xref: /openbmc/linux/arch/sparc/mm/init_64.c (revision 6c33a6f4)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  arch/sparc64/mm/init.c
4  *
5  *  Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu)
6  *  Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
7  */
8 
9 #include <linux/extable.h>
10 #include <linux/kernel.h>
11 #include <linux/sched.h>
12 #include <linux/string.h>
13 #include <linux/init.h>
14 #include <linux/memblock.h>
15 #include <linux/mm.h>
16 #include <linux/hugetlb.h>
17 #include <linux/initrd.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/poison.h>
21 #include <linux/fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/kprobes.h>
24 #include <linux/cache.h>
25 #include <linux/sort.h>
26 #include <linux/ioport.h>
27 #include <linux/percpu.h>
28 #include <linux/mmzone.h>
29 #include <linux/gfp.h>
30 
31 #include <asm/head.h>
32 #include <asm/page.h>
33 #include <asm/pgalloc.h>
34 #include <asm/pgtable.h>
35 #include <asm/oplib.h>
36 #include <asm/iommu.h>
37 #include <asm/io.h>
38 #include <linux/uaccess.h>
39 #include <asm/mmu_context.h>
40 #include <asm/tlbflush.h>
41 #include <asm/dma.h>
42 #include <asm/starfire.h>
43 #include <asm/tlb.h>
44 #include <asm/spitfire.h>
45 #include <asm/sections.h>
46 #include <asm/tsb.h>
47 #include <asm/hypervisor.h>
48 #include <asm/prom.h>
49 #include <asm/mdesc.h>
50 #include <asm/cpudata.h>
51 #include <asm/setup.h>
52 #include <asm/irq.h>
53 
54 #include "init_64.h"
55 
56 unsigned long kern_linear_pte_xor[4] __read_mostly;
57 static unsigned long page_cache4v_flag;
58 
59 /* A bitmap, two bits for every 256MB of physical memory.  These two
60  * bits determine what page size we use for kernel linear
61  * translations.  They form an index into kern_linear_pte_xor[].  The
62  * value in the indexed slot is XOR'd with the TLB miss virtual
63  * address to form the resulting TTE.  The mapping is:
64  *
65  *	0	==>	4MB
66  *	1	==>	256MB
67  *	2	==>	2GB
68  *	3	==>	16GB
69  *
70  * All sun4v chips support 256MB pages.  Only SPARC-T4 and later
71  * support 2GB pages, and hopefully future cpus will support the 16GB
72  * pages as well.  For slots 2 and 3, we encode a 256MB TTE xor there
73  * if these larger page sizes are not supported by the cpu.
74  *
75  * It would be nice to determine this from the machine description
76  * 'cpu' properties, but we need to have this table setup before the
77  * MDESC is initialized.
78  */
79 
80 #ifndef CONFIG_DEBUG_PAGEALLOC
81 /* A special kernel TSB for 4MB, 256MB, 2GB and 16GB linear mappings.
82  * Space is allocated for this right after the trap table in
83  * arch/sparc64/kernel/head.S
84  */
85 extern struct tsb swapper_4m_tsb[KERNEL_TSB4M_NENTRIES];
86 #endif
87 extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
88 
89 static unsigned long cpu_pgsz_mask;
90 
91 #define MAX_BANKS	1024
92 
93 static struct linux_prom64_registers pavail[MAX_BANKS];
94 static int pavail_ents;
95 
96 u64 numa_latency[MAX_NUMNODES][MAX_NUMNODES];
97 
98 static int cmp_p64(const void *a, const void *b)
99 {
100 	const struct linux_prom64_registers *x = a, *y = b;
101 
102 	if (x->phys_addr > y->phys_addr)
103 		return 1;
104 	if (x->phys_addr < y->phys_addr)
105 		return -1;
106 	return 0;
107 }
108 
109 static void __init read_obp_memory(const char *property,
110 				   struct linux_prom64_registers *regs,
111 				   int *num_ents)
112 {
113 	phandle node = prom_finddevice("/memory");
114 	int prop_size = prom_getproplen(node, property);
115 	int ents, ret, i;
116 
117 	ents = prop_size / sizeof(struct linux_prom64_registers);
118 	if (ents > MAX_BANKS) {
119 		prom_printf("The machine has more %s property entries than "
120 			    "this kernel can support (%d).\n",
121 			    property, MAX_BANKS);
122 		prom_halt();
123 	}
124 
125 	ret = prom_getproperty(node, property, (char *) regs, prop_size);
126 	if (ret == -1) {
127 		prom_printf("Couldn't get %s property from /memory.\n",
128 				property);
129 		prom_halt();
130 	}
131 
132 	/* Sanitize what we got from the firmware, by page aligning
133 	 * everything.
134 	 */
135 	for (i = 0; i < ents; i++) {
136 		unsigned long base, size;
137 
138 		base = regs[i].phys_addr;
139 		size = regs[i].reg_size;
140 
141 		size &= PAGE_MASK;
142 		if (base & ~PAGE_MASK) {
143 			unsigned long new_base = PAGE_ALIGN(base);
144 
145 			size -= new_base - base;
146 			if ((long) size < 0L)
147 				size = 0UL;
148 			base = new_base;
149 		}
150 		if (size == 0UL) {
151 			/* If it is empty, simply get rid of it.
152 			 * This simplifies the logic of the other
153 			 * functions that process these arrays.
154 			 */
155 			memmove(&regs[i], &regs[i + 1],
156 				(ents - i - 1) * sizeof(regs[0]));
157 			i--;
158 			ents--;
159 			continue;
160 		}
161 		regs[i].phys_addr = base;
162 		regs[i].reg_size = size;
163 	}
164 
165 	*num_ents = ents;
166 
167 	sort(regs, ents, sizeof(struct linux_prom64_registers),
168 	     cmp_p64, NULL);
169 }
170 
171 /* Kernel physical address base and size in bytes.  */
172 unsigned long kern_base __read_mostly;
173 unsigned long kern_size __read_mostly;
174 
175 /* Initial ramdisk setup */
176 extern unsigned long sparc_ramdisk_image64;
177 extern unsigned int sparc_ramdisk_image;
178 extern unsigned int sparc_ramdisk_size;
179 
180 struct page *mem_map_zero __read_mostly;
181 EXPORT_SYMBOL(mem_map_zero);
182 
183 unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly;
184 
185 unsigned long sparc64_kern_pri_context __read_mostly;
186 unsigned long sparc64_kern_pri_nuc_bits __read_mostly;
187 unsigned long sparc64_kern_sec_context __read_mostly;
188 
189 int num_kernel_image_mappings;
190 
191 #ifdef CONFIG_DEBUG_DCFLUSH
192 atomic_t dcpage_flushes = ATOMIC_INIT(0);
193 #ifdef CONFIG_SMP
194 atomic_t dcpage_flushes_xcall = ATOMIC_INIT(0);
195 #endif
196 #endif
197 
198 inline void flush_dcache_page_impl(struct page *page)
199 {
200 	BUG_ON(tlb_type == hypervisor);
201 #ifdef CONFIG_DEBUG_DCFLUSH
202 	atomic_inc(&dcpage_flushes);
203 #endif
204 
205 #ifdef DCACHE_ALIASING_POSSIBLE
206 	__flush_dcache_page(page_address(page),
207 			    ((tlb_type == spitfire) &&
208 			     page_mapping_file(page) != NULL));
209 #else
210 	if (page_mapping_file(page) != NULL &&
211 	    tlb_type == spitfire)
212 		__flush_icache_page(__pa(page_address(page)));
213 #endif
214 }
215 
216 #define PG_dcache_dirty		PG_arch_1
217 #define PG_dcache_cpu_shift	32UL
218 #define PG_dcache_cpu_mask	\
219 	((1UL<<ilog2(roundup_pow_of_two(NR_CPUS)))-1UL)
220 
221 #define dcache_dirty_cpu(page) \
222 	(((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask)
223 
224 static inline void set_dcache_dirty(struct page *page, int this_cpu)
225 {
226 	unsigned long mask = this_cpu;
227 	unsigned long non_cpu_bits;
228 
229 	non_cpu_bits = ~(PG_dcache_cpu_mask << PG_dcache_cpu_shift);
230 	mask = (mask << PG_dcache_cpu_shift) | (1UL << PG_dcache_dirty);
231 
232 	__asm__ __volatile__("1:\n\t"
233 			     "ldx	[%2], %%g7\n\t"
234 			     "and	%%g7, %1, %%g1\n\t"
235 			     "or	%%g1, %0, %%g1\n\t"
236 			     "casx	[%2], %%g7, %%g1\n\t"
237 			     "cmp	%%g7, %%g1\n\t"
238 			     "bne,pn	%%xcc, 1b\n\t"
239 			     " nop"
240 			     : /* no outputs */
241 			     : "r" (mask), "r" (non_cpu_bits), "r" (&page->flags)
242 			     : "g1", "g7");
243 }
244 
245 static inline void clear_dcache_dirty_cpu(struct page *page, unsigned long cpu)
246 {
247 	unsigned long mask = (1UL << PG_dcache_dirty);
248 
249 	__asm__ __volatile__("! test_and_clear_dcache_dirty\n"
250 			     "1:\n\t"
251 			     "ldx	[%2], %%g7\n\t"
252 			     "srlx	%%g7, %4, %%g1\n\t"
253 			     "and	%%g1, %3, %%g1\n\t"
254 			     "cmp	%%g1, %0\n\t"
255 			     "bne,pn	%%icc, 2f\n\t"
256 			     " andn	%%g7, %1, %%g1\n\t"
257 			     "casx	[%2], %%g7, %%g1\n\t"
258 			     "cmp	%%g7, %%g1\n\t"
259 			     "bne,pn	%%xcc, 1b\n\t"
260 			     " nop\n"
261 			     "2:"
262 			     : /* no outputs */
263 			     : "r" (cpu), "r" (mask), "r" (&page->flags),
264 			       "i" (PG_dcache_cpu_mask),
265 			       "i" (PG_dcache_cpu_shift)
266 			     : "g1", "g7");
267 }
268 
269 static inline void tsb_insert(struct tsb *ent, unsigned long tag, unsigned long pte)
270 {
271 	unsigned long tsb_addr = (unsigned long) ent;
272 
273 	if (tlb_type == cheetah_plus || tlb_type == hypervisor)
274 		tsb_addr = __pa(tsb_addr);
275 
276 	__tsb_insert(tsb_addr, tag, pte);
277 }
278 
279 unsigned long _PAGE_ALL_SZ_BITS __read_mostly;
280 
281 static void flush_dcache(unsigned long pfn)
282 {
283 	struct page *page;
284 
285 	page = pfn_to_page(pfn);
286 	if (page) {
287 		unsigned long pg_flags;
288 
289 		pg_flags = page->flags;
290 		if (pg_flags & (1UL << PG_dcache_dirty)) {
291 			int cpu = ((pg_flags >> PG_dcache_cpu_shift) &
292 				   PG_dcache_cpu_mask);
293 			int this_cpu = get_cpu();
294 
295 			/* This is just to optimize away some function calls
296 			 * in the SMP case.
297 			 */
298 			if (cpu == this_cpu)
299 				flush_dcache_page_impl(page);
300 			else
301 				smp_flush_dcache_page_impl(page, cpu);
302 
303 			clear_dcache_dirty_cpu(page, cpu);
304 
305 			put_cpu();
306 		}
307 	}
308 }
309 
310 /* mm->context.lock must be held */
311 static void __update_mmu_tsb_insert(struct mm_struct *mm, unsigned long tsb_index,
312 				    unsigned long tsb_hash_shift, unsigned long address,
313 				    unsigned long tte)
314 {
315 	struct tsb *tsb = mm->context.tsb_block[tsb_index].tsb;
316 	unsigned long tag;
317 
318 	if (unlikely(!tsb))
319 		return;
320 
321 	tsb += ((address >> tsb_hash_shift) &
322 		(mm->context.tsb_block[tsb_index].tsb_nentries - 1UL));
323 	tag = (address >> 22UL);
324 	tsb_insert(tsb, tag, tte);
325 }
326 
327 #ifdef CONFIG_HUGETLB_PAGE
328 static void __init add_huge_page_size(unsigned long size)
329 {
330 	unsigned int order;
331 
332 	if (size_to_hstate(size))
333 		return;
334 
335 	order = ilog2(size) - PAGE_SHIFT;
336 	hugetlb_add_hstate(order);
337 }
338 
339 static int __init hugetlbpage_init(void)
340 {
341 	add_huge_page_size(1UL << HPAGE_64K_SHIFT);
342 	add_huge_page_size(1UL << HPAGE_SHIFT);
343 	add_huge_page_size(1UL << HPAGE_256MB_SHIFT);
344 	add_huge_page_size(1UL << HPAGE_2GB_SHIFT);
345 
346 	return 0;
347 }
348 
349 arch_initcall(hugetlbpage_init);
350 
351 static void __init pud_huge_patch(void)
352 {
353 	struct pud_huge_patch_entry *p;
354 	unsigned long addr;
355 
356 	p = &__pud_huge_patch;
357 	addr = p->addr;
358 	*(unsigned int *)addr = p->insn;
359 
360 	__asm__ __volatile__("flush %0" : : "r" (addr));
361 }
362 
363 static int __init setup_hugepagesz(char *string)
364 {
365 	unsigned long long hugepage_size;
366 	unsigned int hugepage_shift;
367 	unsigned short hv_pgsz_idx;
368 	unsigned int hv_pgsz_mask;
369 	int rc = 0;
370 
371 	hugepage_size = memparse(string, &string);
372 	hugepage_shift = ilog2(hugepage_size);
373 
374 	switch (hugepage_shift) {
375 	case HPAGE_16GB_SHIFT:
376 		hv_pgsz_mask = HV_PGSZ_MASK_16GB;
377 		hv_pgsz_idx = HV_PGSZ_IDX_16GB;
378 		pud_huge_patch();
379 		break;
380 	case HPAGE_2GB_SHIFT:
381 		hv_pgsz_mask = HV_PGSZ_MASK_2GB;
382 		hv_pgsz_idx = HV_PGSZ_IDX_2GB;
383 		break;
384 	case HPAGE_256MB_SHIFT:
385 		hv_pgsz_mask = HV_PGSZ_MASK_256MB;
386 		hv_pgsz_idx = HV_PGSZ_IDX_256MB;
387 		break;
388 	case HPAGE_SHIFT:
389 		hv_pgsz_mask = HV_PGSZ_MASK_4MB;
390 		hv_pgsz_idx = HV_PGSZ_IDX_4MB;
391 		break;
392 	case HPAGE_64K_SHIFT:
393 		hv_pgsz_mask = HV_PGSZ_MASK_64K;
394 		hv_pgsz_idx = HV_PGSZ_IDX_64K;
395 		break;
396 	default:
397 		hv_pgsz_mask = 0;
398 	}
399 
400 	if ((hv_pgsz_mask & cpu_pgsz_mask) == 0U) {
401 		hugetlb_bad_size();
402 		pr_err("hugepagesz=%llu not supported by MMU.\n",
403 			hugepage_size);
404 		goto out;
405 	}
406 
407 	add_huge_page_size(hugepage_size);
408 	rc = 1;
409 
410 out:
411 	return rc;
412 }
413 __setup("hugepagesz=", setup_hugepagesz);
414 #endif	/* CONFIG_HUGETLB_PAGE */
415 
416 void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t *ptep)
417 {
418 	struct mm_struct *mm;
419 	unsigned long flags;
420 	bool is_huge_tsb;
421 	pte_t pte = *ptep;
422 
423 	if (tlb_type != hypervisor) {
424 		unsigned long pfn = pte_pfn(pte);
425 
426 		if (pfn_valid(pfn))
427 			flush_dcache(pfn);
428 	}
429 
430 	mm = vma->vm_mm;
431 
432 	/* Don't insert a non-valid PTE into the TSB, we'll deadlock.  */
433 	if (!pte_accessible(mm, pte))
434 		return;
435 
436 	spin_lock_irqsave(&mm->context.lock, flags);
437 
438 	is_huge_tsb = false;
439 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
440 	if (mm->context.hugetlb_pte_count || mm->context.thp_pte_count) {
441 		unsigned long hugepage_size = PAGE_SIZE;
442 
443 		if (is_vm_hugetlb_page(vma))
444 			hugepage_size = huge_page_size(hstate_vma(vma));
445 
446 		if (hugepage_size >= PUD_SIZE) {
447 			unsigned long mask = 0x1ffc00000UL;
448 
449 			/* Transfer bits [32:22] from address to resolve
450 			 * at 4M granularity.
451 			 */
452 			pte_val(pte) &= ~mask;
453 			pte_val(pte) |= (address & mask);
454 		} else if (hugepage_size >= PMD_SIZE) {
455 			/* We are fabricating 8MB pages using 4MB
456 			 * real hw pages.
457 			 */
458 			pte_val(pte) |= (address & (1UL << REAL_HPAGE_SHIFT));
459 		}
460 
461 		if (hugepage_size >= PMD_SIZE) {
462 			__update_mmu_tsb_insert(mm, MM_TSB_HUGE,
463 				REAL_HPAGE_SHIFT, address, pte_val(pte));
464 			is_huge_tsb = true;
465 		}
466 	}
467 #endif
468 	if (!is_huge_tsb)
469 		__update_mmu_tsb_insert(mm, MM_TSB_BASE, PAGE_SHIFT,
470 					address, pte_val(pte));
471 
472 	spin_unlock_irqrestore(&mm->context.lock, flags);
473 }
474 
475 void flush_dcache_page(struct page *page)
476 {
477 	struct address_space *mapping;
478 	int this_cpu;
479 
480 	if (tlb_type == hypervisor)
481 		return;
482 
483 	/* Do not bother with the expensive D-cache flush if it
484 	 * is merely the zero page.  The 'bigcore' testcase in GDB
485 	 * causes this case to run millions of times.
486 	 */
487 	if (page == ZERO_PAGE(0))
488 		return;
489 
490 	this_cpu = get_cpu();
491 
492 	mapping = page_mapping_file(page);
493 	if (mapping && !mapping_mapped(mapping)) {
494 		int dirty = test_bit(PG_dcache_dirty, &page->flags);
495 		if (dirty) {
496 			int dirty_cpu = dcache_dirty_cpu(page);
497 
498 			if (dirty_cpu == this_cpu)
499 				goto out;
500 			smp_flush_dcache_page_impl(page, dirty_cpu);
501 		}
502 		set_dcache_dirty(page, this_cpu);
503 	} else {
504 		/* We could delay the flush for the !page_mapping
505 		 * case too.  But that case is for exec env/arg
506 		 * pages and those are %99 certainly going to get
507 		 * faulted into the tlb (and thus flushed) anyways.
508 		 */
509 		flush_dcache_page_impl(page);
510 	}
511 
512 out:
513 	put_cpu();
514 }
515 EXPORT_SYMBOL(flush_dcache_page);
516 
517 void __kprobes flush_icache_range(unsigned long start, unsigned long end)
518 {
519 	/* Cheetah and Hypervisor platform cpus have coherent I-cache. */
520 	if (tlb_type == spitfire) {
521 		unsigned long kaddr;
522 
523 		/* This code only runs on Spitfire cpus so this is
524 		 * why we can assume _PAGE_PADDR_4U.
525 		 */
526 		for (kaddr = start; kaddr < end; kaddr += PAGE_SIZE) {
527 			unsigned long paddr, mask = _PAGE_PADDR_4U;
528 
529 			if (kaddr >= PAGE_OFFSET)
530 				paddr = kaddr & mask;
531 			else {
532 				pgd_t *pgdp = pgd_offset_k(kaddr);
533 				p4d_t *p4dp = p4d_offset(pgdp, kaddr);
534 				pud_t *pudp = pud_offset(p4dp, kaddr);
535 				pmd_t *pmdp = pmd_offset(pudp, kaddr);
536 				pte_t *ptep = pte_offset_kernel(pmdp, kaddr);
537 
538 				paddr = pte_val(*ptep) & mask;
539 			}
540 			__flush_icache_page(paddr);
541 		}
542 	}
543 }
544 EXPORT_SYMBOL(flush_icache_range);
545 
546 void mmu_info(struct seq_file *m)
547 {
548 	static const char *pgsz_strings[] = {
549 		"8K", "64K", "512K", "4MB", "32MB",
550 		"256MB", "2GB", "16GB",
551 	};
552 	int i, printed;
553 
554 	if (tlb_type == cheetah)
555 		seq_printf(m, "MMU Type\t: Cheetah\n");
556 	else if (tlb_type == cheetah_plus)
557 		seq_printf(m, "MMU Type\t: Cheetah+\n");
558 	else if (tlb_type == spitfire)
559 		seq_printf(m, "MMU Type\t: Spitfire\n");
560 	else if (tlb_type == hypervisor)
561 		seq_printf(m, "MMU Type\t: Hypervisor (sun4v)\n");
562 	else
563 		seq_printf(m, "MMU Type\t: ???\n");
564 
565 	seq_printf(m, "MMU PGSZs\t: ");
566 	printed = 0;
567 	for (i = 0; i < ARRAY_SIZE(pgsz_strings); i++) {
568 		if (cpu_pgsz_mask & (1UL << i)) {
569 			seq_printf(m, "%s%s",
570 				   printed ? "," : "", pgsz_strings[i]);
571 			printed++;
572 		}
573 	}
574 	seq_putc(m, '\n');
575 
576 #ifdef CONFIG_DEBUG_DCFLUSH
577 	seq_printf(m, "DCPageFlushes\t: %d\n",
578 		   atomic_read(&dcpage_flushes));
579 #ifdef CONFIG_SMP
580 	seq_printf(m, "DCPageFlushesXC\t: %d\n",
581 		   atomic_read(&dcpage_flushes_xcall));
582 #endif /* CONFIG_SMP */
583 #endif /* CONFIG_DEBUG_DCFLUSH */
584 }
585 
586 struct linux_prom_translation prom_trans[512] __read_mostly;
587 unsigned int prom_trans_ents __read_mostly;
588 
589 unsigned long kern_locked_tte_data;
590 
591 /* The obp translations are saved based on 8k pagesize, since obp can
592  * use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS ->
593  * HI_OBP_ADDRESS range are handled in ktlb.S.
594  */
595 static inline int in_obp_range(unsigned long vaddr)
596 {
597 	return (vaddr >= LOW_OBP_ADDRESS &&
598 		vaddr < HI_OBP_ADDRESS);
599 }
600 
601 static int cmp_ptrans(const void *a, const void *b)
602 {
603 	const struct linux_prom_translation *x = a, *y = b;
604 
605 	if (x->virt > y->virt)
606 		return 1;
607 	if (x->virt < y->virt)
608 		return -1;
609 	return 0;
610 }
611 
612 /* Read OBP translations property into 'prom_trans[]'.  */
613 static void __init read_obp_translations(void)
614 {
615 	int n, node, ents, first, last, i;
616 
617 	node = prom_finddevice("/virtual-memory");
618 	n = prom_getproplen(node, "translations");
619 	if (unlikely(n == 0 || n == -1)) {
620 		prom_printf("prom_mappings: Couldn't get size.\n");
621 		prom_halt();
622 	}
623 	if (unlikely(n > sizeof(prom_trans))) {
624 		prom_printf("prom_mappings: Size %d is too big.\n", n);
625 		prom_halt();
626 	}
627 
628 	if ((n = prom_getproperty(node, "translations",
629 				  (char *)&prom_trans[0],
630 				  sizeof(prom_trans))) == -1) {
631 		prom_printf("prom_mappings: Couldn't get property.\n");
632 		prom_halt();
633 	}
634 
635 	n = n / sizeof(struct linux_prom_translation);
636 
637 	ents = n;
638 
639 	sort(prom_trans, ents, sizeof(struct linux_prom_translation),
640 	     cmp_ptrans, NULL);
641 
642 	/* Now kick out all the non-OBP entries.  */
643 	for (i = 0; i < ents; i++) {
644 		if (in_obp_range(prom_trans[i].virt))
645 			break;
646 	}
647 	first = i;
648 	for (; i < ents; i++) {
649 		if (!in_obp_range(prom_trans[i].virt))
650 			break;
651 	}
652 	last = i;
653 
654 	for (i = 0; i < (last - first); i++) {
655 		struct linux_prom_translation *src = &prom_trans[i + first];
656 		struct linux_prom_translation *dest = &prom_trans[i];
657 
658 		*dest = *src;
659 	}
660 	for (; i < ents; i++) {
661 		struct linux_prom_translation *dest = &prom_trans[i];
662 		dest->virt = dest->size = dest->data = 0x0UL;
663 	}
664 
665 	prom_trans_ents = last - first;
666 
667 	if (tlb_type == spitfire) {
668 		/* Clear diag TTE bits. */
669 		for (i = 0; i < prom_trans_ents; i++)
670 			prom_trans[i].data &= ~0x0003fe0000000000UL;
671 	}
672 
673 	/* Force execute bit on.  */
674 	for (i = 0; i < prom_trans_ents; i++)
675 		prom_trans[i].data |= (tlb_type == hypervisor ?
676 				       _PAGE_EXEC_4V : _PAGE_EXEC_4U);
677 }
678 
679 static void __init hypervisor_tlb_lock(unsigned long vaddr,
680 				       unsigned long pte,
681 				       unsigned long mmu)
682 {
683 	unsigned long ret = sun4v_mmu_map_perm_addr(vaddr, 0, pte, mmu);
684 
685 	if (ret != 0) {
686 		prom_printf("hypervisor_tlb_lock[%lx:%x:%lx:%lx]: "
687 			    "errors with %lx\n", vaddr, 0, pte, mmu, ret);
688 		prom_halt();
689 	}
690 }
691 
692 static unsigned long kern_large_tte(unsigned long paddr);
693 
694 static void __init remap_kernel(void)
695 {
696 	unsigned long phys_page, tte_vaddr, tte_data;
697 	int i, tlb_ent = sparc64_highest_locked_tlbent();
698 
699 	tte_vaddr = (unsigned long) KERNBASE;
700 	phys_page = (prom_boot_mapping_phys_low >> ILOG2_4MB) << ILOG2_4MB;
701 	tte_data = kern_large_tte(phys_page);
702 
703 	kern_locked_tte_data = tte_data;
704 
705 	/* Now lock us into the TLBs via Hypervisor or OBP. */
706 	if (tlb_type == hypervisor) {
707 		for (i = 0; i < num_kernel_image_mappings; i++) {
708 			hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU);
709 			hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU);
710 			tte_vaddr += 0x400000;
711 			tte_data += 0x400000;
712 		}
713 	} else {
714 		for (i = 0; i < num_kernel_image_mappings; i++) {
715 			prom_dtlb_load(tlb_ent - i, tte_data, tte_vaddr);
716 			prom_itlb_load(tlb_ent - i, tte_data, tte_vaddr);
717 			tte_vaddr += 0x400000;
718 			tte_data += 0x400000;
719 		}
720 		sparc64_highest_unlocked_tlb_ent = tlb_ent - i;
721 	}
722 	if (tlb_type == cheetah_plus) {
723 		sparc64_kern_pri_context = (CTX_CHEETAH_PLUS_CTX0 |
724 					    CTX_CHEETAH_PLUS_NUC);
725 		sparc64_kern_pri_nuc_bits = CTX_CHEETAH_PLUS_NUC;
726 		sparc64_kern_sec_context = CTX_CHEETAH_PLUS_CTX0;
727 	}
728 }
729 
730 
731 static void __init inherit_prom_mappings(void)
732 {
733 	/* Now fixup OBP's idea about where we really are mapped. */
734 	printk("Remapping the kernel... ");
735 	remap_kernel();
736 	printk("done.\n");
737 }
738 
739 void prom_world(int enter)
740 {
741 	if (!enter)
742 		set_fs(get_fs());
743 
744 	__asm__ __volatile__("flushw");
745 }
746 
747 void __flush_dcache_range(unsigned long start, unsigned long end)
748 {
749 	unsigned long va;
750 
751 	if (tlb_type == spitfire) {
752 		int n = 0;
753 
754 		for (va = start; va < end; va += 32) {
755 			spitfire_put_dcache_tag(va & 0x3fe0, 0x0);
756 			if (++n >= 512)
757 				break;
758 		}
759 	} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
760 		start = __pa(start);
761 		end = __pa(end);
762 		for (va = start; va < end; va += 32)
763 			__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
764 					     "membar #Sync"
765 					     : /* no outputs */
766 					     : "r" (va),
767 					       "i" (ASI_DCACHE_INVALIDATE));
768 	}
769 }
770 EXPORT_SYMBOL(__flush_dcache_range);
771 
772 /* get_new_mmu_context() uses "cache + 1".  */
773 DEFINE_SPINLOCK(ctx_alloc_lock);
774 unsigned long tlb_context_cache = CTX_FIRST_VERSION;
775 #define MAX_CTX_NR	(1UL << CTX_NR_BITS)
776 #define CTX_BMAP_SLOTS	BITS_TO_LONGS(MAX_CTX_NR)
777 DECLARE_BITMAP(mmu_context_bmap, MAX_CTX_NR);
778 DEFINE_PER_CPU(struct mm_struct *, per_cpu_secondary_mm) = {0};
779 
780 static void mmu_context_wrap(void)
781 {
782 	unsigned long old_ver = tlb_context_cache & CTX_VERSION_MASK;
783 	unsigned long new_ver, new_ctx, old_ctx;
784 	struct mm_struct *mm;
785 	int cpu;
786 
787 	bitmap_zero(mmu_context_bmap, 1 << CTX_NR_BITS);
788 
789 	/* Reserve kernel context */
790 	set_bit(0, mmu_context_bmap);
791 
792 	new_ver = (tlb_context_cache & CTX_VERSION_MASK) + CTX_FIRST_VERSION;
793 	if (unlikely(new_ver == 0))
794 		new_ver = CTX_FIRST_VERSION;
795 	tlb_context_cache = new_ver;
796 
797 	/*
798 	 * Make sure that any new mm that are added into per_cpu_secondary_mm,
799 	 * are going to go through get_new_mmu_context() path.
800 	 */
801 	mb();
802 
803 	/*
804 	 * Updated versions to current on those CPUs that had valid secondary
805 	 * contexts
806 	 */
807 	for_each_online_cpu(cpu) {
808 		/*
809 		 * If a new mm is stored after we took this mm from the array,
810 		 * it will go into get_new_mmu_context() path, because we
811 		 * already bumped the version in tlb_context_cache.
812 		 */
813 		mm = per_cpu(per_cpu_secondary_mm, cpu);
814 
815 		if (unlikely(!mm || mm == &init_mm))
816 			continue;
817 
818 		old_ctx = mm->context.sparc64_ctx_val;
819 		if (likely((old_ctx & CTX_VERSION_MASK) == old_ver)) {
820 			new_ctx = (old_ctx & ~CTX_VERSION_MASK) | new_ver;
821 			set_bit(new_ctx & CTX_NR_MASK, mmu_context_bmap);
822 			mm->context.sparc64_ctx_val = new_ctx;
823 		}
824 	}
825 }
826 
827 /* Caller does TLB context flushing on local CPU if necessary.
828  * The caller also ensures that CTX_VALID(mm->context) is false.
829  *
830  * We must be careful about boundary cases so that we never
831  * let the user have CTX 0 (nucleus) or we ever use a CTX
832  * version of zero (and thus NO_CONTEXT would not be caught
833  * by version mis-match tests in mmu_context.h).
834  *
835  * Always invoked with interrupts disabled.
836  */
837 void get_new_mmu_context(struct mm_struct *mm)
838 {
839 	unsigned long ctx, new_ctx;
840 	unsigned long orig_pgsz_bits;
841 
842 	spin_lock(&ctx_alloc_lock);
843 retry:
844 	/* wrap might have happened, test again if our context became valid */
845 	if (unlikely(CTX_VALID(mm->context)))
846 		goto out;
847 	orig_pgsz_bits = (mm->context.sparc64_ctx_val & CTX_PGSZ_MASK);
848 	ctx = (tlb_context_cache + 1) & CTX_NR_MASK;
849 	new_ctx = find_next_zero_bit(mmu_context_bmap, 1 << CTX_NR_BITS, ctx);
850 	if (new_ctx >= (1 << CTX_NR_BITS)) {
851 		new_ctx = find_next_zero_bit(mmu_context_bmap, ctx, 1);
852 		if (new_ctx >= ctx) {
853 			mmu_context_wrap();
854 			goto retry;
855 		}
856 	}
857 	if (mm->context.sparc64_ctx_val)
858 		cpumask_clear(mm_cpumask(mm));
859 	mmu_context_bmap[new_ctx>>6] |= (1UL << (new_ctx & 63));
860 	new_ctx |= (tlb_context_cache & CTX_VERSION_MASK);
861 	tlb_context_cache = new_ctx;
862 	mm->context.sparc64_ctx_val = new_ctx | orig_pgsz_bits;
863 out:
864 	spin_unlock(&ctx_alloc_lock);
865 }
866 
867 static int numa_enabled = 1;
868 static int numa_debug;
869 
870 static int __init early_numa(char *p)
871 {
872 	if (!p)
873 		return 0;
874 
875 	if (strstr(p, "off"))
876 		numa_enabled = 0;
877 
878 	if (strstr(p, "debug"))
879 		numa_debug = 1;
880 
881 	return 0;
882 }
883 early_param("numa", early_numa);
884 
885 #define numadbg(f, a...) \
886 do {	if (numa_debug) \
887 		printk(KERN_INFO f, ## a); \
888 } while (0)
889 
890 static void __init find_ramdisk(unsigned long phys_base)
891 {
892 #ifdef CONFIG_BLK_DEV_INITRD
893 	if (sparc_ramdisk_image || sparc_ramdisk_image64) {
894 		unsigned long ramdisk_image;
895 
896 		/* Older versions of the bootloader only supported a
897 		 * 32-bit physical address for the ramdisk image
898 		 * location, stored at sparc_ramdisk_image.  Newer
899 		 * SILO versions set sparc_ramdisk_image to zero and
900 		 * provide a full 64-bit physical address at
901 		 * sparc_ramdisk_image64.
902 		 */
903 		ramdisk_image = sparc_ramdisk_image;
904 		if (!ramdisk_image)
905 			ramdisk_image = sparc_ramdisk_image64;
906 
907 		/* Another bootloader quirk.  The bootloader normalizes
908 		 * the physical address to KERNBASE, so we have to
909 		 * factor that back out and add in the lowest valid
910 		 * physical page address to get the true physical address.
911 		 */
912 		ramdisk_image -= KERNBASE;
913 		ramdisk_image += phys_base;
914 
915 		numadbg("Found ramdisk at physical address 0x%lx, size %u\n",
916 			ramdisk_image, sparc_ramdisk_size);
917 
918 		initrd_start = ramdisk_image;
919 		initrd_end = ramdisk_image + sparc_ramdisk_size;
920 
921 		memblock_reserve(initrd_start, sparc_ramdisk_size);
922 
923 		initrd_start += PAGE_OFFSET;
924 		initrd_end += PAGE_OFFSET;
925 	}
926 #endif
927 }
928 
929 struct node_mem_mask {
930 	unsigned long mask;
931 	unsigned long match;
932 };
933 static struct node_mem_mask node_masks[MAX_NUMNODES];
934 static int num_node_masks;
935 
936 #ifdef CONFIG_NEED_MULTIPLE_NODES
937 
938 struct mdesc_mlgroup {
939 	u64	node;
940 	u64	latency;
941 	u64	match;
942 	u64	mask;
943 };
944 
945 static struct mdesc_mlgroup *mlgroups;
946 static int num_mlgroups;
947 
948 int numa_cpu_lookup_table[NR_CPUS];
949 cpumask_t numa_cpumask_lookup_table[MAX_NUMNODES];
950 
951 struct mdesc_mblock {
952 	u64	base;
953 	u64	size;
954 	u64	offset; /* RA-to-PA */
955 };
956 static struct mdesc_mblock *mblocks;
957 static int num_mblocks;
958 
959 static struct mdesc_mblock * __init addr_to_mblock(unsigned long addr)
960 {
961 	struct mdesc_mblock *m = NULL;
962 	int i;
963 
964 	for (i = 0; i < num_mblocks; i++) {
965 		m = &mblocks[i];
966 
967 		if (addr >= m->base &&
968 		    addr < (m->base + m->size)) {
969 			break;
970 		}
971 	}
972 
973 	return m;
974 }
975 
976 static u64 __init memblock_nid_range_sun4u(u64 start, u64 end, int *nid)
977 {
978 	int prev_nid, new_nid;
979 
980 	prev_nid = NUMA_NO_NODE;
981 	for ( ; start < end; start += PAGE_SIZE) {
982 		for (new_nid = 0; new_nid < num_node_masks; new_nid++) {
983 			struct node_mem_mask *p = &node_masks[new_nid];
984 
985 			if ((start & p->mask) == p->match) {
986 				if (prev_nid == NUMA_NO_NODE)
987 					prev_nid = new_nid;
988 				break;
989 			}
990 		}
991 
992 		if (new_nid == num_node_masks) {
993 			prev_nid = 0;
994 			WARN_ONCE(1, "addr[%Lx] doesn't match a NUMA node rule. Some memory will be owned by node 0.",
995 				  start);
996 			break;
997 		}
998 
999 		if (prev_nid != new_nid)
1000 			break;
1001 	}
1002 	*nid = prev_nid;
1003 
1004 	return start > end ? end : start;
1005 }
1006 
1007 static u64 __init memblock_nid_range(u64 start, u64 end, int *nid)
1008 {
1009 	u64 ret_end, pa_start, m_mask, m_match, m_end;
1010 	struct mdesc_mblock *mblock;
1011 	int _nid, i;
1012 
1013 	if (tlb_type != hypervisor)
1014 		return memblock_nid_range_sun4u(start, end, nid);
1015 
1016 	mblock = addr_to_mblock(start);
1017 	if (!mblock) {
1018 		WARN_ONCE(1, "memblock_nid_range: Can't find mblock addr[%Lx]",
1019 			  start);
1020 
1021 		_nid = 0;
1022 		ret_end = end;
1023 		goto done;
1024 	}
1025 
1026 	pa_start = start + mblock->offset;
1027 	m_match = 0;
1028 	m_mask = 0;
1029 
1030 	for (_nid = 0; _nid < num_node_masks; _nid++) {
1031 		struct node_mem_mask *const m = &node_masks[_nid];
1032 
1033 		if ((pa_start & m->mask) == m->match) {
1034 			m_match = m->match;
1035 			m_mask = m->mask;
1036 			break;
1037 		}
1038 	}
1039 
1040 	if (num_node_masks == _nid) {
1041 		/* We could not find NUMA group, so default to 0, but lets
1042 		 * search for latency group, so we could calculate the correct
1043 		 * end address that we return
1044 		 */
1045 		_nid = 0;
1046 
1047 		for (i = 0; i < num_mlgroups; i++) {
1048 			struct mdesc_mlgroup *const m = &mlgroups[i];
1049 
1050 			if ((pa_start & m->mask) == m->match) {
1051 				m_match = m->match;
1052 				m_mask = m->mask;
1053 				break;
1054 			}
1055 		}
1056 
1057 		if (i == num_mlgroups) {
1058 			WARN_ONCE(1, "memblock_nid_range: Can't find latency group addr[%Lx]",
1059 				  start);
1060 
1061 			ret_end = end;
1062 			goto done;
1063 		}
1064 	}
1065 
1066 	/*
1067 	 * Each latency group has match and mask, and each memory block has an
1068 	 * offset.  An address belongs to a latency group if its address matches
1069 	 * the following formula: ((addr + offset) & mask) == match
1070 	 * It is, however, slow to check every single page if it matches a
1071 	 * particular latency group. As optimization we calculate end value by
1072 	 * using bit arithmetics.
1073 	 */
1074 	m_end = m_match + (1ul << __ffs(m_mask)) - mblock->offset;
1075 	m_end += pa_start & ~((1ul << fls64(m_mask)) - 1);
1076 	ret_end = m_end > end ? end : m_end;
1077 
1078 done:
1079 	*nid = _nid;
1080 	return ret_end;
1081 }
1082 #endif
1083 
1084 /* This must be invoked after performing all of the necessary
1085  * memblock_set_node() calls for 'nid'.  We need to be able to get
1086  * correct data from get_pfn_range_for_nid().
1087  */
1088 static void __init allocate_node_data(int nid)
1089 {
1090 	struct pglist_data *p;
1091 	unsigned long start_pfn, end_pfn;
1092 #ifdef CONFIG_NEED_MULTIPLE_NODES
1093 
1094 	NODE_DATA(nid) = memblock_alloc_node(sizeof(struct pglist_data),
1095 					     SMP_CACHE_BYTES, nid);
1096 	if (!NODE_DATA(nid)) {
1097 		prom_printf("Cannot allocate pglist_data for nid[%d]\n", nid);
1098 		prom_halt();
1099 	}
1100 
1101 	NODE_DATA(nid)->node_id = nid;
1102 #endif
1103 
1104 	p = NODE_DATA(nid);
1105 
1106 	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
1107 	p->node_start_pfn = start_pfn;
1108 	p->node_spanned_pages = end_pfn - start_pfn;
1109 }
1110 
1111 static void init_node_masks_nonnuma(void)
1112 {
1113 #ifdef CONFIG_NEED_MULTIPLE_NODES
1114 	int i;
1115 #endif
1116 
1117 	numadbg("Initializing tables for non-numa.\n");
1118 
1119 	node_masks[0].mask = 0;
1120 	node_masks[0].match = 0;
1121 	num_node_masks = 1;
1122 
1123 #ifdef CONFIG_NEED_MULTIPLE_NODES
1124 	for (i = 0; i < NR_CPUS; i++)
1125 		numa_cpu_lookup_table[i] = 0;
1126 
1127 	cpumask_setall(&numa_cpumask_lookup_table[0]);
1128 #endif
1129 }
1130 
1131 #ifdef CONFIG_NEED_MULTIPLE_NODES
1132 struct pglist_data *node_data[MAX_NUMNODES];
1133 
1134 EXPORT_SYMBOL(numa_cpu_lookup_table);
1135 EXPORT_SYMBOL(numa_cpumask_lookup_table);
1136 EXPORT_SYMBOL(node_data);
1137 
1138 static int scan_pio_for_cfg_handle(struct mdesc_handle *md, u64 pio,
1139 				   u32 cfg_handle)
1140 {
1141 	u64 arc;
1142 
1143 	mdesc_for_each_arc(arc, md, pio, MDESC_ARC_TYPE_FWD) {
1144 		u64 target = mdesc_arc_target(md, arc);
1145 		const u64 *val;
1146 
1147 		val = mdesc_get_property(md, target,
1148 					 "cfg-handle", NULL);
1149 		if (val && *val == cfg_handle)
1150 			return 0;
1151 	}
1152 	return -ENODEV;
1153 }
1154 
1155 static int scan_arcs_for_cfg_handle(struct mdesc_handle *md, u64 grp,
1156 				    u32 cfg_handle)
1157 {
1158 	u64 arc, candidate, best_latency = ~(u64)0;
1159 
1160 	candidate = MDESC_NODE_NULL;
1161 	mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1162 		u64 target = mdesc_arc_target(md, arc);
1163 		const char *name = mdesc_node_name(md, target);
1164 		const u64 *val;
1165 
1166 		if (strcmp(name, "pio-latency-group"))
1167 			continue;
1168 
1169 		val = mdesc_get_property(md, target, "latency", NULL);
1170 		if (!val)
1171 			continue;
1172 
1173 		if (*val < best_latency) {
1174 			candidate = target;
1175 			best_latency = *val;
1176 		}
1177 	}
1178 
1179 	if (candidate == MDESC_NODE_NULL)
1180 		return -ENODEV;
1181 
1182 	return scan_pio_for_cfg_handle(md, candidate, cfg_handle);
1183 }
1184 
1185 int of_node_to_nid(struct device_node *dp)
1186 {
1187 	const struct linux_prom64_registers *regs;
1188 	struct mdesc_handle *md;
1189 	u32 cfg_handle;
1190 	int count, nid;
1191 	u64 grp;
1192 
1193 	/* This is the right thing to do on currently supported
1194 	 * SUN4U NUMA platforms as well, as the PCI controller does
1195 	 * not sit behind any particular memory controller.
1196 	 */
1197 	if (!mlgroups)
1198 		return -1;
1199 
1200 	regs = of_get_property(dp, "reg", NULL);
1201 	if (!regs)
1202 		return -1;
1203 
1204 	cfg_handle = (regs->phys_addr >> 32UL) & 0x0fffffff;
1205 
1206 	md = mdesc_grab();
1207 
1208 	count = 0;
1209 	nid = NUMA_NO_NODE;
1210 	mdesc_for_each_node_by_name(md, grp, "group") {
1211 		if (!scan_arcs_for_cfg_handle(md, grp, cfg_handle)) {
1212 			nid = count;
1213 			break;
1214 		}
1215 		count++;
1216 	}
1217 
1218 	mdesc_release(md);
1219 
1220 	return nid;
1221 }
1222 
1223 static void __init add_node_ranges(void)
1224 {
1225 	struct memblock_region *reg;
1226 	unsigned long prev_max;
1227 
1228 memblock_resized:
1229 	prev_max = memblock.memory.max;
1230 
1231 	for_each_memblock(memory, reg) {
1232 		unsigned long size = reg->size;
1233 		unsigned long start, end;
1234 
1235 		start = reg->base;
1236 		end = start + size;
1237 		while (start < end) {
1238 			unsigned long this_end;
1239 			int nid;
1240 
1241 			this_end = memblock_nid_range(start, end, &nid);
1242 
1243 			numadbg("Setting memblock NUMA node nid[%d] "
1244 				"start[%lx] end[%lx]\n",
1245 				nid, start, this_end);
1246 
1247 			memblock_set_node(start, this_end - start,
1248 					  &memblock.memory, nid);
1249 			if (memblock.memory.max != prev_max)
1250 				goto memblock_resized;
1251 			start = this_end;
1252 		}
1253 	}
1254 }
1255 
1256 static int __init grab_mlgroups(struct mdesc_handle *md)
1257 {
1258 	unsigned long paddr;
1259 	int count = 0;
1260 	u64 node;
1261 
1262 	mdesc_for_each_node_by_name(md, node, "memory-latency-group")
1263 		count++;
1264 	if (!count)
1265 		return -ENOENT;
1266 
1267 	paddr = memblock_phys_alloc(count * sizeof(struct mdesc_mlgroup),
1268 				    SMP_CACHE_BYTES);
1269 	if (!paddr)
1270 		return -ENOMEM;
1271 
1272 	mlgroups = __va(paddr);
1273 	num_mlgroups = count;
1274 
1275 	count = 0;
1276 	mdesc_for_each_node_by_name(md, node, "memory-latency-group") {
1277 		struct mdesc_mlgroup *m = &mlgroups[count++];
1278 		const u64 *val;
1279 
1280 		m->node = node;
1281 
1282 		val = mdesc_get_property(md, node, "latency", NULL);
1283 		m->latency = *val;
1284 		val = mdesc_get_property(md, node, "address-match", NULL);
1285 		m->match = *val;
1286 		val = mdesc_get_property(md, node, "address-mask", NULL);
1287 		m->mask = *val;
1288 
1289 		numadbg("MLGROUP[%d]: node[%llx] latency[%llx] "
1290 			"match[%llx] mask[%llx]\n",
1291 			count - 1, m->node, m->latency, m->match, m->mask);
1292 	}
1293 
1294 	return 0;
1295 }
1296 
1297 static int __init grab_mblocks(struct mdesc_handle *md)
1298 {
1299 	unsigned long paddr;
1300 	int count = 0;
1301 	u64 node;
1302 
1303 	mdesc_for_each_node_by_name(md, node, "mblock")
1304 		count++;
1305 	if (!count)
1306 		return -ENOENT;
1307 
1308 	paddr = memblock_phys_alloc(count * sizeof(struct mdesc_mblock),
1309 				    SMP_CACHE_BYTES);
1310 	if (!paddr)
1311 		return -ENOMEM;
1312 
1313 	mblocks = __va(paddr);
1314 	num_mblocks = count;
1315 
1316 	count = 0;
1317 	mdesc_for_each_node_by_name(md, node, "mblock") {
1318 		struct mdesc_mblock *m = &mblocks[count++];
1319 		const u64 *val;
1320 
1321 		val = mdesc_get_property(md, node, "base", NULL);
1322 		m->base = *val;
1323 		val = mdesc_get_property(md, node, "size", NULL);
1324 		m->size = *val;
1325 		val = mdesc_get_property(md, node,
1326 					 "address-congruence-offset", NULL);
1327 
1328 		/* The address-congruence-offset property is optional.
1329 		 * Explicity zero it be identifty this.
1330 		 */
1331 		if (val)
1332 			m->offset = *val;
1333 		else
1334 			m->offset = 0UL;
1335 
1336 		numadbg("MBLOCK[%d]: base[%llx] size[%llx] offset[%llx]\n",
1337 			count - 1, m->base, m->size, m->offset);
1338 	}
1339 
1340 	return 0;
1341 }
1342 
1343 static void __init numa_parse_mdesc_group_cpus(struct mdesc_handle *md,
1344 					       u64 grp, cpumask_t *mask)
1345 {
1346 	u64 arc;
1347 
1348 	cpumask_clear(mask);
1349 
1350 	mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_BACK) {
1351 		u64 target = mdesc_arc_target(md, arc);
1352 		const char *name = mdesc_node_name(md, target);
1353 		const u64 *id;
1354 
1355 		if (strcmp(name, "cpu"))
1356 			continue;
1357 		id = mdesc_get_property(md, target, "id", NULL);
1358 		if (*id < nr_cpu_ids)
1359 			cpumask_set_cpu(*id, mask);
1360 	}
1361 }
1362 
1363 static struct mdesc_mlgroup * __init find_mlgroup(u64 node)
1364 {
1365 	int i;
1366 
1367 	for (i = 0; i < num_mlgroups; i++) {
1368 		struct mdesc_mlgroup *m = &mlgroups[i];
1369 		if (m->node == node)
1370 			return m;
1371 	}
1372 	return NULL;
1373 }
1374 
1375 int __node_distance(int from, int to)
1376 {
1377 	if ((from >= MAX_NUMNODES) || (to >= MAX_NUMNODES)) {
1378 		pr_warn("Returning default NUMA distance value for %d->%d\n",
1379 			from, to);
1380 		return (from == to) ? LOCAL_DISTANCE : REMOTE_DISTANCE;
1381 	}
1382 	return numa_latency[from][to];
1383 }
1384 EXPORT_SYMBOL(__node_distance);
1385 
1386 static int __init find_best_numa_node_for_mlgroup(struct mdesc_mlgroup *grp)
1387 {
1388 	int i;
1389 
1390 	for (i = 0; i < MAX_NUMNODES; i++) {
1391 		struct node_mem_mask *n = &node_masks[i];
1392 
1393 		if ((grp->mask == n->mask) && (grp->match == n->match))
1394 			break;
1395 	}
1396 	return i;
1397 }
1398 
1399 static void __init find_numa_latencies_for_group(struct mdesc_handle *md,
1400 						 u64 grp, int index)
1401 {
1402 	u64 arc;
1403 
1404 	mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1405 		int tnode;
1406 		u64 target = mdesc_arc_target(md, arc);
1407 		struct mdesc_mlgroup *m = find_mlgroup(target);
1408 
1409 		if (!m)
1410 			continue;
1411 		tnode = find_best_numa_node_for_mlgroup(m);
1412 		if (tnode == MAX_NUMNODES)
1413 			continue;
1414 		numa_latency[index][tnode] = m->latency;
1415 	}
1416 }
1417 
1418 static int __init numa_attach_mlgroup(struct mdesc_handle *md, u64 grp,
1419 				      int index)
1420 {
1421 	struct mdesc_mlgroup *candidate = NULL;
1422 	u64 arc, best_latency = ~(u64)0;
1423 	struct node_mem_mask *n;
1424 
1425 	mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1426 		u64 target = mdesc_arc_target(md, arc);
1427 		struct mdesc_mlgroup *m = find_mlgroup(target);
1428 		if (!m)
1429 			continue;
1430 		if (m->latency < best_latency) {
1431 			candidate = m;
1432 			best_latency = m->latency;
1433 		}
1434 	}
1435 	if (!candidate)
1436 		return -ENOENT;
1437 
1438 	if (num_node_masks != index) {
1439 		printk(KERN_ERR "Inconsistent NUMA state, "
1440 		       "index[%d] != num_node_masks[%d]\n",
1441 		       index, num_node_masks);
1442 		return -EINVAL;
1443 	}
1444 
1445 	n = &node_masks[num_node_masks++];
1446 
1447 	n->mask = candidate->mask;
1448 	n->match = candidate->match;
1449 
1450 	numadbg("NUMA NODE[%d]: mask[%lx] match[%lx] (latency[%llx])\n",
1451 		index, n->mask, n->match, candidate->latency);
1452 
1453 	return 0;
1454 }
1455 
1456 static int __init numa_parse_mdesc_group(struct mdesc_handle *md, u64 grp,
1457 					 int index)
1458 {
1459 	cpumask_t mask;
1460 	int cpu;
1461 
1462 	numa_parse_mdesc_group_cpus(md, grp, &mask);
1463 
1464 	for_each_cpu(cpu, &mask)
1465 		numa_cpu_lookup_table[cpu] = index;
1466 	cpumask_copy(&numa_cpumask_lookup_table[index], &mask);
1467 
1468 	if (numa_debug) {
1469 		printk(KERN_INFO "NUMA GROUP[%d]: cpus [ ", index);
1470 		for_each_cpu(cpu, &mask)
1471 			printk("%d ", cpu);
1472 		printk("]\n");
1473 	}
1474 
1475 	return numa_attach_mlgroup(md, grp, index);
1476 }
1477 
1478 static int __init numa_parse_mdesc(void)
1479 {
1480 	struct mdesc_handle *md = mdesc_grab();
1481 	int i, j, err, count;
1482 	u64 node;
1483 
1484 	node = mdesc_node_by_name(md, MDESC_NODE_NULL, "latency-groups");
1485 	if (node == MDESC_NODE_NULL) {
1486 		mdesc_release(md);
1487 		return -ENOENT;
1488 	}
1489 
1490 	err = grab_mblocks(md);
1491 	if (err < 0)
1492 		goto out;
1493 
1494 	err = grab_mlgroups(md);
1495 	if (err < 0)
1496 		goto out;
1497 
1498 	count = 0;
1499 	mdesc_for_each_node_by_name(md, node, "group") {
1500 		err = numa_parse_mdesc_group(md, node, count);
1501 		if (err < 0)
1502 			break;
1503 		count++;
1504 	}
1505 
1506 	count = 0;
1507 	mdesc_for_each_node_by_name(md, node, "group") {
1508 		find_numa_latencies_for_group(md, node, count);
1509 		count++;
1510 	}
1511 
1512 	/* Normalize numa latency matrix according to ACPI SLIT spec. */
1513 	for (i = 0; i < MAX_NUMNODES; i++) {
1514 		u64 self_latency = numa_latency[i][i];
1515 
1516 		for (j = 0; j < MAX_NUMNODES; j++) {
1517 			numa_latency[i][j] =
1518 				(numa_latency[i][j] * LOCAL_DISTANCE) /
1519 				self_latency;
1520 		}
1521 	}
1522 
1523 	add_node_ranges();
1524 
1525 	for (i = 0; i < num_node_masks; i++) {
1526 		allocate_node_data(i);
1527 		node_set_online(i);
1528 	}
1529 
1530 	err = 0;
1531 out:
1532 	mdesc_release(md);
1533 	return err;
1534 }
1535 
1536 static int __init numa_parse_jbus(void)
1537 {
1538 	unsigned long cpu, index;
1539 
1540 	/* NUMA node id is encoded in bits 36 and higher, and there is
1541 	 * a 1-to-1 mapping from CPU ID to NUMA node ID.
1542 	 */
1543 	index = 0;
1544 	for_each_present_cpu(cpu) {
1545 		numa_cpu_lookup_table[cpu] = index;
1546 		cpumask_copy(&numa_cpumask_lookup_table[index], cpumask_of(cpu));
1547 		node_masks[index].mask = ~((1UL << 36UL) - 1UL);
1548 		node_masks[index].match = cpu << 36UL;
1549 
1550 		index++;
1551 	}
1552 	num_node_masks = index;
1553 
1554 	add_node_ranges();
1555 
1556 	for (index = 0; index < num_node_masks; index++) {
1557 		allocate_node_data(index);
1558 		node_set_online(index);
1559 	}
1560 
1561 	return 0;
1562 }
1563 
1564 static int __init numa_parse_sun4u(void)
1565 {
1566 	if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1567 		unsigned long ver;
1568 
1569 		__asm__ ("rdpr %%ver, %0" : "=r" (ver));
1570 		if ((ver >> 32UL) == __JALAPENO_ID ||
1571 		    (ver >> 32UL) == __SERRANO_ID)
1572 			return numa_parse_jbus();
1573 	}
1574 	return -1;
1575 }
1576 
1577 static int __init bootmem_init_numa(void)
1578 {
1579 	int i, j;
1580 	int err = -1;
1581 
1582 	numadbg("bootmem_init_numa()\n");
1583 
1584 	/* Some sane defaults for numa latency values */
1585 	for (i = 0; i < MAX_NUMNODES; i++) {
1586 		for (j = 0; j < MAX_NUMNODES; j++)
1587 			numa_latency[i][j] = (i == j) ?
1588 				LOCAL_DISTANCE : REMOTE_DISTANCE;
1589 	}
1590 
1591 	if (numa_enabled) {
1592 		if (tlb_type == hypervisor)
1593 			err = numa_parse_mdesc();
1594 		else
1595 			err = numa_parse_sun4u();
1596 	}
1597 	return err;
1598 }
1599 
1600 #else
1601 
1602 static int bootmem_init_numa(void)
1603 {
1604 	return -1;
1605 }
1606 
1607 #endif
1608 
1609 static void __init bootmem_init_nonnuma(void)
1610 {
1611 	unsigned long top_of_ram = memblock_end_of_DRAM();
1612 	unsigned long total_ram = memblock_phys_mem_size();
1613 
1614 	numadbg("bootmem_init_nonnuma()\n");
1615 
1616 	printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
1617 	       top_of_ram, total_ram);
1618 	printk(KERN_INFO "Memory hole size: %ldMB\n",
1619 	       (top_of_ram - total_ram) >> 20);
1620 
1621 	init_node_masks_nonnuma();
1622 	memblock_set_node(0, PHYS_ADDR_MAX, &memblock.memory, 0);
1623 	allocate_node_data(0);
1624 	node_set_online(0);
1625 }
1626 
1627 static unsigned long __init bootmem_init(unsigned long phys_base)
1628 {
1629 	unsigned long end_pfn;
1630 
1631 	end_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
1632 	max_pfn = max_low_pfn = end_pfn;
1633 	min_low_pfn = (phys_base >> PAGE_SHIFT);
1634 
1635 	if (bootmem_init_numa() < 0)
1636 		bootmem_init_nonnuma();
1637 
1638 	/* Dump memblock with node info. */
1639 	memblock_dump_all();
1640 
1641 	/* XXX cpu notifier XXX */
1642 
1643 	sparse_memory_present_with_active_regions(MAX_NUMNODES);
1644 	sparse_init();
1645 
1646 	return end_pfn;
1647 }
1648 
1649 static struct linux_prom64_registers pall[MAX_BANKS] __initdata;
1650 static int pall_ents __initdata;
1651 
1652 static unsigned long max_phys_bits = 40;
1653 
1654 bool kern_addr_valid(unsigned long addr)
1655 {
1656 	pgd_t *pgd;
1657 	p4d_t *p4d;
1658 	pud_t *pud;
1659 	pmd_t *pmd;
1660 	pte_t *pte;
1661 
1662 	if ((long)addr < 0L) {
1663 		unsigned long pa = __pa(addr);
1664 
1665 		if ((pa >> max_phys_bits) != 0UL)
1666 			return false;
1667 
1668 		return pfn_valid(pa >> PAGE_SHIFT);
1669 	}
1670 
1671 	if (addr >= (unsigned long) KERNBASE &&
1672 	    addr < (unsigned long)&_end)
1673 		return true;
1674 
1675 	pgd = pgd_offset_k(addr);
1676 	if (pgd_none(*pgd))
1677 		return 0;
1678 
1679 	p4d = p4d_offset(pgd, addr);
1680 	if (p4d_none(*p4d))
1681 		return 0;
1682 
1683 	pud = pud_offset(p4d, addr);
1684 	if (pud_none(*pud))
1685 		return 0;
1686 
1687 	if (pud_large(*pud))
1688 		return pfn_valid(pud_pfn(*pud));
1689 
1690 	pmd = pmd_offset(pud, addr);
1691 	if (pmd_none(*pmd))
1692 		return 0;
1693 
1694 	if (pmd_large(*pmd))
1695 		return pfn_valid(pmd_pfn(*pmd));
1696 
1697 	pte = pte_offset_kernel(pmd, addr);
1698 	if (pte_none(*pte))
1699 		return 0;
1700 
1701 	return pfn_valid(pte_pfn(*pte));
1702 }
1703 EXPORT_SYMBOL(kern_addr_valid);
1704 
1705 static unsigned long __ref kernel_map_hugepud(unsigned long vstart,
1706 					      unsigned long vend,
1707 					      pud_t *pud)
1708 {
1709 	const unsigned long mask16gb = (1UL << 34) - 1UL;
1710 	u64 pte_val = vstart;
1711 
1712 	/* Each PUD is 8GB */
1713 	if ((vstart & mask16gb) ||
1714 	    (vend - vstart <= mask16gb)) {
1715 		pte_val ^= kern_linear_pte_xor[2];
1716 		pud_val(*pud) = pte_val | _PAGE_PUD_HUGE;
1717 
1718 		return vstart + PUD_SIZE;
1719 	}
1720 
1721 	pte_val ^= kern_linear_pte_xor[3];
1722 	pte_val |= _PAGE_PUD_HUGE;
1723 
1724 	vend = vstart + mask16gb + 1UL;
1725 	while (vstart < vend) {
1726 		pud_val(*pud) = pte_val;
1727 
1728 		pte_val += PUD_SIZE;
1729 		vstart += PUD_SIZE;
1730 		pud++;
1731 	}
1732 	return vstart;
1733 }
1734 
1735 static bool kernel_can_map_hugepud(unsigned long vstart, unsigned long vend,
1736 				   bool guard)
1737 {
1738 	if (guard && !(vstart & ~PUD_MASK) && (vend - vstart) >= PUD_SIZE)
1739 		return true;
1740 
1741 	return false;
1742 }
1743 
1744 static unsigned long __ref kernel_map_hugepmd(unsigned long vstart,
1745 					      unsigned long vend,
1746 					      pmd_t *pmd)
1747 {
1748 	const unsigned long mask256mb = (1UL << 28) - 1UL;
1749 	const unsigned long mask2gb = (1UL << 31) - 1UL;
1750 	u64 pte_val = vstart;
1751 
1752 	/* Each PMD is 8MB */
1753 	if ((vstart & mask256mb) ||
1754 	    (vend - vstart <= mask256mb)) {
1755 		pte_val ^= kern_linear_pte_xor[0];
1756 		pmd_val(*pmd) = pte_val | _PAGE_PMD_HUGE;
1757 
1758 		return vstart + PMD_SIZE;
1759 	}
1760 
1761 	if ((vstart & mask2gb) ||
1762 	    (vend - vstart <= mask2gb)) {
1763 		pte_val ^= kern_linear_pte_xor[1];
1764 		pte_val |= _PAGE_PMD_HUGE;
1765 		vend = vstart + mask256mb + 1UL;
1766 	} else {
1767 		pte_val ^= kern_linear_pte_xor[2];
1768 		pte_val |= _PAGE_PMD_HUGE;
1769 		vend = vstart + mask2gb + 1UL;
1770 	}
1771 
1772 	while (vstart < vend) {
1773 		pmd_val(*pmd) = pte_val;
1774 
1775 		pte_val += PMD_SIZE;
1776 		vstart += PMD_SIZE;
1777 		pmd++;
1778 	}
1779 
1780 	return vstart;
1781 }
1782 
1783 static bool kernel_can_map_hugepmd(unsigned long vstart, unsigned long vend,
1784 				   bool guard)
1785 {
1786 	if (guard && !(vstart & ~PMD_MASK) && (vend - vstart) >= PMD_SIZE)
1787 		return true;
1788 
1789 	return false;
1790 }
1791 
1792 static unsigned long __ref kernel_map_range(unsigned long pstart,
1793 					    unsigned long pend, pgprot_t prot,
1794 					    bool use_huge)
1795 {
1796 	unsigned long vstart = PAGE_OFFSET + pstart;
1797 	unsigned long vend = PAGE_OFFSET + pend;
1798 	unsigned long alloc_bytes = 0UL;
1799 
1800 	if ((vstart & ~PAGE_MASK) || (vend & ~PAGE_MASK)) {
1801 		prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n",
1802 			    vstart, vend);
1803 		prom_halt();
1804 	}
1805 
1806 	while (vstart < vend) {
1807 		unsigned long this_end, paddr = __pa(vstart);
1808 		pgd_t *pgd = pgd_offset_k(vstart);
1809 		p4d_t *p4d;
1810 		pud_t *pud;
1811 		pmd_t *pmd;
1812 		pte_t *pte;
1813 
1814 		if (pgd_none(*pgd)) {
1815 			pud_t *new;
1816 
1817 			new = memblock_alloc_from(PAGE_SIZE, PAGE_SIZE,
1818 						  PAGE_SIZE);
1819 			if (!new)
1820 				goto err_alloc;
1821 			alloc_bytes += PAGE_SIZE;
1822 			pgd_populate(&init_mm, pgd, new);
1823 		}
1824 
1825 		p4d = p4d_offset(pgd, vstart);
1826 		if (p4d_none(*p4d)) {
1827 			pud_t *new;
1828 
1829 			new = memblock_alloc_from(PAGE_SIZE, PAGE_SIZE,
1830 						  PAGE_SIZE);
1831 			if (!new)
1832 				goto err_alloc;
1833 			alloc_bytes += PAGE_SIZE;
1834 			p4d_populate(&init_mm, p4d, new);
1835 		}
1836 
1837 		pud = pud_offset(p4d, vstart);
1838 		if (pud_none(*pud)) {
1839 			pmd_t *new;
1840 
1841 			if (kernel_can_map_hugepud(vstart, vend, use_huge)) {
1842 				vstart = kernel_map_hugepud(vstart, vend, pud);
1843 				continue;
1844 			}
1845 			new = memblock_alloc_from(PAGE_SIZE, PAGE_SIZE,
1846 						  PAGE_SIZE);
1847 			if (!new)
1848 				goto err_alloc;
1849 			alloc_bytes += PAGE_SIZE;
1850 			pud_populate(&init_mm, pud, new);
1851 		}
1852 
1853 		pmd = pmd_offset(pud, vstart);
1854 		if (pmd_none(*pmd)) {
1855 			pte_t *new;
1856 
1857 			if (kernel_can_map_hugepmd(vstart, vend, use_huge)) {
1858 				vstart = kernel_map_hugepmd(vstart, vend, pmd);
1859 				continue;
1860 			}
1861 			new = memblock_alloc_from(PAGE_SIZE, PAGE_SIZE,
1862 						  PAGE_SIZE);
1863 			if (!new)
1864 				goto err_alloc;
1865 			alloc_bytes += PAGE_SIZE;
1866 			pmd_populate_kernel(&init_mm, pmd, new);
1867 		}
1868 
1869 		pte = pte_offset_kernel(pmd, vstart);
1870 		this_end = (vstart + PMD_SIZE) & PMD_MASK;
1871 		if (this_end > vend)
1872 			this_end = vend;
1873 
1874 		while (vstart < this_end) {
1875 			pte_val(*pte) = (paddr | pgprot_val(prot));
1876 
1877 			vstart += PAGE_SIZE;
1878 			paddr += PAGE_SIZE;
1879 			pte++;
1880 		}
1881 	}
1882 
1883 	return alloc_bytes;
1884 
1885 err_alloc:
1886 	panic("%s: Failed to allocate %lu bytes align=%lx from=%lx\n",
1887 	      __func__, PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1888 	return -ENOMEM;
1889 }
1890 
1891 static void __init flush_all_kernel_tsbs(void)
1892 {
1893 	int i;
1894 
1895 	for (i = 0; i < KERNEL_TSB_NENTRIES; i++) {
1896 		struct tsb *ent = &swapper_tsb[i];
1897 
1898 		ent->tag = (1UL << TSB_TAG_INVALID_BIT);
1899 	}
1900 #ifndef CONFIG_DEBUG_PAGEALLOC
1901 	for (i = 0; i < KERNEL_TSB4M_NENTRIES; i++) {
1902 		struct tsb *ent = &swapper_4m_tsb[i];
1903 
1904 		ent->tag = (1UL << TSB_TAG_INVALID_BIT);
1905 	}
1906 #endif
1907 }
1908 
1909 extern unsigned int kvmap_linear_patch[1];
1910 
1911 static void __init kernel_physical_mapping_init(void)
1912 {
1913 	unsigned long i, mem_alloced = 0UL;
1914 	bool use_huge = true;
1915 
1916 #ifdef CONFIG_DEBUG_PAGEALLOC
1917 	use_huge = false;
1918 #endif
1919 	for (i = 0; i < pall_ents; i++) {
1920 		unsigned long phys_start, phys_end;
1921 
1922 		phys_start = pall[i].phys_addr;
1923 		phys_end = phys_start + pall[i].reg_size;
1924 
1925 		mem_alloced += kernel_map_range(phys_start, phys_end,
1926 						PAGE_KERNEL, use_huge);
1927 	}
1928 
1929 	printk("Allocated %ld bytes for kernel page tables.\n",
1930 	       mem_alloced);
1931 
1932 	kvmap_linear_patch[0] = 0x01000000; /* nop */
1933 	flushi(&kvmap_linear_patch[0]);
1934 
1935 	flush_all_kernel_tsbs();
1936 
1937 	__flush_tlb_all();
1938 }
1939 
1940 #ifdef CONFIG_DEBUG_PAGEALLOC
1941 void __kernel_map_pages(struct page *page, int numpages, int enable)
1942 {
1943 	unsigned long phys_start = page_to_pfn(page) << PAGE_SHIFT;
1944 	unsigned long phys_end = phys_start + (numpages * PAGE_SIZE);
1945 
1946 	kernel_map_range(phys_start, phys_end,
1947 			 (enable ? PAGE_KERNEL : __pgprot(0)), false);
1948 
1949 	flush_tsb_kernel_range(PAGE_OFFSET + phys_start,
1950 			       PAGE_OFFSET + phys_end);
1951 
1952 	/* we should perform an IPI and flush all tlbs,
1953 	 * but that can deadlock->flush only current cpu.
1954 	 */
1955 	__flush_tlb_kernel_range(PAGE_OFFSET + phys_start,
1956 				 PAGE_OFFSET + phys_end);
1957 }
1958 #endif
1959 
1960 unsigned long __init find_ecache_flush_span(unsigned long size)
1961 {
1962 	int i;
1963 
1964 	for (i = 0; i < pavail_ents; i++) {
1965 		if (pavail[i].reg_size >= size)
1966 			return pavail[i].phys_addr;
1967 	}
1968 
1969 	return ~0UL;
1970 }
1971 
1972 unsigned long PAGE_OFFSET;
1973 EXPORT_SYMBOL(PAGE_OFFSET);
1974 
1975 unsigned long VMALLOC_END   = 0x0000010000000000UL;
1976 EXPORT_SYMBOL(VMALLOC_END);
1977 
1978 unsigned long sparc64_va_hole_top =    0xfffff80000000000UL;
1979 unsigned long sparc64_va_hole_bottom = 0x0000080000000000UL;
1980 
1981 static void __init setup_page_offset(void)
1982 {
1983 	if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1984 		/* Cheetah/Panther support a full 64-bit virtual
1985 		 * address, so we can use all that our page tables
1986 		 * support.
1987 		 */
1988 		sparc64_va_hole_top =    0xfff0000000000000UL;
1989 		sparc64_va_hole_bottom = 0x0010000000000000UL;
1990 
1991 		max_phys_bits = 42;
1992 	} else if (tlb_type == hypervisor) {
1993 		switch (sun4v_chip_type) {
1994 		case SUN4V_CHIP_NIAGARA1:
1995 		case SUN4V_CHIP_NIAGARA2:
1996 			/* T1 and T2 support 48-bit virtual addresses.  */
1997 			sparc64_va_hole_top =    0xffff800000000000UL;
1998 			sparc64_va_hole_bottom = 0x0000800000000000UL;
1999 
2000 			max_phys_bits = 39;
2001 			break;
2002 		case SUN4V_CHIP_NIAGARA3:
2003 			/* T3 supports 48-bit virtual addresses.  */
2004 			sparc64_va_hole_top =    0xffff800000000000UL;
2005 			sparc64_va_hole_bottom = 0x0000800000000000UL;
2006 
2007 			max_phys_bits = 43;
2008 			break;
2009 		case SUN4V_CHIP_NIAGARA4:
2010 		case SUN4V_CHIP_NIAGARA5:
2011 		case SUN4V_CHIP_SPARC64X:
2012 		case SUN4V_CHIP_SPARC_M6:
2013 			/* T4 and later support 52-bit virtual addresses.  */
2014 			sparc64_va_hole_top =    0xfff8000000000000UL;
2015 			sparc64_va_hole_bottom = 0x0008000000000000UL;
2016 			max_phys_bits = 47;
2017 			break;
2018 		case SUN4V_CHIP_SPARC_M7:
2019 		case SUN4V_CHIP_SPARC_SN:
2020 			/* M7 and later support 52-bit virtual addresses.  */
2021 			sparc64_va_hole_top =    0xfff8000000000000UL;
2022 			sparc64_va_hole_bottom = 0x0008000000000000UL;
2023 			max_phys_bits = 49;
2024 			break;
2025 		case SUN4V_CHIP_SPARC_M8:
2026 		default:
2027 			/* M8 and later support 54-bit virtual addresses.
2028 			 * However, restricting M8 and above VA bits to 53
2029 			 * as 4-level page table cannot support more than
2030 			 * 53 VA bits.
2031 			 */
2032 			sparc64_va_hole_top =    0xfff0000000000000UL;
2033 			sparc64_va_hole_bottom = 0x0010000000000000UL;
2034 			max_phys_bits = 51;
2035 			break;
2036 		}
2037 	}
2038 
2039 	if (max_phys_bits > MAX_PHYS_ADDRESS_BITS) {
2040 		prom_printf("MAX_PHYS_ADDRESS_BITS is too small, need %lu\n",
2041 			    max_phys_bits);
2042 		prom_halt();
2043 	}
2044 
2045 	PAGE_OFFSET = sparc64_va_hole_top;
2046 	VMALLOC_END = ((sparc64_va_hole_bottom >> 1) +
2047 		       (sparc64_va_hole_bottom >> 2));
2048 
2049 	pr_info("MM: PAGE_OFFSET is 0x%016lx (max_phys_bits == %lu)\n",
2050 		PAGE_OFFSET, max_phys_bits);
2051 	pr_info("MM: VMALLOC [0x%016lx --> 0x%016lx]\n",
2052 		VMALLOC_START, VMALLOC_END);
2053 	pr_info("MM: VMEMMAP [0x%016lx --> 0x%016lx]\n",
2054 		VMEMMAP_BASE, VMEMMAP_BASE << 1);
2055 }
2056 
2057 static void __init tsb_phys_patch(void)
2058 {
2059 	struct tsb_ldquad_phys_patch_entry *pquad;
2060 	struct tsb_phys_patch_entry *p;
2061 
2062 	pquad = &__tsb_ldquad_phys_patch;
2063 	while (pquad < &__tsb_ldquad_phys_patch_end) {
2064 		unsigned long addr = pquad->addr;
2065 
2066 		if (tlb_type == hypervisor)
2067 			*(unsigned int *) addr = pquad->sun4v_insn;
2068 		else
2069 			*(unsigned int *) addr = pquad->sun4u_insn;
2070 		wmb();
2071 		__asm__ __volatile__("flush	%0"
2072 				     : /* no outputs */
2073 				     : "r" (addr));
2074 
2075 		pquad++;
2076 	}
2077 
2078 	p = &__tsb_phys_patch;
2079 	while (p < &__tsb_phys_patch_end) {
2080 		unsigned long addr = p->addr;
2081 
2082 		*(unsigned int *) addr = p->insn;
2083 		wmb();
2084 		__asm__ __volatile__("flush	%0"
2085 				     : /* no outputs */
2086 				     : "r" (addr));
2087 
2088 		p++;
2089 	}
2090 }
2091 
2092 /* Don't mark as init, we give this to the Hypervisor.  */
2093 #ifndef CONFIG_DEBUG_PAGEALLOC
2094 #define NUM_KTSB_DESCR	2
2095 #else
2096 #define NUM_KTSB_DESCR	1
2097 #endif
2098 static struct hv_tsb_descr ktsb_descr[NUM_KTSB_DESCR];
2099 
2100 /* The swapper TSBs are loaded with a base sequence of:
2101  *
2102  *	sethi	%uhi(SYMBOL), REG1
2103  *	sethi	%hi(SYMBOL), REG2
2104  *	or	REG1, %ulo(SYMBOL), REG1
2105  *	or	REG2, %lo(SYMBOL), REG2
2106  *	sllx	REG1, 32, REG1
2107  *	or	REG1, REG2, REG1
2108  *
2109  * When we use physical addressing for the TSB accesses, we patch the
2110  * first four instructions in the above sequence.
2111  */
2112 
2113 static void patch_one_ktsb_phys(unsigned int *start, unsigned int *end, unsigned long pa)
2114 {
2115 	unsigned long high_bits, low_bits;
2116 
2117 	high_bits = (pa >> 32) & 0xffffffff;
2118 	low_bits = (pa >> 0) & 0xffffffff;
2119 
2120 	while (start < end) {
2121 		unsigned int *ia = (unsigned int *)(unsigned long)*start;
2122 
2123 		ia[0] = (ia[0] & ~0x3fffff) | (high_bits >> 10);
2124 		__asm__ __volatile__("flush	%0" : : "r" (ia));
2125 
2126 		ia[1] = (ia[1] & ~0x3fffff) | (low_bits >> 10);
2127 		__asm__ __volatile__("flush	%0" : : "r" (ia + 1));
2128 
2129 		ia[2] = (ia[2] & ~0x1fff) | (high_bits & 0x3ff);
2130 		__asm__ __volatile__("flush	%0" : : "r" (ia + 2));
2131 
2132 		ia[3] = (ia[3] & ~0x1fff) | (low_bits & 0x3ff);
2133 		__asm__ __volatile__("flush	%0" : : "r" (ia + 3));
2134 
2135 		start++;
2136 	}
2137 }
2138 
2139 static void ktsb_phys_patch(void)
2140 {
2141 	extern unsigned int __swapper_tsb_phys_patch;
2142 	extern unsigned int __swapper_tsb_phys_patch_end;
2143 	unsigned long ktsb_pa;
2144 
2145 	ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
2146 	patch_one_ktsb_phys(&__swapper_tsb_phys_patch,
2147 			    &__swapper_tsb_phys_patch_end, ktsb_pa);
2148 #ifndef CONFIG_DEBUG_PAGEALLOC
2149 	{
2150 	extern unsigned int __swapper_4m_tsb_phys_patch;
2151 	extern unsigned int __swapper_4m_tsb_phys_patch_end;
2152 	ktsb_pa = (kern_base +
2153 		   ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
2154 	patch_one_ktsb_phys(&__swapper_4m_tsb_phys_patch,
2155 			    &__swapper_4m_tsb_phys_patch_end, ktsb_pa);
2156 	}
2157 #endif
2158 }
2159 
2160 static void __init sun4v_ktsb_init(void)
2161 {
2162 	unsigned long ktsb_pa;
2163 
2164 	/* First KTSB for PAGE_SIZE mappings.  */
2165 	ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
2166 
2167 	switch (PAGE_SIZE) {
2168 	case 8 * 1024:
2169 	default:
2170 		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_8K;
2171 		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_8K;
2172 		break;
2173 
2174 	case 64 * 1024:
2175 		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_64K;
2176 		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_64K;
2177 		break;
2178 
2179 	case 512 * 1024:
2180 		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_512K;
2181 		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_512K;
2182 		break;
2183 
2184 	case 4 * 1024 * 1024:
2185 		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_4MB;
2186 		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_4MB;
2187 		break;
2188 	}
2189 
2190 	ktsb_descr[0].assoc = 1;
2191 	ktsb_descr[0].num_ttes = KERNEL_TSB_NENTRIES;
2192 	ktsb_descr[0].ctx_idx = 0;
2193 	ktsb_descr[0].tsb_base = ktsb_pa;
2194 	ktsb_descr[0].resv = 0;
2195 
2196 #ifndef CONFIG_DEBUG_PAGEALLOC
2197 	/* Second KTSB for 4MB/256MB/2GB/16GB mappings.  */
2198 	ktsb_pa = (kern_base +
2199 		   ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
2200 
2201 	ktsb_descr[1].pgsz_idx = HV_PGSZ_IDX_4MB;
2202 	ktsb_descr[1].pgsz_mask = ((HV_PGSZ_MASK_4MB |
2203 				    HV_PGSZ_MASK_256MB |
2204 				    HV_PGSZ_MASK_2GB |
2205 				    HV_PGSZ_MASK_16GB) &
2206 				   cpu_pgsz_mask);
2207 	ktsb_descr[1].assoc = 1;
2208 	ktsb_descr[1].num_ttes = KERNEL_TSB4M_NENTRIES;
2209 	ktsb_descr[1].ctx_idx = 0;
2210 	ktsb_descr[1].tsb_base = ktsb_pa;
2211 	ktsb_descr[1].resv = 0;
2212 #endif
2213 }
2214 
2215 void sun4v_ktsb_register(void)
2216 {
2217 	unsigned long pa, ret;
2218 
2219 	pa = kern_base + ((unsigned long)&ktsb_descr[0] - KERNBASE);
2220 
2221 	ret = sun4v_mmu_tsb_ctx0(NUM_KTSB_DESCR, pa);
2222 	if (ret != 0) {
2223 		prom_printf("hypervisor_mmu_tsb_ctx0[%lx]: "
2224 			    "errors with %lx\n", pa, ret);
2225 		prom_halt();
2226 	}
2227 }
2228 
2229 static void __init sun4u_linear_pte_xor_finalize(void)
2230 {
2231 #ifndef CONFIG_DEBUG_PAGEALLOC
2232 	/* This is where we would add Panther support for
2233 	 * 32MB and 256MB pages.
2234 	 */
2235 #endif
2236 }
2237 
2238 static void __init sun4v_linear_pte_xor_finalize(void)
2239 {
2240 	unsigned long pagecv_flag;
2241 
2242 	/* Bit 9 of TTE is no longer CV bit on M7 processor and it instead
2243 	 * enables MCD error. Do not set bit 9 on M7 processor.
2244 	 */
2245 	switch (sun4v_chip_type) {
2246 	case SUN4V_CHIP_SPARC_M7:
2247 	case SUN4V_CHIP_SPARC_M8:
2248 	case SUN4V_CHIP_SPARC_SN:
2249 		pagecv_flag = 0x00;
2250 		break;
2251 	default:
2252 		pagecv_flag = _PAGE_CV_4V;
2253 		break;
2254 	}
2255 #ifndef CONFIG_DEBUG_PAGEALLOC
2256 	if (cpu_pgsz_mask & HV_PGSZ_MASK_256MB) {
2257 		kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZ256MB_4V) ^
2258 			PAGE_OFFSET;
2259 		kern_linear_pte_xor[1] |= (_PAGE_CP_4V | pagecv_flag |
2260 					   _PAGE_P_4V | _PAGE_W_4V);
2261 	} else {
2262 		kern_linear_pte_xor[1] = kern_linear_pte_xor[0];
2263 	}
2264 
2265 	if (cpu_pgsz_mask & HV_PGSZ_MASK_2GB) {
2266 		kern_linear_pte_xor[2] = (_PAGE_VALID | _PAGE_SZ2GB_4V) ^
2267 			PAGE_OFFSET;
2268 		kern_linear_pte_xor[2] |= (_PAGE_CP_4V | pagecv_flag |
2269 					   _PAGE_P_4V | _PAGE_W_4V);
2270 	} else {
2271 		kern_linear_pte_xor[2] = kern_linear_pte_xor[1];
2272 	}
2273 
2274 	if (cpu_pgsz_mask & HV_PGSZ_MASK_16GB) {
2275 		kern_linear_pte_xor[3] = (_PAGE_VALID | _PAGE_SZ16GB_4V) ^
2276 			PAGE_OFFSET;
2277 		kern_linear_pte_xor[3] |= (_PAGE_CP_4V | pagecv_flag |
2278 					   _PAGE_P_4V | _PAGE_W_4V);
2279 	} else {
2280 		kern_linear_pte_xor[3] = kern_linear_pte_xor[2];
2281 	}
2282 #endif
2283 }
2284 
2285 /* paging_init() sets up the page tables */
2286 
2287 static unsigned long last_valid_pfn;
2288 
2289 static void sun4u_pgprot_init(void);
2290 static void sun4v_pgprot_init(void);
2291 
2292 #define _PAGE_CACHE_4U	(_PAGE_CP_4U | _PAGE_CV_4U)
2293 #define _PAGE_CACHE_4V	(_PAGE_CP_4V | _PAGE_CV_4V)
2294 #define __DIRTY_BITS_4U	 (_PAGE_MODIFIED_4U | _PAGE_WRITE_4U | _PAGE_W_4U)
2295 #define __DIRTY_BITS_4V	 (_PAGE_MODIFIED_4V | _PAGE_WRITE_4V | _PAGE_W_4V)
2296 #define __ACCESS_BITS_4U (_PAGE_ACCESSED_4U | _PAGE_READ_4U | _PAGE_R)
2297 #define __ACCESS_BITS_4V (_PAGE_ACCESSED_4V | _PAGE_READ_4V | _PAGE_R)
2298 
2299 /* We need to exclude reserved regions. This exclusion will include
2300  * vmlinux and initrd. To be more precise the initrd size could be used to
2301  * compute a new lower limit because it is freed later during initialization.
2302  */
2303 static void __init reduce_memory(phys_addr_t limit_ram)
2304 {
2305 	limit_ram += memblock_reserved_size();
2306 	memblock_enforce_memory_limit(limit_ram);
2307 }
2308 
2309 void __init paging_init(void)
2310 {
2311 	unsigned long end_pfn, shift, phys_base;
2312 	unsigned long real_end, i;
2313 
2314 	setup_page_offset();
2315 
2316 	/* These build time checkes make sure that the dcache_dirty_cpu()
2317 	 * page->flags usage will work.
2318 	 *
2319 	 * When a page gets marked as dcache-dirty, we store the
2320 	 * cpu number starting at bit 32 in the page->flags.  Also,
2321 	 * functions like clear_dcache_dirty_cpu use the cpu mask
2322 	 * in 13-bit signed-immediate instruction fields.
2323 	 */
2324 
2325 	/*
2326 	 * Page flags must not reach into upper 32 bits that are used
2327 	 * for the cpu number
2328 	 */
2329 	BUILD_BUG_ON(NR_PAGEFLAGS > 32);
2330 
2331 	/*
2332 	 * The bit fields placed in the high range must not reach below
2333 	 * the 32 bit boundary. Otherwise we cannot place the cpu field
2334 	 * at the 32 bit boundary.
2335 	 */
2336 	BUILD_BUG_ON(SECTIONS_WIDTH + NODES_WIDTH + ZONES_WIDTH +
2337 		ilog2(roundup_pow_of_two(NR_CPUS)) > 32);
2338 
2339 	BUILD_BUG_ON(NR_CPUS > 4096);
2340 
2341 	kern_base = (prom_boot_mapping_phys_low >> ILOG2_4MB) << ILOG2_4MB;
2342 	kern_size = (unsigned long)&_end - (unsigned long)KERNBASE;
2343 
2344 	/* Invalidate both kernel TSBs.  */
2345 	memset(swapper_tsb, 0x40, sizeof(swapper_tsb));
2346 #ifndef CONFIG_DEBUG_PAGEALLOC
2347 	memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
2348 #endif
2349 
2350 	/* TTE.cv bit on sparc v9 occupies the same position as TTE.mcde
2351 	 * bit on M7 processor. This is a conflicting usage of the same
2352 	 * bit. Enabling TTE.cv on M7 would turn on Memory Corruption
2353 	 * Detection error on all pages and this will lead to problems
2354 	 * later. Kernel does not run with MCD enabled and hence rest
2355 	 * of the required steps to fully configure memory corruption
2356 	 * detection are not taken. We need to ensure TTE.mcde is not
2357 	 * set on M7 processor. Compute the value of cacheability
2358 	 * flag for use later taking this into consideration.
2359 	 */
2360 	switch (sun4v_chip_type) {
2361 	case SUN4V_CHIP_SPARC_M7:
2362 	case SUN4V_CHIP_SPARC_M8:
2363 	case SUN4V_CHIP_SPARC_SN:
2364 		page_cache4v_flag = _PAGE_CP_4V;
2365 		break;
2366 	default:
2367 		page_cache4v_flag = _PAGE_CACHE_4V;
2368 		break;
2369 	}
2370 
2371 	if (tlb_type == hypervisor)
2372 		sun4v_pgprot_init();
2373 	else
2374 		sun4u_pgprot_init();
2375 
2376 	if (tlb_type == cheetah_plus ||
2377 	    tlb_type == hypervisor) {
2378 		tsb_phys_patch();
2379 		ktsb_phys_patch();
2380 	}
2381 
2382 	if (tlb_type == hypervisor)
2383 		sun4v_patch_tlb_handlers();
2384 
2385 	/* Find available physical memory...
2386 	 *
2387 	 * Read it twice in order to work around a bug in openfirmware.
2388 	 * The call to grab this table itself can cause openfirmware to
2389 	 * allocate memory, which in turn can take away some space from
2390 	 * the list of available memory.  Reading it twice makes sure
2391 	 * we really do get the final value.
2392 	 */
2393 	read_obp_translations();
2394 	read_obp_memory("reg", &pall[0], &pall_ents);
2395 	read_obp_memory("available", &pavail[0], &pavail_ents);
2396 	read_obp_memory("available", &pavail[0], &pavail_ents);
2397 
2398 	phys_base = 0xffffffffffffffffUL;
2399 	for (i = 0; i < pavail_ents; i++) {
2400 		phys_base = min(phys_base, pavail[i].phys_addr);
2401 		memblock_add(pavail[i].phys_addr, pavail[i].reg_size);
2402 	}
2403 
2404 	memblock_reserve(kern_base, kern_size);
2405 
2406 	find_ramdisk(phys_base);
2407 
2408 	if (cmdline_memory_size)
2409 		reduce_memory(cmdline_memory_size);
2410 
2411 	memblock_allow_resize();
2412 	memblock_dump_all();
2413 
2414 	set_bit(0, mmu_context_bmap);
2415 
2416 	shift = kern_base + PAGE_OFFSET - ((unsigned long)KERNBASE);
2417 
2418 	real_end = (unsigned long)_end;
2419 	num_kernel_image_mappings = DIV_ROUND_UP(real_end - KERNBASE, 1 << ILOG2_4MB);
2420 	printk("Kernel: Using %d locked TLB entries for main kernel image.\n",
2421 	       num_kernel_image_mappings);
2422 
2423 	/* Set kernel pgd to upper alias so physical page computations
2424 	 * work.
2425 	 */
2426 	init_mm.pgd += ((shift) / (sizeof(pgd_t)));
2427 
2428 	memset(swapper_pg_dir, 0, sizeof(swapper_pg_dir));
2429 
2430 	inherit_prom_mappings();
2431 
2432 	/* Ok, we can use our TLB miss and window trap handlers safely.  */
2433 	setup_tba();
2434 
2435 	__flush_tlb_all();
2436 
2437 	prom_build_devicetree();
2438 	of_populate_present_mask();
2439 #ifndef CONFIG_SMP
2440 	of_fill_in_cpu_data();
2441 #endif
2442 
2443 	if (tlb_type == hypervisor) {
2444 		sun4v_mdesc_init();
2445 		mdesc_populate_present_mask(cpu_all_mask);
2446 #ifndef CONFIG_SMP
2447 		mdesc_fill_in_cpu_data(cpu_all_mask);
2448 #endif
2449 		mdesc_get_page_sizes(cpu_all_mask, &cpu_pgsz_mask);
2450 
2451 		sun4v_linear_pte_xor_finalize();
2452 
2453 		sun4v_ktsb_init();
2454 		sun4v_ktsb_register();
2455 	} else {
2456 		unsigned long impl, ver;
2457 
2458 		cpu_pgsz_mask = (HV_PGSZ_MASK_8K | HV_PGSZ_MASK_64K |
2459 				 HV_PGSZ_MASK_512K | HV_PGSZ_MASK_4MB);
2460 
2461 		__asm__ __volatile__("rdpr %%ver, %0" : "=r" (ver));
2462 		impl = ((ver >> 32) & 0xffff);
2463 		if (impl == PANTHER_IMPL)
2464 			cpu_pgsz_mask |= (HV_PGSZ_MASK_32MB |
2465 					  HV_PGSZ_MASK_256MB);
2466 
2467 		sun4u_linear_pte_xor_finalize();
2468 	}
2469 
2470 	/* Flush the TLBs and the 4M TSB so that the updated linear
2471 	 * pte XOR settings are realized for all mappings.
2472 	 */
2473 	__flush_tlb_all();
2474 #ifndef CONFIG_DEBUG_PAGEALLOC
2475 	memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
2476 #endif
2477 	__flush_tlb_all();
2478 
2479 	/* Setup bootmem... */
2480 	last_valid_pfn = end_pfn = bootmem_init(phys_base);
2481 
2482 	kernel_physical_mapping_init();
2483 
2484 	{
2485 		unsigned long max_zone_pfns[MAX_NR_ZONES];
2486 
2487 		memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
2488 
2489 		max_zone_pfns[ZONE_NORMAL] = end_pfn;
2490 
2491 		free_area_init_nodes(max_zone_pfns);
2492 	}
2493 
2494 	printk("Booting Linux...\n");
2495 }
2496 
2497 int page_in_phys_avail(unsigned long paddr)
2498 {
2499 	int i;
2500 
2501 	paddr &= PAGE_MASK;
2502 
2503 	for (i = 0; i < pavail_ents; i++) {
2504 		unsigned long start, end;
2505 
2506 		start = pavail[i].phys_addr;
2507 		end = start + pavail[i].reg_size;
2508 
2509 		if (paddr >= start && paddr < end)
2510 			return 1;
2511 	}
2512 	if (paddr >= kern_base && paddr < (kern_base + kern_size))
2513 		return 1;
2514 #ifdef CONFIG_BLK_DEV_INITRD
2515 	if (paddr >= __pa(initrd_start) &&
2516 	    paddr < __pa(PAGE_ALIGN(initrd_end)))
2517 		return 1;
2518 #endif
2519 
2520 	return 0;
2521 }
2522 
2523 static void __init register_page_bootmem_info(void)
2524 {
2525 #ifdef CONFIG_NEED_MULTIPLE_NODES
2526 	int i;
2527 
2528 	for_each_online_node(i)
2529 		if (NODE_DATA(i)->node_spanned_pages)
2530 			register_page_bootmem_info_node(NODE_DATA(i));
2531 #endif
2532 }
2533 void __init mem_init(void)
2534 {
2535 	high_memory = __va(last_valid_pfn << PAGE_SHIFT);
2536 
2537 	memblock_free_all();
2538 
2539 	/*
2540 	 * Must be done after boot memory is put on freelist, because here we
2541 	 * might set fields in deferred struct pages that have not yet been
2542 	 * initialized, and memblock_free_all() initializes all the reserved
2543 	 * deferred pages for us.
2544 	 */
2545 	register_page_bootmem_info();
2546 
2547 	/*
2548 	 * Set up the zero page, mark it reserved, so that page count
2549 	 * is not manipulated when freeing the page from user ptes.
2550 	 */
2551 	mem_map_zero = alloc_pages(GFP_KERNEL|__GFP_ZERO, 0);
2552 	if (mem_map_zero == NULL) {
2553 		prom_printf("paging_init: Cannot alloc zero page.\n");
2554 		prom_halt();
2555 	}
2556 	mark_page_reserved(mem_map_zero);
2557 
2558 	mem_init_print_info(NULL);
2559 
2560 	if (tlb_type == cheetah || tlb_type == cheetah_plus)
2561 		cheetah_ecache_flush_init();
2562 }
2563 
2564 void free_initmem(void)
2565 {
2566 	unsigned long addr, initend;
2567 	int do_free = 1;
2568 
2569 	/* If the physical memory maps were trimmed by kernel command
2570 	 * line options, don't even try freeing this initmem stuff up.
2571 	 * The kernel image could have been in the trimmed out region
2572 	 * and if so the freeing below will free invalid page structs.
2573 	 */
2574 	if (cmdline_memory_size)
2575 		do_free = 0;
2576 
2577 	/*
2578 	 * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes.
2579 	 */
2580 	addr = PAGE_ALIGN((unsigned long)(__init_begin));
2581 	initend = (unsigned long)(__init_end) & PAGE_MASK;
2582 	for (; addr < initend; addr += PAGE_SIZE) {
2583 		unsigned long page;
2584 
2585 		page = (addr +
2586 			((unsigned long) __va(kern_base)) -
2587 			((unsigned long) KERNBASE));
2588 		memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
2589 
2590 		if (do_free)
2591 			free_reserved_page(virt_to_page(page));
2592 	}
2593 }
2594 
2595 pgprot_t PAGE_KERNEL __read_mostly;
2596 EXPORT_SYMBOL(PAGE_KERNEL);
2597 
2598 pgprot_t PAGE_KERNEL_LOCKED __read_mostly;
2599 pgprot_t PAGE_COPY __read_mostly;
2600 
2601 pgprot_t PAGE_SHARED __read_mostly;
2602 EXPORT_SYMBOL(PAGE_SHARED);
2603 
2604 unsigned long pg_iobits __read_mostly;
2605 
2606 unsigned long _PAGE_IE __read_mostly;
2607 EXPORT_SYMBOL(_PAGE_IE);
2608 
2609 unsigned long _PAGE_E __read_mostly;
2610 EXPORT_SYMBOL(_PAGE_E);
2611 
2612 unsigned long _PAGE_CACHE __read_mostly;
2613 EXPORT_SYMBOL(_PAGE_CACHE);
2614 
2615 #ifdef CONFIG_SPARSEMEM_VMEMMAP
2616 int __meminit vmemmap_populate(unsigned long vstart, unsigned long vend,
2617 			       int node, struct vmem_altmap *altmap)
2618 {
2619 	unsigned long pte_base;
2620 
2621 	pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2622 		    _PAGE_CP_4U | _PAGE_CV_4U |
2623 		    _PAGE_P_4U | _PAGE_W_4U);
2624 	if (tlb_type == hypervisor)
2625 		pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2626 			    page_cache4v_flag | _PAGE_P_4V | _PAGE_W_4V);
2627 
2628 	pte_base |= _PAGE_PMD_HUGE;
2629 
2630 	vstart = vstart & PMD_MASK;
2631 	vend = ALIGN(vend, PMD_SIZE);
2632 	for (; vstart < vend; vstart += PMD_SIZE) {
2633 		pgd_t *pgd = vmemmap_pgd_populate(vstart, node);
2634 		unsigned long pte;
2635 		p4d_t *p4d;
2636 		pud_t *pud;
2637 		pmd_t *pmd;
2638 
2639 		if (!pgd)
2640 			return -ENOMEM;
2641 
2642 		p4d = vmemmap_p4d_populate(pgd, vstart, node);
2643 		if (!p4d)
2644 			return -ENOMEM;
2645 
2646 		pud = vmemmap_pud_populate(p4d, vstart, node);
2647 		if (!pud)
2648 			return -ENOMEM;
2649 
2650 		pmd = pmd_offset(pud, vstart);
2651 		pte = pmd_val(*pmd);
2652 		if (!(pte & _PAGE_VALID)) {
2653 			void *block = vmemmap_alloc_block(PMD_SIZE, node);
2654 
2655 			if (!block)
2656 				return -ENOMEM;
2657 
2658 			pmd_val(*pmd) = pte_base | __pa(block);
2659 		}
2660 	}
2661 
2662 	return 0;
2663 }
2664 
2665 void vmemmap_free(unsigned long start, unsigned long end,
2666 		struct vmem_altmap *altmap)
2667 {
2668 }
2669 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
2670 
2671 static void prot_init_common(unsigned long page_none,
2672 			     unsigned long page_shared,
2673 			     unsigned long page_copy,
2674 			     unsigned long page_readonly,
2675 			     unsigned long page_exec_bit)
2676 {
2677 	PAGE_COPY = __pgprot(page_copy);
2678 	PAGE_SHARED = __pgprot(page_shared);
2679 
2680 	protection_map[0x0] = __pgprot(page_none);
2681 	protection_map[0x1] = __pgprot(page_readonly & ~page_exec_bit);
2682 	protection_map[0x2] = __pgprot(page_copy & ~page_exec_bit);
2683 	protection_map[0x3] = __pgprot(page_copy & ~page_exec_bit);
2684 	protection_map[0x4] = __pgprot(page_readonly);
2685 	protection_map[0x5] = __pgprot(page_readonly);
2686 	protection_map[0x6] = __pgprot(page_copy);
2687 	protection_map[0x7] = __pgprot(page_copy);
2688 	protection_map[0x8] = __pgprot(page_none);
2689 	protection_map[0x9] = __pgprot(page_readonly & ~page_exec_bit);
2690 	protection_map[0xa] = __pgprot(page_shared & ~page_exec_bit);
2691 	protection_map[0xb] = __pgprot(page_shared & ~page_exec_bit);
2692 	protection_map[0xc] = __pgprot(page_readonly);
2693 	protection_map[0xd] = __pgprot(page_readonly);
2694 	protection_map[0xe] = __pgprot(page_shared);
2695 	protection_map[0xf] = __pgprot(page_shared);
2696 }
2697 
2698 static void __init sun4u_pgprot_init(void)
2699 {
2700 	unsigned long page_none, page_shared, page_copy, page_readonly;
2701 	unsigned long page_exec_bit;
2702 	int i;
2703 
2704 	PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2705 				_PAGE_CACHE_4U | _PAGE_P_4U |
2706 				__ACCESS_BITS_4U | __DIRTY_BITS_4U |
2707 				_PAGE_EXEC_4U);
2708 	PAGE_KERNEL_LOCKED = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2709 				       _PAGE_CACHE_4U | _PAGE_P_4U |
2710 				       __ACCESS_BITS_4U | __DIRTY_BITS_4U |
2711 				       _PAGE_EXEC_4U | _PAGE_L_4U);
2712 
2713 	_PAGE_IE = _PAGE_IE_4U;
2714 	_PAGE_E = _PAGE_E_4U;
2715 	_PAGE_CACHE = _PAGE_CACHE_4U;
2716 
2717 	pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4U | __DIRTY_BITS_4U |
2718 		     __ACCESS_BITS_4U | _PAGE_E_4U);
2719 
2720 #ifdef CONFIG_DEBUG_PAGEALLOC
2721 	kern_linear_pte_xor[0] = _PAGE_VALID ^ PAGE_OFFSET;
2722 #else
2723 	kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4U) ^
2724 		PAGE_OFFSET;
2725 #endif
2726 	kern_linear_pte_xor[0] |= (_PAGE_CP_4U | _PAGE_CV_4U |
2727 				   _PAGE_P_4U | _PAGE_W_4U);
2728 
2729 	for (i = 1; i < 4; i++)
2730 		kern_linear_pte_xor[i] = kern_linear_pte_xor[0];
2731 
2732 	_PAGE_ALL_SZ_BITS =  (_PAGE_SZ4MB_4U | _PAGE_SZ512K_4U |
2733 			      _PAGE_SZ64K_4U | _PAGE_SZ8K_4U |
2734 			      _PAGE_SZ32MB_4U | _PAGE_SZ256MB_4U);
2735 
2736 
2737 	page_none = _PAGE_PRESENT_4U | _PAGE_ACCESSED_4U | _PAGE_CACHE_4U;
2738 	page_shared = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2739 		       __ACCESS_BITS_4U | _PAGE_WRITE_4U | _PAGE_EXEC_4U);
2740 	page_copy   = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2741 		       __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2742 	page_readonly   = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2743 			   __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2744 
2745 	page_exec_bit = _PAGE_EXEC_4U;
2746 
2747 	prot_init_common(page_none, page_shared, page_copy, page_readonly,
2748 			 page_exec_bit);
2749 }
2750 
2751 static void __init sun4v_pgprot_init(void)
2752 {
2753 	unsigned long page_none, page_shared, page_copy, page_readonly;
2754 	unsigned long page_exec_bit;
2755 	int i;
2756 
2757 	PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4V | _PAGE_VALID |
2758 				page_cache4v_flag | _PAGE_P_4V |
2759 				__ACCESS_BITS_4V | __DIRTY_BITS_4V |
2760 				_PAGE_EXEC_4V);
2761 	PAGE_KERNEL_LOCKED = PAGE_KERNEL;
2762 
2763 	_PAGE_IE = _PAGE_IE_4V;
2764 	_PAGE_E = _PAGE_E_4V;
2765 	_PAGE_CACHE = page_cache4v_flag;
2766 
2767 #ifdef CONFIG_DEBUG_PAGEALLOC
2768 	kern_linear_pte_xor[0] = _PAGE_VALID ^ PAGE_OFFSET;
2769 #else
2770 	kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4V) ^
2771 		PAGE_OFFSET;
2772 #endif
2773 	kern_linear_pte_xor[0] |= (page_cache4v_flag | _PAGE_P_4V |
2774 				   _PAGE_W_4V);
2775 
2776 	for (i = 1; i < 4; i++)
2777 		kern_linear_pte_xor[i] = kern_linear_pte_xor[0];
2778 
2779 	pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4V | __DIRTY_BITS_4V |
2780 		     __ACCESS_BITS_4V | _PAGE_E_4V);
2781 
2782 	_PAGE_ALL_SZ_BITS = (_PAGE_SZ16GB_4V | _PAGE_SZ2GB_4V |
2783 			     _PAGE_SZ256MB_4V | _PAGE_SZ32MB_4V |
2784 			     _PAGE_SZ4MB_4V | _PAGE_SZ512K_4V |
2785 			     _PAGE_SZ64K_4V | _PAGE_SZ8K_4V);
2786 
2787 	page_none = _PAGE_PRESENT_4V | _PAGE_ACCESSED_4V | page_cache4v_flag;
2788 	page_shared = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag |
2789 		       __ACCESS_BITS_4V | _PAGE_WRITE_4V | _PAGE_EXEC_4V);
2790 	page_copy   = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag |
2791 		       __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2792 	page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag |
2793 			 __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2794 
2795 	page_exec_bit = _PAGE_EXEC_4V;
2796 
2797 	prot_init_common(page_none, page_shared, page_copy, page_readonly,
2798 			 page_exec_bit);
2799 }
2800 
2801 unsigned long pte_sz_bits(unsigned long sz)
2802 {
2803 	if (tlb_type == hypervisor) {
2804 		switch (sz) {
2805 		case 8 * 1024:
2806 		default:
2807 			return _PAGE_SZ8K_4V;
2808 		case 64 * 1024:
2809 			return _PAGE_SZ64K_4V;
2810 		case 512 * 1024:
2811 			return _PAGE_SZ512K_4V;
2812 		case 4 * 1024 * 1024:
2813 			return _PAGE_SZ4MB_4V;
2814 		}
2815 	} else {
2816 		switch (sz) {
2817 		case 8 * 1024:
2818 		default:
2819 			return _PAGE_SZ8K_4U;
2820 		case 64 * 1024:
2821 			return _PAGE_SZ64K_4U;
2822 		case 512 * 1024:
2823 			return _PAGE_SZ512K_4U;
2824 		case 4 * 1024 * 1024:
2825 			return _PAGE_SZ4MB_4U;
2826 		}
2827 	}
2828 }
2829 
2830 pte_t mk_pte_io(unsigned long page, pgprot_t prot, int space, unsigned long page_size)
2831 {
2832 	pte_t pte;
2833 
2834 	pte_val(pte)  = page | pgprot_val(pgprot_noncached(prot));
2835 	pte_val(pte) |= (((unsigned long)space) << 32);
2836 	pte_val(pte) |= pte_sz_bits(page_size);
2837 
2838 	return pte;
2839 }
2840 
2841 static unsigned long kern_large_tte(unsigned long paddr)
2842 {
2843 	unsigned long val;
2844 
2845 	val = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2846 	       _PAGE_CP_4U | _PAGE_CV_4U | _PAGE_P_4U |
2847 	       _PAGE_EXEC_4U | _PAGE_L_4U | _PAGE_W_4U);
2848 	if (tlb_type == hypervisor)
2849 		val = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2850 		       page_cache4v_flag | _PAGE_P_4V |
2851 		       _PAGE_EXEC_4V | _PAGE_W_4V);
2852 
2853 	return val | paddr;
2854 }
2855 
2856 /* If not locked, zap it. */
2857 void __flush_tlb_all(void)
2858 {
2859 	unsigned long pstate;
2860 	int i;
2861 
2862 	__asm__ __volatile__("flushw\n\t"
2863 			     "rdpr	%%pstate, %0\n\t"
2864 			     "wrpr	%0, %1, %%pstate"
2865 			     : "=r" (pstate)
2866 			     : "i" (PSTATE_IE));
2867 	if (tlb_type == hypervisor) {
2868 		sun4v_mmu_demap_all();
2869 	} else if (tlb_type == spitfire) {
2870 		for (i = 0; i < 64; i++) {
2871 			/* Spitfire Errata #32 workaround */
2872 			/* NOTE: Always runs on spitfire, so no
2873 			 *       cheetah+ page size encodings.
2874 			 */
2875 			__asm__ __volatile__("stxa	%0, [%1] %2\n\t"
2876 					     "flush	%%g6"
2877 					     : /* No outputs */
2878 					     : "r" (0),
2879 					     "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2880 
2881 			if (!(spitfire_get_dtlb_data(i) & _PAGE_L_4U)) {
2882 				__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2883 						     "membar #Sync"
2884 						     : /* no outputs */
2885 						     : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
2886 				spitfire_put_dtlb_data(i, 0x0UL);
2887 			}
2888 
2889 			/* Spitfire Errata #32 workaround */
2890 			/* NOTE: Always runs on spitfire, so no
2891 			 *       cheetah+ page size encodings.
2892 			 */
2893 			__asm__ __volatile__("stxa	%0, [%1] %2\n\t"
2894 					     "flush	%%g6"
2895 					     : /* No outputs */
2896 					     : "r" (0),
2897 					     "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2898 
2899 			if (!(spitfire_get_itlb_data(i) & _PAGE_L_4U)) {
2900 				__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2901 						     "membar #Sync"
2902 						     : /* no outputs */
2903 						     : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU));
2904 				spitfire_put_itlb_data(i, 0x0UL);
2905 			}
2906 		}
2907 	} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
2908 		cheetah_flush_dtlb_all();
2909 		cheetah_flush_itlb_all();
2910 	}
2911 	__asm__ __volatile__("wrpr	%0, 0, %%pstate"
2912 			     : : "r" (pstate));
2913 }
2914 
2915 pte_t *pte_alloc_one_kernel(struct mm_struct *mm)
2916 {
2917 	struct page *page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2918 	pte_t *pte = NULL;
2919 
2920 	if (page)
2921 		pte = (pte_t *) page_address(page);
2922 
2923 	return pte;
2924 }
2925 
2926 pgtable_t pte_alloc_one(struct mm_struct *mm)
2927 {
2928 	struct page *page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2929 	if (!page)
2930 		return NULL;
2931 	if (!pgtable_pte_page_ctor(page)) {
2932 		free_unref_page(page);
2933 		return NULL;
2934 	}
2935 	return (pte_t *) page_address(page);
2936 }
2937 
2938 void pte_free_kernel(struct mm_struct *mm, pte_t *pte)
2939 {
2940 	free_page((unsigned long)pte);
2941 }
2942 
2943 static void __pte_free(pgtable_t pte)
2944 {
2945 	struct page *page = virt_to_page(pte);
2946 
2947 	pgtable_pte_page_dtor(page);
2948 	__free_page(page);
2949 }
2950 
2951 void pte_free(struct mm_struct *mm, pgtable_t pte)
2952 {
2953 	__pte_free(pte);
2954 }
2955 
2956 void pgtable_free(void *table, bool is_page)
2957 {
2958 	if (is_page)
2959 		__pte_free(table);
2960 	else
2961 		kmem_cache_free(pgtable_cache, table);
2962 }
2963 
2964 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2965 void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr,
2966 			  pmd_t *pmd)
2967 {
2968 	unsigned long pte, flags;
2969 	struct mm_struct *mm;
2970 	pmd_t entry = *pmd;
2971 
2972 	if (!pmd_large(entry) || !pmd_young(entry))
2973 		return;
2974 
2975 	pte = pmd_val(entry);
2976 
2977 	/* Don't insert a non-valid PMD into the TSB, we'll deadlock.  */
2978 	if (!(pte & _PAGE_VALID))
2979 		return;
2980 
2981 	/* We are fabricating 8MB pages using 4MB real hw pages.  */
2982 	pte |= (addr & (1UL << REAL_HPAGE_SHIFT));
2983 
2984 	mm = vma->vm_mm;
2985 
2986 	spin_lock_irqsave(&mm->context.lock, flags);
2987 
2988 	if (mm->context.tsb_block[MM_TSB_HUGE].tsb != NULL)
2989 		__update_mmu_tsb_insert(mm, MM_TSB_HUGE, REAL_HPAGE_SHIFT,
2990 					addr, pte);
2991 
2992 	spin_unlock_irqrestore(&mm->context.lock, flags);
2993 }
2994 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2995 
2996 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
2997 static void context_reload(void *__data)
2998 {
2999 	struct mm_struct *mm = __data;
3000 
3001 	if (mm == current->mm)
3002 		load_secondary_context(mm);
3003 }
3004 
3005 void hugetlb_setup(struct pt_regs *regs)
3006 {
3007 	struct mm_struct *mm = current->mm;
3008 	struct tsb_config *tp;
3009 
3010 	if (faulthandler_disabled() || !mm) {
3011 		const struct exception_table_entry *entry;
3012 
3013 		entry = search_exception_tables(regs->tpc);
3014 		if (entry) {
3015 			regs->tpc = entry->fixup;
3016 			regs->tnpc = regs->tpc + 4;
3017 			return;
3018 		}
3019 		pr_alert("Unexpected HugeTLB setup in atomic context.\n");
3020 		die_if_kernel("HugeTSB in atomic", regs);
3021 	}
3022 
3023 	tp = &mm->context.tsb_block[MM_TSB_HUGE];
3024 	if (likely(tp->tsb == NULL))
3025 		tsb_grow(mm, MM_TSB_HUGE, 0);
3026 
3027 	tsb_context_switch(mm);
3028 	smp_tsb_sync(mm);
3029 
3030 	/* On UltraSPARC-III+ and later, configure the second half of
3031 	 * the Data-TLB for huge pages.
3032 	 */
3033 	if (tlb_type == cheetah_plus) {
3034 		bool need_context_reload = false;
3035 		unsigned long ctx;
3036 
3037 		spin_lock_irq(&ctx_alloc_lock);
3038 		ctx = mm->context.sparc64_ctx_val;
3039 		ctx &= ~CTX_PGSZ_MASK;
3040 		ctx |= CTX_PGSZ_BASE << CTX_PGSZ0_SHIFT;
3041 		ctx |= CTX_PGSZ_HUGE << CTX_PGSZ1_SHIFT;
3042 
3043 		if (ctx != mm->context.sparc64_ctx_val) {
3044 			/* When changing the page size fields, we
3045 			 * must perform a context flush so that no
3046 			 * stale entries match.  This flush must
3047 			 * occur with the original context register
3048 			 * settings.
3049 			 */
3050 			do_flush_tlb_mm(mm);
3051 
3052 			/* Reload the context register of all processors
3053 			 * also executing in this address space.
3054 			 */
3055 			mm->context.sparc64_ctx_val = ctx;
3056 			need_context_reload = true;
3057 		}
3058 		spin_unlock_irq(&ctx_alloc_lock);
3059 
3060 		if (need_context_reload)
3061 			on_each_cpu(context_reload, mm, 0);
3062 	}
3063 }
3064 #endif
3065 
3066 static struct resource code_resource = {
3067 	.name	= "Kernel code",
3068 	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
3069 };
3070 
3071 static struct resource data_resource = {
3072 	.name	= "Kernel data",
3073 	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
3074 };
3075 
3076 static struct resource bss_resource = {
3077 	.name	= "Kernel bss",
3078 	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
3079 };
3080 
3081 static inline resource_size_t compute_kern_paddr(void *addr)
3082 {
3083 	return (resource_size_t) (addr - KERNBASE + kern_base);
3084 }
3085 
3086 static void __init kernel_lds_init(void)
3087 {
3088 	code_resource.start = compute_kern_paddr(_text);
3089 	code_resource.end   = compute_kern_paddr(_etext - 1);
3090 	data_resource.start = compute_kern_paddr(_etext);
3091 	data_resource.end   = compute_kern_paddr(_edata - 1);
3092 	bss_resource.start  = compute_kern_paddr(__bss_start);
3093 	bss_resource.end    = compute_kern_paddr(_end - 1);
3094 }
3095 
3096 static int __init report_memory(void)
3097 {
3098 	int i;
3099 	struct resource *res;
3100 
3101 	kernel_lds_init();
3102 
3103 	for (i = 0; i < pavail_ents; i++) {
3104 		res = kzalloc(sizeof(struct resource), GFP_KERNEL);
3105 
3106 		if (!res) {
3107 			pr_warn("Failed to allocate source.\n");
3108 			break;
3109 		}
3110 
3111 		res->name = "System RAM";
3112 		res->start = pavail[i].phys_addr;
3113 		res->end = pavail[i].phys_addr + pavail[i].reg_size - 1;
3114 		res->flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM;
3115 
3116 		if (insert_resource(&iomem_resource, res) < 0) {
3117 			pr_warn("Resource insertion failed.\n");
3118 			break;
3119 		}
3120 
3121 		insert_resource(res, &code_resource);
3122 		insert_resource(res, &data_resource);
3123 		insert_resource(res, &bss_resource);
3124 	}
3125 
3126 	return 0;
3127 }
3128 arch_initcall(report_memory);
3129 
3130 #ifdef CONFIG_SMP
3131 #define do_flush_tlb_kernel_range	smp_flush_tlb_kernel_range
3132 #else
3133 #define do_flush_tlb_kernel_range	__flush_tlb_kernel_range
3134 #endif
3135 
3136 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
3137 {
3138 	if (start < HI_OBP_ADDRESS && end > LOW_OBP_ADDRESS) {
3139 		if (start < LOW_OBP_ADDRESS) {
3140 			flush_tsb_kernel_range(start, LOW_OBP_ADDRESS);
3141 			do_flush_tlb_kernel_range(start, LOW_OBP_ADDRESS);
3142 		}
3143 		if (end > HI_OBP_ADDRESS) {
3144 			flush_tsb_kernel_range(HI_OBP_ADDRESS, end);
3145 			do_flush_tlb_kernel_range(HI_OBP_ADDRESS, end);
3146 		}
3147 	} else {
3148 		flush_tsb_kernel_range(start, end);
3149 		do_flush_tlb_kernel_range(start, end);
3150 	}
3151 }
3152 
3153 void copy_user_highpage(struct page *to, struct page *from,
3154 	unsigned long vaddr, struct vm_area_struct *vma)
3155 {
3156 	char *vfrom, *vto;
3157 
3158 	vfrom = kmap_atomic(from);
3159 	vto = kmap_atomic(to);
3160 	copy_user_page(vto, vfrom, vaddr, to);
3161 	kunmap_atomic(vto);
3162 	kunmap_atomic(vfrom);
3163 
3164 	/* If this page has ADI enabled, copy over any ADI tags
3165 	 * as well
3166 	 */
3167 	if (vma->vm_flags & VM_SPARC_ADI) {
3168 		unsigned long pfrom, pto, i, adi_tag;
3169 
3170 		pfrom = page_to_phys(from);
3171 		pto = page_to_phys(to);
3172 
3173 		for (i = pfrom; i < (pfrom + PAGE_SIZE); i += adi_blksize()) {
3174 			asm volatile("ldxa [%1] %2, %0\n\t"
3175 					: "=r" (adi_tag)
3176 					:  "r" (i), "i" (ASI_MCD_REAL));
3177 			asm volatile("stxa %0, [%1] %2\n\t"
3178 					:
3179 					: "r" (adi_tag), "r" (pto),
3180 					  "i" (ASI_MCD_REAL));
3181 			pto += adi_blksize();
3182 		}
3183 		asm volatile("membar #Sync\n\t");
3184 	}
3185 }
3186 EXPORT_SYMBOL(copy_user_highpage);
3187 
3188 void copy_highpage(struct page *to, struct page *from)
3189 {
3190 	char *vfrom, *vto;
3191 
3192 	vfrom = kmap_atomic(from);
3193 	vto = kmap_atomic(to);
3194 	copy_page(vto, vfrom);
3195 	kunmap_atomic(vto);
3196 	kunmap_atomic(vfrom);
3197 
3198 	/* If this platform is ADI enabled, copy any ADI tags
3199 	 * as well
3200 	 */
3201 	if (adi_capable()) {
3202 		unsigned long pfrom, pto, i, adi_tag;
3203 
3204 		pfrom = page_to_phys(from);
3205 		pto = page_to_phys(to);
3206 
3207 		for (i = pfrom; i < (pfrom + PAGE_SIZE); i += adi_blksize()) {
3208 			asm volatile("ldxa [%1] %2, %0\n\t"
3209 					: "=r" (adi_tag)
3210 					:  "r" (i), "i" (ASI_MCD_REAL));
3211 			asm volatile("stxa %0, [%1] %2\n\t"
3212 					:
3213 					: "r" (adi_tag), "r" (pto),
3214 					  "i" (ASI_MCD_REAL));
3215 			pto += adi_blksize();
3216 		}
3217 		asm volatile("membar #Sync\n\t");
3218 	}
3219 }
3220 EXPORT_SYMBOL(copy_highpage);
3221