprot(page_copy & ~page_exec_bit); 2318 protection_map[0x3] = __pgprot(page_copy & ~page_exec_bit); 2319 protection_map[0x4] = __pgprot(page_readonly); 2320 protection_map[0x5] = __pgprot(page_readonly); 2321 protection_map[0x6] = __pgprot(page_copy); 2322 protection_map[0x7] = __pgprot(page_copy); 2323 protection_map[0x8] = __pgprot(page_none); 2324 protection_map[0x9] = __pgprot(page_readonly & ~page_exec_bit); 2325 protection_map[0xa] = __pgprot(page_shared & ~page_exec_bit); 2326 protection_map[0xb] = __pgprot(page_shared & ~page_exec_bit); 2327 protection_map[0xc] = __pgprot(page_readonly); 2328 protection_map[0xd] = __pgprot(page_readonly); 2329 protection_map[0xe] = __pgprot(page_shared); 2330 protection_map[0xf] = __pgprot(page_shared); 2331 } 2332 2333 static void __init sun4u_pgprot_init(void) 2334 { 2335 unsigned long page_none, page_shared, page_copy, page_readonly; 2336 unsigned long page_exec_bit; 2337 int i; 2338 2339 PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID | 2340 _PAGE_CACHE_4U | _PAGE_P_4U | 2341 __ACCESS_BITS_4U | __DIRTY_BITS_4U | 2342 _PAGE_EXEC_4U); 2343 PAGE_KERNEL_LOCKED = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID | 2344 _PAGE_CACHE_4U | _PAGE_P_4U | 2345 __ACCESS_BITS_4U | __DIRTY_BITS_4U | 2346 _PAGE_EXEC_4U | _PAGE_L_4U); 2347 2348 _PAGE_IE = _PAGE_IE_4U; 2349 _PAGE_E = _PAGE_E_4U; 2350 _PAGE_CACHE = _PAGE_CACHE_4U; 2351 2352 pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4U | __DIRTY_BITS_4U | 2353 __ACCESS_BITS_4U | _PAGE_E_4U); 2354 2355 #ifdef CONFIG_DEBUG_PAGEALLOC 2356 kern_linear_pte_xor[0] = _PAGE_VALID ^ PAGE_OFFSET; 2357 #else 2358 kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4U) ^ 2359 PAGE_OFFSET; 2360 #endif 2361 kern_linear_pte_xor[0] |= (_PAGE_CP_4U | _PAGE_CV_4U | 2362 _PAGE_P_4U | _PAGE_W_4U); 2363 2364 for (i = 1; i < 4; i++) 2365 kern_linear_pte_xor[i] = kern_linear_pte_xor[0]; 2366 2367 _PAGE_ALL_SZ_BITS = (_PAGE_SZ4MB_4U | _PAGE_SZ512K_4U | 2368 _PAGE_SZ64K_4U | _PAGE_SZ8K_4U | 2369 _PAGE_SZ32MB_4U | _PAGE_SZ256MB_4U); 2370 2371 2372 page_none = _PAGE_PRESENT_4U | _PAGE_ACCESSED_4U | _PAGE_CACHE_4U; 2373 page_shared = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U | 2374 __ACCESS_BITS_4U | _PAGE_WRITE_4U | _PAGE_EXEC_4U); 2375 page_copy = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U | 2376 __ACCESS_BITS_4U | _PAGE_EXEC_4U); 2377 page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U | 2378 __ACCESS_BITS_4U | _PAGE_EXEC_4U); 2379 2380 page_exec_bit = _PAGE_EXEC_4U; 2381 2382 prot_init_common(page_none, page_shared, page_copy, page_readonly, 2383 page_exec_bit); 2384 } 2385 2386 static void __init sun4v_pgprot_init(void) 2387 { 2388 unsigned long page_none, page_shared, page_copy, page_readonly; 2389 unsigned long page_exec_bit; 2390 int i; 2391 2392 PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4V | _PAGE_VALID | 2393 _PAGE_CACHE_4V | _PAGE_P_4V | 2394 __ACCESS_BITS_4V | __DIRTY_BITS_4V | 2395 _PAGE_EXEC_4V); 2396 PAGE_KERNEL_LOCKED = PAGE_KERNEL; 2397 2398 _PAGE_IE = _PAGE_IE_4V; 2399 _PAGE_E = _PAGE_E_4V; 2400 _PAGE_CACHE = _PAGE_CACHE_4V; 2401 2402 #ifdef CONFIG_DEBUG_PAGEALLOC 2403 kern_linear_pte_xor[0] = _PAGE_VALID ^ PAGE_OFFSET; 2404 #else 2405 kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4V) ^ 2406 PAGE_OFFSET; 2407 #endif 2408 kern_linear_pte_xor[0] |= (_PAGE_CP_4V | _PAGE_CV_4V | 2409 _PAGE_P_4V | _PAGE_W_4V); 2410 2411 for (i = 1; i < 4; i++) 2412 kern_linear_pte_xor[i] = kern_linear_pte_xor[0]; 2413 2414 pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4V | __DIRTY_BITS_4V | 2415 __ACCESS_BITS_4V | _PAGE_E_4V); 2416 2417 _PAGE_ALL_SZ_BITS = (_PAGE_SZ16GB_4V | _PAGE_SZ2GB_4V | 2418 _PAGE_SZ256MB_4V | _PAGE_SZ32MB_4V | 2419 _PAGE_SZ4MB_4V | _PAGE_SZ512K_4V | 2420 _PAGE_SZ64K_4V | _PAGE_SZ8K_4V); 2421 2422 page_none = _PAGE_PRESENT_4V | _PAGE_ACCESSED_4V | _PAGE_CACHE_4V; 2423 page_shared = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V | 2424 __ACCESS_BITS_4V | _PAGE_WRITE_4V | _PAGE_EXEC_4V); 2425 page_copy = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V | 2426 __ACCESS_BITS_4V | _PAGE_EXEC_4V); 2427 page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V | 2428 __ACCESS_BITS_4V | _PAGE_EXEC_4V); 2429 2430 page_exec_bit = _PAGE_EXEC_4V; 2431 2432 prot_init_common(page_none, page_shared, page_copy, page_readonly, 2433 page_exec_bit); 2434 } 2435 2436 unsigned long pte_sz_bits(unsigned long sz) 2437 { 2438 if (tlb_type == hypervisor) { 2439 switch (sz) { 2440 case 8 * 1024: 2441 default: 2442 return _PAGE_SZ8K_4V; 2443 case 64 * 1024: 2444 return _PAGE_SZ64K_4V; 2445 case 512 * 1024: 2446 return _PAGE_SZ512K_4V; 2447 case 4 * 1024 * 1024: 2448 return _PAGE_SZ4MB_4V; 2449 } 2450 } else { 2451 switch (sz) { 2452 case 8 * 1024: 2453 default: 2454 return _PAGE_SZ8K_4U; 2455 case 64 * 1024: 2456 return _PAGE_SZ64K_4U; 2457 case 512 * 1024: 2458 return _PAGE_SZ512K_4U; 2459 case 4 * 1024 * 1024: 2460 return _PAGE_SZ4MB_4U; 2461 } 2462 } 2463 } 2464 2465 pte_t mk_pte_io(unsigned long page, pgprot_t prot, int space, unsigned long page_size) 2466 { 2467 pte_t pte; 2468 2469 pte_val(pte) = page | pgprot_val(pgprot_noncached(prot)); 2470 pte_val(pte) |= (((unsigned long)space) << 32); 2471 pte_val(pte) |= pte_sz_bits(page_size); 2472 2473 return pte; 2474 } 2475 2476 static unsigned long kern_large_tte(unsigned long paddr) 2477 { 2478 unsigned long val; 2479 2480 val = (_PAGE_VALID | _PAGE_SZ4MB_4U | 2481 _PAGE_CP_4U | _PAGE_CV_4U | _PAGE_P_4U | 2482 _PAGE_EXEC_4U | _PAGE_L_4U | _PAGE_W_4U); 2483 if (tlb_type == hypervisor) 2484 val = (_PAGE_VALID | _PAGE_SZ4MB_4V | 2485 _PAGE_CP_4V | _PAGE_CV_4V | _PAGE_P_4V | 2486 _PAGE_EXEC_4V | _PAGE_W_4V); 2487 2488 return val | paddr; 2489 } 2490 2491 /* If not locked, zap it. */ 2492 void __flush_tlb_all(void) 2493 { 2494 unsigned long pstate; 2495 int i; 2496 2497 __asm__ __volatile__("flushw\n\t" 2498 "rdpr %%pstate, %0\n\t" 2499 "wrpr %0, %1, %%pstate" 2500 : "=r" (pstate) 2501 : "i" (PSTATE_IE)); 2502 if (tlb_type == hypervisor) { 2503 sun4v_mmu_demap_all(); 2504 } else if (tlb_type == spitfire) { 2505 for (i = 0; i < 64; i++) { 2506 /* Spitfire Errata #32 workaround */ 2507 /* NOTE: Always runs on spitfire, so no 2508 * cheetah+ page size encodings. 2509 */ 2510 __asm__ __volatile__("stxa %0, [%1] %2\n\t" 2511 "flush %%g6" 2512 : /* No outputs */ 2513 : "r" (0), 2514 "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU)); 2515 2516 if (!(spitfire_get_dtlb_data(i) & _PAGE_L_4U)) { 2517 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t" 2518 "membar #Sync" 2519 : /* no outputs */ 2520 : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU)); 2521 spitfire_put_dtlb_data(i, 0x0UL); 2522 } 2523 2524 /* Spitfire Errata #32 workaround */ 2525 /* NOTE: Always runs on spitfire, so no 2526 * cheetah+ page size encodings. 2527 */ 2528 __asm__ __volatile__("stxa %0, [%1] %2\n\t" 2529 "flush %%g6" 2530 : /* No outputs */ 2531 : "r" (0), 2532 "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU)); 2533 2534 if (!(spitfire_get_itlb_data(i) & _PAGE_L_4U)) { 2535 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t" 2536 "membar #Sync" 2537 : /* no outputs */ 2538 : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU)); 2539 spitfire_put_itlb_data(i, 0x0UL); 2540 } 2541 } 2542 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) { 2543 cheetah_flush_dtlb_all(); 2544 cheetah_flush_itlb_all(); 2545 } 2546 __asm__ __volatile__("wrpr %0, 0, %%pstate" 2547 : : "r" (pstate)); 2548 } 2549 2550 pte_t *pte_alloc_one_kernel(struct mm_struct *mm, 2551 unsigned long address) 2552 { 2553 struct page *page = alloc_page(GFP_KERNEL | __GFP_NOTRACK | 2554 __GFP_REPEAT | __GFP_ZERO); 2555 pte_t *pte = NULL; 2556 2557 if (page) 2558 pte = (pte_t *) page_address(page); 2559 2560 return pte; 2561 } 2562 2563 pgtable_t pte_alloc_one(struct mm_struct *mm, 2564 unsigned long address) 2565 { 2566 struct page *page = alloc_page(GFP_KERNEL | __GFP_NOTRACK | 2567 __GFP_REPEAT | __GFP_ZERO); 2568 if (!page) 2569 return NULL; 2570 if (!pgtable_page_ctor(page)) { 2571 free_hot_cold_page(page, 0); 2572 return NULL; 2573 } 2574 return (pte_t *) page_address(page); 2575 } 2576 2577 void pte_free_kernel(struct mm_struct *mm, pte_t *pte) 2578 { 2579 free_page((unsigned long)pte); 2580 } 2581 2582 static void __pte_free(pgtable_t pte) 2583 { 2584 struct page *page = virt_to_page(pte); 2585 2586 pgtable_page_dtor(page); 2587 __free_page(page); 2588 } 2589 2590 void pte_free(struct mm_struct *mm, pgtable_t pte) 2591 { 2592 __pte_free(pte); 2593 } 2594 2595 void pgtable_free(void *table, bool is_page) 2596 { 2597 if (is_page) 2598 __pte_free(table); 2599 else 2600 kmem_cache_free(pgtable_cache, table); 2601 } 2602 2603 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2604 void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr, 2605 pmd_t *pmd) 2606 { 2607 unsigned long pte, flags; 2608 struct mm_struct *mm; 2609 pmd_t entry = *pmd; 2610 2611 if (!pmd_large(entry) || !pmd_young(entry)) 2612 return; 2613 2614 pte = pmd_val(entry); 2615 2616 /* We are fabricating 8MB pages using 4MB real hw pages. */ 2617 pte |= (addr & (1UL << REAL_HPAGE_SHIFT)); 2618 2619 mm = vma->vm_mm; 2620 2621 spin_lock_irqsave(&mm->context.lock, flags); 2622 2623 if (mm->context.tsb_block[MM_TSB_HUGE].tsb != NULL) 2624 __update_mmu_tsb_insert(mm, MM_TSB_HUGE, REAL_HPAGE_SHIFT, 2625 addr, pte); 2626 2627 spin_unlock_irqrestore(&mm->context.lock, flags); 2628 } 2629 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 2630 2631 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE) 2632 static void context_reload(void *__data) 2633 { 2634 struct mm_struct *mm = __data; 2635 2636 if (mm == current->mm) 2637 load_secondary_context(mm); 2638 } 2639 2640 void hugetlb_setup(struct pt_regs *regs) 2641 { 2642 struct mm_struct *mm = current->mm; 2643 struct tsb_config *tp; 2644 2645 if (in_atomic() || !mm) { 2646 const struct exception_table_entry *entry; 2647 2648 entry = search_exception_tables(regs->tpc); 2649 if (entry) { 2650 regs->tpc = entry->fixup; 2651 regs->tnpc = regs->tpc + 4; 2652 return; 2653 } 2654 pr_alert("Unexpected HugeTLB setup in atomic context.\n"); 2655 die_if_kernel("HugeTSB in atomic", regs); 2656 } 2657 2658 tp = &mm->context.tsb_block[MM_TSB_HUGE]; 2659 if (likely(tp->tsb == NULL)) 2660 tsb_grow(mm, MM_TSB_HUGE, 0); 2661 2662 tsb_context_switch(mm); 2663 smp_tsb_sync(mm); 2664 2665 /* On UltraSPARC-III+ and later, configure the second half of 2666 * the Data-TLB for huge pages. 2667 */ 2668 if (tlb_type == cheetah_plus) { 2669 unsigned long ctx; 2670 2671 spin_lock(&ctx_alloc_lock); 2672 ctx = mm->context.sparc64_ctx_val; 2673 ctx &= ~CTX_PGSZ_MASK; 2674 ctx |= CTX_PGSZ_BASE << CTX_PGSZ0_SHIFT; 2675 ctx |= CTX_PGSZ_HUGE << CTX_PGSZ1_SHIFT; 2676 2677 if (ctx != mm->context.sparc64_ctx_val) { 2678 /* When changing the page size fields, we 2679 * must perform a context flush so that no 2680 * stale entries match. This flush must 2681 * occur with the original context register 2682 * settings. 2683 */ 2684 do_flush_tlb_mm(mm); 2685 2686 /* Reload the context register of all processors 2687 * also executing in this address space. 2688 */ 2689 mm->context.sparc64_ctx_val = ctx; 2690 on_each_cpu(context_reload, mm, 0); 2691 } 2692 spin_unlock(&ctx_alloc_lock); 2693 } 2694 } 2695 #endif 2696