1 /* 2 * arch/sparc64/mm/init.c 3 * 4 * Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu) 5 * Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz) 6 */ 7 8 #include <linux/module.h> 9 #include <linux/kernel.h> 10 #include <linux/sched.h> 11 #include <linux/string.h> 12 #include <linux/init.h> 13 #include <linux/bootmem.h> 14 #include <linux/mm.h> 15 #include <linux/hugetlb.h> 16 #include <linux/initrd.h> 17 #include <linux/swap.h> 18 #include <linux/pagemap.h> 19 #include <linux/poison.h> 20 #include <linux/fs.h> 21 #include <linux/seq_file.h> 22 #include <linux/kprobes.h> 23 #include <linux/cache.h> 24 #include <linux/sort.h> 25 #include <linux/percpu.h> 26 #include <linux/memblock.h> 27 #include <linux/mmzone.h> 28 #include <linux/gfp.h> 29 30 #include <asm/head.h> 31 #include <asm/system.h> 32 #include <asm/page.h> 33 #include <asm/pgalloc.h> 34 #include <asm/pgtable.h> 35 #include <asm/oplib.h> 36 #include <asm/iommu.h> 37 #include <asm/io.h> 38 #include <asm/uaccess.h> 39 #include <asm/mmu_context.h> 40 #include <asm/tlbflush.h> 41 #include <asm/dma.h> 42 #include <asm/starfire.h> 43 #include <asm/tlb.h> 44 #include <asm/spitfire.h> 45 #include <asm/sections.h> 46 #include <asm/tsb.h> 47 #include <asm/hypervisor.h> 48 #include <asm/prom.h> 49 #include <asm/mdesc.h> 50 #include <asm/cpudata.h> 51 #include <asm/irq.h> 52 53 #include "init_64.h" 54 55 unsigned long kern_linear_pte_xor[2] __read_mostly; 56 57 /* A bitmap, one bit for every 256MB of physical memory. If the bit 58 * is clear, we should use a 4MB page (via kern_linear_pte_xor[0]) else 59 * if set we should use a 256MB page (via kern_linear_pte_xor[1]). 60 */ 61 unsigned long kpte_linear_bitmap[KPTE_BITMAP_BYTES / sizeof(unsigned long)]; 62 63 #ifndef CONFIG_DEBUG_PAGEALLOC 64 /* A special kernel TSB for 4MB and 256MB linear mappings. 65 * Space is allocated for this right after the trap table 66 * in arch/sparc64/kernel/head.S 67 */ 68 extern struct tsb swapper_4m_tsb[KERNEL_TSB4M_NENTRIES]; 69 #endif 70 71 #define MAX_BANKS 32 72 73 static struct linux_prom64_registers pavail[MAX_BANKS] __devinitdata; 74 static int pavail_ents __devinitdata; 75 76 static int cmp_p64(const void *a, const void *b) 77 { 78 const struct linux_prom64_registers *x = a, *y = b; 79 80 if (x->phys_addr > y->phys_addr) 81 return 1; 82 if (x->phys_addr < y->phys_addr) 83 return -1; 84 return 0; 85 } 86 87 static void __init read_obp_memory(const char *property, 88 struct linux_prom64_registers *regs, 89 int *num_ents) 90 { 91 phandle node = prom_finddevice("/memory"); 92 int prop_size = prom_getproplen(node, property); 93 int ents, ret, i; 94 95 ents = prop_size / sizeof(struct linux_prom64_registers); 96 if (ents > MAX_BANKS) { 97 prom_printf("The machine has more %s property entries than " 98 "this kernel can support (%d).\n", 99 property, MAX_BANKS); 100 prom_halt(); 101 } 102 103 ret = prom_getproperty(node, property, (char *) regs, prop_size); 104 if (ret == -1) { 105 prom_printf("Couldn't get %s property from /memory.\n"); 106 prom_halt(); 107 } 108 109 /* Sanitize what we got from the firmware, by page aligning 110 * everything. 111 */ 112 for (i = 0; i < ents; i++) { 113 unsigned long base, size; 114 115 base = regs[i].phys_addr; 116 size = regs[i].reg_size; 117 118 size &= PAGE_MASK; 119 if (base & ~PAGE_MASK) { 120 unsigned long new_base = PAGE_ALIGN(base); 121 122 size -= new_base - base; 123 if ((long) size < 0L) 124 size = 0UL; 125 base = new_base; 126 } 127 if (size == 0UL) { 128 /* If it is empty, simply get rid of it. 129 * This simplifies the logic of the other 130 * functions that process these arrays. 131 */ 132 memmove(®s[i], ®s[i + 1], 133 (ents - i - 1) * sizeof(regs[0])); 134 i--; 135 ents--; 136 continue; 137 } 138 regs[i].phys_addr = base; 139 regs[i].reg_size = size; 140 } 141 142 *num_ents = ents; 143 144 sort(regs, ents, sizeof(struct linux_prom64_registers), 145 cmp_p64, NULL); 146 } 147 148 unsigned long sparc64_valid_addr_bitmap[VALID_ADDR_BITMAP_BYTES / 149 sizeof(unsigned long)]; 150 EXPORT_SYMBOL(sparc64_valid_addr_bitmap); 151 152 /* Kernel physical address base and size in bytes. */ 153 unsigned long kern_base __read_mostly; 154 unsigned long kern_size __read_mostly; 155 156 /* Initial ramdisk setup */ 157 extern unsigned long sparc_ramdisk_image64; 158 extern unsigned int sparc_ramdisk_image; 159 extern unsigned int sparc_ramdisk_size; 160 161 struct page *mem_map_zero __read_mostly; 162 EXPORT_SYMBOL(mem_map_zero); 163 164 unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly; 165 166 unsigned long sparc64_kern_pri_context __read_mostly; 167 unsigned long sparc64_kern_pri_nuc_bits __read_mostly; 168 unsigned long sparc64_kern_sec_context __read_mostly; 169 170 int num_kernel_image_mappings; 171 172 #ifdef CONFIG_DEBUG_DCFLUSH 173 atomic_t dcpage_flushes = ATOMIC_INIT(0); 174 #ifdef CONFIG_SMP 175 atomic_t dcpage_flushes_xcall = ATOMIC_INIT(0); 176 #endif 177 #endif 178 179 inline void flush_dcache_page_impl(struct page *page) 180 { 181 BUG_ON(tlb_type == hypervisor); 182 #ifdef CONFIG_DEBUG_DCFLUSH 183 atomic_inc(&dcpage_flushes); 184 #endif 185 186 #ifdef DCACHE_ALIASING_POSSIBLE 187 __flush_dcache_page(page_address(page), 188 ((tlb_type == spitfire) && 189 page_mapping(page) != NULL)); 190 #else 191 if (page_mapping(page) != NULL && 192 tlb_type == spitfire) 193 __flush_icache_page(__pa(page_address(page))); 194 #endif 195 } 196 197 #define PG_dcache_dirty PG_arch_1 198 #define PG_dcache_cpu_shift 32UL 199 #define PG_dcache_cpu_mask \ 200 ((1UL<<ilog2(roundup_pow_of_two(NR_CPUS)))-1UL) 201 202 #define dcache_dirty_cpu(page) \ 203 (((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask) 204 205 static inline void set_dcache_dirty(struct page *page, int this_cpu) 206 { 207 unsigned long mask = this_cpu; 208 unsigned long non_cpu_bits; 209 210 non_cpu_bits = ~(PG_dcache_cpu_mask << PG_dcache_cpu_shift); 211 mask = (mask << PG_dcache_cpu_shift) | (1UL << PG_dcache_dirty); 212 213 __asm__ __volatile__("1:\n\t" 214 "ldx [%2], %%g7\n\t" 215 "and %%g7, %1, %%g1\n\t" 216 "or %%g1, %0, %%g1\n\t" 217 "casx [%2], %%g7, %%g1\n\t" 218 "cmp %%g7, %%g1\n\t" 219 "bne,pn %%xcc, 1b\n\t" 220 " nop" 221 : /* no outputs */ 222 : "r" (mask), "r" (non_cpu_bits), "r" (&page->flags) 223 : "g1", "g7"); 224 } 225 226 static inline void clear_dcache_dirty_cpu(struct page *page, unsigned long cpu) 227 { 228 unsigned long mask = (1UL << PG_dcache_dirty); 229 230 __asm__ __volatile__("! test_and_clear_dcache_dirty\n" 231 "1:\n\t" 232 "ldx [%2], %%g7\n\t" 233 "srlx %%g7, %4, %%g1\n\t" 234 "and %%g1, %3, %%g1\n\t" 235 "cmp %%g1, %0\n\t" 236 "bne,pn %%icc, 2f\n\t" 237 " andn %%g7, %1, %%g1\n\t" 238 "casx [%2], %%g7, %%g1\n\t" 239 "cmp %%g7, %%g1\n\t" 240 "bne,pn %%xcc, 1b\n\t" 241 " nop\n" 242 "2:" 243 : /* no outputs */ 244 : "r" (cpu), "r" (mask), "r" (&page->flags), 245 "i" (PG_dcache_cpu_mask), 246 "i" (PG_dcache_cpu_shift) 247 : "g1", "g7"); 248 } 249 250 static inline void tsb_insert(struct tsb *ent, unsigned long tag, unsigned long pte) 251 { 252 unsigned long tsb_addr = (unsigned long) ent; 253 254 if (tlb_type == cheetah_plus || tlb_type == hypervisor) 255 tsb_addr = __pa(tsb_addr); 256 257 __tsb_insert(tsb_addr, tag, pte); 258 } 259 260 unsigned long _PAGE_ALL_SZ_BITS __read_mostly; 261 unsigned long _PAGE_SZBITS __read_mostly; 262 263 static void flush_dcache(unsigned long pfn) 264 { 265 struct page *page; 266 267 page = pfn_to_page(pfn); 268 if (page) { 269 unsigned long pg_flags; 270 271 pg_flags = page->flags; 272 if (pg_flags & (1UL << PG_dcache_dirty)) { 273 int cpu = ((pg_flags >> PG_dcache_cpu_shift) & 274 PG_dcache_cpu_mask); 275 int this_cpu = get_cpu(); 276 277 /* This is just to optimize away some function calls 278 * in the SMP case. 279 */ 280 if (cpu == this_cpu) 281 flush_dcache_page_impl(page); 282 else 283 smp_flush_dcache_page_impl(page, cpu); 284 285 clear_dcache_dirty_cpu(page, cpu); 286 287 put_cpu(); 288 } 289 } 290 } 291 292 void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t *ptep) 293 { 294 struct mm_struct *mm; 295 struct tsb *tsb; 296 unsigned long tag, flags; 297 unsigned long tsb_index, tsb_hash_shift; 298 pte_t pte = *ptep; 299 300 if (tlb_type != hypervisor) { 301 unsigned long pfn = pte_pfn(pte); 302 303 if (pfn_valid(pfn)) 304 flush_dcache(pfn); 305 } 306 307 mm = vma->vm_mm; 308 309 tsb_index = MM_TSB_BASE; 310 tsb_hash_shift = PAGE_SHIFT; 311 312 spin_lock_irqsave(&mm->context.lock, flags); 313 314 #ifdef CONFIG_HUGETLB_PAGE 315 if (mm->context.tsb_block[MM_TSB_HUGE].tsb != NULL) { 316 if ((tlb_type == hypervisor && 317 (pte_val(pte) & _PAGE_SZALL_4V) == _PAGE_SZHUGE_4V) || 318 (tlb_type != hypervisor && 319 (pte_val(pte) & _PAGE_SZALL_4U) == _PAGE_SZHUGE_4U)) { 320 tsb_index = MM_TSB_HUGE; 321 tsb_hash_shift = HPAGE_SHIFT; 322 } 323 } 324 #endif 325 326 tsb = mm->context.tsb_block[tsb_index].tsb; 327 tsb += ((address >> tsb_hash_shift) & 328 (mm->context.tsb_block[tsb_index].tsb_nentries - 1UL)); 329 tag = (address >> 22UL); 330 tsb_insert(tsb, tag, pte_val(pte)); 331 332 spin_unlock_irqrestore(&mm->context.lock, flags); 333 } 334 335 void flush_dcache_page(struct page *page) 336 { 337 struct address_space *mapping; 338 int this_cpu; 339 340 if (tlb_type == hypervisor) 341 return; 342 343 /* Do not bother with the expensive D-cache flush if it 344 * is merely the zero page. The 'bigcore' testcase in GDB 345 * causes this case to run millions of times. 346 */ 347 if (page == ZERO_PAGE(0)) 348 return; 349 350 this_cpu = get_cpu(); 351 352 mapping = page_mapping(page); 353 if (mapping && !mapping_mapped(mapping)) { 354 int dirty = test_bit(PG_dcache_dirty, &page->flags); 355 if (dirty) { 356 int dirty_cpu = dcache_dirty_cpu(page); 357 358 if (dirty_cpu == this_cpu) 359 goto out; 360 smp_flush_dcache_page_impl(page, dirty_cpu); 361 } 362 set_dcache_dirty(page, this_cpu); 363 } else { 364 /* We could delay the flush for the !page_mapping 365 * case too. But that case is for exec env/arg 366 * pages and those are %99 certainly going to get 367 * faulted into the tlb (and thus flushed) anyways. 368 */ 369 flush_dcache_page_impl(page); 370 } 371 372 out: 373 put_cpu(); 374 } 375 EXPORT_SYMBOL(flush_dcache_page); 376 377 void __kprobes flush_icache_range(unsigned long start, unsigned long end) 378 { 379 /* Cheetah and Hypervisor platform cpus have coherent I-cache. */ 380 if (tlb_type == spitfire) { 381 unsigned long kaddr; 382 383 /* This code only runs on Spitfire cpus so this is 384 * why we can assume _PAGE_PADDR_4U. 385 */ 386 for (kaddr = start; kaddr < end; kaddr += PAGE_SIZE) { 387 unsigned long paddr, mask = _PAGE_PADDR_4U; 388 389 if (kaddr >= PAGE_OFFSET) 390 paddr = kaddr & mask; 391 else { 392 pgd_t *pgdp = pgd_offset_k(kaddr); 393 pud_t *pudp = pud_offset(pgdp, kaddr); 394 pmd_t *pmdp = pmd_offset(pudp, kaddr); 395 pte_t *ptep = pte_offset_kernel(pmdp, kaddr); 396 397 paddr = pte_val(*ptep) & mask; 398 } 399 __flush_icache_page(paddr); 400 } 401 } 402 } 403 EXPORT_SYMBOL(flush_icache_range); 404 405 void mmu_info(struct seq_file *m) 406 { 407 if (tlb_type == cheetah) 408 seq_printf(m, "MMU Type\t: Cheetah\n"); 409 else if (tlb_type == cheetah_plus) 410 seq_printf(m, "MMU Type\t: Cheetah+\n"); 411 else if (tlb_type == spitfire) 412 seq_printf(m, "MMU Type\t: Spitfire\n"); 413 else if (tlb_type == hypervisor) 414 seq_printf(m, "MMU Type\t: Hypervisor (sun4v)\n"); 415 else 416 seq_printf(m, "MMU Type\t: ???\n"); 417 418 #ifdef CONFIG_DEBUG_DCFLUSH 419 seq_printf(m, "DCPageFlushes\t: %d\n", 420 atomic_read(&dcpage_flushes)); 421 #ifdef CONFIG_SMP 422 seq_printf(m, "DCPageFlushesXC\t: %d\n", 423 atomic_read(&dcpage_flushes_xcall)); 424 #endif /* CONFIG_SMP */ 425 #endif /* CONFIG_DEBUG_DCFLUSH */ 426 } 427 428 struct linux_prom_translation prom_trans[512] __read_mostly; 429 unsigned int prom_trans_ents __read_mostly; 430 431 unsigned long kern_locked_tte_data; 432 433 /* The obp translations are saved based on 8k pagesize, since obp can 434 * use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS -> 435 * HI_OBP_ADDRESS range are handled in ktlb.S. 436 */ 437 static inline int in_obp_range(unsigned long vaddr) 438 { 439 return (vaddr >= LOW_OBP_ADDRESS && 440 vaddr < HI_OBP_ADDRESS); 441 } 442 443 static int cmp_ptrans(const void *a, const void *b) 444 { 445 const struct linux_prom_translation *x = a, *y = b; 446 447 if (x->virt > y->virt) 448 return 1; 449 if (x->virt < y->virt) 450 return -1; 451 return 0; 452 } 453 454 /* Read OBP translations property into 'prom_trans[]'. */ 455 static void __init read_obp_translations(void) 456 { 457 int n, node, ents, first, last, i; 458 459 node = prom_finddevice("/virtual-memory"); 460 n = prom_getproplen(node, "translations"); 461 if (unlikely(n == 0 || n == -1)) { 462 prom_printf("prom_mappings: Couldn't get size.\n"); 463 prom_halt(); 464 } 465 if (unlikely(n > sizeof(prom_trans))) { 466 prom_printf("prom_mappings: Size %Zd is too big.\n", n); 467 prom_halt(); 468 } 469 470 if ((n = prom_getproperty(node, "translations", 471 (char *)&prom_trans[0], 472 sizeof(prom_trans))) == -1) { 473 prom_printf("prom_mappings: Couldn't get property.\n"); 474 prom_halt(); 475 } 476 477 n = n / sizeof(struct linux_prom_translation); 478 479 ents = n; 480 481 sort(prom_trans, ents, sizeof(struct linux_prom_translation), 482 cmp_ptrans, NULL); 483 484 /* Now kick out all the non-OBP entries. */ 485 for (i = 0; i < ents; i++) { 486 if (in_obp_range(prom_trans[i].virt)) 487 break; 488 } 489 first = i; 490 for (; i < ents; i++) { 491 if (!in_obp_range(prom_trans[i].virt)) 492 break; 493 } 494 last = i; 495 496 for (i = 0; i < (last - first); i++) { 497 struct linux_prom_translation *src = &prom_trans[i + first]; 498 struct linux_prom_translation *dest = &prom_trans[i]; 499 500 *dest = *src; 501 } 502 for (; i < ents; i++) { 503 struct linux_prom_translation *dest = &prom_trans[i]; 504 dest->virt = dest->size = dest->data = 0x0UL; 505 } 506 507 prom_trans_ents = last - first; 508 509 if (tlb_type == spitfire) { 510 /* Clear diag TTE bits. */ 511 for (i = 0; i < prom_trans_ents; i++) 512 prom_trans[i].data &= ~0x0003fe0000000000UL; 513 } 514 } 515 516 static void __init hypervisor_tlb_lock(unsigned long vaddr, 517 unsigned long pte, 518 unsigned long mmu) 519 { 520 unsigned long ret = sun4v_mmu_map_perm_addr(vaddr, 0, pte, mmu); 521 522 if (ret != 0) { 523 prom_printf("hypervisor_tlb_lock[%lx:%lx:%lx:%lx]: " 524 "errors with %lx\n", vaddr, 0, pte, mmu, ret); 525 prom_halt(); 526 } 527 } 528 529 static unsigned long kern_large_tte(unsigned long paddr); 530 531 static void __init remap_kernel(void) 532 { 533 unsigned long phys_page, tte_vaddr, tte_data; 534 int i, tlb_ent = sparc64_highest_locked_tlbent(); 535 536 tte_vaddr = (unsigned long) KERNBASE; 537 phys_page = (prom_boot_mapping_phys_low >> 22UL) << 22UL; 538 tte_data = kern_large_tte(phys_page); 539 540 kern_locked_tte_data = tte_data; 541 542 /* Now lock us into the TLBs via Hypervisor or OBP. */ 543 if (tlb_type == hypervisor) { 544 for (i = 0; i < num_kernel_image_mappings; i++) { 545 hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU); 546 hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU); 547 tte_vaddr += 0x400000; 548 tte_data += 0x400000; 549 } 550 } else { 551 for (i = 0; i < num_kernel_image_mappings; i++) { 552 prom_dtlb_load(tlb_ent - i, tte_data, tte_vaddr); 553 prom_itlb_load(tlb_ent - i, tte_data, tte_vaddr); 554 tte_vaddr += 0x400000; 555 tte_data += 0x400000; 556 } 557 sparc64_highest_unlocked_tlb_ent = tlb_ent - i; 558 } 559 if (tlb_type == cheetah_plus) { 560 sparc64_kern_pri_context = (CTX_CHEETAH_PLUS_CTX0 | 561 CTX_CHEETAH_PLUS_NUC); 562 sparc64_kern_pri_nuc_bits = CTX_CHEETAH_PLUS_NUC; 563 sparc64_kern_sec_context = CTX_CHEETAH_PLUS_CTX0; 564 } 565 } 566 567 568 static void __init inherit_prom_mappings(void) 569 { 570 /* Now fixup OBP's idea about where we really are mapped. */ 571 printk("Remapping the kernel... "); 572 remap_kernel(); 573 printk("done.\n"); 574 } 575 576 void prom_world(int enter) 577 { 578 if (!enter) 579 set_fs((mm_segment_t) { get_thread_current_ds() }); 580 581 __asm__ __volatile__("flushw"); 582 } 583 584 void __flush_dcache_range(unsigned long start, unsigned long end) 585 { 586 unsigned long va; 587 588 if (tlb_type == spitfire) { 589 int n = 0; 590 591 for (va = start; va < end; va += 32) { 592 spitfire_put_dcache_tag(va & 0x3fe0, 0x0); 593 if (++n >= 512) 594 break; 595 } 596 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) { 597 start = __pa(start); 598 end = __pa(end); 599 for (va = start; va < end; va += 32) 600 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t" 601 "membar #Sync" 602 : /* no outputs */ 603 : "r" (va), 604 "i" (ASI_DCACHE_INVALIDATE)); 605 } 606 } 607 EXPORT_SYMBOL(__flush_dcache_range); 608 609 /* get_new_mmu_context() uses "cache + 1". */ 610 DEFINE_SPINLOCK(ctx_alloc_lock); 611 unsigned long tlb_context_cache = CTX_FIRST_VERSION - 1; 612 #define MAX_CTX_NR (1UL << CTX_NR_BITS) 613 #define CTX_BMAP_SLOTS BITS_TO_LONGS(MAX_CTX_NR) 614 DECLARE_BITMAP(mmu_context_bmap, MAX_CTX_NR); 615 616 /* Caller does TLB context flushing on local CPU if necessary. 617 * The caller also ensures that CTX_VALID(mm->context) is false. 618 * 619 * We must be careful about boundary cases so that we never 620 * let the user have CTX 0 (nucleus) or we ever use a CTX 621 * version of zero (and thus NO_CONTEXT would not be caught 622 * by version mis-match tests in mmu_context.h). 623 * 624 * Always invoked with interrupts disabled. 625 */ 626 void get_new_mmu_context(struct mm_struct *mm) 627 { 628 unsigned long ctx, new_ctx; 629 unsigned long orig_pgsz_bits; 630 unsigned long flags; 631 int new_version; 632 633 spin_lock_irqsave(&ctx_alloc_lock, flags); 634 orig_pgsz_bits = (mm->context.sparc64_ctx_val & CTX_PGSZ_MASK); 635 ctx = (tlb_context_cache + 1) & CTX_NR_MASK; 636 new_ctx = find_next_zero_bit(mmu_context_bmap, 1 << CTX_NR_BITS, ctx); 637 new_version = 0; 638 if (new_ctx >= (1 << CTX_NR_BITS)) { 639 new_ctx = find_next_zero_bit(mmu_context_bmap, ctx, 1); 640 if (new_ctx >= ctx) { 641 int i; 642 new_ctx = (tlb_context_cache & CTX_VERSION_MASK) + 643 CTX_FIRST_VERSION; 644 if (new_ctx == 1) 645 new_ctx = CTX_FIRST_VERSION; 646 647 /* Don't call memset, for 16 entries that's just 648 * plain silly... 649 */ 650 mmu_context_bmap[0] = 3; 651 mmu_context_bmap[1] = 0; 652 mmu_context_bmap[2] = 0; 653 mmu_context_bmap[3] = 0; 654 for (i = 4; i < CTX_BMAP_SLOTS; i += 4) { 655 mmu_context_bmap[i + 0] = 0; 656 mmu_context_bmap[i + 1] = 0; 657 mmu_context_bmap[i + 2] = 0; 658 mmu_context_bmap[i + 3] = 0; 659 } 660 new_version = 1; 661 goto out; 662 } 663 } 664 mmu_context_bmap[new_ctx>>6] |= (1UL << (new_ctx & 63)); 665 new_ctx |= (tlb_context_cache & CTX_VERSION_MASK); 666 out: 667 tlb_context_cache = new_ctx; 668 mm->context.sparc64_ctx_val = new_ctx | orig_pgsz_bits; 669 spin_unlock_irqrestore(&ctx_alloc_lock, flags); 670 671 if (unlikely(new_version)) 672 smp_new_mmu_context_version(); 673 } 674 675 static int numa_enabled = 1; 676 static int numa_debug; 677 678 static int __init early_numa(char *p) 679 { 680 if (!p) 681 return 0; 682 683 if (strstr(p, "off")) 684 numa_enabled = 0; 685 686 if (strstr(p, "debug")) 687 numa_debug = 1; 688 689 return 0; 690 } 691 early_param("numa", early_numa); 692 693 #define numadbg(f, a...) \ 694 do { if (numa_debug) \ 695 printk(KERN_INFO f, ## a); \ 696 } while (0) 697 698 static void __init find_ramdisk(unsigned long phys_base) 699 { 700 #ifdef CONFIG_BLK_DEV_INITRD 701 if (sparc_ramdisk_image || sparc_ramdisk_image64) { 702 unsigned long ramdisk_image; 703 704 /* Older versions of the bootloader only supported a 705 * 32-bit physical address for the ramdisk image 706 * location, stored at sparc_ramdisk_image. Newer 707 * SILO versions set sparc_ramdisk_image to zero and 708 * provide a full 64-bit physical address at 709 * sparc_ramdisk_image64. 710 */ 711 ramdisk_image = sparc_ramdisk_image; 712 if (!ramdisk_image) 713 ramdisk_image = sparc_ramdisk_image64; 714 715 /* Another bootloader quirk. The bootloader normalizes 716 * the physical address to KERNBASE, so we have to 717 * factor that back out and add in the lowest valid 718 * physical page address to get the true physical address. 719 */ 720 ramdisk_image -= KERNBASE; 721 ramdisk_image += phys_base; 722 723 numadbg("Found ramdisk at physical address 0x%lx, size %u\n", 724 ramdisk_image, sparc_ramdisk_size); 725 726 initrd_start = ramdisk_image; 727 initrd_end = ramdisk_image + sparc_ramdisk_size; 728 729 memblock_reserve(initrd_start, sparc_ramdisk_size); 730 731 initrd_start += PAGE_OFFSET; 732 initrd_end += PAGE_OFFSET; 733 } 734 #endif 735 } 736 737 struct node_mem_mask { 738 unsigned long mask; 739 unsigned long val; 740 unsigned long bootmem_paddr; 741 }; 742 static struct node_mem_mask node_masks[MAX_NUMNODES]; 743 static int num_node_masks; 744 745 int numa_cpu_lookup_table[NR_CPUS]; 746 cpumask_t numa_cpumask_lookup_table[MAX_NUMNODES]; 747 748 #ifdef CONFIG_NEED_MULTIPLE_NODES 749 750 struct mdesc_mblock { 751 u64 base; 752 u64 size; 753 u64 offset; /* RA-to-PA */ 754 }; 755 static struct mdesc_mblock *mblocks; 756 static int num_mblocks; 757 758 static unsigned long ra_to_pa(unsigned long addr) 759 { 760 int i; 761 762 for (i = 0; i < num_mblocks; i++) { 763 struct mdesc_mblock *m = &mblocks[i]; 764 765 if (addr >= m->base && 766 addr < (m->base + m->size)) { 767 addr += m->offset; 768 break; 769 } 770 } 771 return addr; 772 } 773 774 static int find_node(unsigned long addr) 775 { 776 int i; 777 778 addr = ra_to_pa(addr); 779 for (i = 0; i < num_node_masks; i++) { 780 struct node_mem_mask *p = &node_masks[i]; 781 782 if ((addr & p->mask) == p->val) 783 return i; 784 } 785 return -1; 786 } 787 788 u64 memblock_nid_range(u64 start, u64 end, int *nid) 789 { 790 *nid = find_node(start); 791 start += PAGE_SIZE; 792 while (start < end) { 793 int n = find_node(start); 794 795 if (n != *nid) 796 break; 797 start += PAGE_SIZE; 798 } 799 800 if (start > end) 801 start = end; 802 803 return start; 804 } 805 #else 806 u64 memblock_nid_range(u64 start, u64 end, int *nid) 807 { 808 *nid = 0; 809 return end; 810 } 811 #endif 812 813 /* This must be invoked after performing all of the necessary 814 * add_active_range() calls for 'nid'. We need to be able to get 815 * correct data from get_pfn_range_for_nid(). 816 */ 817 static void __init allocate_node_data(int nid) 818 { 819 unsigned long paddr, num_pages, start_pfn, end_pfn; 820 struct pglist_data *p; 821 822 #ifdef CONFIG_NEED_MULTIPLE_NODES 823 paddr = memblock_alloc_try_nid(sizeof(struct pglist_data), SMP_CACHE_BYTES, nid); 824 if (!paddr) { 825 prom_printf("Cannot allocate pglist_data for nid[%d]\n", nid); 826 prom_halt(); 827 } 828 NODE_DATA(nid) = __va(paddr); 829 memset(NODE_DATA(nid), 0, sizeof(struct pglist_data)); 830 831 NODE_DATA(nid)->bdata = &bootmem_node_data[nid]; 832 #endif 833 834 p = NODE_DATA(nid); 835 836 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); 837 p->node_start_pfn = start_pfn; 838 p->node_spanned_pages = end_pfn - start_pfn; 839 840 if (p->node_spanned_pages) { 841 num_pages = bootmem_bootmap_pages(p->node_spanned_pages); 842 843 paddr = memblock_alloc_try_nid(num_pages << PAGE_SHIFT, PAGE_SIZE, nid); 844 if (!paddr) { 845 prom_printf("Cannot allocate bootmap for nid[%d]\n", 846 nid); 847 prom_halt(); 848 } 849 node_masks[nid].bootmem_paddr = paddr; 850 } 851 } 852 853 static void init_node_masks_nonnuma(void) 854 { 855 int i; 856 857 numadbg("Initializing tables for non-numa.\n"); 858 859 node_masks[0].mask = node_masks[0].val = 0; 860 num_node_masks = 1; 861 862 for (i = 0; i < NR_CPUS; i++) 863 numa_cpu_lookup_table[i] = 0; 864 865 numa_cpumask_lookup_table[0] = CPU_MASK_ALL; 866 } 867 868 #ifdef CONFIG_NEED_MULTIPLE_NODES 869 struct pglist_data *node_data[MAX_NUMNODES]; 870 871 EXPORT_SYMBOL(numa_cpu_lookup_table); 872 EXPORT_SYMBOL(numa_cpumask_lookup_table); 873 EXPORT_SYMBOL(node_data); 874 875 struct mdesc_mlgroup { 876 u64 node; 877 u64 latency; 878 u64 match; 879 u64 mask; 880 }; 881 static struct mdesc_mlgroup *mlgroups; 882 static int num_mlgroups; 883 884 static int scan_pio_for_cfg_handle(struct mdesc_handle *md, u64 pio, 885 u32 cfg_handle) 886 { 887 u64 arc; 888 889 mdesc_for_each_arc(arc, md, pio, MDESC_ARC_TYPE_FWD) { 890 u64 target = mdesc_arc_target(md, arc); 891 const u64 *val; 892 893 val = mdesc_get_property(md, target, 894 "cfg-handle", NULL); 895 if (val && *val == cfg_handle) 896 return 0; 897 } 898 return -ENODEV; 899 } 900 901 static int scan_arcs_for_cfg_handle(struct mdesc_handle *md, u64 grp, 902 u32 cfg_handle) 903 { 904 u64 arc, candidate, best_latency = ~(u64)0; 905 906 candidate = MDESC_NODE_NULL; 907 mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) { 908 u64 target = mdesc_arc_target(md, arc); 909 const char *name = mdesc_node_name(md, target); 910 const u64 *val; 911 912 if (strcmp(name, "pio-latency-group")) 913 continue; 914 915 val = mdesc_get_property(md, target, "latency", NULL); 916 if (!val) 917 continue; 918 919 if (*val < best_latency) { 920 candidate = target; 921 best_latency = *val; 922 } 923 } 924 925 if (candidate == MDESC_NODE_NULL) 926 return -ENODEV; 927 928 return scan_pio_for_cfg_handle(md, candidate, cfg_handle); 929 } 930 931 int of_node_to_nid(struct device_node *dp) 932 { 933 const struct linux_prom64_registers *regs; 934 struct mdesc_handle *md; 935 u32 cfg_handle; 936 int count, nid; 937 u64 grp; 938 939 /* This is the right thing to do on currently supported 940 * SUN4U NUMA platforms as well, as the PCI controller does 941 * not sit behind any particular memory controller. 942 */ 943 if (!mlgroups) 944 return -1; 945 946 regs = of_get_property(dp, "reg", NULL); 947 if (!regs) 948 return -1; 949 950 cfg_handle = (regs->phys_addr >> 32UL) & 0x0fffffff; 951 952 md = mdesc_grab(); 953 954 count = 0; 955 nid = -1; 956 mdesc_for_each_node_by_name(md, grp, "group") { 957 if (!scan_arcs_for_cfg_handle(md, grp, cfg_handle)) { 958 nid = count; 959 break; 960 } 961 count++; 962 } 963 964 mdesc_release(md); 965 966 return nid; 967 } 968 969 static void __init add_node_ranges(void) 970 { 971 struct memblock_region *reg; 972 973 for_each_memblock(memory, reg) { 974 unsigned long size = reg->size; 975 unsigned long start, end; 976 977 start = reg->base; 978 end = start + size; 979 while (start < end) { 980 unsigned long this_end; 981 int nid; 982 983 this_end = memblock_nid_range(start, end, &nid); 984 985 numadbg("Adding active range nid[%d] " 986 "start[%lx] end[%lx]\n", 987 nid, start, this_end); 988 989 add_active_range(nid, 990 start >> PAGE_SHIFT, 991 this_end >> PAGE_SHIFT); 992 993 start = this_end; 994 } 995 } 996 } 997 998 static int __init grab_mlgroups(struct mdesc_handle *md) 999 { 1000 unsigned long paddr; 1001 int count = 0; 1002 u64 node; 1003 1004 mdesc_for_each_node_by_name(md, node, "memory-latency-group") 1005 count++; 1006 if (!count) 1007 return -ENOENT; 1008 1009 paddr = memblock_alloc(count * sizeof(struct mdesc_mlgroup), 1010 SMP_CACHE_BYTES); 1011 if (!paddr) 1012 return -ENOMEM; 1013 1014 mlgroups = __va(paddr); 1015 num_mlgroups = count; 1016 1017 count = 0; 1018 mdesc_for_each_node_by_name(md, node, "memory-latency-group") { 1019 struct mdesc_mlgroup *m = &mlgroups[count++]; 1020 const u64 *val; 1021 1022 m->node = node; 1023 1024 val = mdesc_get_property(md, node, "latency", NULL); 1025 m->latency = *val; 1026 val = mdesc_get_property(md, node, "address-match", NULL); 1027 m->match = *val; 1028 val = mdesc_get_property(md, node, "address-mask", NULL); 1029 m->mask = *val; 1030 1031 numadbg("MLGROUP[%d]: node[%llx] latency[%llx] " 1032 "match[%llx] mask[%llx]\n", 1033 count - 1, m->node, m->latency, m->match, m->mask); 1034 } 1035 1036 return 0; 1037 } 1038 1039 static int __init grab_mblocks(struct mdesc_handle *md) 1040 { 1041 unsigned long paddr; 1042 int count = 0; 1043 u64 node; 1044 1045 mdesc_for_each_node_by_name(md, node, "mblock") 1046 count++; 1047 if (!count) 1048 return -ENOENT; 1049 1050 paddr = memblock_alloc(count * sizeof(struct mdesc_mblock), 1051 SMP_CACHE_BYTES); 1052 if (!paddr) 1053 return -ENOMEM; 1054 1055 mblocks = __va(paddr); 1056 num_mblocks = count; 1057 1058 count = 0; 1059 mdesc_for_each_node_by_name(md, node, "mblock") { 1060 struct mdesc_mblock *m = &mblocks[count++]; 1061 const u64 *val; 1062 1063 val = mdesc_get_property(md, node, "base", NULL); 1064 m->base = *val; 1065 val = mdesc_get_property(md, node, "size", NULL); 1066 m->size = *val; 1067 val = mdesc_get_property(md, node, 1068 "address-congruence-offset", NULL); 1069 m->offset = *val; 1070 1071 numadbg("MBLOCK[%d]: base[%llx] size[%llx] offset[%llx]\n", 1072 count - 1, m->base, m->size, m->offset); 1073 } 1074 1075 return 0; 1076 } 1077 1078 static void __init numa_parse_mdesc_group_cpus(struct mdesc_handle *md, 1079 u64 grp, cpumask_t *mask) 1080 { 1081 u64 arc; 1082 1083 cpus_clear(*mask); 1084 1085 mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_BACK) { 1086 u64 target = mdesc_arc_target(md, arc); 1087 const char *name = mdesc_node_name(md, target); 1088 const u64 *id; 1089 1090 if (strcmp(name, "cpu")) 1091 continue; 1092 id = mdesc_get_property(md, target, "id", NULL); 1093 if (*id < nr_cpu_ids) 1094 cpu_set(*id, *mask); 1095 } 1096 } 1097 1098 static struct mdesc_mlgroup * __init find_mlgroup(u64 node) 1099 { 1100 int i; 1101 1102 for (i = 0; i < num_mlgroups; i++) { 1103 struct mdesc_mlgroup *m = &mlgroups[i]; 1104 if (m->node == node) 1105 return m; 1106 } 1107 return NULL; 1108 } 1109 1110 static int __init numa_attach_mlgroup(struct mdesc_handle *md, u64 grp, 1111 int index) 1112 { 1113 struct mdesc_mlgroup *candidate = NULL; 1114 u64 arc, best_latency = ~(u64)0; 1115 struct node_mem_mask *n; 1116 1117 mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) { 1118 u64 target = mdesc_arc_target(md, arc); 1119 struct mdesc_mlgroup *m = find_mlgroup(target); 1120 if (!m) 1121 continue; 1122 if (m->latency < best_latency) { 1123 candidate = m; 1124 best_latency = m->latency; 1125 } 1126 } 1127 if (!candidate) 1128 return -ENOENT; 1129 1130 if (num_node_masks != index) { 1131 printk(KERN_ERR "Inconsistent NUMA state, " 1132 "index[%d] != num_node_masks[%d]\n", 1133 index, num_node_masks); 1134 return -EINVAL; 1135 } 1136 1137 n = &node_masks[num_node_masks++]; 1138 1139 n->mask = candidate->mask; 1140 n->val = candidate->match; 1141 1142 numadbg("NUMA NODE[%d]: mask[%lx] val[%lx] (latency[%llx])\n", 1143 index, n->mask, n->val, candidate->latency); 1144 1145 return 0; 1146 } 1147 1148 static int __init numa_parse_mdesc_group(struct mdesc_handle *md, u64 grp, 1149 int index) 1150 { 1151 cpumask_t mask; 1152 int cpu; 1153 1154 numa_parse_mdesc_group_cpus(md, grp, &mask); 1155 1156 for_each_cpu_mask(cpu, mask) 1157 numa_cpu_lookup_table[cpu] = index; 1158 numa_cpumask_lookup_table[index] = mask; 1159 1160 if (numa_debug) { 1161 printk(KERN_INFO "NUMA GROUP[%d]: cpus [ ", index); 1162 for_each_cpu_mask(cpu, mask) 1163 printk("%d ", cpu); 1164 printk("]\n"); 1165 } 1166 1167 return numa_attach_mlgroup(md, grp, index); 1168 } 1169 1170 static int __init numa_parse_mdesc(void) 1171 { 1172 struct mdesc_handle *md = mdesc_grab(); 1173 int i, err, count; 1174 u64 node; 1175 1176 node = mdesc_node_by_name(md, MDESC_NODE_NULL, "latency-groups"); 1177 if (node == MDESC_NODE_NULL) { 1178 mdesc_release(md); 1179 return -ENOENT; 1180 } 1181 1182 err = grab_mblocks(md); 1183 if (err < 0) 1184 goto out; 1185 1186 err = grab_mlgroups(md); 1187 if (err < 0) 1188 goto out; 1189 1190 count = 0; 1191 mdesc_for_each_node_by_name(md, node, "group") { 1192 err = numa_parse_mdesc_group(md, node, count); 1193 if (err < 0) 1194 break; 1195 count++; 1196 } 1197 1198 add_node_ranges(); 1199 1200 for (i = 0; i < num_node_masks; i++) { 1201 allocate_node_data(i); 1202 node_set_online(i); 1203 } 1204 1205 err = 0; 1206 out: 1207 mdesc_release(md); 1208 return err; 1209 } 1210 1211 static int __init numa_parse_jbus(void) 1212 { 1213 unsigned long cpu, index; 1214 1215 /* NUMA node id is encoded in bits 36 and higher, and there is 1216 * a 1-to-1 mapping from CPU ID to NUMA node ID. 1217 */ 1218 index = 0; 1219 for_each_present_cpu(cpu) { 1220 numa_cpu_lookup_table[cpu] = index; 1221 numa_cpumask_lookup_table[index] = cpumask_of_cpu(cpu); 1222 node_masks[index].mask = ~((1UL << 36UL) - 1UL); 1223 node_masks[index].val = cpu << 36UL; 1224 1225 index++; 1226 } 1227 num_node_masks = index; 1228 1229 add_node_ranges(); 1230 1231 for (index = 0; index < num_node_masks; index++) { 1232 allocate_node_data(index); 1233 node_set_online(index); 1234 } 1235 1236 return 0; 1237 } 1238 1239 static int __init numa_parse_sun4u(void) 1240 { 1241 if (tlb_type == cheetah || tlb_type == cheetah_plus) { 1242 unsigned long ver; 1243 1244 __asm__ ("rdpr %%ver, %0" : "=r" (ver)); 1245 if ((ver >> 32UL) == __JALAPENO_ID || 1246 (ver >> 32UL) == __SERRANO_ID) 1247 return numa_parse_jbus(); 1248 } 1249 return -1; 1250 } 1251 1252 static int __init bootmem_init_numa(void) 1253 { 1254 int err = -1; 1255 1256 numadbg("bootmem_init_numa()\n"); 1257 1258 if (numa_enabled) { 1259 if (tlb_type == hypervisor) 1260 err = numa_parse_mdesc(); 1261 else 1262 err = numa_parse_sun4u(); 1263 } 1264 return err; 1265 } 1266 1267 #else 1268 1269 static int bootmem_init_numa(void) 1270 { 1271 return -1; 1272 } 1273 1274 #endif 1275 1276 static void __init bootmem_init_nonnuma(void) 1277 { 1278 unsigned long top_of_ram = memblock_end_of_DRAM(); 1279 unsigned long total_ram = memblock_phys_mem_size(); 1280 struct memblock_region *reg; 1281 1282 numadbg("bootmem_init_nonnuma()\n"); 1283 1284 printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n", 1285 top_of_ram, total_ram); 1286 printk(KERN_INFO "Memory hole size: %ldMB\n", 1287 (top_of_ram - total_ram) >> 20); 1288 1289 init_node_masks_nonnuma(); 1290 1291 for_each_memblock(memory, reg) { 1292 unsigned long start_pfn, end_pfn; 1293 1294 if (!reg->size) 1295 continue; 1296 1297 start_pfn = memblock_region_memory_base_pfn(reg); 1298 end_pfn = memblock_region_memory_end_pfn(reg); 1299 add_active_range(0, start_pfn, end_pfn); 1300 } 1301 1302 allocate_node_data(0); 1303 1304 node_set_online(0); 1305 } 1306 1307 static void __init reserve_range_in_node(int nid, unsigned long start, 1308 unsigned long end) 1309 { 1310 numadbg(" reserve_range_in_node(nid[%d],start[%lx],end[%lx]\n", 1311 nid, start, end); 1312 while (start < end) { 1313 unsigned long this_end; 1314 int n; 1315 1316 this_end = memblock_nid_range(start, end, &n); 1317 if (n == nid) { 1318 numadbg(" MATCH reserving range [%lx:%lx]\n", 1319 start, this_end); 1320 reserve_bootmem_node(NODE_DATA(nid), start, 1321 (this_end - start), BOOTMEM_DEFAULT); 1322 } else 1323 numadbg(" NO MATCH, advancing start to %lx\n", 1324 this_end); 1325 1326 start = this_end; 1327 } 1328 } 1329 1330 static void __init trim_reserved_in_node(int nid) 1331 { 1332 struct memblock_region *reg; 1333 1334 numadbg(" trim_reserved_in_node(%d)\n", nid); 1335 1336 for_each_memblock(reserved, reg) 1337 reserve_range_in_node(nid, reg->base, reg->base + reg->size); 1338 } 1339 1340 static void __init bootmem_init_one_node(int nid) 1341 { 1342 struct pglist_data *p; 1343 1344 numadbg("bootmem_init_one_node(%d)\n", nid); 1345 1346 p = NODE_DATA(nid); 1347 1348 if (p->node_spanned_pages) { 1349 unsigned long paddr = node_masks[nid].bootmem_paddr; 1350 unsigned long end_pfn; 1351 1352 end_pfn = p->node_start_pfn + p->node_spanned_pages; 1353 1354 numadbg(" init_bootmem_node(%d, %lx, %lx, %lx)\n", 1355 nid, paddr >> PAGE_SHIFT, p->node_start_pfn, end_pfn); 1356 1357 init_bootmem_node(p, paddr >> PAGE_SHIFT, 1358 p->node_start_pfn, end_pfn); 1359 1360 numadbg(" free_bootmem_with_active_regions(%d, %lx)\n", 1361 nid, end_pfn); 1362 free_bootmem_with_active_regions(nid, end_pfn); 1363 1364 trim_reserved_in_node(nid); 1365 1366 numadbg(" sparse_memory_present_with_active_regions(%d)\n", 1367 nid); 1368 sparse_memory_present_with_active_regions(nid); 1369 } 1370 } 1371 1372 static unsigned long __init bootmem_init(unsigned long phys_base) 1373 { 1374 unsigned long end_pfn; 1375 int nid; 1376 1377 end_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT; 1378 max_pfn = max_low_pfn = end_pfn; 1379 min_low_pfn = (phys_base >> PAGE_SHIFT); 1380 1381 if (bootmem_init_numa() < 0) 1382 bootmem_init_nonnuma(); 1383 1384 /* XXX cpu notifier XXX */ 1385 1386 for_each_online_node(nid) 1387 bootmem_init_one_node(nid); 1388 1389 sparse_init(); 1390 1391 return end_pfn; 1392 } 1393 1394 static struct linux_prom64_registers pall[MAX_BANKS] __initdata; 1395 static int pall_ents __initdata; 1396 1397 #ifdef CONFIG_DEBUG_PAGEALLOC 1398 static unsigned long __ref kernel_map_range(unsigned long pstart, 1399 unsigned long pend, pgprot_t prot) 1400 { 1401 unsigned long vstart = PAGE_OFFSET + pstart; 1402 unsigned long vend = PAGE_OFFSET + pend; 1403 unsigned long alloc_bytes = 0UL; 1404 1405 if ((vstart & ~PAGE_MASK) || (vend & ~PAGE_MASK)) { 1406 prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n", 1407 vstart, vend); 1408 prom_halt(); 1409 } 1410 1411 while (vstart < vend) { 1412 unsigned long this_end, paddr = __pa(vstart); 1413 pgd_t *pgd = pgd_offset_k(vstart); 1414 pud_t *pud; 1415 pmd_t *pmd; 1416 pte_t *pte; 1417 1418 pud = pud_offset(pgd, vstart); 1419 if (pud_none(*pud)) { 1420 pmd_t *new; 1421 1422 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE); 1423 alloc_bytes += PAGE_SIZE; 1424 pud_populate(&init_mm, pud, new); 1425 } 1426 1427 pmd = pmd_offset(pud, vstart); 1428 if (!pmd_present(*pmd)) { 1429 pte_t *new; 1430 1431 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE); 1432 alloc_bytes += PAGE_SIZE; 1433 pmd_populate_kernel(&init_mm, pmd, new); 1434 } 1435 1436 pte = pte_offset_kernel(pmd, vstart); 1437 this_end = (vstart + PMD_SIZE) & PMD_MASK; 1438 if (this_end > vend) 1439 this_end = vend; 1440 1441 while (vstart < this_end) { 1442 pte_val(*pte) = (paddr | pgprot_val(prot)); 1443 1444 vstart += PAGE_SIZE; 1445 paddr += PAGE_SIZE; 1446 pte++; 1447 } 1448 } 1449 1450 return alloc_bytes; 1451 } 1452 1453 extern unsigned int kvmap_linear_patch[1]; 1454 #endif /* CONFIG_DEBUG_PAGEALLOC */ 1455 1456 static void __init mark_kpte_bitmap(unsigned long start, unsigned long end) 1457 { 1458 const unsigned long shift_256MB = 28; 1459 const unsigned long mask_256MB = ((1UL << shift_256MB) - 1UL); 1460 const unsigned long size_256MB = (1UL << shift_256MB); 1461 1462 while (start < end) { 1463 long remains; 1464 1465 remains = end - start; 1466 if (remains < size_256MB) 1467 break; 1468 1469 if (start & mask_256MB) { 1470 start = (start + size_256MB) & ~mask_256MB; 1471 continue; 1472 } 1473 1474 while (remains >= size_256MB) { 1475 unsigned long index = start >> shift_256MB; 1476 1477 __set_bit(index, kpte_linear_bitmap); 1478 1479 start += size_256MB; 1480 remains -= size_256MB; 1481 } 1482 } 1483 } 1484 1485 static void __init init_kpte_bitmap(void) 1486 { 1487 unsigned long i; 1488 1489 for (i = 0; i < pall_ents; i++) { 1490 unsigned long phys_start, phys_end; 1491 1492 phys_start = pall[i].phys_addr; 1493 phys_end = phys_start + pall[i].reg_size; 1494 1495 mark_kpte_bitmap(phys_start, phys_end); 1496 } 1497 } 1498 1499 static void __init kernel_physical_mapping_init(void) 1500 { 1501 #ifdef CONFIG_DEBUG_PAGEALLOC 1502 unsigned long i, mem_alloced = 0UL; 1503 1504 for (i = 0; i < pall_ents; i++) { 1505 unsigned long phys_start, phys_end; 1506 1507 phys_start = pall[i].phys_addr; 1508 phys_end = phys_start + pall[i].reg_size; 1509 1510 mem_alloced += kernel_map_range(phys_start, phys_end, 1511 PAGE_KERNEL); 1512 } 1513 1514 printk("Allocated %ld bytes for kernel page tables.\n", 1515 mem_alloced); 1516 1517 kvmap_linear_patch[0] = 0x01000000; /* nop */ 1518 flushi(&kvmap_linear_patch[0]); 1519 1520 __flush_tlb_all(); 1521 #endif 1522 } 1523 1524 #ifdef CONFIG_DEBUG_PAGEALLOC 1525 void kernel_map_pages(struct page *page, int numpages, int enable) 1526 { 1527 unsigned long phys_start = page_to_pfn(page) << PAGE_SHIFT; 1528 unsigned long phys_end = phys_start + (numpages * PAGE_SIZE); 1529 1530 kernel_map_range(phys_start, phys_end, 1531 (enable ? PAGE_KERNEL : __pgprot(0))); 1532 1533 flush_tsb_kernel_range(PAGE_OFFSET + phys_start, 1534 PAGE_OFFSET + phys_end); 1535 1536 /* we should perform an IPI and flush all tlbs, 1537 * but that can deadlock->flush only current cpu. 1538 */ 1539 __flush_tlb_kernel_range(PAGE_OFFSET + phys_start, 1540 PAGE_OFFSET + phys_end); 1541 } 1542 #endif 1543 1544 unsigned long __init find_ecache_flush_span(unsigned long size) 1545 { 1546 int i; 1547 1548 for (i = 0; i < pavail_ents; i++) { 1549 if (pavail[i].reg_size >= size) 1550 return pavail[i].phys_addr; 1551 } 1552 1553 return ~0UL; 1554 } 1555 1556 static void __init tsb_phys_patch(void) 1557 { 1558 struct tsb_ldquad_phys_patch_entry *pquad; 1559 struct tsb_phys_patch_entry *p; 1560 1561 pquad = &__tsb_ldquad_phys_patch; 1562 while (pquad < &__tsb_ldquad_phys_patch_end) { 1563 unsigned long addr = pquad->addr; 1564 1565 if (tlb_type == hypervisor) 1566 *(unsigned int *) addr = pquad->sun4v_insn; 1567 else 1568 *(unsigned int *) addr = pquad->sun4u_insn; 1569 wmb(); 1570 __asm__ __volatile__("flush %0" 1571 : /* no outputs */ 1572 : "r" (addr)); 1573 1574 pquad++; 1575 } 1576 1577 p = &__tsb_phys_patch; 1578 while (p < &__tsb_phys_patch_end) { 1579 unsigned long addr = p->addr; 1580 1581 *(unsigned int *) addr = p->insn; 1582 wmb(); 1583 __asm__ __volatile__("flush %0" 1584 : /* no outputs */ 1585 : "r" (addr)); 1586 1587 p++; 1588 } 1589 } 1590 1591 /* Don't mark as init, we give this to the Hypervisor. */ 1592 #ifndef CONFIG_DEBUG_PAGEALLOC 1593 #define NUM_KTSB_DESCR 2 1594 #else 1595 #define NUM_KTSB_DESCR 1 1596 #endif 1597 static struct hv_tsb_descr ktsb_descr[NUM_KTSB_DESCR]; 1598 extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES]; 1599 1600 static void __init sun4v_ktsb_init(void) 1601 { 1602 unsigned long ktsb_pa; 1603 1604 /* First KTSB for PAGE_SIZE mappings. */ 1605 ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE); 1606 1607 switch (PAGE_SIZE) { 1608 case 8 * 1024: 1609 default: 1610 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_8K; 1611 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_8K; 1612 break; 1613 1614 case 64 * 1024: 1615 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_64K; 1616 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_64K; 1617 break; 1618 1619 case 512 * 1024: 1620 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_512K; 1621 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_512K; 1622 break; 1623 1624 case 4 * 1024 * 1024: 1625 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_4MB; 1626 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_4MB; 1627 break; 1628 }; 1629 1630 ktsb_descr[0].assoc = 1; 1631 ktsb_descr[0].num_ttes = KERNEL_TSB_NENTRIES; 1632 ktsb_descr[0].ctx_idx = 0; 1633 ktsb_descr[0].tsb_base = ktsb_pa; 1634 ktsb_descr[0].resv = 0; 1635 1636 #ifndef CONFIG_DEBUG_PAGEALLOC 1637 /* Second KTSB for 4MB/256MB mappings. */ 1638 ktsb_pa = (kern_base + 1639 ((unsigned long)&swapper_4m_tsb[0] - KERNBASE)); 1640 1641 ktsb_descr[1].pgsz_idx = HV_PGSZ_IDX_4MB; 1642 ktsb_descr[1].pgsz_mask = (HV_PGSZ_MASK_4MB | 1643 HV_PGSZ_MASK_256MB); 1644 ktsb_descr[1].assoc = 1; 1645 ktsb_descr[1].num_ttes = KERNEL_TSB4M_NENTRIES; 1646 ktsb_descr[1].ctx_idx = 0; 1647 ktsb_descr[1].tsb_base = ktsb_pa; 1648 ktsb_descr[1].resv = 0; 1649 #endif 1650 } 1651 1652 void __cpuinit sun4v_ktsb_register(void) 1653 { 1654 unsigned long pa, ret; 1655 1656 pa = kern_base + ((unsigned long)&ktsb_descr[0] - KERNBASE); 1657 1658 ret = sun4v_mmu_tsb_ctx0(NUM_KTSB_DESCR, pa); 1659 if (ret != 0) { 1660 prom_printf("hypervisor_mmu_tsb_ctx0[%lx]: " 1661 "errors with %lx\n", pa, ret); 1662 prom_halt(); 1663 } 1664 } 1665 1666 /* paging_init() sets up the page tables */ 1667 1668 static unsigned long last_valid_pfn; 1669 pgd_t swapper_pg_dir[2048]; 1670 1671 static void sun4u_pgprot_init(void); 1672 static void sun4v_pgprot_init(void); 1673 1674 void __init paging_init(void) 1675 { 1676 unsigned long end_pfn, shift, phys_base; 1677 unsigned long real_end, i; 1678 1679 /* These build time checkes make sure that the dcache_dirty_cpu() 1680 * page->flags usage will work. 1681 * 1682 * When a page gets marked as dcache-dirty, we store the 1683 * cpu number starting at bit 32 in the page->flags. Also, 1684 * functions like clear_dcache_dirty_cpu use the cpu mask 1685 * in 13-bit signed-immediate instruction fields. 1686 */ 1687 1688 /* 1689 * Page flags must not reach into upper 32 bits that are used 1690 * for the cpu number 1691 */ 1692 BUILD_BUG_ON(NR_PAGEFLAGS > 32); 1693 1694 /* 1695 * The bit fields placed in the high range must not reach below 1696 * the 32 bit boundary. Otherwise we cannot place the cpu field 1697 * at the 32 bit boundary. 1698 */ 1699 BUILD_BUG_ON(SECTIONS_WIDTH + NODES_WIDTH + ZONES_WIDTH + 1700 ilog2(roundup_pow_of_two(NR_CPUS)) > 32); 1701 1702 BUILD_BUG_ON(NR_CPUS > 4096); 1703 1704 kern_base = (prom_boot_mapping_phys_low >> 22UL) << 22UL; 1705 kern_size = (unsigned long)&_end - (unsigned long)KERNBASE; 1706 1707 /* Invalidate both kernel TSBs. */ 1708 memset(swapper_tsb, 0x40, sizeof(swapper_tsb)); 1709 #ifndef CONFIG_DEBUG_PAGEALLOC 1710 memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb)); 1711 #endif 1712 1713 if (tlb_type == hypervisor) 1714 sun4v_pgprot_init(); 1715 else 1716 sun4u_pgprot_init(); 1717 1718 if (tlb_type == cheetah_plus || 1719 tlb_type == hypervisor) 1720 tsb_phys_patch(); 1721 1722 if (tlb_type == hypervisor) { 1723 sun4v_patch_tlb_handlers(); 1724 sun4v_ktsb_init(); 1725 } 1726 1727 memblock_init(); 1728 1729 /* Find available physical memory... 1730 * 1731 * Read it twice in order to work around a bug in openfirmware. 1732 * The call to grab this table itself can cause openfirmware to 1733 * allocate memory, which in turn can take away some space from 1734 * the list of available memory. Reading it twice makes sure 1735 * we really do get the final value. 1736 */ 1737 read_obp_translations(); 1738 read_obp_memory("reg", &pall[0], &pall_ents); 1739 read_obp_memory("available", &pavail[0], &pavail_ents); 1740 read_obp_memory("available", &pavail[0], &pavail_ents); 1741 1742 phys_base = 0xffffffffffffffffUL; 1743 for (i = 0; i < pavail_ents; i++) { 1744 phys_base = min(phys_base, pavail[i].phys_addr); 1745 memblock_add(pavail[i].phys_addr, pavail[i].reg_size); 1746 } 1747 1748 memblock_reserve(kern_base, kern_size); 1749 1750 find_ramdisk(phys_base); 1751 1752 memblock_enforce_memory_limit(cmdline_memory_size); 1753 1754 memblock_analyze(); 1755 memblock_dump_all(); 1756 1757 set_bit(0, mmu_context_bmap); 1758 1759 shift = kern_base + PAGE_OFFSET - ((unsigned long)KERNBASE); 1760 1761 real_end = (unsigned long)_end; 1762 num_kernel_image_mappings = DIV_ROUND_UP(real_end - KERNBASE, 1 << 22); 1763 printk("Kernel: Using %d locked TLB entries for main kernel image.\n", 1764 num_kernel_image_mappings); 1765 1766 /* Set kernel pgd to upper alias so physical page computations 1767 * work. 1768 */ 1769 init_mm.pgd += ((shift) / (sizeof(pgd_t))); 1770 1771 memset(swapper_low_pmd_dir, 0, sizeof(swapper_low_pmd_dir)); 1772 1773 /* Now can init the kernel/bad page tables. */ 1774 pud_set(pud_offset(&swapper_pg_dir[0], 0), 1775 swapper_low_pmd_dir + (shift / sizeof(pgd_t))); 1776 1777 inherit_prom_mappings(); 1778 1779 init_kpte_bitmap(); 1780 1781 /* Ok, we can use our TLB miss and window trap handlers safely. */ 1782 setup_tba(); 1783 1784 __flush_tlb_all(); 1785 1786 if (tlb_type == hypervisor) 1787 sun4v_ktsb_register(); 1788 1789 prom_build_devicetree(); 1790 of_populate_present_mask(); 1791 #ifndef CONFIG_SMP 1792 of_fill_in_cpu_data(); 1793 #endif 1794 1795 if (tlb_type == hypervisor) { 1796 sun4v_mdesc_init(); 1797 mdesc_populate_present_mask(cpu_all_mask); 1798 #ifndef CONFIG_SMP 1799 mdesc_fill_in_cpu_data(cpu_all_mask); 1800 #endif 1801 } 1802 1803 /* Once the OF device tree and MDESC have been setup, we know 1804 * the list of possible cpus. Therefore we can allocate the 1805 * IRQ stacks. 1806 */ 1807 for_each_possible_cpu(i) { 1808 /* XXX Use node local allocations... XXX */ 1809 softirq_stack[i] = __va(memblock_alloc(THREAD_SIZE, THREAD_SIZE)); 1810 hardirq_stack[i] = __va(memblock_alloc(THREAD_SIZE, THREAD_SIZE)); 1811 } 1812 1813 /* Setup bootmem... */ 1814 last_valid_pfn = end_pfn = bootmem_init(phys_base); 1815 1816 #ifndef CONFIG_NEED_MULTIPLE_NODES 1817 max_mapnr = last_valid_pfn; 1818 #endif 1819 kernel_physical_mapping_init(); 1820 1821 { 1822 unsigned long max_zone_pfns[MAX_NR_ZONES]; 1823 1824 memset(max_zone_pfns, 0, sizeof(max_zone_pfns)); 1825 1826 max_zone_pfns[ZONE_NORMAL] = end_pfn; 1827 1828 free_area_init_nodes(max_zone_pfns); 1829 } 1830 1831 printk("Booting Linux...\n"); 1832 } 1833 1834 int __devinit page_in_phys_avail(unsigned long paddr) 1835 { 1836 int i; 1837 1838 paddr &= PAGE_MASK; 1839 1840 for (i = 0; i < pavail_ents; i++) { 1841 unsigned long start, end; 1842 1843 start = pavail[i].phys_addr; 1844 end = start + pavail[i].reg_size; 1845 1846 if (paddr >= start && paddr < end) 1847 return 1; 1848 } 1849 if (paddr >= kern_base && paddr < (kern_base + kern_size)) 1850 return 1; 1851 #ifdef CONFIG_BLK_DEV_INITRD 1852 if (paddr >= __pa(initrd_start) && 1853 paddr < __pa(PAGE_ALIGN(initrd_end))) 1854 return 1; 1855 #endif 1856 1857 return 0; 1858 } 1859 1860 static struct linux_prom64_registers pavail_rescan[MAX_BANKS] __initdata; 1861 static int pavail_rescan_ents __initdata; 1862 1863 /* Certain OBP calls, such as fetching "available" properties, can 1864 * claim physical memory. So, along with initializing the valid 1865 * address bitmap, what we do here is refetch the physical available 1866 * memory list again, and make sure it provides at least as much 1867 * memory as 'pavail' does. 1868 */ 1869 static void __init setup_valid_addr_bitmap_from_pavail(unsigned long *bitmap) 1870 { 1871 int i; 1872 1873 read_obp_memory("available", &pavail_rescan[0], &pavail_rescan_ents); 1874 1875 for (i = 0; i < pavail_ents; i++) { 1876 unsigned long old_start, old_end; 1877 1878 old_start = pavail[i].phys_addr; 1879 old_end = old_start + pavail[i].reg_size; 1880 while (old_start < old_end) { 1881 int n; 1882 1883 for (n = 0; n < pavail_rescan_ents; n++) { 1884 unsigned long new_start, new_end; 1885 1886 new_start = pavail_rescan[n].phys_addr; 1887 new_end = new_start + 1888 pavail_rescan[n].reg_size; 1889 1890 if (new_start <= old_start && 1891 new_end >= (old_start + PAGE_SIZE)) { 1892 set_bit(old_start >> 22, bitmap); 1893 goto do_next_page; 1894 } 1895 } 1896 1897 prom_printf("mem_init: Lost memory in pavail\n"); 1898 prom_printf("mem_init: OLD start[%lx] size[%lx]\n", 1899 pavail[i].phys_addr, 1900 pavail[i].reg_size); 1901 prom_printf("mem_init: NEW start[%lx] size[%lx]\n", 1902 pavail_rescan[i].phys_addr, 1903 pavail_rescan[i].reg_size); 1904 prom_printf("mem_init: Cannot continue, aborting.\n"); 1905 prom_halt(); 1906 1907 do_next_page: 1908 old_start += PAGE_SIZE; 1909 } 1910 } 1911 } 1912 1913 static void __init patch_tlb_miss_handler_bitmap(void) 1914 { 1915 extern unsigned int valid_addr_bitmap_insn[]; 1916 extern unsigned int valid_addr_bitmap_patch[]; 1917 1918 valid_addr_bitmap_insn[1] = valid_addr_bitmap_patch[1]; 1919 mb(); 1920 valid_addr_bitmap_insn[0] = valid_addr_bitmap_patch[0]; 1921 flushi(&valid_addr_bitmap_insn[0]); 1922 } 1923 1924 void __init mem_init(void) 1925 { 1926 unsigned long codepages, datapages, initpages; 1927 unsigned long addr, last; 1928 1929 addr = PAGE_OFFSET + kern_base; 1930 last = PAGE_ALIGN(kern_size) + addr; 1931 while (addr < last) { 1932 set_bit(__pa(addr) >> 22, sparc64_valid_addr_bitmap); 1933 addr += PAGE_SIZE; 1934 } 1935 1936 setup_valid_addr_bitmap_from_pavail(sparc64_valid_addr_bitmap); 1937 patch_tlb_miss_handler_bitmap(); 1938 1939 high_memory = __va(last_valid_pfn << PAGE_SHIFT); 1940 1941 #ifdef CONFIG_NEED_MULTIPLE_NODES 1942 { 1943 int i; 1944 for_each_online_node(i) { 1945 if (NODE_DATA(i)->node_spanned_pages != 0) { 1946 totalram_pages += 1947 free_all_bootmem_node(NODE_DATA(i)); 1948 } 1949 } 1950 } 1951 #else 1952 totalram_pages = free_all_bootmem(); 1953 #endif 1954 1955 /* We subtract one to account for the mem_map_zero page 1956 * allocated below. 1957 */ 1958 totalram_pages -= 1; 1959 num_physpages = totalram_pages; 1960 1961 /* 1962 * Set up the zero page, mark it reserved, so that page count 1963 * is not manipulated when freeing the page from user ptes. 1964 */ 1965 mem_map_zero = alloc_pages(GFP_KERNEL|__GFP_ZERO, 0); 1966 if (mem_map_zero == NULL) { 1967 prom_printf("paging_init: Cannot alloc zero page.\n"); 1968 prom_halt(); 1969 } 1970 SetPageReserved(mem_map_zero); 1971 1972 codepages = (((unsigned long) _etext) - ((unsigned long) _start)); 1973 codepages = PAGE_ALIGN(codepages) >> PAGE_SHIFT; 1974 datapages = (((unsigned long) _edata) - ((unsigned long) _etext)); 1975 datapages = PAGE_ALIGN(datapages) >> PAGE_SHIFT; 1976 initpages = (((unsigned long) __init_end) - ((unsigned long) __init_begin)); 1977 initpages = PAGE_ALIGN(initpages) >> PAGE_SHIFT; 1978 1979 printk("Memory: %luk available (%ldk kernel code, %ldk data, %ldk init) [%016lx,%016lx]\n", 1980 nr_free_pages() << (PAGE_SHIFT-10), 1981 codepages << (PAGE_SHIFT-10), 1982 datapages << (PAGE_SHIFT-10), 1983 initpages << (PAGE_SHIFT-10), 1984 PAGE_OFFSET, (last_valid_pfn << PAGE_SHIFT)); 1985 1986 if (tlb_type == cheetah || tlb_type == cheetah_plus) 1987 cheetah_ecache_flush_init(); 1988 } 1989 1990 void free_initmem(void) 1991 { 1992 unsigned long addr, initend; 1993 int do_free = 1; 1994 1995 /* If the physical memory maps were trimmed by kernel command 1996 * line options, don't even try freeing this initmem stuff up. 1997 * The kernel image could have been in the trimmed out region 1998 * and if so the freeing below will free invalid page structs. 1999 */ 2000 if (cmdline_memory_size) 2001 do_free = 0; 2002 2003 /* 2004 * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes. 2005 */ 2006 addr = PAGE_ALIGN((unsigned long)(__init_begin)); 2007 initend = (unsigned long)(__init_end) & PAGE_MASK; 2008 for (; addr < initend; addr += PAGE_SIZE) { 2009 unsigned long page; 2010 struct page *p; 2011 2012 page = (addr + 2013 ((unsigned long) __va(kern_base)) - 2014 ((unsigned long) KERNBASE)); 2015 memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE); 2016 2017 if (do_free) { 2018 p = virt_to_page(page); 2019 2020 ClearPageReserved(p); 2021 init_page_count(p); 2022 __free_page(p); 2023 num_physpages++; 2024 totalram_pages++; 2025 } 2026 } 2027 } 2028 2029 #ifdef CONFIG_BLK_DEV_INITRD 2030 void free_initrd_mem(unsigned long start, unsigned long end) 2031 { 2032 if (start < end) 2033 printk ("Freeing initrd memory: %ldk freed\n", (end - start) >> 10); 2034 for (; start < end; start += PAGE_SIZE) { 2035 struct page *p = virt_to_page(start); 2036 2037 ClearPageReserved(p); 2038 init_page_count(p); 2039 __free_page(p); 2040 num_physpages++; 2041 totalram_pages++; 2042 } 2043 } 2044 #endif 2045 2046 #define _PAGE_CACHE_4U (_PAGE_CP_4U | _PAGE_CV_4U) 2047 #define _PAGE_CACHE_4V (_PAGE_CP_4V | _PAGE_CV_4V) 2048 #define __DIRTY_BITS_4U (_PAGE_MODIFIED_4U | _PAGE_WRITE_4U | _PAGE_W_4U) 2049 #define __DIRTY_BITS_4V (_PAGE_MODIFIED_4V | _PAGE_WRITE_4V | _PAGE_W_4V) 2050 #define __ACCESS_BITS_4U (_PAGE_ACCESSED_4U | _PAGE_READ_4U | _PAGE_R) 2051 #define __ACCESS_BITS_4V (_PAGE_ACCESSED_4V | _PAGE_READ_4V | _PAGE_R) 2052 2053 pgprot_t PAGE_KERNEL __read_mostly; 2054 EXPORT_SYMBOL(PAGE_KERNEL); 2055 2056 pgprot_t PAGE_KERNEL_LOCKED __read_mostly; 2057 pgprot_t PAGE_COPY __read_mostly; 2058 2059 pgprot_t PAGE_SHARED __read_mostly; 2060 EXPORT_SYMBOL(PAGE_SHARED); 2061 2062 unsigned long pg_iobits __read_mostly; 2063 2064 unsigned long _PAGE_IE __read_mostly; 2065 EXPORT_SYMBOL(_PAGE_IE); 2066 2067 unsigned long _PAGE_E __read_mostly; 2068 EXPORT_SYMBOL(_PAGE_E); 2069 2070 unsigned long _PAGE_CACHE __read_mostly; 2071 EXPORT_SYMBOL(_PAGE_CACHE); 2072 2073 #ifdef CONFIG_SPARSEMEM_VMEMMAP 2074 unsigned long vmemmap_table[VMEMMAP_SIZE]; 2075 2076 int __meminit vmemmap_populate(struct page *start, unsigned long nr, int node) 2077 { 2078 unsigned long vstart = (unsigned long) start; 2079 unsigned long vend = (unsigned long) (start + nr); 2080 unsigned long phys_start = (vstart - VMEMMAP_BASE); 2081 unsigned long phys_end = (vend - VMEMMAP_BASE); 2082 unsigned long addr = phys_start & VMEMMAP_CHUNK_MASK; 2083 unsigned long end = VMEMMAP_ALIGN(phys_end); 2084 unsigned long pte_base; 2085 2086 pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4U | 2087 _PAGE_CP_4U | _PAGE_CV_4U | 2088 _PAGE_P_4U | _PAGE_W_4U); 2089 if (tlb_type == hypervisor) 2090 pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4V | 2091 _PAGE_CP_4V | _PAGE_CV_4V | 2092 _PAGE_P_4V | _PAGE_W_4V); 2093 2094 for (; addr < end; addr += VMEMMAP_CHUNK) { 2095 unsigned long *vmem_pp = 2096 vmemmap_table + (addr >> VMEMMAP_CHUNK_SHIFT); 2097 void *block; 2098 2099 if (!(*vmem_pp & _PAGE_VALID)) { 2100 block = vmemmap_alloc_block(1UL << 22, node); 2101 if (!block) 2102 return -ENOMEM; 2103 2104 *vmem_pp = pte_base | __pa(block); 2105 2106 printk(KERN_INFO "[%p-%p] page_structs=%lu " 2107 "node=%d entry=%lu/%lu\n", start, block, nr, 2108 node, 2109 addr >> VMEMMAP_CHUNK_SHIFT, 2110 VMEMMAP_SIZE); 2111 } 2112 } 2113 return 0; 2114 } 2115 #endif /* CONFIG_SPARSEMEM_VMEMMAP */ 2116 2117 static void prot_init_common(unsigned long page_none, 2118 unsigned long page_shared, 2119 unsigned long page_copy, 2120 unsigned long page_readonly, 2121 unsigned long page_exec_bit) 2122 { 2123 PAGE_COPY = __pgprot(page_copy); 2124 PAGE_SHARED = __pgprot(page_shared); 2125 2126 protection_map[0x0] = __pgprot(page_none); 2127 protection_map[0x1] = __pgprot(page_readonly & ~page_exec_bit); 2128 protection_map[0x2] = __pgprot(page_copy & ~page_exec_bit); 2129 protection_map[0x3] = __pgprot(page_copy & ~page_exec_bit); 2130 protection_map[0x4] = __pgprot(page_readonly); 2131 protection_map[0x5] = __pgprot(page_readonly); 2132 protection_map[0x6] = __pgprot(page_copy); 2133 protection_map[0x7] = __pgprot(page_copy); 2134 protection_map[0x8] = __pgprot(page_none); 2135 protection_map[0x9] = __pgprot(page_readonly & ~page_exec_bit); 2136 protection_map[0xa] = __pgprot(page_shared & ~page_exec_bit); 2137 protection_map[0xb] = __pgprot(page_shared & ~page_exec_bit); 2138 protection_map[0xc] = __pgprot(page_readonly); 2139 protection_map[0xd] = __pgprot(page_readonly); 2140 protection_map[0xe] = __pgprot(page_shared); 2141 protection_map[0xf] = __pgprot(page_shared); 2142 } 2143 2144 static void __init sun4u_pgprot_init(void) 2145 { 2146 unsigned long page_none, page_shared, page_copy, page_readonly; 2147 unsigned long page_exec_bit; 2148 2149 PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID | 2150 _PAGE_CACHE_4U | _PAGE_P_4U | 2151 __ACCESS_BITS_4U | __DIRTY_BITS_4U | 2152 _PAGE_EXEC_4U); 2153 PAGE_KERNEL_LOCKED = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID | 2154 _PAGE_CACHE_4U | _PAGE_P_4U | 2155 __ACCESS_BITS_4U | __DIRTY_BITS_4U | 2156 _PAGE_EXEC_4U | _PAGE_L_4U); 2157 2158 _PAGE_IE = _PAGE_IE_4U; 2159 _PAGE_E = _PAGE_E_4U; 2160 _PAGE_CACHE = _PAGE_CACHE_4U; 2161 2162 pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4U | __DIRTY_BITS_4U | 2163 __ACCESS_BITS_4U | _PAGE_E_4U); 2164 2165 #ifdef CONFIG_DEBUG_PAGEALLOC 2166 kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZBITS_4U) ^ 2167 0xfffff80000000000UL; 2168 #else 2169 kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4U) ^ 2170 0xfffff80000000000UL; 2171 #endif 2172 kern_linear_pte_xor[0] |= (_PAGE_CP_4U | _PAGE_CV_4U | 2173 _PAGE_P_4U | _PAGE_W_4U); 2174 2175 /* XXX Should use 256MB on Panther. XXX */ 2176 kern_linear_pte_xor[1] = kern_linear_pte_xor[0]; 2177 2178 _PAGE_SZBITS = _PAGE_SZBITS_4U; 2179 _PAGE_ALL_SZ_BITS = (_PAGE_SZ4MB_4U | _PAGE_SZ512K_4U | 2180 _PAGE_SZ64K_4U | _PAGE_SZ8K_4U | 2181 _PAGE_SZ32MB_4U | _PAGE_SZ256MB_4U); 2182 2183 2184 page_none = _PAGE_PRESENT_4U | _PAGE_ACCESSED_4U | _PAGE_CACHE_4U; 2185 page_shared = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U | 2186 __ACCESS_BITS_4U | _PAGE_WRITE_4U | _PAGE_EXEC_4U); 2187 page_copy = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U | 2188 __ACCESS_BITS_4U | _PAGE_EXEC_4U); 2189 page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U | 2190 __ACCESS_BITS_4U | _PAGE_EXEC_4U); 2191 2192 page_exec_bit = _PAGE_EXEC_4U; 2193 2194 prot_init_common(page_none, page_shared, page_copy, page_readonly, 2195 page_exec_bit); 2196 } 2197 2198 static void __init sun4v_pgprot_init(void) 2199 { 2200 unsigned long page_none, page_shared, page_copy, page_readonly; 2201 unsigned long page_exec_bit; 2202 2203 PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4V | _PAGE_VALID | 2204 _PAGE_CACHE_4V | _PAGE_P_4V | 2205 __ACCESS_BITS_4V | __DIRTY_BITS_4V | 2206 _PAGE_EXEC_4V); 2207 PAGE_KERNEL_LOCKED = PAGE_KERNEL; 2208 2209 _PAGE_IE = _PAGE_IE_4V; 2210 _PAGE_E = _PAGE_E_4V; 2211 _PAGE_CACHE = _PAGE_CACHE_4V; 2212 2213 #ifdef CONFIG_DEBUG_PAGEALLOC 2214 kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZBITS_4V) ^ 2215 0xfffff80000000000UL; 2216 #else 2217 kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4V) ^ 2218 0xfffff80000000000UL; 2219 #endif 2220 kern_linear_pte_xor[0] |= (_PAGE_CP_4V | _PAGE_CV_4V | 2221 _PAGE_P_4V | _PAGE_W_4V); 2222 2223 #ifdef CONFIG_DEBUG_PAGEALLOC 2224 kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZBITS_4V) ^ 2225 0xfffff80000000000UL; 2226 #else 2227 kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZ256MB_4V) ^ 2228 0xfffff80000000000UL; 2229 #endif 2230 kern_linear_pte_xor[1] |= (_PAGE_CP_4V | _PAGE_CV_4V | 2231 _PAGE_P_4V | _PAGE_W_4V); 2232 2233 pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4V | __DIRTY_BITS_4V | 2234 __ACCESS_BITS_4V | _PAGE_E_4V); 2235 2236 _PAGE_SZBITS = _PAGE_SZBITS_4V; 2237 _PAGE_ALL_SZ_BITS = (_PAGE_SZ16GB_4V | _PAGE_SZ2GB_4V | 2238 _PAGE_SZ256MB_4V | _PAGE_SZ32MB_4V | 2239 _PAGE_SZ4MB_4V | _PAGE_SZ512K_4V | 2240 _PAGE_SZ64K_4V | _PAGE_SZ8K_4V); 2241 2242 page_none = _PAGE_PRESENT_4V | _PAGE_ACCESSED_4V | _PAGE_CACHE_4V; 2243 page_shared = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V | 2244 __ACCESS_BITS_4V | _PAGE_WRITE_4V | _PAGE_EXEC_4V); 2245 page_copy = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V | 2246 __ACCESS_BITS_4V | _PAGE_EXEC_4V); 2247 page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V | 2248 __ACCESS_BITS_4V | _PAGE_EXEC_4V); 2249 2250 page_exec_bit = _PAGE_EXEC_4V; 2251 2252 prot_init_common(page_none, page_shared, page_copy, page_readonly, 2253 page_exec_bit); 2254 } 2255 2256 unsigned long pte_sz_bits(unsigned long sz) 2257 { 2258 if (tlb_type == hypervisor) { 2259 switch (sz) { 2260 case 8 * 1024: 2261 default: 2262 return _PAGE_SZ8K_4V; 2263 case 64 * 1024: 2264 return _PAGE_SZ64K_4V; 2265 case 512 * 1024: 2266 return _PAGE_SZ512K_4V; 2267 case 4 * 1024 * 1024: 2268 return _PAGE_SZ4MB_4V; 2269 }; 2270 } else { 2271 switch (sz) { 2272 case 8 * 1024: 2273 default: 2274 return _PAGE_SZ8K_4U; 2275 case 64 * 1024: 2276 return _PAGE_SZ64K_4U; 2277 case 512 * 1024: 2278 return _PAGE_SZ512K_4U; 2279 case 4 * 1024 * 1024: 2280 return _PAGE_SZ4MB_4U; 2281 }; 2282 } 2283 } 2284 2285 pte_t mk_pte_io(unsigned long page, pgprot_t prot, int space, unsigned long page_size) 2286 { 2287 pte_t pte; 2288 2289 pte_val(pte) = page | pgprot_val(pgprot_noncached(prot)); 2290 pte_val(pte) |= (((unsigned long)space) << 32); 2291 pte_val(pte) |= pte_sz_bits(page_size); 2292 2293 return pte; 2294 } 2295 2296 static unsigned long kern_large_tte(unsigned long paddr) 2297 { 2298 unsigned long val; 2299 2300 val = (_PAGE_VALID | _PAGE_SZ4MB_4U | 2301 _PAGE_CP_4U | _PAGE_CV_4U | _PAGE_P_4U | 2302 _PAGE_EXEC_4U | _PAGE_L_4U | _PAGE_W_4U); 2303 if (tlb_type == hypervisor) 2304 val = (_PAGE_VALID | _PAGE_SZ4MB_4V | 2305 _PAGE_CP_4V | _PAGE_CV_4V | _PAGE_P_4V | 2306 _PAGE_EXEC_4V | _PAGE_W_4V); 2307 2308 return val | paddr; 2309 } 2310 2311 /* If not locked, zap it. */ 2312 void __flush_tlb_all(void) 2313 { 2314 unsigned long pstate; 2315 int i; 2316 2317 __asm__ __volatile__("flushw\n\t" 2318 "rdpr %%pstate, %0\n\t" 2319 "wrpr %0, %1, %%pstate" 2320 : "=r" (pstate) 2321 : "i" (PSTATE_IE)); 2322 if (tlb_type == hypervisor) { 2323 sun4v_mmu_demap_all(); 2324 } else if (tlb_type == spitfire) { 2325 for (i = 0; i < 64; i++) { 2326 /* Spitfire Errata #32 workaround */ 2327 /* NOTE: Always runs on spitfire, so no 2328 * cheetah+ page size encodings. 2329 */ 2330 __asm__ __volatile__("stxa %0, [%1] %2\n\t" 2331 "flush %%g6" 2332 : /* No outputs */ 2333 : "r" (0), 2334 "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU)); 2335 2336 if (!(spitfire_get_dtlb_data(i) & _PAGE_L_4U)) { 2337 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t" 2338 "membar #Sync" 2339 : /* no outputs */ 2340 : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU)); 2341 spitfire_put_dtlb_data(i, 0x0UL); 2342 } 2343 2344 /* Spitfire Errata #32 workaround */ 2345 /* NOTE: Always runs on spitfire, so no 2346 * cheetah+ page size encodings. 2347 */ 2348 __asm__ __volatile__("stxa %0, [%1] %2\n\t" 2349 "flush %%g6" 2350 : /* No outputs */ 2351 : "r" (0), 2352 "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU)); 2353 2354 if (!(spitfire_get_itlb_data(i) & _PAGE_L_4U)) { 2355 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t" 2356 "membar #Sync" 2357 : /* no outputs */ 2358 : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU)); 2359 spitfire_put_itlb_data(i, 0x0UL); 2360 } 2361 } 2362 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) { 2363 cheetah_flush_dtlb_all(); 2364 cheetah_flush_itlb_all(); 2365 } 2366 __asm__ __volatile__("wrpr %0, 0, %%pstate" 2367 : : "r" (pstate)); 2368 } 2369