xref: /openbmc/linux/arch/sparc/mm/init_64.c (revision 6ee73861)
1 /*
2  *  arch/sparc64/mm/init.c
3  *
4  *  Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu)
5  *  Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
6  */
7 
8 #include <linux/module.h>
9 #include <linux/kernel.h>
10 #include <linux/sched.h>
11 #include <linux/string.h>
12 #include <linux/init.h>
13 #include <linux/bootmem.h>
14 #include <linux/mm.h>
15 #include <linux/hugetlb.h>
16 #include <linux/slab.h>
17 #include <linux/initrd.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/poison.h>
21 #include <linux/fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/kprobes.h>
24 #include <linux/cache.h>
25 #include <linux/sort.h>
26 #include <linux/percpu.h>
27 #include <linux/lmb.h>
28 #include <linux/mmzone.h>
29 
30 #include <asm/head.h>
31 #include <asm/system.h>
32 #include <asm/page.h>
33 #include <asm/pgalloc.h>
34 #include <asm/pgtable.h>
35 #include <asm/oplib.h>
36 #include <asm/iommu.h>
37 #include <asm/io.h>
38 #include <asm/uaccess.h>
39 #include <asm/mmu_context.h>
40 #include <asm/tlbflush.h>
41 #include <asm/dma.h>
42 #include <asm/starfire.h>
43 #include <asm/tlb.h>
44 #include <asm/spitfire.h>
45 #include <asm/sections.h>
46 #include <asm/tsb.h>
47 #include <asm/hypervisor.h>
48 #include <asm/prom.h>
49 #include <asm/mdesc.h>
50 #include <asm/cpudata.h>
51 #include <asm/irq.h>
52 
53 #include "init_64.h"
54 
55 unsigned long kern_linear_pte_xor[2] __read_mostly;
56 
57 /* A bitmap, one bit for every 256MB of physical memory.  If the bit
58  * is clear, we should use a 4MB page (via kern_linear_pte_xor[0]) else
59  * if set we should use a 256MB page (via kern_linear_pte_xor[1]).
60  */
61 unsigned long kpte_linear_bitmap[KPTE_BITMAP_BYTES / sizeof(unsigned long)];
62 
63 #ifndef CONFIG_DEBUG_PAGEALLOC
64 /* A special kernel TSB for 4MB and 256MB linear mappings.
65  * Space is allocated for this right after the trap table
66  * in arch/sparc64/kernel/head.S
67  */
68 extern struct tsb swapper_4m_tsb[KERNEL_TSB4M_NENTRIES];
69 #endif
70 
71 #define MAX_BANKS	32
72 
73 static struct linux_prom64_registers pavail[MAX_BANKS] __devinitdata;
74 static int pavail_ents __devinitdata;
75 
76 static int cmp_p64(const void *a, const void *b)
77 {
78 	const struct linux_prom64_registers *x = a, *y = b;
79 
80 	if (x->phys_addr > y->phys_addr)
81 		return 1;
82 	if (x->phys_addr < y->phys_addr)
83 		return -1;
84 	return 0;
85 }
86 
87 static void __init read_obp_memory(const char *property,
88 				   struct linux_prom64_registers *regs,
89 				   int *num_ents)
90 {
91 	int node = prom_finddevice("/memory");
92 	int prop_size = prom_getproplen(node, property);
93 	int ents, ret, i;
94 
95 	ents = prop_size / sizeof(struct linux_prom64_registers);
96 	if (ents > MAX_BANKS) {
97 		prom_printf("The machine has more %s property entries than "
98 			    "this kernel can support (%d).\n",
99 			    property, MAX_BANKS);
100 		prom_halt();
101 	}
102 
103 	ret = prom_getproperty(node, property, (char *) regs, prop_size);
104 	if (ret == -1) {
105 		prom_printf("Couldn't get %s property from /memory.\n");
106 		prom_halt();
107 	}
108 
109 	/* Sanitize what we got from the firmware, by page aligning
110 	 * everything.
111 	 */
112 	for (i = 0; i < ents; i++) {
113 		unsigned long base, size;
114 
115 		base = regs[i].phys_addr;
116 		size = regs[i].reg_size;
117 
118 		size &= PAGE_MASK;
119 		if (base & ~PAGE_MASK) {
120 			unsigned long new_base = PAGE_ALIGN(base);
121 
122 			size -= new_base - base;
123 			if ((long) size < 0L)
124 				size = 0UL;
125 			base = new_base;
126 		}
127 		if (size == 0UL) {
128 			/* If it is empty, simply get rid of it.
129 			 * This simplifies the logic of the other
130 			 * functions that process these arrays.
131 			 */
132 			memmove(&regs[i], &regs[i + 1],
133 				(ents - i - 1) * sizeof(regs[0]));
134 			i--;
135 			ents--;
136 			continue;
137 		}
138 		regs[i].phys_addr = base;
139 		regs[i].reg_size = size;
140 	}
141 
142 	*num_ents = ents;
143 
144 	sort(regs, ents, sizeof(struct linux_prom64_registers),
145 	     cmp_p64, NULL);
146 }
147 
148 unsigned long sparc64_valid_addr_bitmap[VALID_ADDR_BITMAP_BYTES /
149 					sizeof(unsigned long)];
150 EXPORT_SYMBOL(sparc64_valid_addr_bitmap);
151 
152 /* Kernel physical address base and size in bytes.  */
153 unsigned long kern_base __read_mostly;
154 unsigned long kern_size __read_mostly;
155 
156 /* Initial ramdisk setup */
157 extern unsigned long sparc_ramdisk_image64;
158 extern unsigned int sparc_ramdisk_image;
159 extern unsigned int sparc_ramdisk_size;
160 
161 struct page *mem_map_zero __read_mostly;
162 EXPORT_SYMBOL(mem_map_zero);
163 
164 unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly;
165 
166 unsigned long sparc64_kern_pri_context __read_mostly;
167 unsigned long sparc64_kern_pri_nuc_bits __read_mostly;
168 unsigned long sparc64_kern_sec_context __read_mostly;
169 
170 int num_kernel_image_mappings;
171 
172 #ifdef CONFIG_DEBUG_DCFLUSH
173 atomic_t dcpage_flushes = ATOMIC_INIT(0);
174 #ifdef CONFIG_SMP
175 atomic_t dcpage_flushes_xcall = ATOMIC_INIT(0);
176 #endif
177 #endif
178 
179 inline void flush_dcache_page_impl(struct page *page)
180 {
181 	BUG_ON(tlb_type == hypervisor);
182 #ifdef CONFIG_DEBUG_DCFLUSH
183 	atomic_inc(&dcpage_flushes);
184 #endif
185 
186 #ifdef DCACHE_ALIASING_POSSIBLE
187 	__flush_dcache_page(page_address(page),
188 			    ((tlb_type == spitfire) &&
189 			     page_mapping(page) != NULL));
190 #else
191 	if (page_mapping(page) != NULL &&
192 	    tlb_type == spitfire)
193 		__flush_icache_page(__pa(page_address(page)));
194 #endif
195 }
196 
197 #define PG_dcache_dirty		PG_arch_1
198 #define PG_dcache_cpu_shift	32UL
199 #define PG_dcache_cpu_mask	\
200 	((1UL<<ilog2(roundup_pow_of_two(NR_CPUS)))-1UL)
201 
202 #define dcache_dirty_cpu(page) \
203 	(((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask)
204 
205 static inline void set_dcache_dirty(struct page *page, int this_cpu)
206 {
207 	unsigned long mask = this_cpu;
208 	unsigned long non_cpu_bits;
209 
210 	non_cpu_bits = ~(PG_dcache_cpu_mask << PG_dcache_cpu_shift);
211 	mask = (mask << PG_dcache_cpu_shift) | (1UL << PG_dcache_dirty);
212 
213 	__asm__ __volatile__("1:\n\t"
214 			     "ldx	[%2], %%g7\n\t"
215 			     "and	%%g7, %1, %%g1\n\t"
216 			     "or	%%g1, %0, %%g1\n\t"
217 			     "casx	[%2], %%g7, %%g1\n\t"
218 			     "cmp	%%g7, %%g1\n\t"
219 			     "bne,pn	%%xcc, 1b\n\t"
220 			     " nop"
221 			     : /* no outputs */
222 			     : "r" (mask), "r" (non_cpu_bits), "r" (&page->flags)
223 			     : "g1", "g7");
224 }
225 
226 static inline void clear_dcache_dirty_cpu(struct page *page, unsigned long cpu)
227 {
228 	unsigned long mask = (1UL << PG_dcache_dirty);
229 
230 	__asm__ __volatile__("! test_and_clear_dcache_dirty\n"
231 			     "1:\n\t"
232 			     "ldx	[%2], %%g7\n\t"
233 			     "srlx	%%g7, %4, %%g1\n\t"
234 			     "and	%%g1, %3, %%g1\n\t"
235 			     "cmp	%%g1, %0\n\t"
236 			     "bne,pn	%%icc, 2f\n\t"
237 			     " andn	%%g7, %1, %%g1\n\t"
238 			     "casx	[%2], %%g7, %%g1\n\t"
239 			     "cmp	%%g7, %%g1\n\t"
240 			     "bne,pn	%%xcc, 1b\n\t"
241 			     " nop\n"
242 			     "2:"
243 			     : /* no outputs */
244 			     : "r" (cpu), "r" (mask), "r" (&page->flags),
245 			       "i" (PG_dcache_cpu_mask),
246 			       "i" (PG_dcache_cpu_shift)
247 			     : "g1", "g7");
248 }
249 
250 static inline void tsb_insert(struct tsb *ent, unsigned long tag, unsigned long pte)
251 {
252 	unsigned long tsb_addr = (unsigned long) ent;
253 
254 	if (tlb_type == cheetah_plus || tlb_type == hypervisor)
255 		tsb_addr = __pa(tsb_addr);
256 
257 	__tsb_insert(tsb_addr, tag, pte);
258 }
259 
260 unsigned long _PAGE_ALL_SZ_BITS __read_mostly;
261 unsigned long _PAGE_SZBITS __read_mostly;
262 
263 static void flush_dcache(unsigned long pfn)
264 {
265 	struct page *page;
266 
267 	page = pfn_to_page(pfn);
268 	if (page) {
269 		unsigned long pg_flags;
270 
271 		pg_flags = page->flags;
272 		if (pg_flags & (1UL << PG_dcache_dirty)) {
273 			int cpu = ((pg_flags >> PG_dcache_cpu_shift) &
274 				   PG_dcache_cpu_mask);
275 			int this_cpu = get_cpu();
276 
277 			/* This is just to optimize away some function calls
278 			 * in the SMP case.
279 			 */
280 			if (cpu == this_cpu)
281 				flush_dcache_page_impl(page);
282 			else
283 				smp_flush_dcache_page_impl(page, cpu);
284 
285 			clear_dcache_dirty_cpu(page, cpu);
286 
287 			put_cpu();
288 		}
289 	}
290 }
291 
292 void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t pte)
293 {
294 	struct mm_struct *mm;
295 	struct tsb *tsb;
296 	unsigned long tag, flags;
297 	unsigned long tsb_index, tsb_hash_shift;
298 
299 	if (tlb_type != hypervisor) {
300 		unsigned long pfn = pte_pfn(pte);
301 
302 		if (pfn_valid(pfn))
303 			flush_dcache(pfn);
304 	}
305 
306 	mm = vma->vm_mm;
307 
308 	tsb_index = MM_TSB_BASE;
309 	tsb_hash_shift = PAGE_SHIFT;
310 
311 	spin_lock_irqsave(&mm->context.lock, flags);
312 
313 #ifdef CONFIG_HUGETLB_PAGE
314 	if (mm->context.tsb_block[MM_TSB_HUGE].tsb != NULL) {
315 		if ((tlb_type == hypervisor &&
316 		     (pte_val(pte) & _PAGE_SZALL_4V) == _PAGE_SZHUGE_4V) ||
317 		    (tlb_type != hypervisor &&
318 		     (pte_val(pte) & _PAGE_SZALL_4U) == _PAGE_SZHUGE_4U)) {
319 			tsb_index = MM_TSB_HUGE;
320 			tsb_hash_shift = HPAGE_SHIFT;
321 		}
322 	}
323 #endif
324 
325 	tsb = mm->context.tsb_block[tsb_index].tsb;
326 	tsb += ((address >> tsb_hash_shift) &
327 		(mm->context.tsb_block[tsb_index].tsb_nentries - 1UL));
328 	tag = (address >> 22UL);
329 	tsb_insert(tsb, tag, pte_val(pte));
330 
331 	spin_unlock_irqrestore(&mm->context.lock, flags);
332 }
333 
334 void flush_dcache_page(struct page *page)
335 {
336 	struct address_space *mapping;
337 	int this_cpu;
338 
339 	if (tlb_type == hypervisor)
340 		return;
341 
342 	/* Do not bother with the expensive D-cache flush if it
343 	 * is merely the zero page.  The 'bigcore' testcase in GDB
344 	 * causes this case to run millions of times.
345 	 */
346 	if (page == ZERO_PAGE(0))
347 		return;
348 
349 	this_cpu = get_cpu();
350 
351 	mapping = page_mapping(page);
352 	if (mapping && !mapping_mapped(mapping)) {
353 		int dirty = test_bit(PG_dcache_dirty, &page->flags);
354 		if (dirty) {
355 			int dirty_cpu = dcache_dirty_cpu(page);
356 
357 			if (dirty_cpu == this_cpu)
358 				goto out;
359 			smp_flush_dcache_page_impl(page, dirty_cpu);
360 		}
361 		set_dcache_dirty(page, this_cpu);
362 	} else {
363 		/* We could delay the flush for the !page_mapping
364 		 * case too.  But that case is for exec env/arg
365 		 * pages and those are %99 certainly going to get
366 		 * faulted into the tlb (and thus flushed) anyways.
367 		 */
368 		flush_dcache_page_impl(page);
369 	}
370 
371 out:
372 	put_cpu();
373 }
374 EXPORT_SYMBOL(flush_dcache_page);
375 
376 void __kprobes flush_icache_range(unsigned long start, unsigned long end)
377 {
378 	/* Cheetah and Hypervisor platform cpus have coherent I-cache. */
379 	if (tlb_type == spitfire) {
380 		unsigned long kaddr;
381 
382 		/* This code only runs on Spitfire cpus so this is
383 		 * why we can assume _PAGE_PADDR_4U.
384 		 */
385 		for (kaddr = start; kaddr < end; kaddr += PAGE_SIZE) {
386 			unsigned long paddr, mask = _PAGE_PADDR_4U;
387 
388 			if (kaddr >= PAGE_OFFSET)
389 				paddr = kaddr & mask;
390 			else {
391 				pgd_t *pgdp = pgd_offset_k(kaddr);
392 				pud_t *pudp = pud_offset(pgdp, kaddr);
393 				pmd_t *pmdp = pmd_offset(pudp, kaddr);
394 				pte_t *ptep = pte_offset_kernel(pmdp, kaddr);
395 
396 				paddr = pte_val(*ptep) & mask;
397 			}
398 			__flush_icache_page(paddr);
399 		}
400 	}
401 }
402 EXPORT_SYMBOL(flush_icache_range);
403 
404 void mmu_info(struct seq_file *m)
405 {
406 	if (tlb_type == cheetah)
407 		seq_printf(m, "MMU Type\t: Cheetah\n");
408 	else if (tlb_type == cheetah_plus)
409 		seq_printf(m, "MMU Type\t: Cheetah+\n");
410 	else if (tlb_type == spitfire)
411 		seq_printf(m, "MMU Type\t: Spitfire\n");
412 	else if (tlb_type == hypervisor)
413 		seq_printf(m, "MMU Type\t: Hypervisor (sun4v)\n");
414 	else
415 		seq_printf(m, "MMU Type\t: ???\n");
416 
417 #ifdef CONFIG_DEBUG_DCFLUSH
418 	seq_printf(m, "DCPageFlushes\t: %d\n",
419 		   atomic_read(&dcpage_flushes));
420 #ifdef CONFIG_SMP
421 	seq_printf(m, "DCPageFlushesXC\t: %d\n",
422 		   atomic_read(&dcpage_flushes_xcall));
423 #endif /* CONFIG_SMP */
424 #endif /* CONFIG_DEBUG_DCFLUSH */
425 }
426 
427 struct linux_prom_translation prom_trans[512] __read_mostly;
428 unsigned int prom_trans_ents __read_mostly;
429 
430 unsigned long kern_locked_tte_data;
431 
432 /* The obp translations are saved based on 8k pagesize, since obp can
433  * use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS ->
434  * HI_OBP_ADDRESS range are handled in ktlb.S.
435  */
436 static inline int in_obp_range(unsigned long vaddr)
437 {
438 	return (vaddr >= LOW_OBP_ADDRESS &&
439 		vaddr < HI_OBP_ADDRESS);
440 }
441 
442 static int cmp_ptrans(const void *a, const void *b)
443 {
444 	const struct linux_prom_translation *x = a, *y = b;
445 
446 	if (x->virt > y->virt)
447 		return 1;
448 	if (x->virt < y->virt)
449 		return -1;
450 	return 0;
451 }
452 
453 /* Read OBP translations property into 'prom_trans[]'.  */
454 static void __init read_obp_translations(void)
455 {
456 	int n, node, ents, first, last, i;
457 
458 	node = prom_finddevice("/virtual-memory");
459 	n = prom_getproplen(node, "translations");
460 	if (unlikely(n == 0 || n == -1)) {
461 		prom_printf("prom_mappings: Couldn't get size.\n");
462 		prom_halt();
463 	}
464 	if (unlikely(n > sizeof(prom_trans))) {
465 		prom_printf("prom_mappings: Size %Zd is too big.\n", n);
466 		prom_halt();
467 	}
468 
469 	if ((n = prom_getproperty(node, "translations",
470 				  (char *)&prom_trans[0],
471 				  sizeof(prom_trans))) == -1) {
472 		prom_printf("prom_mappings: Couldn't get property.\n");
473 		prom_halt();
474 	}
475 
476 	n = n / sizeof(struct linux_prom_translation);
477 
478 	ents = n;
479 
480 	sort(prom_trans, ents, sizeof(struct linux_prom_translation),
481 	     cmp_ptrans, NULL);
482 
483 	/* Now kick out all the non-OBP entries.  */
484 	for (i = 0; i < ents; i++) {
485 		if (in_obp_range(prom_trans[i].virt))
486 			break;
487 	}
488 	first = i;
489 	for (; i < ents; i++) {
490 		if (!in_obp_range(prom_trans[i].virt))
491 			break;
492 	}
493 	last = i;
494 
495 	for (i = 0; i < (last - first); i++) {
496 		struct linux_prom_translation *src = &prom_trans[i + first];
497 		struct linux_prom_translation *dest = &prom_trans[i];
498 
499 		*dest = *src;
500 	}
501 	for (; i < ents; i++) {
502 		struct linux_prom_translation *dest = &prom_trans[i];
503 		dest->virt = dest->size = dest->data = 0x0UL;
504 	}
505 
506 	prom_trans_ents = last - first;
507 
508 	if (tlb_type == spitfire) {
509 		/* Clear diag TTE bits. */
510 		for (i = 0; i < prom_trans_ents; i++)
511 			prom_trans[i].data &= ~0x0003fe0000000000UL;
512 	}
513 }
514 
515 static void __init hypervisor_tlb_lock(unsigned long vaddr,
516 				       unsigned long pte,
517 				       unsigned long mmu)
518 {
519 	unsigned long ret = sun4v_mmu_map_perm_addr(vaddr, 0, pte, mmu);
520 
521 	if (ret != 0) {
522 		prom_printf("hypervisor_tlb_lock[%lx:%lx:%lx:%lx]: "
523 			    "errors with %lx\n", vaddr, 0, pte, mmu, ret);
524 		prom_halt();
525 	}
526 }
527 
528 static unsigned long kern_large_tte(unsigned long paddr);
529 
530 static void __init remap_kernel(void)
531 {
532 	unsigned long phys_page, tte_vaddr, tte_data;
533 	int i, tlb_ent = sparc64_highest_locked_tlbent();
534 
535 	tte_vaddr = (unsigned long) KERNBASE;
536 	phys_page = (prom_boot_mapping_phys_low >> 22UL) << 22UL;
537 	tte_data = kern_large_tte(phys_page);
538 
539 	kern_locked_tte_data = tte_data;
540 
541 	/* Now lock us into the TLBs via Hypervisor or OBP. */
542 	if (tlb_type == hypervisor) {
543 		for (i = 0; i < num_kernel_image_mappings; i++) {
544 			hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU);
545 			hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU);
546 			tte_vaddr += 0x400000;
547 			tte_data += 0x400000;
548 		}
549 	} else {
550 		for (i = 0; i < num_kernel_image_mappings; i++) {
551 			prom_dtlb_load(tlb_ent - i, tte_data, tte_vaddr);
552 			prom_itlb_load(tlb_ent - i, tte_data, tte_vaddr);
553 			tte_vaddr += 0x400000;
554 			tte_data += 0x400000;
555 		}
556 		sparc64_highest_unlocked_tlb_ent = tlb_ent - i;
557 	}
558 	if (tlb_type == cheetah_plus) {
559 		sparc64_kern_pri_context = (CTX_CHEETAH_PLUS_CTX0 |
560 					    CTX_CHEETAH_PLUS_NUC);
561 		sparc64_kern_pri_nuc_bits = CTX_CHEETAH_PLUS_NUC;
562 		sparc64_kern_sec_context = CTX_CHEETAH_PLUS_CTX0;
563 	}
564 }
565 
566 
567 static void __init inherit_prom_mappings(void)
568 {
569 	/* Now fixup OBP's idea about where we really are mapped. */
570 	printk("Remapping the kernel... ");
571 	remap_kernel();
572 	printk("done.\n");
573 }
574 
575 void prom_world(int enter)
576 {
577 	if (!enter)
578 		set_fs((mm_segment_t) { get_thread_current_ds() });
579 
580 	__asm__ __volatile__("flushw");
581 }
582 
583 void __flush_dcache_range(unsigned long start, unsigned long end)
584 {
585 	unsigned long va;
586 
587 	if (tlb_type == spitfire) {
588 		int n = 0;
589 
590 		for (va = start; va < end; va += 32) {
591 			spitfire_put_dcache_tag(va & 0x3fe0, 0x0);
592 			if (++n >= 512)
593 				break;
594 		}
595 	} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
596 		start = __pa(start);
597 		end = __pa(end);
598 		for (va = start; va < end; va += 32)
599 			__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
600 					     "membar #Sync"
601 					     : /* no outputs */
602 					     : "r" (va),
603 					       "i" (ASI_DCACHE_INVALIDATE));
604 	}
605 }
606 EXPORT_SYMBOL(__flush_dcache_range);
607 
608 /* get_new_mmu_context() uses "cache + 1".  */
609 DEFINE_SPINLOCK(ctx_alloc_lock);
610 unsigned long tlb_context_cache = CTX_FIRST_VERSION - 1;
611 #define MAX_CTX_NR	(1UL << CTX_NR_BITS)
612 #define CTX_BMAP_SLOTS	BITS_TO_LONGS(MAX_CTX_NR)
613 DECLARE_BITMAP(mmu_context_bmap, MAX_CTX_NR);
614 
615 /* Caller does TLB context flushing on local CPU if necessary.
616  * The caller also ensures that CTX_VALID(mm->context) is false.
617  *
618  * We must be careful about boundary cases so that we never
619  * let the user have CTX 0 (nucleus) or we ever use a CTX
620  * version of zero (and thus NO_CONTEXT would not be caught
621  * by version mis-match tests in mmu_context.h).
622  *
623  * Always invoked with interrupts disabled.
624  */
625 void get_new_mmu_context(struct mm_struct *mm)
626 {
627 	unsigned long ctx, new_ctx;
628 	unsigned long orig_pgsz_bits;
629 	unsigned long flags;
630 	int new_version;
631 
632 	spin_lock_irqsave(&ctx_alloc_lock, flags);
633 	orig_pgsz_bits = (mm->context.sparc64_ctx_val & CTX_PGSZ_MASK);
634 	ctx = (tlb_context_cache + 1) & CTX_NR_MASK;
635 	new_ctx = find_next_zero_bit(mmu_context_bmap, 1 << CTX_NR_BITS, ctx);
636 	new_version = 0;
637 	if (new_ctx >= (1 << CTX_NR_BITS)) {
638 		new_ctx = find_next_zero_bit(mmu_context_bmap, ctx, 1);
639 		if (new_ctx >= ctx) {
640 			int i;
641 			new_ctx = (tlb_context_cache & CTX_VERSION_MASK) +
642 				CTX_FIRST_VERSION;
643 			if (new_ctx == 1)
644 				new_ctx = CTX_FIRST_VERSION;
645 
646 			/* Don't call memset, for 16 entries that's just
647 			 * plain silly...
648 			 */
649 			mmu_context_bmap[0] = 3;
650 			mmu_context_bmap[1] = 0;
651 			mmu_context_bmap[2] = 0;
652 			mmu_context_bmap[3] = 0;
653 			for (i = 4; i < CTX_BMAP_SLOTS; i += 4) {
654 				mmu_context_bmap[i + 0] = 0;
655 				mmu_context_bmap[i + 1] = 0;
656 				mmu_context_bmap[i + 2] = 0;
657 				mmu_context_bmap[i + 3] = 0;
658 			}
659 			new_version = 1;
660 			goto out;
661 		}
662 	}
663 	mmu_context_bmap[new_ctx>>6] |= (1UL << (new_ctx & 63));
664 	new_ctx |= (tlb_context_cache & CTX_VERSION_MASK);
665 out:
666 	tlb_context_cache = new_ctx;
667 	mm->context.sparc64_ctx_val = new_ctx | orig_pgsz_bits;
668 	spin_unlock_irqrestore(&ctx_alloc_lock, flags);
669 
670 	if (unlikely(new_version))
671 		smp_new_mmu_context_version();
672 }
673 
674 static int numa_enabled = 1;
675 static int numa_debug;
676 
677 static int __init early_numa(char *p)
678 {
679 	if (!p)
680 		return 0;
681 
682 	if (strstr(p, "off"))
683 		numa_enabled = 0;
684 
685 	if (strstr(p, "debug"))
686 		numa_debug = 1;
687 
688 	return 0;
689 }
690 early_param("numa", early_numa);
691 
692 #define numadbg(f, a...) \
693 do {	if (numa_debug) \
694 		printk(KERN_INFO f, ## a); \
695 } while (0)
696 
697 static void __init find_ramdisk(unsigned long phys_base)
698 {
699 #ifdef CONFIG_BLK_DEV_INITRD
700 	if (sparc_ramdisk_image || sparc_ramdisk_image64) {
701 		unsigned long ramdisk_image;
702 
703 		/* Older versions of the bootloader only supported a
704 		 * 32-bit physical address for the ramdisk image
705 		 * location, stored at sparc_ramdisk_image.  Newer
706 		 * SILO versions set sparc_ramdisk_image to zero and
707 		 * provide a full 64-bit physical address at
708 		 * sparc_ramdisk_image64.
709 		 */
710 		ramdisk_image = sparc_ramdisk_image;
711 		if (!ramdisk_image)
712 			ramdisk_image = sparc_ramdisk_image64;
713 
714 		/* Another bootloader quirk.  The bootloader normalizes
715 		 * the physical address to KERNBASE, so we have to
716 		 * factor that back out and add in the lowest valid
717 		 * physical page address to get the true physical address.
718 		 */
719 		ramdisk_image -= KERNBASE;
720 		ramdisk_image += phys_base;
721 
722 		numadbg("Found ramdisk at physical address 0x%lx, size %u\n",
723 			ramdisk_image, sparc_ramdisk_size);
724 
725 		initrd_start = ramdisk_image;
726 		initrd_end = ramdisk_image + sparc_ramdisk_size;
727 
728 		lmb_reserve(initrd_start, sparc_ramdisk_size);
729 
730 		initrd_start += PAGE_OFFSET;
731 		initrd_end += PAGE_OFFSET;
732 	}
733 #endif
734 }
735 
736 struct node_mem_mask {
737 	unsigned long mask;
738 	unsigned long val;
739 	unsigned long bootmem_paddr;
740 };
741 static struct node_mem_mask node_masks[MAX_NUMNODES];
742 static int num_node_masks;
743 
744 int numa_cpu_lookup_table[NR_CPUS];
745 cpumask_t numa_cpumask_lookup_table[MAX_NUMNODES];
746 
747 #ifdef CONFIG_NEED_MULTIPLE_NODES
748 
749 struct mdesc_mblock {
750 	u64	base;
751 	u64	size;
752 	u64	offset; /* RA-to-PA */
753 };
754 static struct mdesc_mblock *mblocks;
755 static int num_mblocks;
756 
757 static unsigned long ra_to_pa(unsigned long addr)
758 {
759 	int i;
760 
761 	for (i = 0; i < num_mblocks; i++) {
762 		struct mdesc_mblock *m = &mblocks[i];
763 
764 		if (addr >= m->base &&
765 		    addr < (m->base + m->size)) {
766 			addr += m->offset;
767 			break;
768 		}
769 	}
770 	return addr;
771 }
772 
773 static int find_node(unsigned long addr)
774 {
775 	int i;
776 
777 	addr = ra_to_pa(addr);
778 	for (i = 0; i < num_node_masks; i++) {
779 		struct node_mem_mask *p = &node_masks[i];
780 
781 		if ((addr & p->mask) == p->val)
782 			return i;
783 	}
784 	return -1;
785 }
786 
787 static unsigned long long nid_range(unsigned long long start,
788 				    unsigned long long end, int *nid)
789 {
790 	*nid = find_node(start);
791 	start += PAGE_SIZE;
792 	while (start < end) {
793 		int n = find_node(start);
794 
795 		if (n != *nid)
796 			break;
797 		start += PAGE_SIZE;
798 	}
799 
800 	if (start > end)
801 		start = end;
802 
803 	return start;
804 }
805 #else
806 static unsigned long long nid_range(unsigned long long start,
807 				    unsigned long long end, int *nid)
808 {
809 	*nid = 0;
810 	return end;
811 }
812 #endif
813 
814 /* This must be invoked after performing all of the necessary
815  * add_active_range() calls for 'nid'.  We need to be able to get
816  * correct data from get_pfn_range_for_nid().
817  */
818 static void __init allocate_node_data(int nid)
819 {
820 	unsigned long paddr, num_pages, start_pfn, end_pfn;
821 	struct pglist_data *p;
822 
823 #ifdef CONFIG_NEED_MULTIPLE_NODES
824 	paddr = lmb_alloc_nid(sizeof(struct pglist_data),
825 			      SMP_CACHE_BYTES, nid, nid_range);
826 	if (!paddr) {
827 		prom_printf("Cannot allocate pglist_data for nid[%d]\n", nid);
828 		prom_halt();
829 	}
830 	NODE_DATA(nid) = __va(paddr);
831 	memset(NODE_DATA(nid), 0, sizeof(struct pglist_data));
832 
833 	NODE_DATA(nid)->bdata = &bootmem_node_data[nid];
834 #endif
835 
836 	p = NODE_DATA(nid);
837 
838 	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
839 	p->node_start_pfn = start_pfn;
840 	p->node_spanned_pages = end_pfn - start_pfn;
841 
842 	if (p->node_spanned_pages) {
843 		num_pages = bootmem_bootmap_pages(p->node_spanned_pages);
844 
845 		paddr = lmb_alloc_nid(num_pages << PAGE_SHIFT, PAGE_SIZE, nid,
846 				      nid_range);
847 		if (!paddr) {
848 			prom_printf("Cannot allocate bootmap for nid[%d]\n",
849 				  nid);
850 			prom_halt();
851 		}
852 		node_masks[nid].bootmem_paddr = paddr;
853 	}
854 }
855 
856 static void init_node_masks_nonnuma(void)
857 {
858 	int i;
859 
860 	numadbg("Initializing tables for non-numa.\n");
861 
862 	node_masks[0].mask = node_masks[0].val = 0;
863 	num_node_masks = 1;
864 
865 	for (i = 0; i < NR_CPUS; i++)
866 		numa_cpu_lookup_table[i] = 0;
867 
868 	numa_cpumask_lookup_table[0] = CPU_MASK_ALL;
869 }
870 
871 #ifdef CONFIG_NEED_MULTIPLE_NODES
872 struct pglist_data *node_data[MAX_NUMNODES];
873 
874 EXPORT_SYMBOL(numa_cpu_lookup_table);
875 EXPORT_SYMBOL(numa_cpumask_lookup_table);
876 EXPORT_SYMBOL(node_data);
877 
878 struct mdesc_mlgroup {
879 	u64	node;
880 	u64	latency;
881 	u64	match;
882 	u64	mask;
883 };
884 static struct mdesc_mlgroup *mlgroups;
885 static int num_mlgroups;
886 
887 static int scan_pio_for_cfg_handle(struct mdesc_handle *md, u64 pio,
888 				   u32 cfg_handle)
889 {
890 	u64 arc;
891 
892 	mdesc_for_each_arc(arc, md, pio, MDESC_ARC_TYPE_FWD) {
893 		u64 target = mdesc_arc_target(md, arc);
894 		const u64 *val;
895 
896 		val = mdesc_get_property(md, target,
897 					 "cfg-handle", NULL);
898 		if (val && *val == cfg_handle)
899 			return 0;
900 	}
901 	return -ENODEV;
902 }
903 
904 static int scan_arcs_for_cfg_handle(struct mdesc_handle *md, u64 grp,
905 				    u32 cfg_handle)
906 {
907 	u64 arc, candidate, best_latency = ~(u64)0;
908 
909 	candidate = MDESC_NODE_NULL;
910 	mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
911 		u64 target = mdesc_arc_target(md, arc);
912 		const char *name = mdesc_node_name(md, target);
913 		const u64 *val;
914 
915 		if (strcmp(name, "pio-latency-group"))
916 			continue;
917 
918 		val = mdesc_get_property(md, target, "latency", NULL);
919 		if (!val)
920 			continue;
921 
922 		if (*val < best_latency) {
923 			candidate = target;
924 			best_latency = *val;
925 		}
926 	}
927 
928 	if (candidate == MDESC_NODE_NULL)
929 		return -ENODEV;
930 
931 	return scan_pio_for_cfg_handle(md, candidate, cfg_handle);
932 }
933 
934 int of_node_to_nid(struct device_node *dp)
935 {
936 	const struct linux_prom64_registers *regs;
937 	struct mdesc_handle *md;
938 	u32 cfg_handle;
939 	int count, nid;
940 	u64 grp;
941 
942 	/* This is the right thing to do on currently supported
943 	 * SUN4U NUMA platforms as well, as the PCI controller does
944 	 * not sit behind any particular memory controller.
945 	 */
946 	if (!mlgroups)
947 		return -1;
948 
949 	regs = of_get_property(dp, "reg", NULL);
950 	if (!regs)
951 		return -1;
952 
953 	cfg_handle = (regs->phys_addr >> 32UL) & 0x0fffffff;
954 
955 	md = mdesc_grab();
956 
957 	count = 0;
958 	nid = -1;
959 	mdesc_for_each_node_by_name(md, grp, "group") {
960 		if (!scan_arcs_for_cfg_handle(md, grp, cfg_handle)) {
961 			nid = count;
962 			break;
963 		}
964 		count++;
965 	}
966 
967 	mdesc_release(md);
968 
969 	return nid;
970 }
971 
972 static void __init add_node_ranges(void)
973 {
974 	int i;
975 
976 	for (i = 0; i < lmb.memory.cnt; i++) {
977 		unsigned long size = lmb_size_bytes(&lmb.memory, i);
978 		unsigned long start, end;
979 
980 		start = lmb.memory.region[i].base;
981 		end = start + size;
982 		while (start < end) {
983 			unsigned long this_end;
984 			int nid;
985 
986 			this_end = nid_range(start, end, &nid);
987 
988 			numadbg("Adding active range nid[%d] "
989 				"start[%lx] end[%lx]\n",
990 				nid, start, this_end);
991 
992 			add_active_range(nid,
993 					 start >> PAGE_SHIFT,
994 					 this_end >> PAGE_SHIFT);
995 
996 			start = this_end;
997 		}
998 	}
999 }
1000 
1001 static int __init grab_mlgroups(struct mdesc_handle *md)
1002 {
1003 	unsigned long paddr;
1004 	int count = 0;
1005 	u64 node;
1006 
1007 	mdesc_for_each_node_by_name(md, node, "memory-latency-group")
1008 		count++;
1009 	if (!count)
1010 		return -ENOENT;
1011 
1012 	paddr = lmb_alloc(count * sizeof(struct mdesc_mlgroup),
1013 			  SMP_CACHE_BYTES);
1014 	if (!paddr)
1015 		return -ENOMEM;
1016 
1017 	mlgroups = __va(paddr);
1018 	num_mlgroups = count;
1019 
1020 	count = 0;
1021 	mdesc_for_each_node_by_name(md, node, "memory-latency-group") {
1022 		struct mdesc_mlgroup *m = &mlgroups[count++];
1023 		const u64 *val;
1024 
1025 		m->node = node;
1026 
1027 		val = mdesc_get_property(md, node, "latency", NULL);
1028 		m->latency = *val;
1029 		val = mdesc_get_property(md, node, "address-match", NULL);
1030 		m->match = *val;
1031 		val = mdesc_get_property(md, node, "address-mask", NULL);
1032 		m->mask = *val;
1033 
1034 		numadbg("MLGROUP[%d]: node[%llx] latency[%llx] "
1035 			"match[%llx] mask[%llx]\n",
1036 			count - 1, m->node, m->latency, m->match, m->mask);
1037 	}
1038 
1039 	return 0;
1040 }
1041 
1042 static int __init grab_mblocks(struct mdesc_handle *md)
1043 {
1044 	unsigned long paddr;
1045 	int count = 0;
1046 	u64 node;
1047 
1048 	mdesc_for_each_node_by_name(md, node, "mblock")
1049 		count++;
1050 	if (!count)
1051 		return -ENOENT;
1052 
1053 	paddr = lmb_alloc(count * sizeof(struct mdesc_mblock),
1054 			  SMP_CACHE_BYTES);
1055 	if (!paddr)
1056 		return -ENOMEM;
1057 
1058 	mblocks = __va(paddr);
1059 	num_mblocks = count;
1060 
1061 	count = 0;
1062 	mdesc_for_each_node_by_name(md, node, "mblock") {
1063 		struct mdesc_mblock *m = &mblocks[count++];
1064 		const u64 *val;
1065 
1066 		val = mdesc_get_property(md, node, "base", NULL);
1067 		m->base = *val;
1068 		val = mdesc_get_property(md, node, "size", NULL);
1069 		m->size = *val;
1070 		val = mdesc_get_property(md, node,
1071 					 "address-congruence-offset", NULL);
1072 		m->offset = *val;
1073 
1074 		numadbg("MBLOCK[%d]: base[%llx] size[%llx] offset[%llx]\n",
1075 			count - 1, m->base, m->size, m->offset);
1076 	}
1077 
1078 	return 0;
1079 }
1080 
1081 static void __init numa_parse_mdesc_group_cpus(struct mdesc_handle *md,
1082 					       u64 grp, cpumask_t *mask)
1083 {
1084 	u64 arc;
1085 
1086 	cpus_clear(*mask);
1087 
1088 	mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_BACK) {
1089 		u64 target = mdesc_arc_target(md, arc);
1090 		const char *name = mdesc_node_name(md, target);
1091 		const u64 *id;
1092 
1093 		if (strcmp(name, "cpu"))
1094 			continue;
1095 		id = mdesc_get_property(md, target, "id", NULL);
1096 		if (*id < nr_cpu_ids)
1097 			cpu_set(*id, *mask);
1098 	}
1099 }
1100 
1101 static struct mdesc_mlgroup * __init find_mlgroup(u64 node)
1102 {
1103 	int i;
1104 
1105 	for (i = 0; i < num_mlgroups; i++) {
1106 		struct mdesc_mlgroup *m = &mlgroups[i];
1107 		if (m->node == node)
1108 			return m;
1109 	}
1110 	return NULL;
1111 }
1112 
1113 static int __init numa_attach_mlgroup(struct mdesc_handle *md, u64 grp,
1114 				      int index)
1115 {
1116 	struct mdesc_mlgroup *candidate = NULL;
1117 	u64 arc, best_latency = ~(u64)0;
1118 	struct node_mem_mask *n;
1119 
1120 	mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1121 		u64 target = mdesc_arc_target(md, arc);
1122 		struct mdesc_mlgroup *m = find_mlgroup(target);
1123 		if (!m)
1124 			continue;
1125 		if (m->latency < best_latency) {
1126 			candidate = m;
1127 			best_latency = m->latency;
1128 		}
1129 	}
1130 	if (!candidate)
1131 		return -ENOENT;
1132 
1133 	if (num_node_masks != index) {
1134 		printk(KERN_ERR "Inconsistent NUMA state, "
1135 		       "index[%d] != num_node_masks[%d]\n",
1136 		       index, num_node_masks);
1137 		return -EINVAL;
1138 	}
1139 
1140 	n = &node_masks[num_node_masks++];
1141 
1142 	n->mask = candidate->mask;
1143 	n->val = candidate->match;
1144 
1145 	numadbg("NUMA NODE[%d]: mask[%lx] val[%lx] (latency[%llx])\n",
1146 		index, n->mask, n->val, candidate->latency);
1147 
1148 	return 0;
1149 }
1150 
1151 static int __init numa_parse_mdesc_group(struct mdesc_handle *md, u64 grp,
1152 					 int index)
1153 {
1154 	cpumask_t mask;
1155 	int cpu;
1156 
1157 	numa_parse_mdesc_group_cpus(md, grp, &mask);
1158 
1159 	for_each_cpu_mask(cpu, mask)
1160 		numa_cpu_lookup_table[cpu] = index;
1161 	numa_cpumask_lookup_table[index] = mask;
1162 
1163 	if (numa_debug) {
1164 		printk(KERN_INFO "NUMA GROUP[%d]: cpus [ ", index);
1165 		for_each_cpu_mask(cpu, mask)
1166 			printk("%d ", cpu);
1167 		printk("]\n");
1168 	}
1169 
1170 	return numa_attach_mlgroup(md, grp, index);
1171 }
1172 
1173 static int __init numa_parse_mdesc(void)
1174 {
1175 	struct mdesc_handle *md = mdesc_grab();
1176 	int i, err, count;
1177 	u64 node;
1178 
1179 	node = mdesc_node_by_name(md, MDESC_NODE_NULL, "latency-groups");
1180 	if (node == MDESC_NODE_NULL) {
1181 		mdesc_release(md);
1182 		return -ENOENT;
1183 	}
1184 
1185 	err = grab_mblocks(md);
1186 	if (err < 0)
1187 		goto out;
1188 
1189 	err = grab_mlgroups(md);
1190 	if (err < 0)
1191 		goto out;
1192 
1193 	count = 0;
1194 	mdesc_for_each_node_by_name(md, node, "group") {
1195 		err = numa_parse_mdesc_group(md, node, count);
1196 		if (err < 0)
1197 			break;
1198 		count++;
1199 	}
1200 
1201 	add_node_ranges();
1202 
1203 	for (i = 0; i < num_node_masks; i++) {
1204 		allocate_node_data(i);
1205 		node_set_online(i);
1206 	}
1207 
1208 	err = 0;
1209 out:
1210 	mdesc_release(md);
1211 	return err;
1212 }
1213 
1214 static int __init numa_parse_jbus(void)
1215 {
1216 	unsigned long cpu, index;
1217 
1218 	/* NUMA node id is encoded in bits 36 and higher, and there is
1219 	 * a 1-to-1 mapping from CPU ID to NUMA node ID.
1220 	 */
1221 	index = 0;
1222 	for_each_present_cpu(cpu) {
1223 		numa_cpu_lookup_table[cpu] = index;
1224 		numa_cpumask_lookup_table[index] = cpumask_of_cpu(cpu);
1225 		node_masks[index].mask = ~((1UL << 36UL) - 1UL);
1226 		node_masks[index].val = cpu << 36UL;
1227 
1228 		index++;
1229 	}
1230 	num_node_masks = index;
1231 
1232 	add_node_ranges();
1233 
1234 	for (index = 0; index < num_node_masks; index++) {
1235 		allocate_node_data(index);
1236 		node_set_online(index);
1237 	}
1238 
1239 	return 0;
1240 }
1241 
1242 static int __init numa_parse_sun4u(void)
1243 {
1244 	if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1245 		unsigned long ver;
1246 
1247 		__asm__ ("rdpr %%ver, %0" : "=r" (ver));
1248 		if ((ver >> 32UL) == __JALAPENO_ID ||
1249 		    (ver >> 32UL) == __SERRANO_ID)
1250 			return numa_parse_jbus();
1251 	}
1252 	return -1;
1253 }
1254 
1255 static int __init bootmem_init_numa(void)
1256 {
1257 	int err = -1;
1258 
1259 	numadbg("bootmem_init_numa()\n");
1260 
1261 	if (numa_enabled) {
1262 		if (tlb_type == hypervisor)
1263 			err = numa_parse_mdesc();
1264 		else
1265 			err = numa_parse_sun4u();
1266 	}
1267 	return err;
1268 }
1269 
1270 #else
1271 
1272 static int bootmem_init_numa(void)
1273 {
1274 	return -1;
1275 }
1276 
1277 #endif
1278 
1279 static void __init bootmem_init_nonnuma(void)
1280 {
1281 	unsigned long top_of_ram = lmb_end_of_DRAM();
1282 	unsigned long total_ram = lmb_phys_mem_size();
1283 	unsigned int i;
1284 
1285 	numadbg("bootmem_init_nonnuma()\n");
1286 
1287 	printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
1288 	       top_of_ram, total_ram);
1289 	printk(KERN_INFO "Memory hole size: %ldMB\n",
1290 	       (top_of_ram - total_ram) >> 20);
1291 
1292 	init_node_masks_nonnuma();
1293 
1294 	for (i = 0; i < lmb.memory.cnt; i++) {
1295 		unsigned long size = lmb_size_bytes(&lmb.memory, i);
1296 		unsigned long start_pfn, end_pfn;
1297 
1298 		if (!size)
1299 			continue;
1300 
1301 		start_pfn = lmb.memory.region[i].base >> PAGE_SHIFT;
1302 		end_pfn = start_pfn + lmb_size_pages(&lmb.memory, i);
1303 		add_active_range(0, start_pfn, end_pfn);
1304 	}
1305 
1306 	allocate_node_data(0);
1307 
1308 	node_set_online(0);
1309 }
1310 
1311 static void __init reserve_range_in_node(int nid, unsigned long start,
1312 					 unsigned long end)
1313 {
1314 	numadbg("    reserve_range_in_node(nid[%d],start[%lx],end[%lx]\n",
1315 		nid, start, end);
1316 	while (start < end) {
1317 		unsigned long this_end;
1318 		int n;
1319 
1320 		this_end = nid_range(start, end, &n);
1321 		if (n == nid) {
1322 			numadbg("      MATCH reserving range [%lx:%lx]\n",
1323 				start, this_end);
1324 			reserve_bootmem_node(NODE_DATA(nid), start,
1325 					     (this_end - start), BOOTMEM_DEFAULT);
1326 		} else
1327 			numadbg("      NO MATCH, advancing start to %lx\n",
1328 				this_end);
1329 
1330 		start = this_end;
1331 	}
1332 }
1333 
1334 static void __init trim_reserved_in_node(int nid)
1335 {
1336 	int i;
1337 
1338 	numadbg("  trim_reserved_in_node(%d)\n", nid);
1339 
1340 	for (i = 0; i < lmb.reserved.cnt; i++) {
1341 		unsigned long start = lmb.reserved.region[i].base;
1342 		unsigned long size = lmb_size_bytes(&lmb.reserved, i);
1343 		unsigned long end = start + size;
1344 
1345 		reserve_range_in_node(nid, start, end);
1346 	}
1347 }
1348 
1349 static void __init bootmem_init_one_node(int nid)
1350 {
1351 	struct pglist_data *p;
1352 
1353 	numadbg("bootmem_init_one_node(%d)\n", nid);
1354 
1355 	p = NODE_DATA(nid);
1356 
1357 	if (p->node_spanned_pages) {
1358 		unsigned long paddr = node_masks[nid].bootmem_paddr;
1359 		unsigned long end_pfn;
1360 
1361 		end_pfn = p->node_start_pfn + p->node_spanned_pages;
1362 
1363 		numadbg("  init_bootmem_node(%d, %lx, %lx, %lx)\n",
1364 			nid, paddr >> PAGE_SHIFT, p->node_start_pfn, end_pfn);
1365 
1366 		init_bootmem_node(p, paddr >> PAGE_SHIFT,
1367 				  p->node_start_pfn, end_pfn);
1368 
1369 		numadbg("  free_bootmem_with_active_regions(%d, %lx)\n",
1370 			nid, end_pfn);
1371 		free_bootmem_with_active_regions(nid, end_pfn);
1372 
1373 		trim_reserved_in_node(nid);
1374 
1375 		numadbg("  sparse_memory_present_with_active_regions(%d)\n",
1376 			nid);
1377 		sparse_memory_present_with_active_regions(nid);
1378 	}
1379 }
1380 
1381 static unsigned long __init bootmem_init(unsigned long phys_base)
1382 {
1383 	unsigned long end_pfn;
1384 	int nid;
1385 
1386 	end_pfn = lmb_end_of_DRAM() >> PAGE_SHIFT;
1387 	max_pfn = max_low_pfn = end_pfn;
1388 	min_low_pfn = (phys_base >> PAGE_SHIFT);
1389 
1390 	if (bootmem_init_numa() < 0)
1391 		bootmem_init_nonnuma();
1392 
1393 	/* XXX cpu notifier XXX */
1394 
1395 	for_each_online_node(nid)
1396 		bootmem_init_one_node(nid);
1397 
1398 	sparse_init();
1399 
1400 	return end_pfn;
1401 }
1402 
1403 static struct linux_prom64_registers pall[MAX_BANKS] __initdata;
1404 static int pall_ents __initdata;
1405 
1406 #ifdef CONFIG_DEBUG_PAGEALLOC
1407 static unsigned long __ref kernel_map_range(unsigned long pstart,
1408 					    unsigned long pend, pgprot_t prot)
1409 {
1410 	unsigned long vstart = PAGE_OFFSET + pstart;
1411 	unsigned long vend = PAGE_OFFSET + pend;
1412 	unsigned long alloc_bytes = 0UL;
1413 
1414 	if ((vstart & ~PAGE_MASK) || (vend & ~PAGE_MASK)) {
1415 		prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n",
1416 			    vstart, vend);
1417 		prom_halt();
1418 	}
1419 
1420 	while (vstart < vend) {
1421 		unsigned long this_end, paddr = __pa(vstart);
1422 		pgd_t *pgd = pgd_offset_k(vstart);
1423 		pud_t *pud;
1424 		pmd_t *pmd;
1425 		pte_t *pte;
1426 
1427 		pud = pud_offset(pgd, vstart);
1428 		if (pud_none(*pud)) {
1429 			pmd_t *new;
1430 
1431 			new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1432 			alloc_bytes += PAGE_SIZE;
1433 			pud_populate(&init_mm, pud, new);
1434 		}
1435 
1436 		pmd = pmd_offset(pud, vstart);
1437 		if (!pmd_present(*pmd)) {
1438 			pte_t *new;
1439 
1440 			new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1441 			alloc_bytes += PAGE_SIZE;
1442 			pmd_populate_kernel(&init_mm, pmd, new);
1443 		}
1444 
1445 		pte = pte_offset_kernel(pmd, vstart);
1446 		this_end = (vstart + PMD_SIZE) & PMD_MASK;
1447 		if (this_end > vend)
1448 			this_end = vend;
1449 
1450 		while (vstart < this_end) {
1451 			pte_val(*pte) = (paddr | pgprot_val(prot));
1452 
1453 			vstart += PAGE_SIZE;
1454 			paddr += PAGE_SIZE;
1455 			pte++;
1456 		}
1457 	}
1458 
1459 	return alloc_bytes;
1460 }
1461 
1462 extern unsigned int kvmap_linear_patch[1];
1463 #endif /* CONFIG_DEBUG_PAGEALLOC */
1464 
1465 static void __init mark_kpte_bitmap(unsigned long start, unsigned long end)
1466 {
1467 	const unsigned long shift_256MB = 28;
1468 	const unsigned long mask_256MB = ((1UL << shift_256MB) - 1UL);
1469 	const unsigned long size_256MB = (1UL << shift_256MB);
1470 
1471 	while (start < end) {
1472 		long remains;
1473 
1474 		remains = end - start;
1475 		if (remains < size_256MB)
1476 			break;
1477 
1478 		if (start & mask_256MB) {
1479 			start = (start + size_256MB) & ~mask_256MB;
1480 			continue;
1481 		}
1482 
1483 		while (remains >= size_256MB) {
1484 			unsigned long index = start >> shift_256MB;
1485 
1486 			__set_bit(index, kpte_linear_bitmap);
1487 
1488 			start += size_256MB;
1489 			remains -= size_256MB;
1490 		}
1491 	}
1492 }
1493 
1494 static void __init init_kpte_bitmap(void)
1495 {
1496 	unsigned long i;
1497 
1498 	for (i = 0; i < pall_ents; i++) {
1499 		unsigned long phys_start, phys_end;
1500 
1501 		phys_start = pall[i].phys_addr;
1502 		phys_end = phys_start + pall[i].reg_size;
1503 
1504 		mark_kpte_bitmap(phys_start, phys_end);
1505 	}
1506 }
1507 
1508 static void __init kernel_physical_mapping_init(void)
1509 {
1510 #ifdef CONFIG_DEBUG_PAGEALLOC
1511 	unsigned long i, mem_alloced = 0UL;
1512 
1513 	for (i = 0; i < pall_ents; i++) {
1514 		unsigned long phys_start, phys_end;
1515 
1516 		phys_start = pall[i].phys_addr;
1517 		phys_end = phys_start + pall[i].reg_size;
1518 
1519 		mem_alloced += kernel_map_range(phys_start, phys_end,
1520 						PAGE_KERNEL);
1521 	}
1522 
1523 	printk("Allocated %ld bytes for kernel page tables.\n",
1524 	       mem_alloced);
1525 
1526 	kvmap_linear_patch[0] = 0x01000000; /* nop */
1527 	flushi(&kvmap_linear_patch[0]);
1528 
1529 	__flush_tlb_all();
1530 #endif
1531 }
1532 
1533 #ifdef CONFIG_DEBUG_PAGEALLOC
1534 void kernel_map_pages(struct page *page, int numpages, int enable)
1535 {
1536 	unsigned long phys_start = page_to_pfn(page) << PAGE_SHIFT;
1537 	unsigned long phys_end = phys_start + (numpages * PAGE_SIZE);
1538 
1539 	kernel_map_range(phys_start, phys_end,
1540 			 (enable ? PAGE_KERNEL : __pgprot(0)));
1541 
1542 	flush_tsb_kernel_range(PAGE_OFFSET + phys_start,
1543 			       PAGE_OFFSET + phys_end);
1544 
1545 	/* we should perform an IPI and flush all tlbs,
1546 	 * but that can deadlock->flush only current cpu.
1547 	 */
1548 	__flush_tlb_kernel_range(PAGE_OFFSET + phys_start,
1549 				 PAGE_OFFSET + phys_end);
1550 }
1551 #endif
1552 
1553 unsigned long __init find_ecache_flush_span(unsigned long size)
1554 {
1555 	int i;
1556 
1557 	for (i = 0; i < pavail_ents; i++) {
1558 		if (pavail[i].reg_size >= size)
1559 			return pavail[i].phys_addr;
1560 	}
1561 
1562 	return ~0UL;
1563 }
1564 
1565 static void __init tsb_phys_patch(void)
1566 {
1567 	struct tsb_ldquad_phys_patch_entry *pquad;
1568 	struct tsb_phys_patch_entry *p;
1569 
1570 	pquad = &__tsb_ldquad_phys_patch;
1571 	while (pquad < &__tsb_ldquad_phys_patch_end) {
1572 		unsigned long addr = pquad->addr;
1573 
1574 		if (tlb_type == hypervisor)
1575 			*(unsigned int *) addr = pquad->sun4v_insn;
1576 		else
1577 			*(unsigned int *) addr = pquad->sun4u_insn;
1578 		wmb();
1579 		__asm__ __volatile__("flush	%0"
1580 				     : /* no outputs */
1581 				     : "r" (addr));
1582 
1583 		pquad++;
1584 	}
1585 
1586 	p = &__tsb_phys_patch;
1587 	while (p < &__tsb_phys_patch_end) {
1588 		unsigned long addr = p->addr;
1589 
1590 		*(unsigned int *) addr = p->insn;
1591 		wmb();
1592 		__asm__ __volatile__("flush	%0"
1593 				     : /* no outputs */
1594 				     : "r" (addr));
1595 
1596 		p++;
1597 	}
1598 }
1599 
1600 /* Don't mark as init, we give this to the Hypervisor.  */
1601 #ifndef CONFIG_DEBUG_PAGEALLOC
1602 #define NUM_KTSB_DESCR	2
1603 #else
1604 #define NUM_KTSB_DESCR	1
1605 #endif
1606 static struct hv_tsb_descr ktsb_descr[NUM_KTSB_DESCR];
1607 extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
1608 
1609 static void __init sun4v_ktsb_init(void)
1610 {
1611 	unsigned long ktsb_pa;
1612 
1613 	/* First KTSB for PAGE_SIZE mappings.  */
1614 	ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
1615 
1616 	switch (PAGE_SIZE) {
1617 	case 8 * 1024:
1618 	default:
1619 		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_8K;
1620 		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_8K;
1621 		break;
1622 
1623 	case 64 * 1024:
1624 		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_64K;
1625 		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_64K;
1626 		break;
1627 
1628 	case 512 * 1024:
1629 		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_512K;
1630 		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_512K;
1631 		break;
1632 
1633 	case 4 * 1024 * 1024:
1634 		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_4MB;
1635 		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_4MB;
1636 		break;
1637 	};
1638 
1639 	ktsb_descr[0].assoc = 1;
1640 	ktsb_descr[0].num_ttes = KERNEL_TSB_NENTRIES;
1641 	ktsb_descr[0].ctx_idx = 0;
1642 	ktsb_descr[0].tsb_base = ktsb_pa;
1643 	ktsb_descr[0].resv = 0;
1644 
1645 #ifndef CONFIG_DEBUG_PAGEALLOC
1646 	/* Second KTSB for 4MB/256MB mappings.  */
1647 	ktsb_pa = (kern_base +
1648 		   ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
1649 
1650 	ktsb_descr[1].pgsz_idx = HV_PGSZ_IDX_4MB;
1651 	ktsb_descr[1].pgsz_mask = (HV_PGSZ_MASK_4MB |
1652 				   HV_PGSZ_MASK_256MB);
1653 	ktsb_descr[1].assoc = 1;
1654 	ktsb_descr[1].num_ttes = KERNEL_TSB4M_NENTRIES;
1655 	ktsb_descr[1].ctx_idx = 0;
1656 	ktsb_descr[1].tsb_base = ktsb_pa;
1657 	ktsb_descr[1].resv = 0;
1658 #endif
1659 }
1660 
1661 void __cpuinit sun4v_ktsb_register(void)
1662 {
1663 	unsigned long pa, ret;
1664 
1665 	pa = kern_base + ((unsigned long)&ktsb_descr[0] - KERNBASE);
1666 
1667 	ret = sun4v_mmu_tsb_ctx0(NUM_KTSB_DESCR, pa);
1668 	if (ret != 0) {
1669 		prom_printf("hypervisor_mmu_tsb_ctx0[%lx]: "
1670 			    "errors with %lx\n", pa, ret);
1671 		prom_halt();
1672 	}
1673 }
1674 
1675 /* paging_init() sets up the page tables */
1676 
1677 static unsigned long last_valid_pfn;
1678 pgd_t swapper_pg_dir[2048];
1679 
1680 static void sun4u_pgprot_init(void);
1681 static void sun4v_pgprot_init(void);
1682 
1683 void __init paging_init(void)
1684 {
1685 	unsigned long end_pfn, shift, phys_base;
1686 	unsigned long real_end, i;
1687 
1688 	/* These build time checkes make sure that the dcache_dirty_cpu()
1689 	 * page->flags usage will work.
1690 	 *
1691 	 * When a page gets marked as dcache-dirty, we store the
1692 	 * cpu number starting at bit 32 in the page->flags.  Also,
1693 	 * functions like clear_dcache_dirty_cpu use the cpu mask
1694 	 * in 13-bit signed-immediate instruction fields.
1695 	 */
1696 
1697 	/*
1698 	 * Page flags must not reach into upper 32 bits that are used
1699 	 * for the cpu number
1700 	 */
1701 	BUILD_BUG_ON(NR_PAGEFLAGS > 32);
1702 
1703 	/*
1704 	 * The bit fields placed in the high range must not reach below
1705 	 * the 32 bit boundary. Otherwise we cannot place the cpu field
1706 	 * at the 32 bit boundary.
1707 	 */
1708 	BUILD_BUG_ON(SECTIONS_WIDTH + NODES_WIDTH + ZONES_WIDTH +
1709 		ilog2(roundup_pow_of_two(NR_CPUS)) > 32);
1710 
1711 	BUILD_BUG_ON(NR_CPUS > 4096);
1712 
1713 	kern_base = (prom_boot_mapping_phys_low >> 22UL) << 22UL;
1714 	kern_size = (unsigned long)&_end - (unsigned long)KERNBASE;
1715 
1716 	/* Invalidate both kernel TSBs.  */
1717 	memset(swapper_tsb, 0x40, sizeof(swapper_tsb));
1718 #ifndef CONFIG_DEBUG_PAGEALLOC
1719 	memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
1720 #endif
1721 
1722 	if (tlb_type == hypervisor)
1723 		sun4v_pgprot_init();
1724 	else
1725 		sun4u_pgprot_init();
1726 
1727 	if (tlb_type == cheetah_plus ||
1728 	    tlb_type == hypervisor)
1729 		tsb_phys_patch();
1730 
1731 	if (tlb_type == hypervisor) {
1732 		sun4v_patch_tlb_handlers();
1733 		sun4v_ktsb_init();
1734 	}
1735 
1736 	lmb_init();
1737 
1738 	/* Find available physical memory...
1739 	 *
1740 	 * Read it twice in order to work around a bug in openfirmware.
1741 	 * The call to grab this table itself can cause openfirmware to
1742 	 * allocate memory, which in turn can take away some space from
1743 	 * the list of available memory.  Reading it twice makes sure
1744 	 * we really do get the final value.
1745 	 */
1746 	read_obp_translations();
1747 	read_obp_memory("reg", &pall[0], &pall_ents);
1748 	read_obp_memory("available", &pavail[0], &pavail_ents);
1749 	read_obp_memory("available", &pavail[0], &pavail_ents);
1750 
1751 	phys_base = 0xffffffffffffffffUL;
1752 	for (i = 0; i < pavail_ents; i++) {
1753 		phys_base = min(phys_base, pavail[i].phys_addr);
1754 		lmb_add(pavail[i].phys_addr, pavail[i].reg_size);
1755 	}
1756 
1757 	lmb_reserve(kern_base, kern_size);
1758 
1759 	find_ramdisk(phys_base);
1760 
1761 	lmb_enforce_memory_limit(cmdline_memory_size);
1762 
1763 	lmb_analyze();
1764 	lmb_dump_all();
1765 
1766 	set_bit(0, mmu_context_bmap);
1767 
1768 	shift = kern_base + PAGE_OFFSET - ((unsigned long)KERNBASE);
1769 
1770 	real_end = (unsigned long)_end;
1771 	num_kernel_image_mappings = DIV_ROUND_UP(real_end - KERNBASE, 1 << 22);
1772 	printk("Kernel: Using %d locked TLB entries for main kernel image.\n",
1773 	       num_kernel_image_mappings);
1774 
1775 	/* Set kernel pgd to upper alias so physical page computations
1776 	 * work.
1777 	 */
1778 	init_mm.pgd += ((shift) / (sizeof(pgd_t)));
1779 
1780 	memset(swapper_low_pmd_dir, 0, sizeof(swapper_low_pmd_dir));
1781 
1782 	/* Now can init the kernel/bad page tables. */
1783 	pud_set(pud_offset(&swapper_pg_dir[0], 0),
1784 		swapper_low_pmd_dir + (shift / sizeof(pgd_t)));
1785 
1786 	inherit_prom_mappings();
1787 
1788 	init_kpte_bitmap();
1789 
1790 	/* Ok, we can use our TLB miss and window trap handlers safely.  */
1791 	setup_tba();
1792 
1793 	__flush_tlb_all();
1794 
1795 	if (tlb_type == hypervisor)
1796 		sun4v_ktsb_register();
1797 
1798 	prom_build_devicetree();
1799 	of_populate_present_mask();
1800 #ifndef CONFIG_SMP
1801 	of_fill_in_cpu_data();
1802 #endif
1803 
1804 	if (tlb_type == hypervisor) {
1805 		sun4v_mdesc_init();
1806 		mdesc_populate_present_mask(cpu_all_mask);
1807 #ifndef CONFIG_SMP
1808 		mdesc_fill_in_cpu_data(cpu_all_mask);
1809 #endif
1810 	}
1811 
1812 	/* Once the OF device tree and MDESC have been setup, we know
1813 	 * the list of possible cpus.  Therefore we can allocate the
1814 	 * IRQ stacks.
1815 	 */
1816 	for_each_possible_cpu(i) {
1817 		/* XXX Use node local allocations... XXX */
1818 		softirq_stack[i] = __va(lmb_alloc(THREAD_SIZE, THREAD_SIZE));
1819 		hardirq_stack[i] = __va(lmb_alloc(THREAD_SIZE, THREAD_SIZE));
1820 	}
1821 
1822 	/* Setup bootmem... */
1823 	last_valid_pfn = end_pfn = bootmem_init(phys_base);
1824 
1825 #ifndef CONFIG_NEED_MULTIPLE_NODES
1826 	max_mapnr = last_valid_pfn;
1827 #endif
1828 	kernel_physical_mapping_init();
1829 
1830 	{
1831 		unsigned long max_zone_pfns[MAX_NR_ZONES];
1832 
1833 		memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
1834 
1835 		max_zone_pfns[ZONE_NORMAL] = end_pfn;
1836 
1837 		free_area_init_nodes(max_zone_pfns);
1838 	}
1839 
1840 	printk("Booting Linux...\n");
1841 }
1842 
1843 int __devinit page_in_phys_avail(unsigned long paddr)
1844 {
1845 	int i;
1846 
1847 	paddr &= PAGE_MASK;
1848 
1849 	for (i = 0; i < pavail_ents; i++) {
1850 		unsigned long start, end;
1851 
1852 		start = pavail[i].phys_addr;
1853 		end = start + pavail[i].reg_size;
1854 
1855 		if (paddr >= start && paddr < end)
1856 			return 1;
1857 	}
1858 	if (paddr >= kern_base && paddr < (kern_base + kern_size))
1859 		return 1;
1860 #ifdef CONFIG_BLK_DEV_INITRD
1861 	if (paddr >= __pa(initrd_start) &&
1862 	    paddr < __pa(PAGE_ALIGN(initrd_end)))
1863 		return 1;
1864 #endif
1865 
1866 	return 0;
1867 }
1868 
1869 static struct linux_prom64_registers pavail_rescan[MAX_BANKS] __initdata;
1870 static int pavail_rescan_ents __initdata;
1871 
1872 /* Certain OBP calls, such as fetching "available" properties, can
1873  * claim physical memory.  So, along with initializing the valid
1874  * address bitmap, what we do here is refetch the physical available
1875  * memory list again, and make sure it provides at least as much
1876  * memory as 'pavail' does.
1877  */
1878 static void __init setup_valid_addr_bitmap_from_pavail(unsigned long *bitmap)
1879 {
1880 	int i;
1881 
1882 	read_obp_memory("available", &pavail_rescan[0], &pavail_rescan_ents);
1883 
1884 	for (i = 0; i < pavail_ents; i++) {
1885 		unsigned long old_start, old_end;
1886 
1887 		old_start = pavail[i].phys_addr;
1888 		old_end = old_start + pavail[i].reg_size;
1889 		while (old_start < old_end) {
1890 			int n;
1891 
1892 			for (n = 0; n < pavail_rescan_ents; n++) {
1893 				unsigned long new_start, new_end;
1894 
1895 				new_start = pavail_rescan[n].phys_addr;
1896 				new_end = new_start +
1897 					pavail_rescan[n].reg_size;
1898 
1899 				if (new_start <= old_start &&
1900 				    new_end >= (old_start + PAGE_SIZE)) {
1901 					set_bit(old_start >> 22, bitmap);
1902 					goto do_next_page;
1903 				}
1904 			}
1905 
1906 			prom_printf("mem_init: Lost memory in pavail\n");
1907 			prom_printf("mem_init: OLD start[%lx] size[%lx]\n",
1908 				    pavail[i].phys_addr,
1909 				    pavail[i].reg_size);
1910 			prom_printf("mem_init: NEW start[%lx] size[%lx]\n",
1911 				    pavail_rescan[i].phys_addr,
1912 				    pavail_rescan[i].reg_size);
1913 			prom_printf("mem_init: Cannot continue, aborting.\n");
1914 			prom_halt();
1915 
1916 		do_next_page:
1917 			old_start += PAGE_SIZE;
1918 		}
1919 	}
1920 }
1921 
1922 static void __init patch_tlb_miss_handler_bitmap(void)
1923 {
1924 	extern unsigned int valid_addr_bitmap_insn[];
1925 	extern unsigned int valid_addr_bitmap_patch[];
1926 
1927 	valid_addr_bitmap_insn[1] = valid_addr_bitmap_patch[1];
1928 	mb();
1929 	valid_addr_bitmap_insn[0] = valid_addr_bitmap_patch[0];
1930 	flushi(&valid_addr_bitmap_insn[0]);
1931 }
1932 
1933 void __init mem_init(void)
1934 {
1935 	unsigned long codepages, datapages, initpages;
1936 	unsigned long addr, last;
1937 
1938 	addr = PAGE_OFFSET + kern_base;
1939 	last = PAGE_ALIGN(kern_size) + addr;
1940 	while (addr < last) {
1941 		set_bit(__pa(addr) >> 22, sparc64_valid_addr_bitmap);
1942 		addr += PAGE_SIZE;
1943 	}
1944 
1945 	setup_valid_addr_bitmap_from_pavail(sparc64_valid_addr_bitmap);
1946 	patch_tlb_miss_handler_bitmap();
1947 
1948 	high_memory = __va(last_valid_pfn << PAGE_SHIFT);
1949 
1950 #ifdef CONFIG_NEED_MULTIPLE_NODES
1951 	{
1952 		int i;
1953 		for_each_online_node(i) {
1954 			if (NODE_DATA(i)->node_spanned_pages != 0) {
1955 				totalram_pages +=
1956 					free_all_bootmem_node(NODE_DATA(i));
1957 			}
1958 		}
1959 	}
1960 #else
1961 	totalram_pages = free_all_bootmem();
1962 #endif
1963 
1964 	/* We subtract one to account for the mem_map_zero page
1965 	 * allocated below.
1966 	 */
1967 	totalram_pages -= 1;
1968 	num_physpages = totalram_pages;
1969 
1970 	/*
1971 	 * Set up the zero page, mark it reserved, so that page count
1972 	 * is not manipulated when freeing the page from user ptes.
1973 	 */
1974 	mem_map_zero = alloc_pages(GFP_KERNEL|__GFP_ZERO, 0);
1975 	if (mem_map_zero == NULL) {
1976 		prom_printf("paging_init: Cannot alloc zero page.\n");
1977 		prom_halt();
1978 	}
1979 	SetPageReserved(mem_map_zero);
1980 
1981 	codepages = (((unsigned long) _etext) - ((unsigned long) _start));
1982 	codepages = PAGE_ALIGN(codepages) >> PAGE_SHIFT;
1983 	datapages = (((unsigned long) _edata) - ((unsigned long) _etext));
1984 	datapages = PAGE_ALIGN(datapages) >> PAGE_SHIFT;
1985 	initpages = (((unsigned long) __init_end) - ((unsigned long) __init_begin));
1986 	initpages = PAGE_ALIGN(initpages) >> PAGE_SHIFT;
1987 
1988 	printk("Memory: %luk available (%ldk kernel code, %ldk data, %ldk init) [%016lx,%016lx]\n",
1989 	       nr_free_pages() << (PAGE_SHIFT-10),
1990 	       codepages << (PAGE_SHIFT-10),
1991 	       datapages << (PAGE_SHIFT-10),
1992 	       initpages << (PAGE_SHIFT-10),
1993 	       PAGE_OFFSET, (last_valid_pfn << PAGE_SHIFT));
1994 
1995 	if (tlb_type == cheetah || tlb_type == cheetah_plus)
1996 		cheetah_ecache_flush_init();
1997 }
1998 
1999 void free_initmem(void)
2000 {
2001 	unsigned long addr, initend;
2002 	int do_free = 1;
2003 
2004 	/* If the physical memory maps were trimmed by kernel command
2005 	 * line options, don't even try freeing this initmem stuff up.
2006 	 * The kernel image could have been in the trimmed out region
2007 	 * and if so the freeing below will free invalid page structs.
2008 	 */
2009 	if (cmdline_memory_size)
2010 		do_free = 0;
2011 
2012 	/*
2013 	 * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes.
2014 	 */
2015 	addr = PAGE_ALIGN((unsigned long)(__init_begin));
2016 	initend = (unsigned long)(__init_end) & PAGE_MASK;
2017 	for (; addr < initend; addr += PAGE_SIZE) {
2018 		unsigned long page;
2019 		struct page *p;
2020 
2021 		page = (addr +
2022 			((unsigned long) __va(kern_base)) -
2023 			((unsigned long) KERNBASE));
2024 		memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
2025 
2026 		if (do_free) {
2027 			p = virt_to_page(page);
2028 
2029 			ClearPageReserved(p);
2030 			init_page_count(p);
2031 			__free_page(p);
2032 			num_physpages++;
2033 			totalram_pages++;
2034 		}
2035 	}
2036 }
2037 
2038 #ifdef CONFIG_BLK_DEV_INITRD
2039 void free_initrd_mem(unsigned long start, unsigned long end)
2040 {
2041 	if (start < end)
2042 		printk ("Freeing initrd memory: %ldk freed\n", (end - start) >> 10);
2043 	for (; start < end; start += PAGE_SIZE) {
2044 		struct page *p = virt_to_page(start);
2045 
2046 		ClearPageReserved(p);
2047 		init_page_count(p);
2048 		__free_page(p);
2049 		num_physpages++;
2050 		totalram_pages++;
2051 	}
2052 }
2053 #endif
2054 
2055 #define _PAGE_CACHE_4U	(_PAGE_CP_4U | _PAGE_CV_4U)
2056 #define _PAGE_CACHE_4V	(_PAGE_CP_4V | _PAGE_CV_4V)
2057 #define __DIRTY_BITS_4U	 (_PAGE_MODIFIED_4U | _PAGE_WRITE_4U | _PAGE_W_4U)
2058 #define __DIRTY_BITS_4V	 (_PAGE_MODIFIED_4V | _PAGE_WRITE_4V | _PAGE_W_4V)
2059 #define __ACCESS_BITS_4U (_PAGE_ACCESSED_4U | _PAGE_READ_4U | _PAGE_R)
2060 #define __ACCESS_BITS_4V (_PAGE_ACCESSED_4V | _PAGE_READ_4V | _PAGE_R)
2061 
2062 pgprot_t PAGE_KERNEL __read_mostly;
2063 EXPORT_SYMBOL(PAGE_KERNEL);
2064 
2065 pgprot_t PAGE_KERNEL_LOCKED __read_mostly;
2066 pgprot_t PAGE_COPY __read_mostly;
2067 
2068 pgprot_t PAGE_SHARED __read_mostly;
2069 EXPORT_SYMBOL(PAGE_SHARED);
2070 
2071 unsigned long pg_iobits __read_mostly;
2072 
2073 unsigned long _PAGE_IE __read_mostly;
2074 EXPORT_SYMBOL(_PAGE_IE);
2075 
2076 unsigned long _PAGE_E __read_mostly;
2077 EXPORT_SYMBOL(_PAGE_E);
2078 
2079 unsigned long _PAGE_CACHE __read_mostly;
2080 EXPORT_SYMBOL(_PAGE_CACHE);
2081 
2082 #ifdef CONFIG_SPARSEMEM_VMEMMAP
2083 unsigned long vmemmap_table[VMEMMAP_SIZE];
2084 
2085 int __meminit vmemmap_populate(struct page *start, unsigned long nr, int node)
2086 {
2087 	unsigned long vstart = (unsigned long) start;
2088 	unsigned long vend = (unsigned long) (start + nr);
2089 	unsigned long phys_start = (vstart - VMEMMAP_BASE);
2090 	unsigned long phys_end = (vend - VMEMMAP_BASE);
2091 	unsigned long addr = phys_start & VMEMMAP_CHUNK_MASK;
2092 	unsigned long end = VMEMMAP_ALIGN(phys_end);
2093 	unsigned long pte_base;
2094 
2095 	pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2096 		    _PAGE_CP_4U | _PAGE_CV_4U |
2097 		    _PAGE_P_4U | _PAGE_W_4U);
2098 	if (tlb_type == hypervisor)
2099 		pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2100 			    _PAGE_CP_4V | _PAGE_CV_4V |
2101 			    _PAGE_P_4V | _PAGE_W_4V);
2102 
2103 	for (; addr < end; addr += VMEMMAP_CHUNK) {
2104 		unsigned long *vmem_pp =
2105 			vmemmap_table + (addr >> VMEMMAP_CHUNK_SHIFT);
2106 		void *block;
2107 
2108 		if (!(*vmem_pp & _PAGE_VALID)) {
2109 			block = vmemmap_alloc_block(1UL << 22, node);
2110 			if (!block)
2111 				return -ENOMEM;
2112 
2113 			*vmem_pp = pte_base | __pa(block);
2114 
2115 			printk(KERN_INFO "[%p-%p] page_structs=%lu "
2116 			       "node=%d entry=%lu/%lu\n", start, block, nr,
2117 			       node,
2118 			       addr >> VMEMMAP_CHUNK_SHIFT,
2119 			       VMEMMAP_SIZE >> VMEMMAP_CHUNK_SHIFT);
2120 		}
2121 	}
2122 	return 0;
2123 }
2124 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
2125 
2126 static void prot_init_common(unsigned long page_none,
2127 			     unsigned long page_shared,
2128 			     unsigned long page_copy,
2129 			     unsigned long page_readonly,
2130 			     unsigned long page_exec_bit)
2131 {
2132 	PAGE_COPY = __pgprot(page_copy);
2133 	PAGE_SHARED = __pgprot(page_shared);
2134 
2135 	protection_map[0x0] = __pgprot(page_none);
2136 	protection_map[0x1] = __pgprot(page_readonly & ~page_exec_bit);
2137 	protection_map[0x2] = __pgprot(page_copy & ~page_exec_bit);
2138 	protection_map[0x3] = __pgprot(page_copy & ~page_exec_bit);
2139 	protection_map[0x4] = __pgprot(page_readonly);
2140 	protection_map[0x5] = __pgprot(page_readonly);
2141 	protection_map[0x6] = __pgprot(page_copy);
2142 	protection_map[0x7] = __pgprot(page_copy);
2143 	protection_map[0x8] = __pgprot(page_none);
2144 	protection_map[0x9] = __pgprot(page_readonly & ~page_exec_bit);
2145 	protection_map[0xa] = __pgprot(page_shared & ~page_exec_bit);
2146 	protection_map[0xb] = __pgprot(page_shared & ~page_exec_bit);
2147 	protection_map[0xc] = __pgprot(page_readonly);
2148 	protection_map[0xd] = __pgprot(page_readonly);
2149 	protection_map[0xe] = __pgprot(page_shared);
2150 	protection_map[0xf] = __pgprot(page_shared);
2151 }
2152 
2153 static void __init sun4u_pgprot_init(void)
2154 {
2155 	unsigned long page_none, page_shared, page_copy, page_readonly;
2156 	unsigned long page_exec_bit;
2157 
2158 	PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2159 				_PAGE_CACHE_4U | _PAGE_P_4U |
2160 				__ACCESS_BITS_4U | __DIRTY_BITS_4U |
2161 				_PAGE_EXEC_4U);
2162 	PAGE_KERNEL_LOCKED = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2163 				       _PAGE_CACHE_4U | _PAGE_P_4U |
2164 				       __ACCESS_BITS_4U | __DIRTY_BITS_4U |
2165 				       _PAGE_EXEC_4U | _PAGE_L_4U);
2166 
2167 	_PAGE_IE = _PAGE_IE_4U;
2168 	_PAGE_E = _PAGE_E_4U;
2169 	_PAGE_CACHE = _PAGE_CACHE_4U;
2170 
2171 	pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4U | __DIRTY_BITS_4U |
2172 		     __ACCESS_BITS_4U | _PAGE_E_4U);
2173 
2174 #ifdef CONFIG_DEBUG_PAGEALLOC
2175 	kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZBITS_4U) ^
2176 		0xfffff80000000000UL;
2177 #else
2178 	kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4U) ^
2179 		0xfffff80000000000UL;
2180 #endif
2181 	kern_linear_pte_xor[0] |= (_PAGE_CP_4U | _PAGE_CV_4U |
2182 				   _PAGE_P_4U | _PAGE_W_4U);
2183 
2184 	/* XXX Should use 256MB on Panther. XXX */
2185 	kern_linear_pte_xor[1] = kern_linear_pte_xor[0];
2186 
2187 	_PAGE_SZBITS = _PAGE_SZBITS_4U;
2188 	_PAGE_ALL_SZ_BITS =  (_PAGE_SZ4MB_4U | _PAGE_SZ512K_4U |
2189 			      _PAGE_SZ64K_4U | _PAGE_SZ8K_4U |
2190 			      _PAGE_SZ32MB_4U | _PAGE_SZ256MB_4U);
2191 
2192 
2193 	page_none = _PAGE_PRESENT_4U | _PAGE_ACCESSED_4U | _PAGE_CACHE_4U;
2194 	page_shared = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2195 		       __ACCESS_BITS_4U | _PAGE_WRITE_4U | _PAGE_EXEC_4U);
2196 	page_copy   = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2197 		       __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2198 	page_readonly   = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2199 			   __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2200 
2201 	page_exec_bit = _PAGE_EXEC_4U;
2202 
2203 	prot_init_common(page_none, page_shared, page_copy, page_readonly,
2204 			 page_exec_bit);
2205 }
2206 
2207 static void __init sun4v_pgprot_init(void)
2208 {
2209 	unsigned long page_none, page_shared, page_copy, page_readonly;
2210 	unsigned long page_exec_bit;
2211 
2212 	PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4V | _PAGE_VALID |
2213 				_PAGE_CACHE_4V | _PAGE_P_4V |
2214 				__ACCESS_BITS_4V | __DIRTY_BITS_4V |
2215 				_PAGE_EXEC_4V);
2216 	PAGE_KERNEL_LOCKED = PAGE_KERNEL;
2217 
2218 	_PAGE_IE = _PAGE_IE_4V;
2219 	_PAGE_E = _PAGE_E_4V;
2220 	_PAGE_CACHE = _PAGE_CACHE_4V;
2221 
2222 #ifdef CONFIG_DEBUG_PAGEALLOC
2223 	kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZBITS_4V) ^
2224 		0xfffff80000000000UL;
2225 #else
2226 	kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4V) ^
2227 		0xfffff80000000000UL;
2228 #endif
2229 	kern_linear_pte_xor[0] |= (_PAGE_CP_4V | _PAGE_CV_4V |
2230 				   _PAGE_P_4V | _PAGE_W_4V);
2231 
2232 #ifdef CONFIG_DEBUG_PAGEALLOC
2233 	kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZBITS_4V) ^
2234 		0xfffff80000000000UL;
2235 #else
2236 	kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZ256MB_4V) ^
2237 		0xfffff80000000000UL;
2238 #endif
2239 	kern_linear_pte_xor[1] |= (_PAGE_CP_4V | _PAGE_CV_4V |
2240 				   _PAGE_P_4V | _PAGE_W_4V);
2241 
2242 	pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4V | __DIRTY_BITS_4V |
2243 		     __ACCESS_BITS_4V | _PAGE_E_4V);
2244 
2245 	_PAGE_SZBITS = _PAGE_SZBITS_4V;
2246 	_PAGE_ALL_SZ_BITS = (_PAGE_SZ16GB_4V | _PAGE_SZ2GB_4V |
2247 			     _PAGE_SZ256MB_4V | _PAGE_SZ32MB_4V |
2248 			     _PAGE_SZ4MB_4V | _PAGE_SZ512K_4V |
2249 			     _PAGE_SZ64K_4V | _PAGE_SZ8K_4V);
2250 
2251 	page_none = _PAGE_PRESENT_4V | _PAGE_ACCESSED_4V | _PAGE_CACHE_4V;
2252 	page_shared = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
2253 		       __ACCESS_BITS_4V | _PAGE_WRITE_4V | _PAGE_EXEC_4V);
2254 	page_copy   = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
2255 		       __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2256 	page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
2257 			 __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2258 
2259 	page_exec_bit = _PAGE_EXEC_4V;
2260 
2261 	prot_init_common(page_none, page_shared, page_copy, page_readonly,
2262 			 page_exec_bit);
2263 }
2264 
2265 unsigned long pte_sz_bits(unsigned long sz)
2266 {
2267 	if (tlb_type == hypervisor) {
2268 		switch (sz) {
2269 		case 8 * 1024:
2270 		default:
2271 			return _PAGE_SZ8K_4V;
2272 		case 64 * 1024:
2273 			return _PAGE_SZ64K_4V;
2274 		case 512 * 1024:
2275 			return _PAGE_SZ512K_4V;
2276 		case 4 * 1024 * 1024:
2277 			return _PAGE_SZ4MB_4V;
2278 		};
2279 	} else {
2280 		switch (sz) {
2281 		case 8 * 1024:
2282 		default:
2283 			return _PAGE_SZ8K_4U;
2284 		case 64 * 1024:
2285 			return _PAGE_SZ64K_4U;
2286 		case 512 * 1024:
2287 			return _PAGE_SZ512K_4U;
2288 		case 4 * 1024 * 1024:
2289 			return _PAGE_SZ4MB_4U;
2290 		};
2291 	}
2292 }
2293 
2294 pte_t mk_pte_io(unsigned long page, pgprot_t prot, int space, unsigned long page_size)
2295 {
2296 	pte_t pte;
2297 
2298 	pte_val(pte)  = page | pgprot_val(pgprot_noncached(prot));
2299 	pte_val(pte) |= (((unsigned long)space) << 32);
2300 	pte_val(pte) |= pte_sz_bits(page_size);
2301 
2302 	return pte;
2303 }
2304 
2305 static unsigned long kern_large_tte(unsigned long paddr)
2306 {
2307 	unsigned long val;
2308 
2309 	val = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2310 	       _PAGE_CP_4U | _PAGE_CV_4U | _PAGE_P_4U |
2311 	       _PAGE_EXEC_4U | _PAGE_L_4U | _PAGE_W_4U);
2312 	if (tlb_type == hypervisor)
2313 		val = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2314 		       _PAGE_CP_4V | _PAGE_CV_4V | _PAGE_P_4V |
2315 		       _PAGE_EXEC_4V | _PAGE_W_4V);
2316 
2317 	return val | paddr;
2318 }
2319 
2320 /* If not locked, zap it. */
2321 void __flush_tlb_all(void)
2322 {
2323 	unsigned long pstate;
2324 	int i;
2325 
2326 	__asm__ __volatile__("flushw\n\t"
2327 			     "rdpr	%%pstate, %0\n\t"
2328 			     "wrpr	%0, %1, %%pstate"
2329 			     : "=r" (pstate)
2330 			     : "i" (PSTATE_IE));
2331 	if (tlb_type == hypervisor) {
2332 		sun4v_mmu_demap_all();
2333 	} else if (tlb_type == spitfire) {
2334 		for (i = 0; i < 64; i++) {
2335 			/* Spitfire Errata #32 workaround */
2336 			/* NOTE: Always runs on spitfire, so no
2337 			 *       cheetah+ page size encodings.
2338 			 */
2339 			__asm__ __volatile__("stxa	%0, [%1] %2\n\t"
2340 					     "flush	%%g6"
2341 					     : /* No outputs */
2342 					     : "r" (0),
2343 					     "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2344 
2345 			if (!(spitfire_get_dtlb_data(i) & _PAGE_L_4U)) {
2346 				__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2347 						     "membar #Sync"
2348 						     : /* no outputs */
2349 						     : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
2350 				spitfire_put_dtlb_data(i, 0x0UL);
2351 			}
2352 
2353 			/* Spitfire Errata #32 workaround */
2354 			/* NOTE: Always runs on spitfire, so no
2355 			 *       cheetah+ page size encodings.
2356 			 */
2357 			__asm__ __volatile__("stxa	%0, [%1] %2\n\t"
2358 					     "flush	%%g6"
2359 					     : /* No outputs */
2360 					     : "r" (0),
2361 					     "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2362 
2363 			if (!(spitfire_get_itlb_data(i) & _PAGE_L_4U)) {
2364 				__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2365 						     "membar #Sync"
2366 						     : /* no outputs */
2367 						     : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU));
2368 				spitfire_put_itlb_data(i, 0x0UL);
2369 			}
2370 		}
2371 	} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
2372 		cheetah_flush_dtlb_all();
2373 		cheetah_flush_itlb_all();
2374 	}
2375 	__asm__ __volatile__("wrpr	%0, 0, %%pstate"
2376 			     : : "r" (pstate));
2377 }
2378