1 /* 2 * arch/sparc64/mm/init.c 3 * 4 * Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu) 5 * Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz) 6 */ 7 8 #include <linux/module.h> 9 #include <linux/kernel.h> 10 #include <linux/sched.h> 11 #include <linux/string.h> 12 #include <linux/init.h> 13 #include <linux/bootmem.h> 14 #include <linux/mm.h> 15 #include <linux/hugetlb.h> 16 #include <linux/initrd.h> 17 #include <linux/swap.h> 18 #include <linux/pagemap.h> 19 #include <linux/poison.h> 20 #include <linux/fs.h> 21 #include <linux/seq_file.h> 22 #include <linux/kprobes.h> 23 #include <linux/cache.h> 24 #include <linux/sort.h> 25 #include <linux/ioport.h> 26 #include <linux/percpu.h> 27 #include <linux/memblock.h> 28 #include <linux/mmzone.h> 29 #include <linux/gfp.h> 30 31 #include <asm/head.h> 32 #include <asm/page.h> 33 #include <asm/pgalloc.h> 34 #include <asm/pgtable.h> 35 #include <asm/oplib.h> 36 #include <asm/iommu.h> 37 #include <asm/io.h> 38 #include <asm/uaccess.h> 39 #include <asm/mmu_context.h> 40 #include <asm/tlbflush.h> 41 #include <asm/dma.h> 42 #include <asm/starfire.h> 43 #include <asm/tlb.h> 44 #include <asm/spitfire.h> 45 #include <asm/sections.h> 46 #include <asm/tsb.h> 47 #include <asm/hypervisor.h> 48 #include <asm/prom.h> 49 #include <asm/mdesc.h> 50 #include <asm/cpudata.h> 51 #include <asm/setup.h> 52 #include <asm/irq.h> 53 54 #include "init_64.h" 55 56 unsigned long kern_linear_pte_xor[4] __read_mostly; 57 static unsigned long page_cache4v_flag; 58 59 /* A bitmap, two bits for every 256MB of physical memory. These two 60 * bits determine what page size we use for kernel linear 61 * translations. They form an index into kern_linear_pte_xor[]. The 62 * value in the indexed slot is XOR'd with the TLB miss virtual 63 * address to form the resulting TTE. The mapping is: 64 * 65 * 0 ==> 4MB 66 * 1 ==> 256MB 67 * 2 ==> 2GB 68 * 3 ==> 16GB 69 * 70 * All sun4v chips support 256MB pages. Only SPARC-T4 and later 71 * support 2GB pages, and hopefully future cpus will support the 16GB 72 * pages as well. For slots 2 and 3, we encode a 256MB TTE xor there 73 * if these larger page sizes are not supported by the cpu. 74 * 75 * It would be nice to determine this from the machine description 76 * 'cpu' properties, but we need to have this table setup before the 77 * MDESC is initialized. 78 */ 79 80 #ifndef CONFIG_DEBUG_PAGEALLOC 81 /* A special kernel TSB for 4MB, 256MB, 2GB and 16GB linear mappings. 82 * Space is allocated for this right after the trap table in 83 * arch/sparc64/kernel/head.S 84 */ 85 extern struct tsb swapper_4m_tsb[KERNEL_TSB4M_NENTRIES]; 86 #endif 87 extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES]; 88 89 static unsigned long cpu_pgsz_mask; 90 91 #define MAX_BANKS 1024 92 93 static struct linux_prom64_registers pavail[MAX_BANKS]; 94 static int pavail_ents; 95 96 u64 numa_latency[MAX_NUMNODES][MAX_NUMNODES]; 97 98 static int cmp_p64(const void *a, const void *b) 99 { 100 const struct linux_prom64_registers *x = a, *y = b; 101 102 if (x->phys_addr > y->phys_addr) 103 return 1; 104 if (x->phys_addr < y->phys_addr) 105 return -1; 106 return 0; 107 } 108 109 static void __init read_obp_memory(const char *property, 110 struct linux_prom64_registers *regs, 111 int *num_ents) 112 { 113 phandle node = prom_finddevice("/memory"); 114 int prop_size = prom_getproplen(node, property); 115 int ents, ret, i; 116 117 ents = prop_size / sizeof(struct linux_prom64_registers); 118 if (ents > MAX_BANKS) { 119 prom_printf("The machine has more %s property entries than " 120 "this kernel can support (%d).\n", 121 property, MAX_BANKS); 122 prom_halt(); 123 } 124 125 ret = prom_getproperty(node, property, (char *) regs, prop_size); 126 if (ret == -1) { 127 prom_printf("Couldn't get %s property from /memory.\n", 128 property); 129 prom_halt(); 130 } 131 132 /* Sanitize what we got from the firmware, by page aligning 133 * everything. 134 */ 135 for (i = 0; i < ents; i++) { 136 unsigned long base, size; 137 138 base = regs[i].phys_addr; 139 size = regs[i].reg_size; 140 141 size &= PAGE_MASK; 142 if (base & ~PAGE_MASK) { 143 unsigned long new_base = PAGE_ALIGN(base); 144 145 size -= new_base - base; 146 if ((long) size < 0L) 147 size = 0UL; 148 base = new_base; 149 } 150 if (size == 0UL) { 151 /* If it is empty, simply get rid of it. 152 * This simplifies the logic of the other 153 * functions that process these arrays. 154 */ 155 memmove(®s[i], ®s[i + 1], 156 (ents - i - 1) * sizeof(regs[0])); 157 i--; 158 ents--; 159 continue; 160 } 161 regs[i].phys_addr = base; 162 regs[i].reg_size = size; 163 } 164 165 *num_ents = ents; 166 167 sort(regs, ents, sizeof(struct linux_prom64_registers), 168 cmp_p64, NULL); 169 } 170 171 /* Kernel physical address base and size in bytes. */ 172 unsigned long kern_base __read_mostly; 173 unsigned long kern_size __read_mostly; 174 175 /* Initial ramdisk setup */ 176 extern unsigned long sparc_ramdisk_image64; 177 extern unsigned int sparc_ramdisk_image; 178 extern unsigned int sparc_ramdisk_size; 179 180 struct page *mem_map_zero __read_mostly; 181 EXPORT_SYMBOL(mem_map_zero); 182 183 unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly; 184 185 unsigned long sparc64_kern_pri_context __read_mostly; 186 unsigned long sparc64_kern_pri_nuc_bits __read_mostly; 187 unsigned long sparc64_kern_sec_context __read_mostly; 188 189 int num_kernel_image_mappings; 190 191 #ifdef CONFIG_DEBUG_DCFLUSH 192 atomic_t dcpage_flushes = ATOMIC_INIT(0); 193 #ifdef CONFIG_SMP 194 atomic_t dcpage_flushes_xcall = ATOMIC_INIT(0); 195 #endif 196 #endif 197 198 inline void flush_dcache_page_impl(struct page *page) 199 { 200 BUG_ON(tlb_type == hypervisor); 201 #ifdef CONFIG_DEBUG_DCFLUSH 202 atomic_inc(&dcpage_flushes); 203 #endif 204 205 #ifdef DCACHE_ALIASING_POSSIBLE 206 __flush_dcache_page(page_address(page), 207 ((tlb_type == spitfire) && 208 page_mapping(page) != NULL)); 209 #else 210 if (page_mapping(page) != NULL && 211 tlb_type == spitfire) 212 __flush_icache_page(__pa(page_address(page))); 213 #endif 214 } 215 216 #define PG_dcache_dirty PG_arch_1 217 #define PG_dcache_cpu_shift 32UL 218 #define PG_dcache_cpu_mask \ 219 ((1UL<<ilog2(roundup_pow_of_two(NR_CPUS)))-1UL) 220 221 #define dcache_dirty_cpu(page) \ 222 (((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask) 223 224 static inline void set_dcache_dirty(struct page *page, int this_cpu) 225 { 226 unsigned long mask = this_cpu; 227 unsigned long non_cpu_bits; 228 229 non_cpu_bits = ~(PG_dcache_cpu_mask << PG_dcache_cpu_shift); 230 mask = (mask << PG_dcache_cpu_shift) | (1UL << PG_dcache_dirty); 231 232 __asm__ __volatile__("1:\n\t" 233 "ldx [%2], %%g7\n\t" 234 "and %%g7, %1, %%g1\n\t" 235 "or %%g1, %0, %%g1\n\t" 236 "casx [%2], %%g7, %%g1\n\t" 237 "cmp %%g7, %%g1\n\t" 238 "bne,pn %%xcc, 1b\n\t" 239 " nop" 240 : /* no outputs */ 241 : "r" (mask), "r" (non_cpu_bits), "r" (&page->flags) 242 : "g1", "g7"); 243 } 244 245 static inline void clear_dcache_dirty_cpu(struct page *page, unsigned long cpu) 246 { 247 unsigned long mask = (1UL << PG_dcache_dirty); 248 249 __asm__ __volatile__("! test_and_clear_dcache_dirty\n" 250 "1:\n\t" 251 "ldx [%2], %%g7\n\t" 252 "srlx %%g7, %4, %%g1\n\t" 253 "and %%g1, %3, %%g1\n\t" 254 "cmp %%g1, %0\n\t" 255 "bne,pn %%icc, 2f\n\t" 256 " andn %%g7, %1, %%g1\n\t" 257 "casx [%2], %%g7, %%g1\n\t" 258 "cmp %%g7, %%g1\n\t" 259 "bne,pn %%xcc, 1b\n\t" 260 " nop\n" 261 "2:" 262 : /* no outputs */ 263 : "r" (cpu), "r" (mask), "r" (&page->flags), 264 "i" (PG_dcache_cpu_mask), 265 "i" (PG_dcache_cpu_shift) 266 : "g1", "g7"); 267 } 268 269 static inline void tsb_insert(struct tsb *ent, unsigned long tag, unsigned long pte) 270 { 271 unsigned long tsb_addr = (unsigned long) ent; 272 273 if (tlb_type == cheetah_plus || tlb_type == hypervisor) 274 tsb_addr = __pa(tsb_addr); 275 276 __tsb_insert(tsb_addr, tag, pte); 277 } 278 279 unsigned long _PAGE_ALL_SZ_BITS __read_mostly; 280 281 static void flush_dcache(unsigned long pfn) 282 { 283 struct page *page; 284 285 page = pfn_to_page(pfn); 286 if (page) { 287 unsigned long pg_flags; 288 289 pg_flags = page->flags; 290 if (pg_flags & (1UL << PG_dcache_dirty)) { 291 int cpu = ((pg_flags >> PG_dcache_cpu_shift) & 292 PG_dcache_cpu_mask); 293 int this_cpu = get_cpu(); 294 295 /* This is just to optimize away some function calls 296 * in the SMP case. 297 */ 298 if (cpu == this_cpu) 299 flush_dcache_page_impl(page); 300 else 301 smp_flush_dcache_page_impl(page, cpu); 302 303 clear_dcache_dirty_cpu(page, cpu); 304 305 put_cpu(); 306 } 307 } 308 } 309 310 /* mm->context.lock must be held */ 311 static void __update_mmu_tsb_insert(struct mm_struct *mm, unsigned long tsb_index, 312 unsigned long tsb_hash_shift, unsigned long address, 313 unsigned long tte) 314 { 315 struct tsb *tsb = mm->context.tsb_block[tsb_index].tsb; 316 unsigned long tag; 317 318 if (unlikely(!tsb)) 319 return; 320 321 tsb += ((address >> tsb_hash_shift) & 322 (mm->context.tsb_block[tsb_index].tsb_nentries - 1UL)); 323 tag = (address >> 22UL); 324 tsb_insert(tsb, tag, tte); 325 } 326 327 void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t *ptep) 328 { 329 struct mm_struct *mm; 330 unsigned long flags; 331 pte_t pte = *ptep; 332 333 if (tlb_type != hypervisor) { 334 unsigned long pfn = pte_pfn(pte); 335 336 if (pfn_valid(pfn)) 337 flush_dcache(pfn); 338 } 339 340 mm = vma->vm_mm; 341 342 /* Don't insert a non-valid PTE into the TSB, we'll deadlock. */ 343 if (!pte_accessible(mm, pte)) 344 return; 345 346 spin_lock_irqsave(&mm->context.lock, flags); 347 348 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE) 349 if ((mm->context.hugetlb_pte_count || mm->context.thp_pte_count) && 350 is_hugetlb_pte(pte)) { 351 /* We are fabricating 8MB pages using 4MB real hw pages. */ 352 pte_val(pte) |= (address & (1UL << REAL_HPAGE_SHIFT)); 353 __update_mmu_tsb_insert(mm, MM_TSB_HUGE, REAL_HPAGE_SHIFT, 354 address, pte_val(pte)); 355 } else 356 #endif 357 __update_mmu_tsb_insert(mm, MM_TSB_BASE, PAGE_SHIFT, 358 address, pte_val(pte)); 359 360 spin_unlock_irqrestore(&mm->context.lock, flags); 361 } 362 363 void flush_dcache_page(struct page *page) 364 { 365 struct address_space *mapping; 366 int this_cpu; 367 368 if (tlb_type == hypervisor) 369 return; 370 371 /* Do not bother with the expensive D-cache flush if it 372 * is merely the zero page. The 'bigcore' testcase in GDB 373 * causes this case to run millions of times. 374 */ 375 if (page == ZERO_PAGE(0)) 376 return; 377 378 this_cpu = get_cpu(); 379 380 mapping = page_mapping(page); 381 if (mapping && !mapping_mapped(mapping)) { 382 int dirty = test_bit(PG_dcache_dirty, &page->flags); 383 if (dirty) { 384 int dirty_cpu = dcache_dirty_cpu(page); 385 386 if (dirty_cpu == this_cpu) 387 goto out; 388 smp_flush_dcache_page_impl(page, dirty_cpu); 389 } 390 set_dcache_dirty(page, this_cpu); 391 } else { 392 /* We could delay the flush for the !page_mapping 393 * case too. But that case is for exec env/arg 394 * pages and those are %99 certainly going to get 395 * faulted into the tlb (and thus flushed) anyways. 396 */ 397 flush_dcache_page_impl(page); 398 } 399 400 out: 401 put_cpu(); 402 } 403 EXPORT_SYMBOL(flush_dcache_page); 404 405 void __kprobes flush_icache_range(unsigned long start, unsigned long end) 406 { 407 /* Cheetah and Hypervisor platform cpus have coherent I-cache. */ 408 if (tlb_type == spitfire) { 409 unsigned long kaddr; 410 411 /* This code only runs on Spitfire cpus so this is 412 * why we can assume _PAGE_PADDR_4U. 413 */ 414 for (kaddr = start; kaddr < end; kaddr += PAGE_SIZE) { 415 unsigned long paddr, mask = _PAGE_PADDR_4U; 416 417 if (kaddr >= PAGE_OFFSET) 418 paddr = kaddr & mask; 419 else { 420 pgd_t *pgdp = pgd_offset_k(kaddr); 421 pud_t *pudp = pud_offset(pgdp, kaddr); 422 pmd_t *pmdp = pmd_offset(pudp, kaddr); 423 pte_t *ptep = pte_offset_kernel(pmdp, kaddr); 424 425 paddr = pte_val(*ptep) & mask; 426 } 427 __flush_icache_page(paddr); 428 } 429 } 430 } 431 EXPORT_SYMBOL(flush_icache_range); 432 433 void mmu_info(struct seq_file *m) 434 { 435 static const char *pgsz_strings[] = { 436 "8K", "64K", "512K", "4MB", "32MB", 437 "256MB", "2GB", "16GB", 438 }; 439 int i, printed; 440 441 if (tlb_type == cheetah) 442 seq_printf(m, "MMU Type\t: Cheetah\n"); 443 else if (tlb_type == cheetah_plus) 444 seq_printf(m, "MMU Type\t: Cheetah+\n"); 445 else if (tlb_type == spitfire) 446 seq_printf(m, "MMU Type\t: Spitfire\n"); 447 else if (tlb_type == hypervisor) 448 seq_printf(m, "MMU Type\t: Hypervisor (sun4v)\n"); 449 else 450 seq_printf(m, "MMU Type\t: ???\n"); 451 452 seq_printf(m, "MMU PGSZs\t: "); 453 printed = 0; 454 for (i = 0; i < ARRAY_SIZE(pgsz_strings); i++) { 455 if (cpu_pgsz_mask & (1UL << i)) { 456 seq_printf(m, "%s%s", 457 printed ? "," : "", pgsz_strings[i]); 458 printed++; 459 } 460 } 461 seq_putc(m, '\n'); 462 463 #ifdef CONFIG_DEBUG_DCFLUSH 464 seq_printf(m, "DCPageFlushes\t: %d\n", 465 atomic_read(&dcpage_flushes)); 466 #ifdef CONFIG_SMP 467 seq_printf(m, "DCPageFlushesXC\t: %d\n", 468 atomic_read(&dcpage_flushes_xcall)); 469 #endif /* CONFIG_SMP */ 470 #endif /* CONFIG_DEBUG_DCFLUSH */ 471 } 472 473 struct linux_prom_translation prom_trans[512] __read_mostly; 474 unsigned int prom_trans_ents __read_mostly; 475 476 unsigned long kern_locked_tte_data; 477 478 /* The obp translations are saved based on 8k pagesize, since obp can 479 * use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS -> 480 * HI_OBP_ADDRESS range are handled in ktlb.S. 481 */ 482 static inline int in_obp_range(unsigned long vaddr) 483 { 484 return (vaddr >= LOW_OBP_ADDRESS && 485 vaddr < HI_OBP_ADDRESS); 486 } 487 488 static int cmp_ptrans(const void *a, const void *b) 489 { 490 const struct linux_prom_translation *x = a, *y = b; 491 492 if (x->virt > y->virt) 493 return 1; 494 if (x->virt < y->virt) 495 return -1; 496 return 0; 497 } 498 499 /* Read OBP translations property into 'prom_trans[]'. */ 500 static void __init read_obp_translations(void) 501 { 502 int n, node, ents, first, last, i; 503 504 node = prom_finddevice("/virtual-memory"); 505 n = prom_getproplen(node, "translations"); 506 if (unlikely(n == 0 || n == -1)) { 507 prom_printf("prom_mappings: Couldn't get size.\n"); 508 prom_halt(); 509 } 510 if (unlikely(n > sizeof(prom_trans))) { 511 prom_printf("prom_mappings: Size %d is too big.\n", n); 512 prom_halt(); 513 } 514 515 if ((n = prom_getproperty(node, "translations", 516 (char *)&prom_trans[0], 517 sizeof(prom_trans))) == -1) { 518 prom_printf("prom_mappings: Couldn't get property.\n"); 519 prom_halt(); 520 } 521 522 n = n / sizeof(struct linux_prom_translation); 523 524 ents = n; 525 526 sort(prom_trans, ents, sizeof(struct linux_prom_translation), 527 cmp_ptrans, NULL); 528 529 /* Now kick out all the non-OBP entries. */ 530 for (i = 0; i < ents; i++) { 531 if (in_obp_range(prom_trans[i].virt)) 532 break; 533 } 534 first = i; 535 for (; i < ents; i++) { 536 if (!in_obp_range(prom_trans[i].virt)) 537 break; 538 } 539 last = i; 540 541 for (i = 0; i < (last - first); i++) { 542 struct linux_prom_translation *src = &prom_trans[i + first]; 543 struct linux_prom_translation *dest = &prom_trans[i]; 544 545 *dest = *src; 546 } 547 for (; i < ents; i++) { 548 struct linux_prom_translation *dest = &prom_trans[i]; 549 dest->virt = dest->size = dest->data = 0x0UL; 550 } 551 552 prom_trans_ents = last - first; 553 554 if (tlb_type == spitfire) { 555 /* Clear diag TTE bits. */ 556 for (i = 0; i < prom_trans_ents; i++) 557 prom_trans[i].data &= ~0x0003fe0000000000UL; 558 } 559 560 /* Force execute bit on. */ 561 for (i = 0; i < prom_trans_ents; i++) 562 prom_trans[i].data |= (tlb_type == hypervisor ? 563 _PAGE_EXEC_4V : _PAGE_EXEC_4U); 564 } 565 566 static void __init hypervisor_tlb_lock(unsigned long vaddr, 567 unsigned long pte, 568 unsigned long mmu) 569 { 570 unsigned long ret = sun4v_mmu_map_perm_addr(vaddr, 0, pte, mmu); 571 572 if (ret != 0) { 573 prom_printf("hypervisor_tlb_lock[%lx:%x:%lx:%lx]: " 574 "errors with %lx\n", vaddr, 0, pte, mmu, ret); 575 prom_halt(); 576 } 577 } 578 579 static unsigned long kern_large_tte(unsigned long paddr); 580 581 static void __init remap_kernel(void) 582 { 583 unsigned long phys_page, tte_vaddr, tte_data; 584 int i, tlb_ent = sparc64_highest_locked_tlbent(); 585 586 tte_vaddr = (unsigned long) KERNBASE; 587 phys_page = (prom_boot_mapping_phys_low >> ILOG2_4MB) << ILOG2_4MB; 588 tte_data = kern_large_tte(phys_page); 589 590 kern_locked_tte_data = tte_data; 591 592 /* Now lock us into the TLBs via Hypervisor or OBP. */ 593 if (tlb_type == hypervisor) { 594 for (i = 0; i < num_kernel_image_mappings; i++) { 595 hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU); 596 hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU); 597 tte_vaddr += 0x400000; 598 tte_data += 0x400000; 599 } 600 } else { 601 for (i = 0; i < num_kernel_image_mappings; i++) { 602 prom_dtlb_load(tlb_ent - i, tte_data, tte_vaddr); 603 prom_itlb_load(tlb_ent - i, tte_data, tte_vaddr); 604 tte_vaddr += 0x400000; 605 tte_data += 0x400000; 606 } 607 sparc64_highest_unlocked_tlb_ent = tlb_ent - i; 608 } 609 if (tlb_type == cheetah_plus) { 610 sparc64_kern_pri_context = (CTX_CHEETAH_PLUS_CTX0 | 611 CTX_CHEETAH_PLUS_NUC); 612 sparc64_kern_pri_nuc_bits = CTX_CHEETAH_PLUS_NUC; 613 sparc64_kern_sec_context = CTX_CHEETAH_PLUS_CTX0; 614 } 615 } 616 617 618 static void __init inherit_prom_mappings(void) 619 { 620 /* Now fixup OBP's idea about where we really are mapped. */ 621 printk("Remapping the kernel... "); 622 remap_kernel(); 623 printk("done.\n"); 624 } 625 626 void prom_world(int enter) 627 { 628 if (!enter) 629 set_fs(get_fs()); 630 631 __asm__ __volatile__("flushw"); 632 } 633 634 void __flush_dcache_range(unsigned long start, unsigned long end) 635 { 636 unsigned long va; 637 638 if (tlb_type == spitfire) { 639 int n = 0; 640 641 for (va = start; va < end; va += 32) { 642 spitfire_put_dcache_tag(va & 0x3fe0, 0x0); 643 if (++n >= 512) 644 break; 645 } 646 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) { 647 start = __pa(start); 648 end = __pa(end); 649 for (va = start; va < end; va += 32) 650 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t" 651 "membar #Sync" 652 : /* no outputs */ 653 : "r" (va), 654 "i" (ASI_DCACHE_INVALIDATE)); 655 } 656 } 657 EXPORT_SYMBOL(__flush_dcache_range); 658 659 /* get_new_mmu_context() uses "cache + 1". */ 660 DEFINE_SPINLOCK(ctx_alloc_lock); 661 unsigned long tlb_context_cache = CTX_FIRST_VERSION - 1; 662 #define MAX_CTX_NR (1UL << CTX_NR_BITS) 663 #define CTX_BMAP_SLOTS BITS_TO_LONGS(MAX_CTX_NR) 664 DECLARE_BITMAP(mmu_context_bmap, MAX_CTX_NR); 665 666 /* Caller does TLB context flushing on local CPU if necessary. 667 * The caller also ensures that CTX_VALID(mm->context) is false. 668 * 669 * We must be careful about boundary cases so that we never 670 * let the user have CTX 0 (nucleus) or we ever use a CTX 671 * version of zero (and thus NO_CONTEXT would not be caught 672 * by version mis-match tests in mmu_context.h). 673 * 674 * Always invoked with interrupts disabled. 675 */ 676 void get_new_mmu_context(struct mm_struct *mm) 677 { 678 unsigned long ctx, new_ctx; 679 unsigned long orig_pgsz_bits; 680 int new_version; 681 682 spin_lock(&ctx_alloc_lock); 683 orig_pgsz_bits = (mm->context.sparc64_ctx_val & CTX_PGSZ_MASK); 684 ctx = (tlb_context_cache + 1) & CTX_NR_MASK; 685 new_ctx = find_next_zero_bit(mmu_context_bmap, 1 << CTX_NR_BITS, ctx); 686 new_version = 0; 687 if (new_ctx >= (1 << CTX_NR_BITS)) { 688 new_ctx = find_next_zero_bit(mmu_context_bmap, ctx, 1); 689 if (new_ctx >= ctx) { 690 int i; 691 new_ctx = (tlb_context_cache & CTX_VERSION_MASK) + 692 CTX_FIRST_VERSION; 693 if (new_ctx == 1) 694 new_ctx = CTX_FIRST_VERSION; 695 696 /* Don't call memset, for 16 entries that's just 697 * plain silly... 698 */ 699 mmu_context_bmap[0] = 3; 700 mmu_context_bmap[1] = 0; 701 mmu_context_bmap[2] = 0; 702 mmu_context_bmap[3] = 0; 703 for (i = 4; i < CTX_BMAP_SLOTS; i += 4) { 704 mmu_context_bmap[i + 0] = 0; 705 mmu_context_bmap[i + 1] = 0; 706 mmu_context_bmap[i + 2] = 0; 707 mmu_context_bmap[i + 3] = 0; 708 } 709 new_version = 1; 710 goto out; 711 } 712 } 713 mmu_context_bmap[new_ctx>>6] |= (1UL << (new_ctx & 63)); 714 new_ctx |= (tlb_context_cache & CTX_VERSION_MASK); 715 out: 716 tlb_context_cache = new_ctx; 717 mm->context.sparc64_ctx_val = new_ctx | orig_pgsz_bits; 718 spin_unlock(&ctx_alloc_lock); 719 720 if (unlikely(new_version)) 721 smp_new_mmu_context_version(); 722 } 723 724 static int numa_enabled = 1; 725 static int numa_debug; 726 727 static int __init early_numa(char *p) 728 { 729 if (!p) 730 return 0; 731 732 if (strstr(p, "off")) 733 numa_enabled = 0; 734 735 if (strstr(p, "debug")) 736 numa_debug = 1; 737 738 return 0; 739 } 740 early_param("numa", early_numa); 741 742 #define numadbg(f, a...) \ 743 do { if (numa_debug) \ 744 printk(KERN_INFO f, ## a); \ 745 } while (0) 746 747 static void __init find_ramdisk(unsigned long phys_base) 748 { 749 #ifdef CONFIG_BLK_DEV_INITRD 750 if (sparc_ramdisk_image || sparc_ramdisk_image64) { 751 unsigned long ramdisk_image; 752 753 /* Older versions of the bootloader only supported a 754 * 32-bit physical address for the ramdisk image 755 * location, stored at sparc_ramdisk_image. Newer 756 * SILO versions set sparc_ramdisk_image to zero and 757 * provide a full 64-bit physical address at 758 * sparc_ramdisk_image64. 759 */ 760 ramdisk_image = sparc_ramdisk_image; 761 if (!ramdisk_image) 762 ramdisk_image = sparc_ramdisk_image64; 763 764 /* Another bootloader quirk. The bootloader normalizes 765 * the physical address to KERNBASE, so we have to 766 * factor that back out and add in the lowest valid 767 * physical page address to get the true physical address. 768 */ 769 ramdisk_image -= KERNBASE; 770 ramdisk_image += phys_base; 771 772 numadbg("Found ramdisk at physical address 0x%lx, size %u\n", 773 ramdisk_image, sparc_ramdisk_size); 774 775 initrd_start = ramdisk_image; 776 initrd_end = ramdisk_image + sparc_ramdisk_size; 777 778 memblock_reserve(initrd_start, sparc_ramdisk_size); 779 780 initrd_start += PAGE_OFFSET; 781 initrd_end += PAGE_OFFSET; 782 } 783 #endif 784 } 785 786 struct node_mem_mask { 787 unsigned long mask; 788 unsigned long val; 789 }; 790 static struct node_mem_mask node_masks[MAX_NUMNODES]; 791 static int num_node_masks; 792 793 #ifdef CONFIG_NEED_MULTIPLE_NODES 794 795 int numa_cpu_lookup_table[NR_CPUS]; 796 cpumask_t numa_cpumask_lookup_table[MAX_NUMNODES]; 797 798 struct mdesc_mblock { 799 u64 base; 800 u64 size; 801 u64 offset; /* RA-to-PA */ 802 }; 803 static struct mdesc_mblock *mblocks; 804 static int num_mblocks; 805 806 static unsigned long ra_to_pa(unsigned long addr) 807 { 808 int i; 809 810 for (i = 0; i < num_mblocks; i++) { 811 struct mdesc_mblock *m = &mblocks[i]; 812 813 if (addr >= m->base && 814 addr < (m->base + m->size)) { 815 addr += m->offset; 816 break; 817 } 818 } 819 return addr; 820 } 821 822 static int find_node(unsigned long addr) 823 { 824 int i; 825 826 addr = ra_to_pa(addr); 827 for (i = 0; i < num_node_masks; i++) { 828 struct node_mem_mask *p = &node_masks[i]; 829 830 if ((addr & p->mask) == p->val) 831 return i; 832 } 833 /* The following condition has been observed on LDOM guests.*/ 834 WARN_ONCE(1, "find_node: A physical address doesn't match a NUMA node" 835 " rule. Some physical memory will be owned by node 0."); 836 return 0; 837 } 838 839 static u64 memblock_nid_range(u64 start, u64 end, int *nid) 840 { 841 *nid = find_node(start); 842 start += PAGE_SIZE; 843 while (start < end) { 844 int n = find_node(start); 845 846 if (n != *nid) 847 break; 848 start += PAGE_SIZE; 849 } 850 851 if (start > end) 852 start = end; 853 854 return start; 855 } 856 #endif 857 858 /* This must be invoked after performing all of the necessary 859 * memblock_set_node() calls for 'nid'. We need to be able to get 860 * correct data from get_pfn_range_for_nid(). 861 */ 862 static void __init allocate_node_data(int nid) 863 { 864 struct pglist_data *p; 865 unsigned long start_pfn, end_pfn; 866 #ifdef CONFIG_NEED_MULTIPLE_NODES 867 unsigned long paddr; 868 869 paddr = memblock_alloc_try_nid(sizeof(struct pglist_data), SMP_CACHE_BYTES, nid); 870 if (!paddr) { 871 prom_printf("Cannot allocate pglist_data for nid[%d]\n", nid); 872 prom_halt(); 873 } 874 NODE_DATA(nid) = __va(paddr); 875 memset(NODE_DATA(nid), 0, sizeof(struct pglist_data)); 876 877 NODE_DATA(nid)->node_id = nid; 878 #endif 879 880 p = NODE_DATA(nid); 881 882 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); 883 p->node_start_pfn = start_pfn; 884 p->node_spanned_pages = end_pfn - start_pfn; 885 } 886 887 static void init_node_masks_nonnuma(void) 888 { 889 #ifdef CONFIG_NEED_MULTIPLE_NODES 890 int i; 891 #endif 892 893 numadbg("Initializing tables for non-numa.\n"); 894 895 node_masks[0].mask = node_masks[0].val = 0; 896 num_node_masks = 1; 897 898 #ifdef CONFIG_NEED_MULTIPLE_NODES 899 for (i = 0; i < NR_CPUS; i++) 900 numa_cpu_lookup_table[i] = 0; 901 902 cpumask_setall(&numa_cpumask_lookup_table[0]); 903 #endif 904 } 905 906 #ifdef CONFIG_NEED_MULTIPLE_NODES 907 struct pglist_data *node_data[MAX_NUMNODES]; 908 909 EXPORT_SYMBOL(numa_cpu_lookup_table); 910 EXPORT_SYMBOL(numa_cpumask_lookup_table); 911 EXPORT_SYMBOL(node_data); 912 913 struct mdesc_mlgroup { 914 u64 node; 915 u64 latency; 916 u64 match; 917 u64 mask; 918 }; 919 static struct mdesc_mlgroup *mlgroups; 920 static int num_mlgroups; 921 922 static int scan_pio_for_cfg_handle(struct mdesc_handle *md, u64 pio, 923 u32 cfg_handle) 924 { 925 u64 arc; 926 927 mdesc_for_each_arc(arc, md, pio, MDESC_ARC_TYPE_FWD) { 928 u64 target = mdesc_arc_target(md, arc); 929 const u64 *val; 930 931 val = mdesc_get_property(md, target, 932 "cfg-handle", NULL); 933 if (val && *val == cfg_handle) 934 return 0; 935 } 936 return -ENODEV; 937 } 938 939 static int scan_arcs_for_cfg_handle(struct mdesc_handle *md, u64 grp, 940 u32 cfg_handle) 941 { 942 u64 arc, candidate, best_latency = ~(u64)0; 943 944 candidate = MDESC_NODE_NULL; 945 mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) { 946 u64 target = mdesc_arc_target(md, arc); 947 const char *name = mdesc_node_name(md, target); 948 const u64 *val; 949 950 if (strcmp(name, "pio-latency-group")) 951 continue; 952 953 val = mdesc_get_property(md, target, "latency", NULL); 954 if (!val) 955 continue; 956 957 if (*val < best_latency) { 958 candidate = target; 959 best_latency = *val; 960 } 961 } 962 963 if (candidate == MDESC_NODE_NULL) 964 return -ENODEV; 965 966 return scan_pio_for_cfg_handle(md, candidate, cfg_handle); 967 } 968 969 int of_node_to_nid(struct device_node *dp) 970 { 971 const struct linux_prom64_registers *regs; 972 struct mdesc_handle *md; 973 u32 cfg_handle; 974 int count, nid; 975 u64 grp; 976 977 /* This is the right thing to do on currently supported 978 * SUN4U NUMA platforms as well, as the PCI controller does 979 * not sit behind any particular memory controller. 980 */ 981 if (!mlgroups) 982 return -1; 983 984 regs = of_get_property(dp, "reg", NULL); 985 if (!regs) 986 return -1; 987 988 cfg_handle = (regs->phys_addr >> 32UL) & 0x0fffffff; 989 990 md = mdesc_grab(); 991 992 count = 0; 993 nid = -1; 994 mdesc_for_each_node_by_name(md, grp, "group") { 995 if (!scan_arcs_for_cfg_handle(md, grp, cfg_handle)) { 996 nid = count; 997 break; 998 } 999 count++; 1000 } 1001 1002 mdesc_release(md); 1003 1004 return nid; 1005 } 1006 1007 static void __init add_node_ranges(void) 1008 { 1009 struct memblock_region *reg; 1010 1011 for_each_memblock(memory, reg) { 1012 unsigned long size = reg->size; 1013 unsigned long start, end; 1014 1015 start = reg->base; 1016 end = start + size; 1017 while (start < end) { 1018 unsigned long this_end; 1019 int nid; 1020 1021 this_end = memblock_nid_range(start, end, &nid); 1022 1023 numadbg("Setting memblock NUMA node nid[%d] " 1024 "start[%lx] end[%lx]\n", 1025 nid, start, this_end); 1026 1027 memblock_set_node(start, this_end - start, 1028 &memblock.memory, nid); 1029 start = this_end; 1030 } 1031 } 1032 } 1033 1034 static int __init grab_mlgroups(struct mdesc_handle *md) 1035 { 1036 unsigned long paddr; 1037 int count = 0; 1038 u64 node; 1039 1040 mdesc_for_each_node_by_name(md, node, "memory-latency-group") 1041 count++; 1042 if (!count) 1043 return -ENOENT; 1044 1045 paddr = memblock_alloc(count * sizeof(struct mdesc_mlgroup), 1046 SMP_CACHE_BYTES); 1047 if (!paddr) 1048 return -ENOMEM; 1049 1050 mlgroups = __va(paddr); 1051 num_mlgroups = count; 1052 1053 count = 0; 1054 mdesc_for_each_node_by_name(md, node, "memory-latency-group") { 1055 struct mdesc_mlgroup *m = &mlgroups[count++]; 1056 const u64 *val; 1057 1058 m->node = node; 1059 1060 val = mdesc_get_property(md, node, "latency", NULL); 1061 m->latency = *val; 1062 val = mdesc_get_property(md, node, "address-match", NULL); 1063 m->match = *val; 1064 val = mdesc_get_property(md, node, "address-mask", NULL); 1065 m->mask = *val; 1066 1067 numadbg("MLGROUP[%d]: node[%llx] latency[%llx] " 1068 "match[%llx] mask[%llx]\n", 1069 count - 1, m->node, m->latency, m->match, m->mask); 1070 } 1071 1072 return 0; 1073 } 1074 1075 static int __init grab_mblocks(struct mdesc_handle *md) 1076 { 1077 unsigned long paddr; 1078 int count = 0; 1079 u64 node; 1080 1081 mdesc_for_each_node_by_name(md, node, "mblock") 1082 count++; 1083 if (!count) 1084 return -ENOENT; 1085 1086 paddr = memblock_alloc(count * sizeof(struct mdesc_mblock), 1087 SMP_CACHE_BYTES); 1088 if (!paddr) 1089 return -ENOMEM; 1090 1091 mblocks = __va(paddr); 1092 num_mblocks = count; 1093 1094 count = 0; 1095 mdesc_for_each_node_by_name(md, node, "mblock") { 1096 struct mdesc_mblock *m = &mblocks[count++]; 1097 const u64 *val; 1098 1099 val = mdesc_get_property(md, node, "base", NULL); 1100 m->base = *val; 1101 val = mdesc_get_property(md, node, "size", NULL); 1102 m->size = *val; 1103 val = mdesc_get_property(md, node, 1104 "address-congruence-offset", NULL); 1105 1106 /* The address-congruence-offset property is optional. 1107 * Explicity zero it be identifty this. 1108 */ 1109 if (val) 1110 m->offset = *val; 1111 else 1112 m->offset = 0UL; 1113 1114 numadbg("MBLOCK[%d]: base[%llx] size[%llx] offset[%llx]\n", 1115 count - 1, m->base, m->size, m->offset); 1116 } 1117 1118 return 0; 1119 } 1120 1121 static void __init numa_parse_mdesc_group_cpus(struct mdesc_handle *md, 1122 u64 grp, cpumask_t *mask) 1123 { 1124 u64 arc; 1125 1126 cpumask_clear(mask); 1127 1128 mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_BACK) { 1129 u64 target = mdesc_arc_target(md, arc); 1130 const char *name = mdesc_node_name(md, target); 1131 const u64 *id; 1132 1133 if (strcmp(name, "cpu")) 1134 continue; 1135 id = mdesc_get_property(md, target, "id", NULL); 1136 if (*id < nr_cpu_ids) 1137 cpumask_set_cpu(*id, mask); 1138 } 1139 } 1140 1141 static struct mdesc_mlgroup * __init find_mlgroup(u64 node) 1142 { 1143 int i; 1144 1145 for (i = 0; i < num_mlgroups; i++) { 1146 struct mdesc_mlgroup *m = &mlgroups[i]; 1147 if (m->node == node) 1148 return m; 1149 } 1150 return NULL; 1151 } 1152 1153 int __node_distance(int from, int to) 1154 { 1155 if ((from >= MAX_NUMNODES) || (to >= MAX_NUMNODES)) { 1156 pr_warn("Returning default NUMA distance value for %d->%d\n", 1157 from, to); 1158 return (from == to) ? LOCAL_DISTANCE : REMOTE_DISTANCE; 1159 } 1160 return numa_latency[from][to]; 1161 } 1162 1163 static int find_best_numa_node_for_mlgroup(struct mdesc_mlgroup *grp) 1164 { 1165 int i; 1166 1167 for (i = 0; i < MAX_NUMNODES; i++) { 1168 struct node_mem_mask *n = &node_masks[i]; 1169 1170 if ((grp->mask == n->mask) && (grp->match == n->val)) 1171 break; 1172 } 1173 return i; 1174 } 1175 1176 static void find_numa_latencies_for_group(struct mdesc_handle *md, u64 grp, 1177 int index) 1178 { 1179 u64 arc; 1180 1181 mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) { 1182 int tnode; 1183 u64 target = mdesc_arc_target(md, arc); 1184 struct mdesc_mlgroup *m = find_mlgroup(target); 1185 1186 if (!m) 1187 continue; 1188 tnode = find_best_numa_node_for_mlgroup(m); 1189 if (tnode == MAX_NUMNODES) 1190 continue; 1191 numa_latency[index][tnode] = m->latency; 1192 } 1193 } 1194 1195 static int __init numa_attach_mlgroup(struct mdesc_handle *md, u64 grp, 1196 int index) 1197 { 1198 struct mdesc_mlgroup *candidate = NULL; 1199 u64 arc, best_latency = ~(u64)0; 1200 struct node_mem_mask *n; 1201 1202 mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) { 1203 u64 target = mdesc_arc_target(md, arc); 1204 struct mdesc_mlgroup *m = find_mlgroup(target); 1205 if (!m) 1206 continue; 1207 if (m->latency < best_latency) { 1208 candidate = m; 1209 best_latency = m->latency; 1210 } 1211 } 1212 if (!candidate) 1213 return -ENOENT; 1214 1215 if (num_node_masks != index) { 1216 printk(KERN_ERR "Inconsistent NUMA state, " 1217 "index[%d] != num_node_masks[%d]\n", 1218 index, num_node_masks); 1219 return -EINVAL; 1220 } 1221 1222 n = &node_masks[num_node_masks++]; 1223 1224 n->mask = candidate->mask; 1225 n->val = candidate->match; 1226 1227 numadbg("NUMA NODE[%d]: mask[%lx] val[%lx] (latency[%llx])\n", 1228 index, n->mask, n->val, candidate->latency); 1229 1230 return 0; 1231 } 1232 1233 static int __init numa_parse_mdesc_group(struct mdesc_handle *md, u64 grp, 1234 int index) 1235 { 1236 cpumask_t mask; 1237 int cpu; 1238 1239 numa_parse_mdesc_group_cpus(md, grp, &mask); 1240 1241 for_each_cpu(cpu, &mask) 1242 numa_cpu_lookup_table[cpu] = index; 1243 cpumask_copy(&numa_cpumask_lookup_table[index], &mask); 1244 1245 if (numa_debug) { 1246 printk(KERN_INFO "NUMA GROUP[%d]: cpus [ ", index); 1247 for_each_cpu(cpu, &mask) 1248 printk("%d ", cpu); 1249 printk("]\n"); 1250 } 1251 1252 return numa_attach_mlgroup(md, grp, index); 1253 } 1254 1255 static int __init numa_parse_mdesc(void) 1256 { 1257 struct mdesc_handle *md = mdesc_grab(); 1258 int i, j, err, count; 1259 u64 node; 1260 1261 node = mdesc_node_by_name(md, MDESC_NODE_NULL, "latency-groups"); 1262 if (node == MDESC_NODE_NULL) { 1263 mdesc_release(md); 1264 return -ENOENT; 1265 } 1266 1267 err = grab_mblocks(md); 1268 if (err < 0) 1269 goto out; 1270 1271 err = grab_mlgroups(md); 1272 if (err < 0) 1273 goto out; 1274 1275 count = 0; 1276 mdesc_for_each_node_by_name(md, node, "group") { 1277 err = numa_parse_mdesc_group(md, node, count); 1278 if (err < 0) 1279 break; 1280 count++; 1281 } 1282 1283 count = 0; 1284 mdesc_for_each_node_by_name(md, node, "group") { 1285 find_numa_latencies_for_group(md, node, count); 1286 count++; 1287 } 1288 1289 /* Normalize numa latency matrix according to ACPI SLIT spec. */ 1290 for (i = 0; i < MAX_NUMNODES; i++) { 1291 u64 self_latency = numa_latency[i][i]; 1292 1293 for (j = 0; j < MAX_NUMNODES; j++) { 1294 numa_latency[i][j] = 1295 (numa_latency[i][j] * LOCAL_DISTANCE) / 1296 self_latency; 1297 } 1298 } 1299 1300 add_node_ranges(); 1301 1302 for (i = 0; i < num_node_masks; i++) { 1303 allocate_node_data(i); 1304 node_set_online(i); 1305 } 1306 1307 err = 0; 1308 out: 1309 mdesc_release(md); 1310 return err; 1311 } 1312 1313 static int __init numa_parse_jbus(void) 1314 { 1315 unsigned long cpu, index; 1316 1317 /* NUMA node id is encoded in bits 36 and higher, and there is 1318 * a 1-to-1 mapping from CPU ID to NUMA node ID. 1319 */ 1320 index = 0; 1321 for_each_present_cpu(cpu) { 1322 numa_cpu_lookup_table[cpu] = index; 1323 cpumask_copy(&numa_cpumask_lookup_table[index], cpumask_of(cpu)); 1324 node_masks[index].mask = ~((1UL << 36UL) - 1UL); 1325 node_masks[index].val = cpu << 36UL; 1326 1327 index++; 1328 } 1329 num_node_masks = index; 1330 1331 add_node_ranges(); 1332 1333 for (index = 0; index < num_node_masks; index++) { 1334 allocate_node_data(index); 1335 node_set_online(index); 1336 } 1337 1338 return 0; 1339 } 1340 1341 static int __init numa_parse_sun4u(void) 1342 { 1343 if (tlb_type == cheetah || tlb_type == cheetah_plus) { 1344 unsigned long ver; 1345 1346 __asm__ ("rdpr %%ver, %0" : "=r" (ver)); 1347 if ((ver >> 32UL) == __JALAPENO_ID || 1348 (ver >> 32UL) == __SERRANO_ID) 1349 return numa_parse_jbus(); 1350 } 1351 return -1; 1352 } 1353 1354 static int __init bootmem_init_numa(void) 1355 { 1356 int i, j; 1357 int err = -1; 1358 1359 numadbg("bootmem_init_numa()\n"); 1360 1361 /* Some sane defaults for numa latency values */ 1362 for (i = 0; i < MAX_NUMNODES; i++) { 1363 for (j = 0; j < MAX_NUMNODES; j++) 1364 numa_latency[i][j] = (i == j) ? 1365 LOCAL_DISTANCE : REMOTE_DISTANCE; 1366 } 1367 1368 if (numa_enabled) { 1369 if (tlb_type == hypervisor) 1370 err = numa_parse_mdesc(); 1371 else 1372 err = numa_parse_sun4u(); 1373 } 1374 return err; 1375 } 1376 1377 #else 1378 1379 static int bootmem_init_numa(void) 1380 { 1381 return -1; 1382 } 1383 1384 #endif 1385 1386 static void __init bootmem_init_nonnuma(void) 1387 { 1388 unsigned long top_of_ram = memblock_end_of_DRAM(); 1389 unsigned long total_ram = memblock_phys_mem_size(); 1390 1391 numadbg("bootmem_init_nonnuma()\n"); 1392 1393 printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n", 1394 top_of_ram, total_ram); 1395 printk(KERN_INFO "Memory hole size: %ldMB\n", 1396 (top_of_ram - total_ram) >> 20); 1397 1398 init_node_masks_nonnuma(); 1399 memblock_set_node(0, (phys_addr_t)ULLONG_MAX, &memblock.memory, 0); 1400 allocate_node_data(0); 1401 node_set_online(0); 1402 } 1403 1404 static unsigned long __init bootmem_init(unsigned long phys_base) 1405 { 1406 unsigned long end_pfn; 1407 1408 end_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT; 1409 max_pfn = max_low_pfn = end_pfn; 1410 min_low_pfn = (phys_base >> PAGE_SHIFT); 1411 1412 if (bootmem_init_numa() < 0) 1413 bootmem_init_nonnuma(); 1414 1415 /* Dump memblock with node info. */ 1416 memblock_dump_all(); 1417 1418 /* XXX cpu notifier XXX */ 1419 1420 sparse_memory_present_with_active_regions(MAX_NUMNODES); 1421 sparse_init(); 1422 1423 return end_pfn; 1424 } 1425 1426 static struct linux_prom64_registers pall[MAX_BANKS] __initdata; 1427 static int pall_ents __initdata; 1428 1429 static unsigned long max_phys_bits = 40; 1430 1431 bool kern_addr_valid(unsigned long addr) 1432 { 1433 pgd_t *pgd; 1434 pud_t *pud; 1435 pmd_t *pmd; 1436 pte_t *pte; 1437 1438 if ((long)addr < 0L) { 1439 unsigned long pa = __pa(addr); 1440 1441 if ((addr >> max_phys_bits) != 0UL) 1442 return false; 1443 1444 return pfn_valid(pa >> PAGE_SHIFT); 1445 } 1446 1447 if (addr >= (unsigned long) KERNBASE && 1448 addr < (unsigned long)&_end) 1449 return true; 1450 1451 pgd = pgd_offset_k(addr); 1452 if (pgd_none(*pgd)) 1453 return 0; 1454 1455 pud = pud_offset(pgd, addr); 1456 if (pud_none(*pud)) 1457 return 0; 1458 1459 if (pud_large(*pud)) 1460 return pfn_valid(pud_pfn(*pud)); 1461 1462 pmd = pmd_offset(pud, addr); 1463 if (pmd_none(*pmd)) 1464 return 0; 1465 1466 if (pmd_large(*pmd)) 1467 return pfn_valid(pmd_pfn(*pmd)); 1468 1469 pte = pte_offset_kernel(pmd, addr); 1470 if (pte_none(*pte)) 1471 return 0; 1472 1473 return pfn_valid(pte_pfn(*pte)); 1474 } 1475 EXPORT_SYMBOL(kern_addr_valid); 1476 1477 static unsigned long __ref kernel_map_hugepud(unsigned long vstart, 1478 unsigned long vend, 1479 pud_t *pud) 1480 { 1481 const unsigned long mask16gb = (1UL << 34) - 1UL; 1482 u64 pte_val = vstart; 1483 1484 /* Each PUD is 8GB */ 1485 if ((vstart & mask16gb) || 1486 (vend - vstart <= mask16gb)) { 1487 pte_val ^= kern_linear_pte_xor[2]; 1488 pud_val(*pud) = pte_val | _PAGE_PUD_HUGE; 1489 1490 return vstart + PUD_SIZE; 1491 } 1492 1493 pte_val ^= kern_linear_pte_xor[3]; 1494 pte_val |= _PAGE_PUD_HUGE; 1495 1496 vend = vstart + mask16gb + 1UL; 1497 while (vstart < vend) { 1498 pud_val(*pud) = pte_val; 1499 1500 pte_val += PUD_SIZE; 1501 vstart += PUD_SIZE; 1502 pud++; 1503 } 1504 return vstart; 1505 } 1506 1507 static bool kernel_can_map_hugepud(unsigned long vstart, unsigned long vend, 1508 bool guard) 1509 { 1510 if (guard && !(vstart & ~PUD_MASK) && (vend - vstart) >= PUD_SIZE) 1511 return true; 1512 1513 return false; 1514 } 1515 1516 static unsigned long __ref kernel_map_hugepmd(unsigned long vstart, 1517 unsigned long vend, 1518 pmd_t *pmd) 1519 { 1520 const unsigned long mask256mb = (1UL << 28) - 1UL; 1521 const unsigned long mask2gb = (1UL << 31) - 1UL; 1522 u64 pte_val = vstart; 1523 1524 /* Each PMD is 8MB */ 1525 if ((vstart & mask256mb) || 1526 (vend - vstart <= mask256mb)) { 1527 pte_val ^= kern_linear_pte_xor[0]; 1528 pmd_val(*pmd) = pte_val | _PAGE_PMD_HUGE; 1529 1530 return vstart + PMD_SIZE; 1531 } 1532 1533 if ((vstart & mask2gb) || 1534 (vend - vstart <= mask2gb)) { 1535 pte_val ^= kern_linear_pte_xor[1]; 1536 pte_val |= _PAGE_PMD_HUGE; 1537 vend = vstart + mask256mb + 1UL; 1538 } else { 1539 pte_val ^= kern_linear_pte_xor[2]; 1540 pte_val |= _PAGE_PMD_HUGE; 1541 vend = vstart + mask2gb + 1UL; 1542 } 1543 1544 while (vstart < vend) { 1545 pmd_val(*pmd) = pte_val; 1546 1547 pte_val += PMD_SIZE; 1548 vstart += PMD_SIZE; 1549 pmd++; 1550 } 1551 1552 return vstart; 1553 } 1554 1555 static bool kernel_can_map_hugepmd(unsigned long vstart, unsigned long vend, 1556 bool guard) 1557 { 1558 if (guard && !(vstart & ~PMD_MASK) && (vend - vstart) >= PMD_SIZE) 1559 return true; 1560 1561 return false; 1562 } 1563 1564 static unsigned long __ref kernel_map_range(unsigned long pstart, 1565 unsigned long pend, pgprot_t prot, 1566 bool use_huge) 1567 { 1568 unsigned long vstart = PAGE_OFFSET + pstart; 1569 unsigned long vend = PAGE_OFFSET + pend; 1570 unsigned long alloc_bytes = 0UL; 1571 1572 if ((vstart & ~PAGE_MASK) || (vend & ~PAGE_MASK)) { 1573 prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n", 1574 vstart, vend); 1575 prom_halt(); 1576 } 1577 1578 while (vstart < vend) { 1579 unsigned long this_end, paddr = __pa(vstart); 1580 pgd_t *pgd = pgd_offset_k(vstart); 1581 pud_t *pud; 1582 pmd_t *pmd; 1583 pte_t *pte; 1584 1585 if (pgd_none(*pgd)) { 1586 pud_t *new; 1587 1588 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE); 1589 alloc_bytes += PAGE_SIZE; 1590 pgd_populate(&init_mm, pgd, new); 1591 } 1592 pud = pud_offset(pgd, vstart); 1593 if (pud_none(*pud)) { 1594 pmd_t *new; 1595 1596 if (kernel_can_map_hugepud(vstart, vend, use_huge)) { 1597 vstart = kernel_map_hugepud(vstart, vend, pud); 1598 continue; 1599 } 1600 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE); 1601 alloc_bytes += PAGE_SIZE; 1602 pud_populate(&init_mm, pud, new); 1603 } 1604 1605 pmd = pmd_offset(pud, vstart); 1606 if (pmd_none(*pmd)) { 1607 pte_t *new; 1608 1609 if (kernel_can_map_hugepmd(vstart, vend, use_huge)) { 1610 vstart = kernel_map_hugepmd(vstart, vend, pmd); 1611 continue; 1612 } 1613 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE); 1614 alloc_bytes += PAGE_SIZE; 1615 pmd_populate_kernel(&init_mm, pmd, new); 1616 } 1617 1618 pte = pte_offset_kernel(pmd, vstart); 1619 this_end = (vstart + PMD_SIZE) & PMD_MASK; 1620 if (this_end > vend) 1621 this_end = vend; 1622 1623 while (vstart < this_end) { 1624 pte_val(*pte) = (paddr | pgprot_val(prot)); 1625 1626 vstart += PAGE_SIZE; 1627 paddr += PAGE_SIZE; 1628 pte++; 1629 } 1630 } 1631 1632 return alloc_bytes; 1633 } 1634 1635 static void __init flush_all_kernel_tsbs(void) 1636 { 1637 int i; 1638 1639 for (i = 0; i < KERNEL_TSB_NENTRIES; i++) { 1640 struct tsb *ent = &swapper_tsb[i]; 1641 1642 ent->tag = (1UL << TSB_TAG_INVALID_BIT); 1643 } 1644 #ifndef CONFIG_DEBUG_PAGEALLOC 1645 for (i = 0; i < KERNEL_TSB4M_NENTRIES; i++) { 1646 struct tsb *ent = &swapper_4m_tsb[i]; 1647 1648 ent->tag = (1UL << TSB_TAG_INVALID_BIT); 1649 } 1650 #endif 1651 } 1652 1653 extern unsigned int kvmap_linear_patch[1]; 1654 1655 static void __init kernel_physical_mapping_init(void) 1656 { 1657 unsigned long i, mem_alloced = 0UL; 1658 bool use_huge = true; 1659 1660 #ifdef CONFIG_DEBUG_PAGEALLOC 1661 use_huge = false; 1662 #endif 1663 for (i = 0; i < pall_ents; i++) { 1664 unsigned long phys_start, phys_end; 1665 1666 phys_start = pall[i].phys_addr; 1667 phys_end = phys_start + pall[i].reg_size; 1668 1669 mem_alloced += kernel_map_range(phys_start, phys_end, 1670 PAGE_KERNEL, use_huge); 1671 } 1672 1673 printk("Allocated %ld bytes for kernel page tables.\n", 1674 mem_alloced); 1675 1676 kvmap_linear_patch[0] = 0x01000000; /* nop */ 1677 flushi(&kvmap_linear_patch[0]); 1678 1679 flush_all_kernel_tsbs(); 1680 1681 __flush_tlb_all(); 1682 } 1683 1684 #ifdef CONFIG_DEBUG_PAGEALLOC 1685 void __kernel_map_pages(struct page *page, int numpages, int enable) 1686 { 1687 unsigned long phys_start = page_to_pfn(page) << PAGE_SHIFT; 1688 unsigned long phys_end = phys_start + (numpages * PAGE_SIZE); 1689 1690 kernel_map_range(phys_start, phys_end, 1691 (enable ? PAGE_KERNEL : __pgprot(0)), false); 1692 1693 flush_tsb_kernel_range(PAGE_OFFSET + phys_start, 1694 PAGE_OFFSET + phys_end); 1695 1696 /* we should perform an IPI and flush all tlbs, 1697 * but that can deadlock->flush only current cpu. 1698 */ 1699 __flush_tlb_kernel_range(PAGE_OFFSET + phys_start, 1700 PAGE_OFFSET + phys_end); 1701 } 1702 #endif 1703 1704 unsigned long __init find_ecache_flush_span(unsigned long size) 1705 { 1706 int i; 1707 1708 for (i = 0; i < pavail_ents; i++) { 1709 if (pavail[i].reg_size >= size) 1710 return pavail[i].phys_addr; 1711 } 1712 1713 return ~0UL; 1714 } 1715 1716 unsigned long PAGE_OFFSET; 1717 EXPORT_SYMBOL(PAGE_OFFSET); 1718 1719 unsigned long VMALLOC_END = 0x0000010000000000UL; 1720 EXPORT_SYMBOL(VMALLOC_END); 1721 1722 unsigned long sparc64_va_hole_top = 0xfffff80000000000UL; 1723 unsigned long sparc64_va_hole_bottom = 0x0000080000000000UL; 1724 1725 static void __init setup_page_offset(void) 1726 { 1727 if (tlb_type == cheetah || tlb_type == cheetah_plus) { 1728 /* Cheetah/Panther support a full 64-bit virtual 1729 * address, so we can use all that our page tables 1730 * support. 1731 */ 1732 sparc64_va_hole_top = 0xfff0000000000000UL; 1733 sparc64_va_hole_bottom = 0x0010000000000000UL; 1734 1735 max_phys_bits = 42; 1736 } else if (tlb_type == hypervisor) { 1737 switch (sun4v_chip_type) { 1738 case SUN4V_CHIP_NIAGARA1: 1739 case SUN4V_CHIP_NIAGARA2: 1740 /* T1 and T2 support 48-bit virtual addresses. */ 1741 sparc64_va_hole_top = 0xffff800000000000UL; 1742 sparc64_va_hole_bottom = 0x0000800000000000UL; 1743 1744 max_phys_bits = 39; 1745 break; 1746 case SUN4V_CHIP_NIAGARA3: 1747 /* T3 supports 48-bit virtual addresses. */ 1748 sparc64_va_hole_top = 0xffff800000000000UL; 1749 sparc64_va_hole_bottom = 0x0000800000000000UL; 1750 1751 max_phys_bits = 43; 1752 break; 1753 case SUN4V_CHIP_NIAGARA4: 1754 case SUN4V_CHIP_NIAGARA5: 1755 case SUN4V_CHIP_SPARC64X: 1756 case SUN4V_CHIP_SPARC_M6: 1757 /* T4 and later support 52-bit virtual addresses. */ 1758 sparc64_va_hole_top = 0xfff8000000000000UL; 1759 sparc64_va_hole_bottom = 0x0008000000000000UL; 1760 max_phys_bits = 47; 1761 break; 1762 case SUN4V_CHIP_SPARC_M7: 1763 case SUN4V_CHIP_SPARC_SN: 1764 default: 1765 /* M7 and later support 52-bit virtual addresses. */ 1766 sparc64_va_hole_top = 0xfff8000000000000UL; 1767 sparc64_va_hole_bottom = 0x0008000000000000UL; 1768 max_phys_bits = 49; 1769 break; 1770 } 1771 } 1772 1773 if (max_phys_bits > MAX_PHYS_ADDRESS_BITS) { 1774 prom_printf("MAX_PHYS_ADDRESS_BITS is too small, need %lu\n", 1775 max_phys_bits); 1776 prom_halt(); 1777 } 1778 1779 PAGE_OFFSET = sparc64_va_hole_top; 1780 VMALLOC_END = ((sparc64_va_hole_bottom >> 1) + 1781 (sparc64_va_hole_bottom >> 2)); 1782 1783 pr_info("MM: PAGE_OFFSET is 0x%016lx (max_phys_bits == %lu)\n", 1784 PAGE_OFFSET, max_phys_bits); 1785 pr_info("MM: VMALLOC [0x%016lx --> 0x%016lx]\n", 1786 VMALLOC_START, VMALLOC_END); 1787 pr_info("MM: VMEMMAP [0x%016lx --> 0x%016lx]\n", 1788 VMEMMAP_BASE, VMEMMAP_BASE << 1); 1789 } 1790 1791 static void __init tsb_phys_patch(void) 1792 { 1793 struct tsb_ldquad_phys_patch_entry *pquad; 1794 struct tsb_phys_patch_entry *p; 1795 1796 pquad = &__tsb_ldquad_phys_patch; 1797 while (pquad < &__tsb_ldquad_phys_patch_end) { 1798 unsigned long addr = pquad->addr; 1799 1800 if (tlb_type == hypervisor) 1801 *(unsigned int *) addr = pquad->sun4v_insn; 1802 else 1803 *(unsigned int *) addr = pquad->sun4u_insn; 1804 wmb(); 1805 __asm__ __volatile__("flush %0" 1806 : /* no outputs */ 1807 : "r" (addr)); 1808 1809 pquad++; 1810 } 1811 1812 p = &__tsb_phys_patch; 1813 while (p < &__tsb_phys_patch_end) { 1814 unsigned long addr = p->addr; 1815 1816 *(unsigned int *) addr = p->insn; 1817 wmb(); 1818 __asm__ __volatile__("flush %0" 1819 : /* no outputs */ 1820 : "r" (addr)); 1821 1822 p++; 1823 } 1824 } 1825 1826 /* Don't mark as init, we give this to the Hypervisor. */ 1827 #ifndef CONFIG_DEBUG_PAGEALLOC 1828 #define NUM_KTSB_DESCR 2 1829 #else 1830 #define NUM_KTSB_DESCR 1 1831 #endif 1832 static struct hv_tsb_descr ktsb_descr[NUM_KTSB_DESCR]; 1833 1834 /* The swapper TSBs are loaded with a base sequence of: 1835 * 1836 * sethi %uhi(SYMBOL), REG1 1837 * sethi %hi(SYMBOL), REG2 1838 * or REG1, %ulo(SYMBOL), REG1 1839 * or REG2, %lo(SYMBOL), REG2 1840 * sllx REG1, 32, REG1 1841 * or REG1, REG2, REG1 1842 * 1843 * When we use physical addressing for the TSB accesses, we patch the 1844 * first four instructions in the above sequence. 1845 */ 1846 1847 static void patch_one_ktsb_phys(unsigned int *start, unsigned int *end, unsigned long pa) 1848 { 1849 unsigned long high_bits, low_bits; 1850 1851 high_bits = (pa >> 32) & 0xffffffff; 1852 low_bits = (pa >> 0) & 0xffffffff; 1853 1854 while (start < end) { 1855 unsigned int *ia = (unsigned int *)(unsigned long)*start; 1856 1857 ia[0] = (ia[0] & ~0x3fffff) | (high_bits >> 10); 1858 __asm__ __volatile__("flush %0" : : "r" (ia)); 1859 1860 ia[1] = (ia[1] & ~0x3fffff) | (low_bits >> 10); 1861 __asm__ __volatile__("flush %0" : : "r" (ia + 1)); 1862 1863 ia[2] = (ia[2] & ~0x1fff) | (high_bits & 0x3ff); 1864 __asm__ __volatile__("flush %0" : : "r" (ia + 2)); 1865 1866 ia[3] = (ia[3] & ~0x1fff) | (low_bits & 0x3ff); 1867 __asm__ __volatile__("flush %0" : : "r" (ia + 3)); 1868 1869 start++; 1870 } 1871 } 1872 1873 static void ktsb_phys_patch(void) 1874 { 1875 extern unsigned int __swapper_tsb_phys_patch; 1876 extern unsigned int __swapper_tsb_phys_patch_end; 1877 unsigned long ktsb_pa; 1878 1879 ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE); 1880 patch_one_ktsb_phys(&__swapper_tsb_phys_patch, 1881 &__swapper_tsb_phys_patch_end, ktsb_pa); 1882 #ifndef CONFIG_DEBUG_PAGEALLOC 1883 { 1884 extern unsigned int __swapper_4m_tsb_phys_patch; 1885 extern unsigned int __swapper_4m_tsb_phys_patch_end; 1886 ktsb_pa = (kern_base + 1887 ((unsigned long)&swapper_4m_tsb[0] - KERNBASE)); 1888 patch_one_ktsb_phys(&__swapper_4m_tsb_phys_patch, 1889 &__swapper_4m_tsb_phys_patch_end, ktsb_pa); 1890 } 1891 #endif 1892 } 1893 1894 static void __init sun4v_ktsb_init(void) 1895 { 1896 unsigned long ktsb_pa; 1897 1898 /* First KTSB for PAGE_SIZE mappings. */ 1899 ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE); 1900 1901 switch (PAGE_SIZE) { 1902 case 8 * 1024: 1903 default: 1904 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_8K; 1905 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_8K; 1906 break; 1907 1908 case 64 * 1024: 1909 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_64K; 1910 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_64K; 1911 break; 1912 1913 case 512 * 1024: 1914 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_512K; 1915 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_512K; 1916 break; 1917 1918 case 4 * 1024 * 1024: 1919 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_4MB; 1920 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_4MB; 1921 break; 1922 } 1923 1924 ktsb_descr[0].assoc = 1; 1925 ktsb_descr[0].num_ttes = KERNEL_TSB_NENTRIES; 1926 ktsb_descr[0].ctx_idx = 0; 1927 ktsb_descr[0].tsb_base = ktsb_pa; 1928 ktsb_descr[0].resv = 0; 1929 1930 #ifndef CONFIG_DEBUG_PAGEALLOC 1931 /* Second KTSB for 4MB/256MB/2GB/16GB mappings. */ 1932 ktsb_pa = (kern_base + 1933 ((unsigned long)&swapper_4m_tsb[0] - KERNBASE)); 1934 1935 ktsb_descr[1].pgsz_idx = HV_PGSZ_IDX_4MB; 1936 ktsb_descr[1].pgsz_mask = ((HV_PGSZ_MASK_4MB | 1937 HV_PGSZ_MASK_256MB | 1938 HV_PGSZ_MASK_2GB | 1939 HV_PGSZ_MASK_16GB) & 1940 cpu_pgsz_mask); 1941 ktsb_descr[1].assoc = 1; 1942 ktsb_descr[1].num_ttes = KERNEL_TSB4M_NENTRIES; 1943 ktsb_descr[1].ctx_idx = 0; 1944 ktsb_descr[1].tsb_base = ktsb_pa; 1945 ktsb_descr[1].resv = 0; 1946 #endif 1947 } 1948 1949 void sun4v_ktsb_register(void) 1950 { 1951 unsigned long pa, ret; 1952 1953 pa = kern_base + ((unsigned long)&ktsb_descr[0] - KERNBASE); 1954 1955 ret = sun4v_mmu_tsb_ctx0(NUM_KTSB_DESCR, pa); 1956 if (ret != 0) { 1957 prom_printf("hypervisor_mmu_tsb_ctx0[%lx]: " 1958 "errors with %lx\n", pa, ret); 1959 prom_halt(); 1960 } 1961 } 1962 1963 static void __init sun4u_linear_pte_xor_finalize(void) 1964 { 1965 #ifndef CONFIG_DEBUG_PAGEALLOC 1966 /* This is where we would add Panther support for 1967 * 32MB and 256MB pages. 1968 */ 1969 #endif 1970 } 1971 1972 static void __init sun4v_linear_pte_xor_finalize(void) 1973 { 1974 unsigned long pagecv_flag; 1975 1976 /* Bit 9 of TTE is no longer CV bit on M7 processor and it instead 1977 * enables MCD error. Do not set bit 9 on M7 processor. 1978 */ 1979 switch (sun4v_chip_type) { 1980 case SUN4V_CHIP_SPARC_M7: 1981 case SUN4V_CHIP_SPARC_SN: 1982 pagecv_flag = 0x00; 1983 break; 1984 default: 1985 pagecv_flag = _PAGE_CV_4V; 1986 break; 1987 } 1988 #ifndef CONFIG_DEBUG_PAGEALLOC 1989 if (cpu_pgsz_mask & HV_PGSZ_MASK_256MB) { 1990 kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZ256MB_4V) ^ 1991 PAGE_OFFSET; 1992 kern_linear_pte_xor[1] |= (_PAGE_CP_4V | pagecv_flag | 1993 _PAGE_P_4V | _PAGE_W_4V); 1994 } else { 1995 kern_linear_pte_xor[1] = kern_linear_pte_xor[0]; 1996 } 1997 1998 if (cpu_pgsz_mask & HV_PGSZ_MASK_2GB) { 1999 kern_linear_pte_xor[2] = (_PAGE_VALID | _PAGE_SZ2GB_4V) ^ 2000 PAGE_OFFSET; 2001 kern_linear_pte_xor[2] |= (_PAGE_CP_4V | pagecv_flag | 2002 _PAGE_P_4V | _PAGE_W_4V); 2003 } else { 2004 kern_linear_pte_xor[2] = kern_linear_pte_xor[1]; 2005 } 2006 2007 if (cpu_pgsz_mask & HV_PGSZ_MASK_16GB) { 2008 kern_linear_pte_xor[3] = (_PAGE_VALID | _PAGE_SZ16GB_4V) ^ 2009 PAGE_OFFSET; 2010 kern_linear_pte_xor[3] |= (_PAGE_CP_4V | pagecv_flag | 2011 _PAGE_P_4V | _PAGE_W_4V); 2012 } else { 2013 kern_linear_pte_xor[3] = kern_linear_pte_xor[2]; 2014 } 2015 #endif 2016 } 2017 2018 /* paging_init() sets up the page tables */ 2019 2020 static unsigned long last_valid_pfn; 2021 2022 static void sun4u_pgprot_init(void); 2023 static void sun4v_pgprot_init(void); 2024 2025 static phys_addr_t __init available_memory(void) 2026 { 2027 phys_addr_t available = 0ULL; 2028 phys_addr_t pa_start, pa_end; 2029 u64 i; 2030 2031 for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &pa_start, 2032 &pa_end, NULL) 2033 available = available + (pa_end - pa_start); 2034 2035 return available; 2036 } 2037 2038 #define _PAGE_CACHE_4U (_PAGE_CP_4U | _PAGE_CV_4U) 2039 #define _PAGE_CACHE_4V (_PAGE_CP_4V | _PAGE_CV_4V) 2040 #define __DIRTY_BITS_4U (_PAGE_MODIFIED_4U | _PAGE_WRITE_4U | _PAGE_W_4U) 2041 #define __DIRTY_BITS_4V (_PAGE_MODIFIED_4V | _PAGE_WRITE_4V | _PAGE_W_4V) 2042 #define __ACCESS_BITS_4U (_PAGE_ACCESSED_4U | _PAGE_READ_4U | _PAGE_R) 2043 #define __ACCESS_BITS_4V (_PAGE_ACCESSED_4V | _PAGE_READ_4V | _PAGE_R) 2044 2045 /* We need to exclude reserved regions. This exclusion will include 2046 * vmlinux and initrd. To be more precise the initrd size could be used to 2047 * compute a new lower limit because it is freed later during initialization. 2048 */ 2049 static void __init reduce_memory(phys_addr_t limit_ram) 2050 { 2051 phys_addr_t avail_ram = available_memory(); 2052 phys_addr_t pa_start, pa_end; 2053 u64 i; 2054 2055 if (limit_ram >= avail_ram) 2056 return; 2057 2058 for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &pa_start, 2059 &pa_end, NULL) { 2060 phys_addr_t region_size = pa_end - pa_start; 2061 phys_addr_t clip_start = pa_start; 2062 2063 avail_ram = avail_ram - region_size; 2064 /* Are we consuming too much? */ 2065 if (avail_ram < limit_ram) { 2066 phys_addr_t give_back = limit_ram - avail_ram; 2067 2068 region_size = region_size - give_back; 2069 clip_start = clip_start + give_back; 2070 } 2071 2072 memblock_remove(clip_start, region_size); 2073 2074 if (avail_ram <= limit_ram) 2075 break; 2076 i = 0UL; 2077 } 2078 } 2079 2080 void __init paging_init(void) 2081 { 2082 unsigned long end_pfn, shift, phys_base; 2083 unsigned long real_end, i; 2084 int node; 2085 2086 setup_page_offset(); 2087 2088 /* These build time checkes make sure that the dcache_dirty_cpu() 2089 * page->flags usage will work. 2090 * 2091 * When a page gets marked as dcache-dirty, we store the 2092 * cpu number starting at bit 32 in the page->flags. Also, 2093 * functions like clear_dcache_dirty_cpu use the cpu mask 2094 * in 13-bit signed-immediate instruction fields. 2095 */ 2096 2097 /* 2098 * Page flags must not reach into upper 32 bits that are used 2099 * for the cpu number 2100 */ 2101 BUILD_BUG_ON(NR_PAGEFLAGS > 32); 2102 2103 /* 2104 * The bit fields placed in the high range must not reach below 2105 * the 32 bit boundary. Otherwise we cannot place the cpu field 2106 * at the 32 bit boundary. 2107 */ 2108 BUILD_BUG_ON(SECTIONS_WIDTH + NODES_WIDTH + ZONES_WIDTH + 2109 ilog2(roundup_pow_of_two(NR_CPUS)) > 32); 2110 2111 BUILD_BUG_ON(NR_CPUS > 4096); 2112 2113 kern_base = (prom_boot_mapping_phys_low >> ILOG2_4MB) << ILOG2_4MB; 2114 kern_size = (unsigned long)&_end - (unsigned long)KERNBASE; 2115 2116 /* Invalidate both kernel TSBs. */ 2117 memset(swapper_tsb, 0x40, sizeof(swapper_tsb)); 2118 #ifndef CONFIG_DEBUG_PAGEALLOC 2119 memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb)); 2120 #endif 2121 2122 /* TTE.cv bit on sparc v9 occupies the same position as TTE.mcde 2123 * bit on M7 processor. This is a conflicting usage of the same 2124 * bit. Enabling TTE.cv on M7 would turn on Memory Corruption 2125 * Detection error on all pages and this will lead to problems 2126 * later. Kernel does not run with MCD enabled and hence rest 2127 * of the required steps to fully configure memory corruption 2128 * detection are not taken. We need to ensure TTE.mcde is not 2129 * set on M7 processor. Compute the value of cacheability 2130 * flag for use later taking this into consideration. 2131 */ 2132 switch (sun4v_chip_type) { 2133 case SUN4V_CHIP_SPARC_M7: 2134 case SUN4V_CHIP_SPARC_SN: 2135 page_cache4v_flag = _PAGE_CP_4V; 2136 break; 2137 default: 2138 page_cache4v_flag = _PAGE_CACHE_4V; 2139 break; 2140 } 2141 2142 if (tlb_type == hypervisor) 2143 sun4v_pgprot_init(); 2144 else 2145 sun4u_pgprot_init(); 2146 2147 if (tlb_type == cheetah_plus || 2148 tlb_type == hypervisor) { 2149 tsb_phys_patch(); 2150 ktsb_phys_patch(); 2151 } 2152 2153 if (tlb_type == hypervisor) 2154 sun4v_patch_tlb_handlers(); 2155 2156 /* Find available physical memory... 2157 * 2158 * Read it twice in order to work around a bug in openfirmware. 2159 * The call to grab this table itself can cause openfirmware to 2160 * allocate memory, which in turn can take away some space from 2161 * the list of available memory. Reading it twice makes sure 2162 * we really do get the final value. 2163 */ 2164 read_obp_translations(); 2165 read_obp_memory("reg", &pall[0], &pall_ents); 2166 read_obp_memory("available", &pavail[0], &pavail_ents); 2167 read_obp_memory("available", &pavail[0], &pavail_ents); 2168 2169 phys_base = 0xffffffffffffffffUL; 2170 for (i = 0; i < pavail_ents; i++) { 2171 phys_base = min(phys_base, pavail[i].phys_addr); 2172 memblock_add(pavail[i].phys_addr, pavail[i].reg_size); 2173 } 2174 2175 memblock_reserve(kern_base, kern_size); 2176 2177 find_ramdisk(phys_base); 2178 2179 if (cmdline_memory_size) 2180 reduce_memory(cmdline_memory_size); 2181 2182 memblock_allow_resize(); 2183 memblock_dump_all(); 2184 2185 set_bit(0, mmu_context_bmap); 2186 2187 shift = kern_base + PAGE_OFFSET - ((unsigned long)KERNBASE); 2188 2189 real_end = (unsigned long)_end; 2190 num_kernel_image_mappings = DIV_ROUND_UP(real_end - KERNBASE, 1 << ILOG2_4MB); 2191 printk("Kernel: Using %d locked TLB entries for main kernel image.\n", 2192 num_kernel_image_mappings); 2193 2194 /* Set kernel pgd to upper alias so physical page computations 2195 * work. 2196 */ 2197 init_mm.pgd += ((shift) / (sizeof(pgd_t))); 2198 2199 memset(swapper_pg_dir, 0, sizeof(swapper_pg_dir)); 2200 2201 inherit_prom_mappings(); 2202 2203 /* Ok, we can use our TLB miss and window trap handlers safely. */ 2204 setup_tba(); 2205 2206 __flush_tlb_all(); 2207 2208 prom_build_devicetree(); 2209 of_populate_present_mask(); 2210 #ifndef CONFIG_SMP 2211 of_fill_in_cpu_data(); 2212 #endif 2213 2214 if (tlb_type == hypervisor) { 2215 sun4v_mdesc_init(); 2216 mdesc_populate_present_mask(cpu_all_mask); 2217 #ifndef CONFIG_SMP 2218 mdesc_fill_in_cpu_data(cpu_all_mask); 2219 #endif 2220 mdesc_get_page_sizes(cpu_all_mask, &cpu_pgsz_mask); 2221 2222 sun4v_linear_pte_xor_finalize(); 2223 2224 sun4v_ktsb_init(); 2225 sun4v_ktsb_register(); 2226 } else { 2227 unsigned long impl, ver; 2228 2229 cpu_pgsz_mask = (HV_PGSZ_MASK_8K | HV_PGSZ_MASK_64K | 2230 HV_PGSZ_MASK_512K | HV_PGSZ_MASK_4MB); 2231 2232 __asm__ __volatile__("rdpr %%ver, %0" : "=r" (ver)); 2233 impl = ((ver >> 32) & 0xffff); 2234 if (impl == PANTHER_IMPL) 2235 cpu_pgsz_mask |= (HV_PGSZ_MASK_32MB | 2236 HV_PGSZ_MASK_256MB); 2237 2238 sun4u_linear_pte_xor_finalize(); 2239 } 2240 2241 /* Flush the TLBs and the 4M TSB so that the updated linear 2242 * pte XOR settings are realized for all mappings. 2243 */ 2244 __flush_tlb_all(); 2245 #ifndef CONFIG_DEBUG_PAGEALLOC 2246 memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb)); 2247 #endif 2248 __flush_tlb_all(); 2249 2250 /* Setup bootmem... */ 2251 last_valid_pfn = end_pfn = bootmem_init(phys_base); 2252 2253 /* Once the OF device tree and MDESC have been setup, we know 2254 * the list of possible cpus. Therefore we can allocate the 2255 * IRQ stacks. 2256 */ 2257 for_each_possible_cpu(i) { 2258 node = cpu_to_node(i); 2259 2260 softirq_stack[i] = __alloc_bootmem_node(NODE_DATA(node), 2261 THREAD_SIZE, 2262 THREAD_SIZE, 0); 2263 hardirq_stack[i] = __alloc_bootmem_node(NODE_DATA(node), 2264 THREAD_SIZE, 2265 THREAD_SIZE, 0); 2266 } 2267 2268 kernel_physical_mapping_init(); 2269 2270 { 2271 unsigned long max_zone_pfns[MAX_NR_ZONES]; 2272 2273 memset(max_zone_pfns, 0, sizeof(max_zone_pfns)); 2274 2275 max_zone_pfns[ZONE_NORMAL] = end_pfn; 2276 2277 free_area_init_nodes(max_zone_pfns); 2278 } 2279 2280 printk("Booting Linux...\n"); 2281 } 2282 2283 int page_in_phys_avail(unsigned long paddr) 2284 { 2285 int i; 2286 2287 paddr &= PAGE_MASK; 2288 2289 for (i = 0; i < pavail_ents; i++) { 2290 unsigned long start, end; 2291 2292 start = pavail[i].phys_addr; 2293 end = start + pavail[i].reg_size; 2294 2295 if (paddr >= start && paddr < end) 2296 return 1; 2297 } 2298 if (paddr >= kern_base && paddr < (kern_base + kern_size)) 2299 return 1; 2300 #ifdef CONFIG_BLK_DEV_INITRD 2301 if (paddr >= __pa(initrd_start) && 2302 paddr < __pa(PAGE_ALIGN(initrd_end))) 2303 return 1; 2304 #endif 2305 2306 return 0; 2307 } 2308 2309 static void __init register_page_bootmem_info(void) 2310 { 2311 #ifdef CONFIG_NEED_MULTIPLE_NODES 2312 int i; 2313 2314 for_each_online_node(i) 2315 if (NODE_DATA(i)->node_spanned_pages) 2316 register_page_bootmem_info_node(NODE_DATA(i)); 2317 #endif 2318 } 2319 void __init mem_init(void) 2320 { 2321 high_memory = __va(last_valid_pfn << PAGE_SHIFT); 2322 2323 register_page_bootmem_info(); 2324 free_all_bootmem(); 2325 2326 /* 2327 * Set up the zero page, mark it reserved, so that page count 2328 * is not manipulated when freeing the page from user ptes. 2329 */ 2330 mem_map_zero = alloc_pages(GFP_KERNEL|__GFP_ZERO, 0); 2331 if (mem_map_zero == NULL) { 2332 prom_printf("paging_init: Cannot alloc zero page.\n"); 2333 prom_halt(); 2334 } 2335 mark_page_reserved(mem_map_zero); 2336 2337 mem_init_print_info(NULL); 2338 2339 if (tlb_type == cheetah || tlb_type == cheetah_plus) 2340 cheetah_ecache_flush_init(); 2341 } 2342 2343 void free_initmem(void) 2344 { 2345 unsigned long addr, initend; 2346 int do_free = 1; 2347 2348 /* If the physical memory maps were trimmed by kernel command 2349 * line options, don't even try freeing this initmem stuff up. 2350 * The kernel image could have been in the trimmed out region 2351 * and if so the freeing below will free invalid page structs. 2352 */ 2353 if (cmdline_memory_size) 2354 do_free = 0; 2355 2356 /* 2357 * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes. 2358 */ 2359 addr = PAGE_ALIGN((unsigned long)(__init_begin)); 2360 initend = (unsigned long)(__init_end) & PAGE_MASK; 2361 for (; addr < initend; addr += PAGE_SIZE) { 2362 unsigned long page; 2363 2364 page = (addr + 2365 ((unsigned long) __va(kern_base)) - 2366 ((unsigned long) KERNBASE)); 2367 memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE); 2368 2369 if (do_free) 2370 free_reserved_page(virt_to_page(page)); 2371 } 2372 } 2373 2374 #ifdef CONFIG_BLK_DEV_INITRD 2375 void free_initrd_mem(unsigned long start, unsigned long end) 2376 { 2377 free_reserved_area((void *)start, (void *)end, POISON_FREE_INITMEM, 2378 "initrd"); 2379 } 2380 #endif 2381 2382 pgprot_t PAGE_KERNEL __read_mostly; 2383 EXPORT_SYMBOL(PAGE_KERNEL); 2384 2385 pgprot_t PAGE_KERNEL_LOCKED __read_mostly; 2386 pgprot_t PAGE_COPY __read_mostly; 2387 2388 pgprot_t PAGE_SHARED __read_mostly; 2389 EXPORT_SYMBOL(PAGE_SHARED); 2390 2391 unsigned long pg_iobits __read_mostly; 2392 2393 unsigned long _PAGE_IE __read_mostly; 2394 EXPORT_SYMBOL(_PAGE_IE); 2395 2396 unsigned long _PAGE_E __read_mostly; 2397 EXPORT_SYMBOL(_PAGE_E); 2398 2399 unsigned long _PAGE_CACHE __read_mostly; 2400 EXPORT_SYMBOL(_PAGE_CACHE); 2401 2402 #ifdef CONFIG_SPARSEMEM_VMEMMAP 2403 int __meminit vmemmap_populate(unsigned long vstart, unsigned long vend, 2404 int node) 2405 { 2406 unsigned long pte_base; 2407 2408 pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4U | 2409 _PAGE_CP_4U | _PAGE_CV_4U | 2410 _PAGE_P_4U | _PAGE_W_4U); 2411 if (tlb_type == hypervisor) 2412 pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4V | 2413 page_cache4v_flag | _PAGE_P_4V | _PAGE_W_4V); 2414 2415 pte_base |= _PAGE_PMD_HUGE; 2416 2417 vstart = vstart & PMD_MASK; 2418 vend = ALIGN(vend, PMD_SIZE); 2419 for (; vstart < vend; vstart += PMD_SIZE) { 2420 pgd_t *pgd = pgd_offset_k(vstart); 2421 unsigned long pte; 2422 pud_t *pud; 2423 pmd_t *pmd; 2424 2425 if (pgd_none(*pgd)) { 2426 pud_t *new = vmemmap_alloc_block(PAGE_SIZE, node); 2427 2428 if (!new) 2429 return -ENOMEM; 2430 pgd_populate(&init_mm, pgd, new); 2431 } 2432 2433 pud = pud_offset(pgd, vstart); 2434 if (pud_none(*pud)) { 2435 pmd_t *new = vmemmap_alloc_block(PAGE_SIZE, node); 2436 2437 if (!new) 2438 return -ENOMEM; 2439 pud_populate(&init_mm, pud, new); 2440 } 2441 2442 pmd = pmd_offset(pud, vstart); 2443 2444 pte = pmd_val(*pmd); 2445 if (!(pte & _PAGE_VALID)) { 2446 void *block = vmemmap_alloc_block(PMD_SIZE, node); 2447 2448 if (!block) 2449 return -ENOMEM; 2450 2451 pmd_val(*pmd) = pte_base | __pa(block); 2452 } 2453 } 2454 2455 return 0; 2456 } 2457 2458 void vmemmap_free(unsigned long start, unsigned long end) 2459 { 2460 } 2461 #endif /* CONFIG_SPARSEMEM_VMEMMAP */ 2462 2463 static void prot_init_common(unsigned long page_none, 2464 unsigned long page_shared, 2465 unsigned long page_copy, 2466 unsigned long page_readonly, 2467 unsigned long page_exec_bit) 2468 { 2469 PAGE_COPY = __pgprot(page_copy); 2470 PAGE_SHARED = __pgprot(page_shared); 2471 2472 protection_map[0x0] = __pgprot(page_none); 2473 protection_map[0x1] = __pgprot(page_readonly & ~page_exec_bit); 2474 protection_map[0x2] = __pgprot(page_copy & ~page_exec_bit); 2475 protection_map[0x3] = __pgprot(page_copy & ~page_exec_bit); 2476 protection_map[0x4] = __pgprot(page_readonly); 2477 protection_map[0x5] = __pgprot(page_readonly); 2478 protection_map[0x6] = __pgprot(page_copy); 2479 protection_map[0x7] = __pgprot(page_copy); 2480 protection_map[0x8] = __pgprot(page_none); 2481 protection_map[0x9] = __pgprot(page_readonly & ~page_exec_bit); 2482 protection_map[0xa] = __pgprot(page_shared & ~page_exec_bit); 2483 protection_map[0xb] = __pgprot(page_shared & ~page_exec_bit); 2484 protection_map[0xc] = __pgprot(page_readonly); 2485 protection_map[0xd] = __pgprot(page_readonly); 2486 protection_map[0xe] = __pgprot(page_shared); 2487 protection_map[0xf] = __pgprot(page_shared); 2488 } 2489 2490 static void __init sun4u_pgprot_init(void) 2491 { 2492 unsigned long page_none, page_shared, page_copy, page_readonly; 2493 unsigned long page_exec_bit; 2494 int i; 2495 2496 PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID | 2497 _PAGE_CACHE_4U | _PAGE_P_4U | 2498 __ACCESS_BITS_4U | __DIRTY_BITS_4U | 2499 _PAGE_EXEC_4U); 2500 PAGE_KERNEL_LOCKED = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID | 2501 _PAGE_CACHE_4U | _PAGE_P_4U | 2502 __ACCESS_BITS_4U | __DIRTY_BITS_4U | 2503 _PAGE_EXEC_4U | _PAGE_L_4U); 2504 2505 _PAGE_IE = _PAGE_IE_4U; 2506 _PAGE_E = _PAGE_E_4U; 2507 _PAGE_CACHE = _PAGE_CACHE_4U; 2508 2509 pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4U | __DIRTY_BITS_4U | 2510 __ACCESS_BITS_4U | _PAGE_E_4U); 2511 2512 #ifdef CONFIG_DEBUG_PAGEALLOC 2513 kern_linear_pte_xor[0] = _PAGE_VALID ^ PAGE_OFFSET; 2514 #else 2515 kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4U) ^ 2516 PAGE_OFFSET; 2517 #endif 2518 kern_linear_pte_xor[0] |= (_PAGE_CP_4U | _PAGE_CV_4U | 2519 _PAGE_P_4U | _PAGE_W_4U); 2520 2521 for (i = 1; i < 4; i++) 2522 kern_linear_pte_xor[i] = kern_linear_pte_xor[0]; 2523 2524 _PAGE_ALL_SZ_BITS = (_PAGE_SZ4MB_4U | _PAGE_SZ512K_4U | 2525 _PAGE_SZ64K_4U | _PAGE_SZ8K_4U | 2526 _PAGE_SZ32MB_4U | _PAGE_SZ256MB_4U); 2527 2528 2529 page_none = _PAGE_PRESENT_4U | _PAGE_ACCESSED_4U | _PAGE_CACHE_4U; 2530 page_shared = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U | 2531 __ACCESS_BITS_4U | _PAGE_WRITE_4U | _PAGE_EXEC_4U); 2532 page_copy = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U | 2533 __ACCESS_BITS_4U | _PAGE_EXEC_4U); 2534 page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U | 2535 __ACCESS_BITS_4U | _PAGE_EXEC_4U); 2536 2537 page_exec_bit = _PAGE_EXEC_4U; 2538 2539 prot_init_common(page_none, page_shared, page_copy, page_readonly, 2540 page_exec_bit); 2541 } 2542 2543 static void __init sun4v_pgprot_init(void) 2544 { 2545 unsigned long page_none, page_shared, page_copy, page_readonly; 2546 unsigned long page_exec_bit; 2547 int i; 2548 2549 PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4V | _PAGE_VALID | 2550 page_cache4v_flag | _PAGE_P_4V | 2551 __ACCESS_BITS_4V | __DIRTY_BITS_4V | 2552 _PAGE_EXEC_4V); 2553 PAGE_KERNEL_LOCKED = PAGE_KERNEL; 2554 2555 _PAGE_IE = _PAGE_IE_4V; 2556 _PAGE_E = _PAGE_E_4V; 2557 _PAGE_CACHE = page_cache4v_flag; 2558 2559 #ifdef CONFIG_DEBUG_PAGEALLOC 2560 kern_linear_pte_xor[0] = _PAGE_VALID ^ PAGE_OFFSET; 2561 #else 2562 kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4V) ^ 2563 PAGE_OFFSET; 2564 #endif 2565 kern_linear_pte_xor[0] |= (page_cache4v_flag | _PAGE_P_4V | 2566 _PAGE_W_4V); 2567 2568 for (i = 1; i < 4; i++) 2569 kern_linear_pte_xor[i] = kern_linear_pte_xor[0]; 2570 2571 pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4V | __DIRTY_BITS_4V | 2572 __ACCESS_BITS_4V | _PAGE_E_4V); 2573 2574 _PAGE_ALL_SZ_BITS = (_PAGE_SZ16GB_4V | _PAGE_SZ2GB_4V | 2575 _PAGE_SZ256MB_4V | _PAGE_SZ32MB_4V | 2576 _PAGE_SZ4MB_4V | _PAGE_SZ512K_4V | 2577 _PAGE_SZ64K_4V | _PAGE_SZ8K_4V); 2578 2579 page_none = _PAGE_PRESENT_4V | _PAGE_ACCESSED_4V | page_cache4v_flag; 2580 page_shared = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag | 2581 __ACCESS_BITS_4V | _PAGE_WRITE_4V | _PAGE_EXEC_4V); 2582 page_copy = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag | 2583 __ACCESS_BITS_4V | _PAGE_EXEC_4V); 2584 page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag | 2585 __ACCESS_BITS_4V | _PAGE_EXEC_4V); 2586 2587 page_exec_bit = _PAGE_EXEC_4V; 2588 2589 prot_init_common(page_none, page_shared, page_copy, page_readonly, 2590 page_exec_bit); 2591 } 2592 2593 unsigned long pte_sz_bits(unsigned long sz) 2594 { 2595 if (tlb_type == hypervisor) { 2596 switch (sz) { 2597 case 8 * 1024: 2598 default: 2599 return _PAGE_SZ8K_4V; 2600 case 64 * 1024: 2601 return _PAGE_SZ64K_4V; 2602 case 512 * 1024: 2603 return _PAGE_SZ512K_4V; 2604 case 4 * 1024 * 1024: 2605 return _PAGE_SZ4MB_4V; 2606 } 2607 } else { 2608 switch (sz) { 2609 case 8 * 1024: 2610 default: 2611 return _PAGE_SZ8K_4U; 2612 case 64 * 1024: 2613 return _PAGE_SZ64K_4U; 2614 case 512 * 1024: 2615 return _PAGE_SZ512K_4U; 2616 case 4 * 1024 * 1024: 2617 return _PAGE_SZ4MB_4U; 2618 } 2619 } 2620 } 2621 2622 pte_t mk_pte_io(unsigned long page, pgprot_t prot, int space, unsigned long page_size) 2623 { 2624 pte_t pte; 2625 2626 pte_val(pte) = page | pgprot_val(pgprot_noncached(prot)); 2627 pte_val(pte) |= (((unsigned long)space) << 32); 2628 pte_val(pte) |= pte_sz_bits(page_size); 2629 2630 return pte; 2631 } 2632 2633 static unsigned long kern_large_tte(unsigned long paddr) 2634 { 2635 unsigned long val; 2636 2637 val = (_PAGE_VALID | _PAGE_SZ4MB_4U | 2638 _PAGE_CP_4U | _PAGE_CV_4U | _PAGE_P_4U | 2639 _PAGE_EXEC_4U | _PAGE_L_4U | _PAGE_W_4U); 2640 if (tlb_type == hypervisor) 2641 val = (_PAGE_VALID | _PAGE_SZ4MB_4V | 2642 page_cache4v_flag | _PAGE_P_4V | 2643 _PAGE_EXEC_4V | _PAGE_W_4V); 2644 2645 return val | paddr; 2646 } 2647 2648 /* If not locked, zap it. */ 2649 void __flush_tlb_all(void) 2650 { 2651 unsigned long pstate; 2652 int i; 2653 2654 __asm__ __volatile__("flushw\n\t" 2655 "rdpr %%pstate, %0\n\t" 2656 "wrpr %0, %1, %%pstate" 2657 : "=r" (pstate) 2658 : "i" (PSTATE_IE)); 2659 if (tlb_type == hypervisor) { 2660 sun4v_mmu_demap_all(); 2661 } else if (tlb_type == spitfire) { 2662 for (i = 0; i < 64; i++) { 2663 /* Spitfire Errata #32 workaround */ 2664 /* NOTE: Always runs on spitfire, so no 2665 * cheetah+ page size encodings. 2666 */ 2667 __asm__ __volatile__("stxa %0, [%1] %2\n\t" 2668 "flush %%g6" 2669 : /* No outputs */ 2670 : "r" (0), 2671 "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU)); 2672 2673 if (!(spitfire_get_dtlb_data(i) & _PAGE_L_4U)) { 2674 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t" 2675 "membar #Sync" 2676 : /* no outputs */ 2677 : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU)); 2678 spitfire_put_dtlb_data(i, 0x0UL); 2679 } 2680 2681 /* Spitfire Errata #32 workaround */ 2682 /* NOTE: Always runs on spitfire, so no 2683 * cheetah+ page size encodings. 2684 */ 2685 __asm__ __volatile__("stxa %0, [%1] %2\n\t" 2686 "flush %%g6" 2687 : /* No outputs */ 2688 : "r" (0), 2689 "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU)); 2690 2691 if (!(spitfire_get_itlb_data(i) & _PAGE_L_4U)) { 2692 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t" 2693 "membar #Sync" 2694 : /* no outputs */ 2695 : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU)); 2696 spitfire_put_itlb_data(i, 0x0UL); 2697 } 2698 } 2699 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) { 2700 cheetah_flush_dtlb_all(); 2701 cheetah_flush_itlb_all(); 2702 } 2703 __asm__ __volatile__("wrpr %0, 0, %%pstate" 2704 : : "r" (pstate)); 2705 } 2706 2707 pte_t *pte_alloc_one_kernel(struct mm_struct *mm, 2708 unsigned long address) 2709 { 2710 struct page *page = alloc_page(GFP_KERNEL | __GFP_NOTRACK | __GFP_ZERO); 2711 pte_t *pte = NULL; 2712 2713 if (page) 2714 pte = (pte_t *) page_address(page); 2715 2716 return pte; 2717 } 2718 2719 pgtable_t pte_alloc_one(struct mm_struct *mm, 2720 unsigned long address) 2721 { 2722 struct page *page = alloc_page(GFP_KERNEL | __GFP_NOTRACK | __GFP_ZERO); 2723 if (!page) 2724 return NULL; 2725 if (!pgtable_page_ctor(page)) { 2726 free_hot_cold_page(page, 0); 2727 return NULL; 2728 } 2729 return (pte_t *) page_address(page); 2730 } 2731 2732 void pte_free_kernel(struct mm_struct *mm, pte_t *pte) 2733 { 2734 free_page((unsigned long)pte); 2735 } 2736 2737 static void __pte_free(pgtable_t pte) 2738 { 2739 struct page *page = virt_to_page(pte); 2740 2741 pgtable_page_dtor(page); 2742 __free_page(page); 2743 } 2744 2745 void pte_free(struct mm_struct *mm, pgtable_t pte) 2746 { 2747 __pte_free(pte); 2748 } 2749 2750 void pgtable_free(void *table, bool is_page) 2751 { 2752 if (is_page) 2753 __pte_free(table); 2754 else 2755 kmem_cache_free(pgtable_cache, table); 2756 } 2757 2758 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2759 void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr, 2760 pmd_t *pmd) 2761 { 2762 unsigned long pte, flags; 2763 struct mm_struct *mm; 2764 pmd_t entry = *pmd; 2765 2766 if (!pmd_large(entry) || !pmd_young(entry)) 2767 return; 2768 2769 pte = pmd_val(entry); 2770 2771 /* Don't insert a non-valid PMD into the TSB, we'll deadlock. */ 2772 if (!(pte & _PAGE_VALID)) 2773 return; 2774 2775 /* We are fabricating 8MB pages using 4MB real hw pages. */ 2776 pte |= (addr & (1UL << REAL_HPAGE_SHIFT)); 2777 2778 mm = vma->vm_mm; 2779 2780 spin_lock_irqsave(&mm->context.lock, flags); 2781 2782 if (mm->context.tsb_block[MM_TSB_HUGE].tsb != NULL) 2783 __update_mmu_tsb_insert(mm, MM_TSB_HUGE, REAL_HPAGE_SHIFT, 2784 addr, pte); 2785 2786 spin_unlock_irqrestore(&mm->context.lock, flags); 2787 } 2788 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 2789 2790 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE) 2791 static void context_reload(void *__data) 2792 { 2793 struct mm_struct *mm = __data; 2794 2795 if (mm == current->mm) 2796 load_secondary_context(mm); 2797 } 2798 2799 void hugetlb_setup(struct pt_regs *regs) 2800 { 2801 struct mm_struct *mm = current->mm; 2802 struct tsb_config *tp; 2803 2804 if (faulthandler_disabled() || !mm) { 2805 const struct exception_table_entry *entry; 2806 2807 entry = search_exception_tables(regs->tpc); 2808 if (entry) { 2809 regs->tpc = entry->fixup; 2810 regs->tnpc = regs->tpc + 4; 2811 return; 2812 } 2813 pr_alert("Unexpected HugeTLB setup in atomic context.\n"); 2814 die_if_kernel("HugeTSB in atomic", regs); 2815 } 2816 2817 tp = &mm->context.tsb_block[MM_TSB_HUGE]; 2818 if (likely(tp->tsb == NULL)) 2819 tsb_grow(mm, MM_TSB_HUGE, 0); 2820 2821 tsb_context_switch(mm); 2822 smp_tsb_sync(mm); 2823 2824 /* On UltraSPARC-III+ and later, configure the second half of 2825 * the Data-TLB for huge pages. 2826 */ 2827 if (tlb_type == cheetah_plus) { 2828 bool need_context_reload = false; 2829 unsigned long ctx; 2830 2831 spin_lock_irq(&ctx_alloc_lock); 2832 ctx = mm->context.sparc64_ctx_val; 2833 ctx &= ~CTX_PGSZ_MASK; 2834 ctx |= CTX_PGSZ_BASE << CTX_PGSZ0_SHIFT; 2835 ctx |= CTX_PGSZ_HUGE << CTX_PGSZ1_SHIFT; 2836 2837 if (ctx != mm->context.sparc64_ctx_val) { 2838 /* When changing the page size fields, we 2839 * must perform a context flush so that no 2840 * stale entries match. This flush must 2841 * occur with the original context register 2842 * settings. 2843 */ 2844 do_flush_tlb_mm(mm); 2845 2846 /* Reload the context register of all processors 2847 * also executing in this address space. 2848 */ 2849 mm->context.sparc64_ctx_val = ctx; 2850 need_context_reload = true; 2851 } 2852 spin_unlock_irq(&ctx_alloc_lock); 2853 2854 if (need_context_reload) 2855 on_each_cpu(context_reload, mm, 0); 2856 } 2857 } 2858 #endif 2859 2860 static struct resource code_resource = { 2861 .name = "Kernel code", 2862 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM 2863 }; 2864 2865 static struct resource data_resource = { 2866 .name = "Kernel data", 2867 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM 2868 }; 2869 2870 static struct resource bss_resource = { 2871 .name = "Kernel bss", 2872 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM 2873 }; 2874 2875 static inline resource_size_t compute_kern_paddr(void *addr) 2876 { 2877 return (resource_size_t) (addr - KERNBASE + kern_base); 2878 } 2879 2880 static void __init kernel_lds_init(void) 2881 { 2882 code_resource.start = compute_kern_paddr(_text); 2883 code_resource.end = compute_kern_paddr(_etext - 1); 2884 data_resource.start = compute_kern_paddr(_etext); 2885 data_resource.end = compute_kern_paddr(_edata - 1); 2886 bss_resource.start = compute_kern_paddr(__bss_start); 2887 bss_resource.end = compute_kern_paddr(_end - 1); 2888 } 2889 2890 static int __init report_memory(void) 2891 { 2892 int i; 2893 struct resource *res; 2894 2895 kernel_lds_init(); 2896 2897 for (i = 0; i < pavail_ents; i++) { 2898 res = kzalloc(sizeof(struct resource), GFP_KERNEL); 2899 2900 if (!res) { 2901 pr_warn("Failed to allocate source.\n"); 2902 break; 2903 } 2904 2905 res->name = "System RAM"; 2906 res->start = pavail[i].phys_addr; 2907 res->end = pavail[i].phys_addr + pavail[i].reg_size - 1; 2908 res->flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM; 2909 2910 if (insert_resource(&iomem_resource, res) < 0) { 2911 pr_warn("Resource insertion failed.\n"); 2912 break; 2913 } 2914 2915 insert_resource(res, &code_resource); 2916 insert_resource(res, &data_resource); 2917 insert_resource(res, &bss_resource); 2918 } 2919 2920 return 0; 2921 } 2922 arch_initcall(report_memory); 2923 2924 #ifdef CONFIG_SMP 2925 #define do_flush_tlb_kernel_range smp_flush_tlb_kernel_range 2926 #else 2927 #define do_flush_tlb_kernel_range __flush_tlb_kernel_range 2928 #endif 2929 2930 void flush_tlb_kernel_range(unsigned long start, unsigned long end) 2931 { 2932 if (start < HI_OBP_ADDRESS && end > LOW_OBP_ADDRESS) { 2933 if (start < LOW_OBP_ADDRESS) { 2934 flush_tsb_kernel_range(start, LOW_OBP_ADDRESS); 2935 do_flush_tlb_kernel_range(start, LOW_OBP_ADDRESS); 2936 } 2937 if (end > HI_OBP_ADDRESS) { 2938 flush_tsb_kernel_range(HI_OBP_ADDRESS, end); 2939 do_flush_tlb_kernel_range(HI_OBP_ADDRESS, end); 2940 } 2941 } else { 2942 flush_tsb_kernel_range(start, end); 2943 do_flush_tlb_kernel_range(start, end); 2944 } 2945 } 2946