xref: /openbmc/linux/arch/sparc/mm/init_64.c (revision 1fa6ac37)
1 /*
2  *  arch/sparc64/mm/init.c
3  *
4  *  Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu)
5  *  Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
6  */
7 
8 #include <linux/module.h>
9 #include <linux/kernel.h>
10 #include <linux/sched.h>
11 #include <linux/string.h>
12 #include <linux/init.h>
13 #include <linux/bootmem.h>
14 #include <linux/mm.h>
15 #include <linux/hugetlb.h>
16 #include <linux/initrd.h>
17 #include <linux/swap.h>
18 #include <linux/pagemap.h>
19 #include <linux/poison.h>
20 #include <linux/fs.h>
21 #include <linux/seq_file.h>
22 #include <linux/kprobes.h>
23 #include <linux/cache.h>
24 #include <linux/sort.h>
25 #include <linux/percpu.h>
26 #include <linux/lmb.h>
27 #include <linux/mmzone.h>
28 #include <linux/gfp.h>
29 
30 #include <asm/head.h>
31 #include <asm/system.h>
32 #include <asm/page.h>
33 #include <asm/pgalloc.h>
34 #include <asm/pgtable.h>
35 #include <asm/oplib.h>
36 #include <asm/iommu.h>
37 #include <asm/io.h>
38 #include <asm/uaccess.h>
39 #include <asm/mmu_context.h>
40 #include <asm/tlbflush.h>
41 #include <asm/dma.h>
42 #include <asm/starfire.h>
43 #include <asm/tlb.h>
44 #include <asm/spitfire.h>
45 #include <asm/sections.h>
46 #include <asm/tsb.h>
47 #include <asm/hypervisor.h>
48 #include <asm/prom.h>
49 #include <asm/mdesc.h>
50 #include <asm/cpudata.h>
51 #include <asm/irq.h>
52 
53 #include "init_64.h"
54 
55 unsigned long kern_linear_pte_xor[2] __read_mostly;
56 
57 /* A bitmap, one bit for every 256MB of physical memory.  If the bit
58  * is clear, we should use a 4MB page (via kern_linear_pte_xor[0]) else
59  * if set we should use a 256MB page (via kern_linear_pte_xor[1]).
60  */
61 unsigned long kpte_linear_bitmap[KPTE_BITMAP_BYTES / sizeof(unsigned long)];
62 
63 #ifndef CONFIG_DEBUG_PAGEALLOC
64 /* A special kernel TSB for 4MB and 256MB linear mappings.
65  * Space is allocated for this right after the trap table
66  * in arch/sparc64/kernel/head.S
67  */
68 extern struct tsb swapper_4m_tsb[KERNEL_TSB4M_NENTRIES];
69 #endif
70 
71 #define MAX_BANKS	32
72 
73 static struct linux_prom64_registers pavail[MAX_BANKS] __devinitdata;
74 static int pavail_ents __devinitdata;
75 
76 static int cmp_p64(const void *a, const void *b)
77 {
78 	const struct linux_prom64_registers *x = a, *y = b;
79 
80 	if (x->phys_addr > y->phys_addr)
81 		return 1;
82 	if (x->phys_addr < y->phys_addr)
83 		return -1;
84 	return 0;
85 }
86 
87 static void __init read_obp_memory(const char *property,
88 				   struct linux_prom64_registers *regs,
89 				   int *num_ents)
90 {
91 	int node = prom_finddevice("/memory");
92 	int prop_size = prom_getproplen(node, property);
93 	int ents, ret, i;
94 
95 	ents = prop_size / sizeof(struct linux_prom64_registers);
96 	if (ents > MAX_BANKS) {
97 		prom_printf("The machine has more %s property entries than "
98 			    "this kernel can support (%d).\n",
99 			    property, MAX_BANKS);
100 		prom_halt();
101 	}
102 
103 	ret = prom_getproperty(node, property, (char *) regs, prop_size);
104 	if (ret == -1) {
105 		prom_printf("Couldn't get %s property from /memory.\n");
106 		prom_halt();
107 	}
108 
109 	/* Sanitize what we got from the firmware, by page aligning
110 	 * everything.
111 	 */
112 	for (i = 0; i < ents; i++) {
113 		unsigned long base, size;
114 
115 		base = regs[i].phys_addr;
116 		size = regs[i].reg_size;
117 
118 		size &= PAGE_MASK;
119 		if (base & ~PAGE_MASK) {
120 			unsigned long new_base = PAGE_ALIGN(base);
121 
122 			size -= new_base - base;
123 			if ((long) size < 0L)
124 				size = 0UL;
125 			base = new_base;
126 		}
127 		if (size == 0UL) {
128 			/* If it is empty, simply get rid of it.
129 			 * This simplifies the logic of the other
130 			 * functions that process these arrays.
131 			 */
132 			memmove(&regs[i], &regs[i + 1],
133 				(ents - i - 1) * sizeof(regs[0]));
134 			i--;
135 			ents--;
136 			continue;
137 		}
138 		regs[i].phys_addr = base;
139 		regs[i].reg_size = size;
140 	}
141 
142 	*num_ents = ents;
143 
144 	sort(regs, ents, sizeof(struct linux_prom64_registers),
145 	     cmp_p64, NULL);
146 }
147 
148 unsigned long sparc64_valid_addr_bitmap[VALID_ADDR_BITMAP_BYTES /
149 					sizeof(unsigned long)];
150 EXPORT_SYMBOL(sparc64_valid_addr_bitmap);
151 
152 /* Kernel physical address base and size in bytes.  */
153 unsigned long kern_base __read_mostly;
154 unsigned long kern_size __read_mostly;
155 
156 /* Initial ramdisk setup */
157 extern unsigned long sparc_ramdisk_image64;
158 extern unsigned int sparc_ramdisk_image;
159 extern unsigned int sparc_ramdisk_size;
160 
161 struct page *mem_map_zero __read_mostly;
162 EXPORT_SYMBOL(mem_map_zero);
163 
164 unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly;
165 
166 unsigned long sparc64_kern_pri_context __read_mostly;
167 unsigned long sparc64_kern_pri_nuc_bits __read_mostly;
168 unsigned long sparc64_kern_sec_context __read_mostly;
169 
170 int num_kernel_image_mappings;
171 
172 #ifdef CONFIG_DEBUG_DCFLUSH
173 atomic_t dcpage_flushes = ATOMIC_INIT(0);
174 #ifdef CONFIG_SMP
175 atomic_t dcpage_flushes_xcall = ATOMIC_INIT(0);
176 #endif
177 #endif
178 
179 inline void flush_dcache_page_impl(struct page *page)
180 {
181 	BUG_ON(tlb_type == hypervisor);
182 #ifdef CONFIG_DEBUG_DCFLUSH
183 	atomic_inc(&dcpage_flushes);
184 #endif
185 
186 #ifdef DCACHE_ALIASING_POSSIBLE
187 	__flush_dcache_page(page_address(page),
188 			    ((tlb_type == spitfire) &&
189 			     page_mapping(page) != NULL));
190 #else
191 	if (page_mapping(page) != NULL &&
192 	    tlb_type == spitfire)
193 		__flush_icache_page(__pa(page_address(page)));
194 #endif
195 }
196 
197 #define PG_dcache_dirty		PG_arch_1
198 #define PG_dcache_cpu_shift	32UL
199 #define PG_dcache_cpu_mask	\
200 	((1UL<<ilog2(roundup_pow_of_two(NR_CPUS)))-1UL)
201 
202 #define dcache_dirty_cpu(page) \
203 	(((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask)
204 
205 static inline void set_dcache_dirty(struct page *page, int this_cpu)
206 {
207 	unsigned long mask = this_cpu;
208 	unsigned long non_cpu_bits;
209 
210 	non_cpu_bits = ~(PG_dcache_cpu_mask << PG_dcache_cpu_shift);
211 	mask = (mask << PG_dcache_cpu_shift) | (1UL << PG_dcache_dirty);
212 
213 	__asm__ __volatile__("1:\n\t"
214 			     "ldx	[%2], %%g7\n\t"
215 			     "and	%%g7, %1, %%g1\n\t"
216 			     "or	%%g1, %0, %%g1\n\t"
217 			     "casx	[%2], %%g7, %%g1\n\t"
218 			     "cmp	%%g7, %%g1\n\t"
219 			     "bne,pn	%%xcc, 1b\n\t"
220 			     " nop"
221 			     : /* no outputs */
222 			     : "r" (mask), "r" (non_cpu_bits), "r" (&page->flags)
223 			     : "g1", "g7");
224 }
225 
226 static inline void clear_dcache_dirty_cpu(struct page *page, unsigned long cpu)
227 {
228 	unsigned long mask = (1UL << PG_dcache_dirty);
229 
230 	__asm__ __volatile__("! test_and_clear_dcache_dirty\n"
231 			     "1:\n\t"
232 			     "ldx	[%2], %%g7\n\t"
233 			     "srlx	%%g7, %4, %%g1\n\t"
234 			     "and	%%g1, %3, %%g1\n\t"
235 			     "cmp	%%g1, %0\n\t"
236 			     "bne,pn	%%icc, 2f\n\t"
237 			     " andn	%%g7, %1, %%g1\n\t"
238 			     "casx	[%2], %%g7, %%g1\n\t"
239 			     "cmp	%%g7, %%g1\n\t"
240 			     "bne,pn	%%xcc, 1b\n\t"
241 			     " nop\n"
242 			     "2:"
243 			     : /* no outputs */
244 			     : "r" (cpu), "r" (mask), "r" (&page->flags),
245 			       "i" (PG_dcache_cpu_mask),
246 			       "i" (PG_dcache_cpu_shift)
247 			     : "g1", "g7");
248 }
249 
250 static inline void tsb_insert(struct tsb *ent, unsigned long tag, unsigned long pte)
251 {
252 	unsigned long tsb_addr = (unsigned long) ent;
253 
254 	if (tlb_type == cheetah_plus || tlb_type == hypervisor)
255 		tsb_addr = __pa(tsb_addr);
256 
257 	__tsb_insert(tsb_addr, tag, pte);
258 }
259 
260 unsigned long _PAGE_ALL_SZ_BITS __read_mostly;
261 unsigned long _PAGE_SZBITS __read_mostly;
262 
263 static void flush_dcache(unsigned long pfn)
264 {
265 	struct page *page;
266 
267 	page = pfn_to_page(pfn);
268 	if (page) {
269 		unsigned long pg_flags;
270 
271 		pg_flags = page->flags;
272 		if (pg_flags & (1UL << PG_dcache_dirty)) {
273 			int cpu = ((pg_flags >> PG_dcache_cpu_shift) &
274 				   PG_dcache_cpu_mask);
275 			int this_cpu = get_cpu();
276 
277 			/* This is just to optimize away some function calls
278 			 * in the SMP case.
279 			 */
280 			if (cpu == this_cpu)
281 				flush_dcache_page_impl(page);
282 			else
283 				smp_flush_dcache_page_impl(page, cpu);
284 
285 			clear_dcache_dirty_cpu(page, cpu);
286 
287 			put_cpu();
288 		}
289 	}
290 }
291 
292 void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t *ptep)
293 {
294 	struct mm_struct *mm;
295 	struct tsb *tsb;
296 	unsigned long tag, flags;
297 	unsigned long tsb_index, tsb_hash_shift;
298 	pte_t pte = *ptep;
299 
300 	if (tlb_type != hypervisor) {
301 		unsigned long pfn = pte_pfn(pte);
302 
303 		if (pfn_valid(pfn))
304 			flush_dcache(pfn);
305 	}
306 
307 	mm = vma->vm_mm;
308 
309 	tsb_index = MM_TSB_BASE;
310 	tsb_hash_shift = PAGE_SHIFT;
311 
312 	spin_lock_irqsave(&mm->context.lock, flags);
313 
314 #ifdef CONFIG_HUGETLB_PAGE
315 	if (mm->context.tsb_block[MM_TSB_HUGE].tsb != NULL) {
316 		if ((tlb_type == hypervisor &&
317 		     (pte_val(pte) & _PAGE_SZALL_4V) == _PAGE_SZHUGE_4V) ||
318 		    (tlb_type != hypervisor &&
319 		     (pte_val(pte) & _PAGE_SZALL_4U) == _PAGE_SZHUGE_4U)) {
320 			tsb_index = MM_TSB_HUGE;
321 			tsb_hash_shift = HPAGE_SHIFT;
322 		}
323 	}
324 #endif
325 
326 	tsb = mm->context.tsb_block[tsb_index].tsb;
327 	tsb += ((address >> tsb_hash_shift) &
328 		(mm->context.tsb_block[tsb_index].tsb_nentries - 1UL));
329 	tag = (address >> 22UL);
330 	tsb_insert(tsb, tag, pte_val(pte));
331 
332 	spin_unlock_irqrestore(&mm->context.lock, flags);
333 }
334 
335 void flush_dcache_page(struct page *page)
336 {
337 	struct address_space *mapping;
338 	int this_cpu;
339 
340 	if (tlb_type == hypervisor)
341 		return;
342 
343 	/* Do not bother with the expensive D-cache flush if it
344 	 * is merely the zero page.  The 'bigcore' testcase in GDB
345 	 * causes this case to run millions of times.
346 	 */
347 	if (page == ZERO_PAGE(0))
348 		return;
349 
350 	this_cpu = get_cpu();
351 
352 	mapping = page_mapping(page);
353 	if (mapping && !mapping_mapped(mapping)) {
354 		int dirty = test_bit(PG_dcache_dirty, &page->flags);
355 		if (dirty) {
356 			int dirty_cpu = dcache_dirty_cpu(page);
357 
358 			if (dirty_cpu == this_cpu)
359 				goto out;
360 			smp_flush_dcache_page_impl(page, dirty_cpu);
361 		}
362 		set_dcache_dirty(page, this_cpu);
363 	} else {
364 		/* We could delay the flush for the !page_mapping
365 		 * case too.  But that case is for exec env/arg
366 		 * pages and those are %99 certainly going to get
367 		 * faulted into the tlb (and thus flushed) anyways.
368 		 */
369 		flush_dcache_page_impl(page);
370 	}
371 
372 out:
373 	put_cpu();
374 }
375 EXPORT_SYMBOL(flush_dcache_page);
376 
377 void __kprobes flush_icache_range(unsigned long start, unsigned long end)
378 {
379 	/* Cheetah and Hypervisor platform cpus have coherent I-cache. */
380 	if (tlb_type == spitfire) {
381 		unsigned long kaddr;
382 
383 		/* This code only runs on Spitfire cpus so this is
384 		 * why we can assume _PAGE_PADDR_4U.
385 		 */
386 		for (kaddr = start; kaddr < end; kaddr += PAGE_SIZE) {
387 			unsigned long paddr, mask = _PAGE_PADDR_4U;
388 
389 			if (kaddr >= PAGE_OFFSET)
390 				paddr = kaddr & mask;
391 			else {
392 				pgd_t *pgdp = pgd_offset_k(kaddr);
393 				pud_t *pudp = pud_offset(pgdp, kaddr);
394 				pmd_t *pmdp = pmd_offset(pudp, kaddr);
395 				pte_t *ptep = pte_offset_kernel(pmdp, kaddr);
396 
397 				paddr = pte_val(*ptep) & mask;
398 			}
399 			__flush_icache_page(paddr);
400 		}
401 	}
402 }
403 EXPORT_SYMBOL(flush_icache_range);
404 
405 void mmu_info(struct seq_file *m)
406 {
407 	if (tlb_type == cheetah)
408 		seq_printf(m, "MMU Type\t: Cheetah\n");
409 	else if (tlb_type == cheetah_plus)
410 		seq_printf(m, "MMU Type\t: Cheetah+\n");
411 	else if (tlb_type == spitfire)
412 		seq_printf(m, "MMU Type\t: Spitfire\n");
413 	else if (tlb_type == hypervisor)
414 		seq_printf(m, "MMU Type\t: Hypervisor (sun4v)\n");
415 	else
416 		seq_printf(m, "MMU Type\t: ???\n");
417 
418 #ifdef CONFIG_DEBUG_DCFLUSH
419 	seq_printf(m, "DCPageFlushes\t: %d\n",
420 		   atomic_read(&dcpage_flushes));
421 #ifdef CONFIG_SMP
422 	seq_printf(m, "DCPageFlushesXC\t: %d\n",
423 		   atomic_read(&dcpage_flushes_xcall));
424 #endif /* CONFIG_SMP */
425 #endif /* CONFIG_DEBUG_DCFLUSH */
426 }
427 
428 struct linux_prom_translation prom_trans[512] __read_mostly;
429 unsigned int prom_trans_ents __read_mostly;
430 
431 unsigned long kern_locked_tte_data;
432 
433 /* The obp translations are saved based on 8k pagesize, since obp can
434  * use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS ->
435  * HI_OBP_ADDRESS range are handled in ktlb.S.
436  */
437 static inline int in_obp_range(unsigned long vaddr)
438 {
439 	return (vaddr >= LOW_OBP_ADDRESS &&
440 		vaddr < HI_OBP_ADDRESS);
441 }
442 
443 static int cmp_ptrans(const void *a, const void *b)
444 {
445 	const struct linux_prom_translation *x = a, *y = b;
446 
447 	if (x->virt > y->virt)
448 		return 1;
449 	if (x->virt < y->virt)
450 		return -1;
451 	return 0;
452 }
453 
454 /* Read OBP translations property into 'prom_trans[]'.  */
455 static void __init read_obp_translations(void)
456 {
457 	int n, node, ents, first, last, i;
458 
459 	node = prom_finddevice("/virtual-memory");
460 	n = prom_getproplen(node, "translations");
461 	if (unlikely(n == 0 || n == -1)) {
462 		prom_printf("prom_mappings: Couldn't get size.\n");
463 		prom_halt();
464 	}
465 	if (unlikely(n > sizeof(prom_trans))) {
466 		prom_printf("prom_mappings: Size %Zd is too big.\n", n);
467 		prom_halt();
468 	}
469 
470 	if ((n = prom_getproperty(node, "translations",
471 				  (char *)&prom_trans[0],
472 				  sizeof(prom_trans))) == -1) {
473 		prom_printf("prom_mappings: Couldn't get property.\n");
474 		prom_halt();
475 	}
476 
477 	n = n / sizeof(struct linux_prom_translation);
478 
479 	ents = n;
480 
481 	sort(prom_trans, ents, sizeof(struct linux_prom_translation),
482 	     cmp_ptrans, NULL);
483 
484 	/* Now kick out all the non-OBP entries.  */
485 	for (i = 0; i < ents; i++) {
486 		if (in_obp_range(prom_trans[i].virt))
487 			break;
488 	}
489 	first = i;
490 	for (; i < ents; i++) {
491 		if (!in_obp_range(prom_trans[i].virt))
492 			break;
493 	}
494 	last = i;
495 
496 	for (i = 0; i < (last - first); i++) {
497 		struct linux_prom_translation *src = &prom_trans[i + first];
498 		struct linux_prom_translation *dest = &prom_trans[i];
499 
500 		*dest = *src;
501 	}
502 	for (; i < ents; i++) {
503 		struct linux_prom_translation *dest = &prom_trans[i];
504 		dest->virt = dest->size = dest->data = 0x0UL;
505 	}
506 
507 	prom_trans_ents = last - first;
508 
509 	if (tlb_type == spitfire) {
510 		/* Clear diag TTE bits. */
511 		for (i = 0; i < prom_trans_ents; i++)
512 			prom_trans[i].data &= ~0x0003fe0000000000UL;
513 	}
514 }
515 
516 static void __init hypervisor_tlb_lock(unsigned long vaddr,
517 				       unsigned long pte,
518 				       unsigned long mmu)
519 {
520 	unsigned long ret = sun4v_mmu_map_perm_addr(vaddr, 0, pte, mmu);
521 
522 	if (ret != 0) {
523 		prom_printf("hypervisor_tlb_lock[%lx:%lx:%lx:%lx]: "
524 			    "errors with %lx\n", vaddr, 0, pte, mmu, ret);
525 		prom_halt();
526 	}
527 }
528 
529 static unsigned long kern_large_tte(unsigned long paddr);
530 
531 static void __init remap_kernel(void)
532 {
533 	unsigned long phys_page, tte_vaddr, tte_data;
534 	int i, tlb_ent = sparc64_highest_locked_tlbent();
535 
536 	tte_vaddr = (unsigned long) KERNBASE;
537 	phys_page = (prom_boot_mapping_phys_low >> 22UL) << 22UL;
538 	tte_data = kern_large_tte(phys_page);
539 
540 	kern_locked_tte_data = tte_data;
541 
542 	/* Now lock us into the TLBs via Hypervisor or OBP. */
543 	if (tlb_type == hypervisor) {
544 		for (i = 0; i < num_kernel_image_mappings; i++) {
545 			hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU);
546 			hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU);
547 			tte_vaddr += 0x400000;
548 			tte_data += 0x400000;
549 		}
550 	} else {
551 		for (i = 0; i < num_kernel_image_mappings; i++) {
552 			prom_dtlb_load(tlb_ent - i, tte_data, tte_vaddr);
553 			prom_itlb_load(tlb_ent - i, tte_data, tte_vaddr);
554 			tte_vaddr += 0x400000;
555 			tte_data += 0x400000;
556 		}
557 		sparc64_highest_unlocked_tlb_ent = tlb_ent - i;
558 	}
559 	if (tlb_type == cheetah_plus) {
560 		sparc64_kern_pri_context = (CTX_CHEETAH_PLUS_CTX0 |
561 					    CTX_CHEETAH_PLUS_NUC);
562 		sparc64_kern_pri_nuc_bits = CTX_CHEETAH_PLUS_NUC;
563 		sparc64_kern_sec_context = CTX_CHEETAH_PLUS_CTX0;
564 	}
565 }
566 
567 
568 static void __init inherit_prom_mappings(void)
569 {
570 	/* Now fixup OBP's idea about where we really are mapped. */
571 	printk("Remapping the kernel... ");
572 	remap_kernel();
573 	printk("done.\n");
574 }
575 
576 void prom_world(int enter)
577 {
578 	if (!enter)
579 		set_fs((mm_segment_t) { get_thread_current_ds() });
580 
581 	__asm__ __volatile__("flushw");
582 }
583 
584 void __flush_dcache_range(unsigned long start, unsigned long end)
585 {
586 	unsigned long va;
587 
588 	if (tlb_type == spitfire) {
589 		int n = 0;
590 
591 		for (va = start; va < end; va += 32) {
592 			spitfire_put_dcache_tag(va & 0x3fe0, 0x0);
593 			if (++n >= 512)
594 				break;
595 		}
596 	} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
597 		start = __pa(start);
598 		end = __pa(end);
599 		for (va = start; va < end; va += 32)
600 			__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
601 					     "membar #Sync"
602 					     : /* no outputs */
603 					     : "r" (va),
604 					       "i" (ASI_DCACHE_INVALIDATE));
605 	}
606 }
607 EXPORT_SYMBOL(__flush_dcache_range);
608 
609 /* get_new_mmu_context() uses "cache + 1".  */
610 DEFINE_SPINLOCK(ctx_alloc_lock);
611 unsigned long tlb_context_cache = CTX_FIRST_VERSION - 1;
612 #define MAX_CTX_NR	(1UL << CTX_NR_BITS)
613 #define CTX_BMAP_SLOTS	BITS_TO_LONGS(MAX_CTX_NR)
614 DECLARE_BITMAP(mmu_context_bmap, MAX_CTX_NR);
615 
616 /* Caller does TLB context flushing on local CPU if necessary.
617  * The caller also ensures that CTX_VALID(mm->context) is false.
618  *
619  * We must be careful about boundary cases so that we never
620  * let the user have CTX 0 (nucleus) or we ever use a CTX
621  * version of zero (and thus NO_CONTEXT would not be caught
622  * by version mis-match tests in mmu_context.h).
623  *
624  * Always invoked with interrupts disabled.
625  */
626 void get_new_mmu_context(struct mm_struct *mm)
627 {
628 	unsigned long ctx, new_ctx;
629 	unsigned long orig_pgsz_bits;
630 	unsigned long flags;
631 	int new_version;
632 
633 	spin_lock_irqsave(&ctx_alloc_lock, flags);
634 	orig_pgsz_bits = (mm->context.sparc64_ctx_val & CTX_PGSZ_MASK);
635 	ctx = (tlb_context_cache + 1) & CTX_NR_MASK;
636 	new_ctx = find_next_zero_bit(mmu_context_bmap, 1 << CTX_NR_BITS, ctx);
637 	new_version = 0;
638 	if (new_ctx >= (1 << CTX_NR_BITS)) {
639 		new_ctx = find_next_zero_bit(mmu_context_bmap, ctx, 1);
640 		if (new_ctx >= ctx) {
641 			int i;
642 			new_ctx = (tlb_context_cache & CTX_VERSION_MASK) +
643 				CTX_FIRST_VERSION;
644 			if (new_ctx == 1)
645 				new_ctx = CTX_FIRST_VERSION;
646 
647 			/* Don't call memset, for 16 entries that's just
648 			 * plain silly...
649 			 */
650 			mmu_context_bmap[0] = 3;
651 			mmu_context_bmap[1] = 0;
652 			mmu_context_bmap[2] = 0;
653 			mmu_context_bmap[3] = 0;
654 			for (i = 4; i < CTX_BMAP_SLOTS; i += 4) {
655 				mmu_context_bmap[i + 0] = 0;
656 				mmu_context_bmap[i + 1] = 0;
657 				mmu_context_bmap[i + 2] = 0;
658 				mmu_context_bmap[i + 3] = 0;
659 			}
660 			new_version = 1;
661 			goto out;
662 		}
663 	}
664 	mmu_context_bmap[new_ctx>>6] |= (1UL << (new_ctx & 63));
665 	new_ctx |= (tlb_context_cache & CTX_VERSION_MASK);
666 out:
667 	tlb_context_cache = new_ctx;
668 	mm->context.sparc64_ctx_val = new_ctx | orig_pgsz_bits;
669 	spin_unlock_irqrestore(&ctx_alloc_lock, flags);
670 
671 	if (unlikely(new_version))
672 		smp_new_mmu_context_version();
673 }
674 
675 static int numa_enabled = 1;
676 static int numa_debug;
677 
678 static int __init early_numa(char *p)
679 {
680 	if (!p)
681 		return 0;
682 
683 	if (strstr(p, "off"))
684 		numa_enabled = 0;
685 
686 	if (strstr(p, "debug"))
687 		numa_debug = 1;
688 
689 	return 0;
690 }
691 early_param("numa", early_numa);
692 
693 #define numadbg(f, a...) \
694 do {	if (numa_debug) \
695 		printk(KERN_INFO f, ## a); \
696 } while (0)
697 
698 static void __init find_ramdisk(unsigned long phys_base)
699 {
700 #ifdef CONFIG_BLK_DEV_INITRD
701 	if (sparc_ramdisk_image || sparc_ramdisk_image64) {
702 		unsigned long ramdisk_image;
703 
704 		/* Older versions of the bootloader only supported a
705 		 * 32-bit physical address for the ramdisk image
706 		 * location, stored at sparc_ramdisk_image.  Newer
707 		 * SILO versions set sparc_ramdisk_image to zero and
708 		 * provide a full 64-bit physical address at
709 		 * sparc_ramdisk_image64.
710 		 */
711 		ramdisk_image = sparc_ramdisk_image;
712 		if (!ramdisk_image)
713 			ramdisk_image = sparc_ramdisk_image64;
714 
715 		/* Another bootloader quirk.  The bootloader normalizes
716 		 * the physical address to KERNBASE, so we have to
717 		 * factor that back out and add in the lowest valid
718 		 * physical page address to get the true physical address.
719 		 */
720 		ramdisk_image -= KERNBASE;
721 		ramdisk_image += phys_base;
722 
723 		numadbg("Found ramdisk at physical address 0x%lx, size %u\n",
724 			ramdisk_image, sparc_ramdisk_size);
725 
726 		initrd_start = ramdisk_image;
727 		initrd_end = ramdisk_image + sparc_ramdisk_size;
728 
729 		lmb_reserve(initrd_start, sparc_ramdisk_size);
730 
731 		initrd_start += PAGE_OFFSET;
732 		initrd_end += PAGE_OFFSET;
733 	}
734 #endif
735 }
736 
737 struct node_mem_mask {
738 	unsigned long mask;
739 	unsigned long val;
740 	unsigned long bootmem_paddr;
741 };
742 static struct node_mem_mask node_masks[MAX_NUMNODES];
743 static int num_node_masks;
744 
745 int numa_cpu_lookup_table[NR_CPUS];
746 cpumask_t numa_cpumask_lookup_table[MAX_NUMNODES];
747 
748 #ifdef CONFIG_NEED_MULTIPLE_NODES
749 
750 struct mdesc_mblock {
751 	u64	base;
752 	u64	size;
753 	u64	offset; /* RA-to-PA */
754 };
755 static struct mdesc_mblock *mblocks;
756 static int num_mblocks;
757 
758 static unsigned long ra_to_pa(unsigned long addr)
759 {
760 	int i;
761 
762 	for (i = 0; i < num_mblocks; i++) {
763 		struct mdesc_mblock *m = &mblocks[i];
764 
765 		if (addr >= m->base &&
766 		    addr < (m->base + m->size)) {
767 			addr += m->offset;
768 			break;
769 		}
770 	}
771 	return addr;
772 }
773 
774 static int find_node(unsigned long addr)
775 {
776 	int i;
777 
778 	addr = ra_to_pa(addr);
779 	for (i = 0; i < num_node_masks; i++) {
780 		struct node_mem_mask *p = &node_masks[i];
781 
782 		if ((addr & p->mask) == p->val)
783 			return i;
784 	}
785 	return -1;
786 }
787 
788 static unsigned long long nid_range(unsigned long long start,
789 				    unsigned long long end, int *nid)
790 {
791 	*nid = find_node(start);
792 	start += PAGE_SIZE;
793 	while (start < end) {
794 		int n = find_node(start);
795 
796 		if (n != *nid)
797 			break;
798 		start += PAGE_SIZE;
799 	}
800 
801 	if (start > end)
802 		start = end;
803 
804 	return start;
805 }
806 #else
807 static unsigned long long nid_range(unsigned long long start,
808 				    unsigned long long end, int *nid)
809 {
810 	*nid = 0;
811 	return end;
812 }
813 #endif
814 
815 /* This must be invoked after performing all of the necessary
816  * add_active_range() calls for 'nid'.  We need to be able to get
817  * correct data from get_pfn_range_for_nid().
818  */
819 static void __init allocate_node_data(int nid)
820 {
821 	unsigned long paddr, num_pages, start_pfn, end_pfn;
822 	struct pglist_data *p;
823 
824 #ifdef CONFIG_NEED_MULTIPLE_NODES
825 	paddr = lmb_alloc_nid(sizeof(struct pglist_data),
826 			      SMP_CACHE_BYTES, nid, nid_range);
827 	if (!paddr) {
828 		prom_printf("Cannot allocate pglist_data for nid[%d]\n", nid);
829 		prom_halt();
830 	}
831 	NODE_DATA(nid) = __va(paddr);
832 	memset(NODE_DATA(nid), 0, sizeof(struct pglist_data));
833 
834 	NODE_DATA(nid)->bdata = &bootmem_node_data[nid];
835 #endif
836 
837 	p = NODE_DATA(nid);
838 
839 	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
840 	p->node_start_pfn = start_pfn;
841 	p->node_spanned_pages = end_pfn - start_pfn;
842 
843 	if (p->node_spanned_pages) {
844 		num_pages = bootmem_bootmap_pages(p->node_spanned_pages);
845 
846 		paddr = lmb_alloc_nid(num_pages << PAGE_SHIFT, PAGE_SIZE, nid,
847 				      nid_range);
848 		if (!paddr) {
849 			prom_printf("Cannot allocate bootmap for nid[%d]\n",
850 				  nid);
851 			prom_halt();
852 		}
853 		node_masks[nid].bootmem_paddr = paddr;
854 	}
855 }
856 
857 static void init_node_masks_nonnuma(void)
858 {
859 	int i;
860 
861 	numadbg("Initializing tables for non-numa.\n");
862 
863 	node_masks[0].mask = node_masks[0].val = 0;
864 	num_node_masks = 1;
865 
866 	for (i = 0; i < NR_CPUS; i++)
867 		numa_cpu_lookup_table[i] = 0;
868 
869 	numa_cpumask_lookup_table[0] = CPU_MASK_ALL;
870 }
871 
872 #ifdef CONFIG_NEED_MULTIPLE_NODES
873 struct pglist_data *node_data[MAX_NUMNODES];
874 
875 EXPORT_SYMBOL(numa_cpu_lookup_table);
876 EXPORT_SYMBOL(numa_cpumask_lookup_table);
877 EXPORT_SYMBOL(node_data);
878 
879 struct mdesc_mlgroup {
880 	u64	node;
881 	u64	latency;
882 	u64	match;
883 	u64	mask;
884 };
885 static struct mdesc_mlgroup *mlgroups;
886 static int num_mlgroups;
887 
888 static int scan_pio_for_cfg_handle(struct mdesc_handle *md, u64 pio,
889 				   u32 cfg_handle)
890 {
891 	u64 arc;
892 
893 	mdesc_for_each_arc(arc, md, pio, MDESC_ARC_TYPE_FWD) {
894 		u64 target = mdesc_arc_target(md, arc);
895 		const u64 *val;
896 
897 		val = mdesc_get_property(md, target,
898 					 "cfg-handle", NULL);
899 		if (val && *val == cfg_handle)
900 			return 0;
901 	}
902 	return -ENODEV;
903 }
904 
905 static int scan_arcs_for_cfg_handle(struct mdesc_handle *md, u64 grp,
906 				    u32 cfg_handle)
907 {
908 	u64 arc, candidate, best_latency = ~(u64)0;
909 
910 	candidate = MDESC_NODE_NULL;
911 	mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
912 		u64 target = mdesc_arc_target(md, arc);
913 		const char *name = mdesc_node_name(md, target);
914 		const u64 *val;
915 
916 		if (strcmp(name, "pio-latency-group"))
917 			continue;
918 
919 		val = mdesc_get_property(md, target, "latency", NULL);
920 		if (!val)
921 			continue;
922 
923 		if (*val < best_latency) {
924 			candidate = target;
925 			best_latency = *val;
926 		}
927 	}
928 
929 	if (candidate == MDESC_NODE_NULL)
930 		return -ENODEV;
931 
932 	return scan_pio_for_cfg_handle(md, candidate, cfg_handle);
933 }
934 
935 int of_node_to_nid(struct device_node *dp)
936 {
937 	const struct linux_prom64_registers *regs;
938 	struct mdesc_handle *md;
939 	u32 cfg_handle;
940 	int count, nid;
941 	u64 grp;
942 
943 	/* This is the right thing to do on currently supported
944 	 * SUN4U NUMA platforms as well, as the PCI controller does
945 	 * not sit behind any particular memory controller.
946 	 */
947 	if (!mlgroups)
948 		return -1;
949 
950 	regs = of_get_property(dp, "reg", NULL);
951 	if (!regs)
952 		return -1;
953 
954 	cfg_handle = (regs->phys_addr >> 32UL) & 0x0fffffff;
955 
956 	md = mdesc_grab();
957 
958 	count = 0;
959 	nid = -1;
960 	mdesc_for_each_node_by_name(md, grp, "group") {
961 		if (!scan_arcs_for_cfg_handle(md, grp, cfg_handle)) {
962 			nid = count;
963 			break;
964 		}
965 		count++;
966 	}
967 
968 	mdesc_release(md);
969 
970 	return nid;
971 }
972 
973 static void __init add_node_ranges(void)
974 {
975 	int i;
976 
977 	for (i = 0; i < lmb.memory.cnt; i++) {
978 		unsigned long size = lmb_size_bytes(&lmb.memory, i);
979 		unsigned long start, end;
980 
981 		start = lmb.memory.region[i].base;
982 		end = start + size;
983 		while (start < end) {
984 			unsigned long this_end;
985 			int nid;
986 
987 			this_end = nid_range(start, end, &nid);
988 
989 			numadbg("Adding active range nid[%d] "
990 				"start[%lx] end[%lx]\n",
991 				nid, start, this_end);
992 
993 			add_active_range(nid,
994 					 start >> PAGE_SHIFT,
995 					 this_end >> PAGE_SHIFT);
996 
997 			start = this_end;
998 		}
999 	}
1000 }
1001 
1002 static int __init grab_mlgroups(struct mdesc_handle *md)
1003 {
1004 	unsigned long paddr;
1005 	int count = 0;
1006 	u64 node;
1007 
1008 	mdesc_for_each_node_by_name(md, node, "memory-latency-group")
1009 		count++;
1010 	if (!count)
1011 		return -ENOENT;
1012 
1013 	paddr = lmb_alloc(count * sizeof(struct mdesc_mlgroup),
1014 			  SMP_CACHE_BYTES);
1015 	if (!paddr)
1016 		return -ENOMEM;
1017 
1018 	mlgroups = __va(paddr);
1019 	num_mlgroups = count;
1020 
1021 	count = 0;
1022 	mdesc_for_each_node_by_name(md, node, "memory-latency-group") {
1023 		struct mdesc_mlgroup *m = &mlgroups[count++];
1024 		const u64 *val;
1025 
1026 		m->node = node;
1027 
1028 		val = mdesc_get_property(md, node, "latency", NULL);
1029 		m->latency = *val;
1030 		val = mdesc_get_property(md, node, "address-match", NULL);
1031 		m->match = *val;
1032 		val = mdesc_get_property(md, node, "address-mask", NULL);
1033 		m->mask = *val;
1034 
1035 		numadbg("MLGROUP[%d]: node[%llx] latency[%llx] "
1036 			"match[%llx] mask[%llx]\n",
1037 			count - 1, m->node, m->latency, m->match, m->mask);
1038 	}
1039 
1040 	return 0;
1041 }
1042 
1043 static int __init grab_mblocks(struct mdesc_handle *md)
1044 {
1045 	unsigned long paddr;
1046 	int count = 0;
1047 	u64 node;
1048 
1049 	mdesc_for_each_node_by_name(md, node, "mblock")
1050 		count++;
1051 	if (!count)
1052 		return -ENOENT;
1053 
1054 	paddr = lmb_alloc(count * sizeof(struct mdesc_mblock),
1055 			  SMP_CACHE_BYTES);
1056 	if (!paddr)
1057 		return -ENOMEM;
1058 
1059 	mblocks = __va(paddr);
1060 	num_mblocks = count;
1061 
1062 	count = 0;
1063 	mdesc_for_each_node_by_name(md, node, "mblock") {
1064 		struct mdesc_mblock *m = &mblocks[count++];
1065 		const u64 *val;
1066 
1067 		val = mdesc_get_property(md, node, "base", NULL);
1068 		m->base = *val;
1069 		val = mdesc_get_property(md, node, "size", NULL);
1070 		m->size = *val;
1071 		val = mdesc_get_property(md, node,
1072 					 "address-congruence-offset", NULL);
1073 		m->offset = *val;
1074 
1075 		numadbg("MBLOCK[%d]: base[%llx] size[%llx] offset[%llx]\n",
1076 			count - 1, m->base, m->size, m->offset);
1077 	}
1078 
1079 	return 0;
1080 }
1081 
1082 static void __init numa_parse_mdesc_group_cpus(struct mdesc_handle *md,
1083 					       u64 grp, cpumask_t *mask)
1084 {
1085 	u64 arc;
1086 
1087 	cpus_clear(*mask);
1088 
1089 	mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_BACK) {
1090 		u64 target = mdesc_arc_target(md, arc);
1091 		const char *name = mdesc_node_name(md, target);
1092 		const u64 *id;
1093 
1094 		if (strcmp(name, "cpu"))
1095 			continue;
1096 		id = mdesc_get_property(md, target, "id", NULL);
1097 		if (*id < nr_cpu_ids)
1098 			cpu_set(*id, *mask);
1099 	}
1100 }
1101 
1102 static struct mdesc_mlgroup * __init find_mlgroup(u64 node)
1103 {
1104 	int i;
1105 
1106 	for (i = 0; i < num_mlgroups; i++) {
1107 		struct mdesc_mlgroup *m = &mlgroups[i];
1108 		if (m->node == node)
1109 			return m;
1110 	}
1111 	return NULL;
1112 }
1113 
1114 static int __init numa_attach_mlgroup(struct mdesc_handle *md, u64 grp,
1115 				      int index)
1116 {
1117 	struct mdesc_mlgroup *candidate = NULL;
1118 	u64 arc, best_latency = ~(u64)0;
1119 	struct node_mem_mask *n;
1120 
1121 	mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1122 		u64 target = mdesc_arc_target(md, arc);
1123 		struct mdesc_mlgroup *m = find_mlgroup(target);
1124 		if (!m)
1125 			continue;
1126 		if (m->latency < best_latency) {
1127 			candidate = m;
1128 			best_latency = m->latency;
1129 		}
1130 	}
1131 	if (!candidate)
1132 		return -ENOENT;
1133 
1134 	if (num_node_masks != index) {
1135 		printk(KERN_ERR "Inconsistent NUMA state, "
1136 		       "index[%d] != num_node_masks[%d]\n",
1137 		       index, num_node_masks);
1138 		return -EINVAL;
1139 	}
1140 
1141 	n = &node_masks[num_node_masks++];
1142 
1143 	n->mask = candidate->mask;
1144 	n->val = candidate->match;
1145 
1146 	numadbg("NUMA NODE[%d]: mask[%lx] val[%lx] (latency[%llx])\n",
1147 		index, n->mask, n->val, candidate->latency);
1148 
1149 	return 0;
1150 }
1151 
1152 static int __init numa_parse_mdesc_group(struct mdesc_handle *md, u64 grp,
1153 					 int index)
1154 {
1155 	cpumask_t mask;
1156 	int cpu;
1157 
1158 	numa_parse_mdesc_group_cpus(md, grp, &mask);
1159 
1160 	for_each_cpu_mask(cpu, mask)
1161 		numa_cpu_lookup_table[cpu] = index;
1162 	numa_cpumask_lookup_table[index] = mask;
1163 
1164 	if (numa_debug) {
1165 		printk(KERN_INFO "NUMA GROUP[%d]: cpus [ ", index);
1166 		for_each_cpu_mask(cpu, mask)
1167 			printk("%d ", cpu);
1168 		printk("]\n");
1169 	}
1170 
1171 	return numa_attach_mlgroup(md, grp, index);
1172 }
1173 
1174 static int __init numa_parse_mdesc(void)
1175 {
1176 	struct mdesc_handle *md = mdesc_grab();
1177 	int i, err, count;
1178 	u64 node;
1179 
1180 	node = mdesc_node_by_name(md, MDESC_NODE_NULL, "latency-groups");
1181 	if (node == MDESC_NODE_NULL) {
1182 		mdesc_release(md);
1183 		return -ENOENT;
1184 	}
1185 
1186 	err = grab_mblocks(md);
1187 	if (err < 0)
1188 		goto out;
1189 
1190 	err = grab_mlgroups(md);
1191 	if (err < 0)
1192 		goto out;
1193 
1194 	count = 0;
1195 	mdesc_for_each_node_by_name(md, node, "group") {
1196 		err = numa_parse_mdesc_group(md, node, count);
1197 		if (err < 0)
1198 			break;
1199 		count++;
1200 	}
1201 
1202 	add_node_ranges();
1203 
1204 	for (i = 0; i < num_node_masks; i++) {
1205 		allocate_node_data(i);
1206 		node_set_online(i);
1207 	}
1208 
1209 	err = 0;
1210 out:
1211 	mdesc_release(md);
1212 	return err;
1213 }
1214 
1215 static int __init numa_parse_jbus(void)
1216 {
1217 	unsigned long cpu, index;
1218 
1219 	/* NUMA node id is encoded in bits 36 and higher, and there is
1220 	 * a 1-to-1 mapping from CPU ID to NUMA node ID.
1221 	 */
1222 	index = 0;
1223 	for_each_present_cpu(cpu) {
1224 		numa_cpu_lookup_table[cpu] = index;
1225 		numa_cpumask_lookup_table[index] = cpumask_of_cpu(cpu);
1226 		node_masks[index].mask = ~((1UL << 36UL) - 1UL);
1227 		node_masks[index].val = cpu << 36UL;
1228 
1229 		index++;
1230 	}
1231 	num_node_masks = index;
1232 
1233 	add_node_ranges();
1234 
1235 	for (index = 0; index < num_node_masks; index++) {
1236 		allocate_node_data(index);
1237 		node_set_online(index);
1238 	}
1239 
1240 	return 0;
1241 }
1242 
1243 static int __init numa_parse_sun4u(void)
1244 {
1245 	if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1246 		unsigned long ver;
1247 
1248 		__asm__ ("rdpr %%ver, %0" : "=r" (ver));
1249 		if ((ver >> 32UL) == __JALAPENO_ID ||
1250 		    (ver >> 32UL) == __SERRANO_ID)
1251 			return numa_parse_jbus();
1252 	}
1253 	return -1;
1254 }
1255 
1256 static int __init bootmem_init_numa(void)
1257 {
1258 	int err = -1;
1259 
1260 	numadbg("bootmem_init_numa()\n");
1261 
1262 	if (numa_enabled) {
1263 		if (tlb_type == hypervisor)
1264 			err = numa_parse_mdesc();
1265 		else
1266 			err = numa_parse_sun4u();
1267 	}
1268 	return err;
1269 }
1270 
1271 #else
1272 
1273 static int bootmem_init_numa(void)
1274 {
1275 	return -1;
1276 }
1277 
1278 #endif
1279 
1280 static void __init bootmem_init_nonnuma(void)
1281 {
1282 	unsigned long top_of_ram = lmb_end_of_DRAM();
1283 	unsigned long total_ram = lmb_phys_mem_size();
1284 	unsigned int i;
1285 
1286 	numadbg("bootmem_init_nonnuma()\n");
1287 
1288 	printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
1289 	       top_of_ram, total_ram);
1290 	printk(KERN_INFO "Memory hole size: %ldMB\n",
1291 	       (top_of_ram - total_ram) >> 20);
1292 
1293 	init_node_masks_nonnuma();
1294 
1295 	for (i = 0; i < lmb.memory.cnt; i++) {
1296 		unsigned long size = lmb_size_bytes(&lmb.memory, i);
1297 		unsigned long start_pfn, end_pfn;
1298 
1299 		if (!size)
1300 			continue;
1301 
1302 		start_pfn = lmb.memory.region[i].base >> PAGE_SHIFT;
1303 		end_pfn = start_pfn + lmb_size_pages(&lmb.memory, i);
1304 		add_active_range(0, start_pfn, end_pfn);
1305 	}
1306 
1307 	allocate_node_data(0);
1308 
1309 	node_set_online(0);
1310 }
1311 
1312 static void __init reserve_range_in_node(int nid, unsigned long start,
1313 					 unsigned long end)
1314 {
1315 	numadbg("    reserve_range_in_node(nid[%d],start[%lx],end[%lx]\n",
1316 		nid, start, end);
1317 	while (start < end) {
1318 		unsigned long this_end;
1319 		int n;
1320 
1321 		this_end = nid_range(start, end, &n);
1322 		if (n == nid) {
1323 			numadbg("      MATCH reserving range [%lx:%lx]\n",
1324 				start, this_end);
1325 			reserve_bootmem_node(NODE_DATA(nid), start,
1326 					     (this_end - start), BOOTMEM_DEFAULT);
1327 		} else
1328 			numadbg("      NO MATCH, advancing start to %lx\n",
1329 				this_end);
1330 
1331 		start = this_end;
1332 	}
1333 }
1334 
1335 static void __init trim_reserved_in_node(int nid)
1336 {
1337 	int i;
1338 
1339 	numadbg("  trim_reserved_in_node(%d)\n", nid);
1340 
1341 	for (i = 0; i < lmb.reserved.cnt; i++) {
1342 		unsigned long start = lmb.reserved.region[i].base;
1343 		unsigned long size = lmb_size_bytes(&lmb.reserved, i);
1344 		unsigned long end = start + size;
1345 
1346 		reserve_range_in_node(nid, start, end);
1347 	}
1348 }
1349 
1350 static void __init bootmem_init_one_node(int nid)
1351 {
1352 	struct pglist_data *p;
1353 
1354 	numadbg("bootmem_init_one_node(%d)\n", nid);
1355 
1356 	p = NODE_DATA(nid);
1357 
1358 	if (p->node_spanned_pages) {
1359 		unsigned long paddr = node_masks[nid].bootmem_paddr;
1360 		unsigned long end_pfn;
1361 
1362 		end_pfn = p->node_start_pfn + p->node_spanned_pages;
1363 
1364 		numadbg("  init_bootmem_node(%d, %lx, %lx, %lx)\n",
1365 			nid, paddr >> PAGE_SHIFT, p->node_start_pfn, end_pfn);
1366 
1367 		init_bootmem_node(p, paddr >> PAGE_SHIFT,
1368 				  p->node_start_pfn, end_pfn);
1369 
1370 		numadbg("  free_bootmem_with_active_regions(%d, %lx)\n",
1371 			nid, end_pfn);
1372 		free_bootmem_with_active_regions(nid, end_pfn);
1373 
1374 		trim_reserved_in_node(nid);
1375 
1376 		numadbg("  sparse_memory_present_with_active_regions(%d)\n",
1377 			nid);
1378 		sparse_memory_present_with_active_regions(nid);
1379 	}
1380 }
1381 
1382 static unsigned long __init bootmem_init(unsigned long phys_base)
1383 {
1384 	unsigned long end_pfn;
1385 	int nid;
1386 
1387 	end_pfn = lmb_end_of_DRAM() >> PAGE_SHIFT;
1388 	max_pfn = max_low_pfn = end_pfn;
1389 	min_low_pfn = (phys_base >> PAGE_SHIFT);
1390 
1391 	if (bootmem_init_numa() < 0)
1392 		bootmem_init_nonnuma();
1393 
1394 	/* XXX cpu notifier XXX */
1395 
1396 	for_each_online_node(nid)
1397 		bootmem_init_one_node(nid);
1398 
1399 	sparse_init();
1400 
1401 	return end_pfn;
1402 }
1403 
1404 static struct linux_prom64_registers pall[MAX_BANKS] __initdata;
1405 static int pall_ents __initdata;
1406 
1407 #ifdef CONFIG_DEBUG_PAGEALLOC
1408 static unsigned long __ref kernel_map_range(unsigned long pstart,
1409 					    unsigned long pend, pgprot_t prot)
1410 {
1411 	unsigned long vstart = PAGE_OFFSET + pstart;
1412 	unsigned long vend = PAGE_OFFSET + pend;
1413 	unsigned long alloc_bytes = 0UL;
1414 
1415 	if ((vstart & ~PAGE_MASK) || (vend & ~PAGE_MASK)) {
1416 		prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n",
1417 			    vstart, vend);
1418 		prom_halt();
1419 	}
1420 
1421 	while (vstart < vend) {
1422 		unsigned long this_end, paddr = __pa(vstart);
1423 		pgd_t *pgd = pgd_offset_k(vstart);
1424 		pud_t *pud;
1425 		pmd_t *pmd;
1426 		pte_t *pte;
1427 
1428 		pud = pud_offset(pgd, vstart);
1429 		if (pud_none(*pud)) {
1430 			pmd_t *new;
1431 
1432 			new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1433 			alloc_bytes += PAGE_SIZE;
1434 			pud_populate(&init_mm, pud, new);
1435 		}
1436 
1437 		pmd = pmd_offset(pud, vstart);
1438 		if (!pmd_present(*pmd)) {
1439 			pte_t *new;
1440 
1441 			new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1442 			alloc_bytes += PAGE_SIZE;
1443 			pmd_populate_kernel(&init_mm, pmd, new);
1444 		}
1445 
1446 		pte = pte_offset_kernel(pmd, vstart);
1447 		this_end = (vstart + PMD_SIZE) & PMD_MASK;
1448 		if (this_end > vend)
1449 			this_end = vend;
1450 
1451 		while (vstart < this_end) {
1452 			pte_val(*pte) = (paddr | pgprot_val(prot));
1453 
1454 			vstart += PAGE_SIZE;
1455 			paddr += PAGE_SIZE;
1456 			pte++;
1457 		}
1458 	}
1459 
1460 	return alloc_bytes;
1461 }
1462 
1463 extern unsigned int kvmap_linear_patch[1];
1464 #endif /* CONFIG_DEBUG_PAGEALLOC */
1465 
1466 static void __init mark_kpte_bitmap(unsigned long start, unsigned long end)
1467 {
1468 	const unsigned long shift_256MB = 28;
1469 	const unsigned long mask_256MB = ((1UL << shift_256MB) - 1UL);
1470 	const unsigned long size_256MB = (1UL << shift_256MB);
1471 
1472 	while (start < end) {
1473 		long remains;
1474 
1475 		remains = end - start;
1476 		if (remains < size_256MB)
1477 			break;
1478 
1479 		if (start & mask_256MB) {
1480 			start = (start + size_256MB) & ~mask_256MB;
1481 			continue;
1482 		}
1483 
1484 		while (remains >= size_256MB) {
1485 			unsigned long index = start >> shift_256MB;
1486 
1487 			__set_bit(index, kpte_linear_bitmap);
1488 
1489 			start += size_256MB;
1490 			remains -= size_256MB;
1491 		}
1492 	}
1493 }
1494 
1495 static void __init init_kpte_bitmap(void)
1496 {
1497 	unsigned long i;
1498 
1499 	for (i = 0; i < pall_ents; i++) {
1500 		unsigned long phys_start, phys_end;
1501 
1502 		phys_start = pall[i].phys_addr;
1503 		phys_end = phys_start + pall[i].reg_size;
1504 
1505 		mark_kpte_bitmap(phys_start, phys_end);
1506 	}
1507 }
1508 
1509 static void __init kernel_physical_mapping_init(void)
1510 {
1511 #ifdef CONFIG_DEBUG_PAGEALLOC
1512 	unsigned long i, mem_alloced = 0UL;
1513 
1514 	for (i = 0; i < pall_ents; i++) {
1515 		unsigned long phys_start, phys_end;
1516 
1517 		phys_start = pall[i].phys_addr;
1518 		phys_end = phys_start + pall[i].reg_size;
1519 
1520 		mem_alloced += kernel_map_range(phys_start, phys_end,
1521 						PAGE_KERNEL);
1522 	}
1523 
1524 	printk("Allocated %ld bytes for kernel page tables.\n",
1525 	       mem_alloced);
1526 
1527 	kvmap_linear_patch[0] = 0x01000000; /* nop */
1528 	flushi(&kvmap_linear_patch[0]);
1529 
1530 	__flush_tlb_all();
1531 #endif
1532 }
1533 
1534 #ifdef CONFIG_DEBUG_PAGEALLOC
1535 void kernel_map_pages(struct page *page, int numpages, int enable)
1536 {
1537 	unsigned long phys_start = page_to_pfn(page) << PAGE_SHIFT;
1538 	unsigned long phys_end = phys_start + (numpages * PAGE_SIZE);
1539 
1540 	kernel_map_range(phys_start, phys_end,
1541 			 (enable ? PAGE_KERNEL : __pgprot(0)));
1542 
1543 	flush_tsb_kernel_range(PAGE_OFFSET + phys_start,
1544 			       PAGE_OFFSET + phys_end);
1545 
1546 	/* we should perform an IPI and flush all tlbs,
1547 	 * but that can deadlock->flush only current cpu.
1548 	 */
1549 	__flush_tlb_kernel_range(PAGE_OFFSET + phys_start,
1550 				 PAGE_OFFSET + phys_end);
1551 }
1552 #endif
1553 
1554 unsigned long __init find_ecache_flush_span(unsigned long size)
1555 {
1556 	int i;
1557 
1558 	for (i = 0; i < pavail_ents; i++) {
1559 		if (pavail[i].reg_size >= size)
1560 			return pavail[i].phys_addr;
1561 	}
1562 
1563 	return ~0UL;
1564 }
1565 
1566 static void __init tsb_phys_patch(void)
1567 {
1568 	struct tsb_ldquad_phys_patch_entry *pquad;
1569 	struct tsb_phys_patch_entry *p;
1570 
1571 	pquad = &__tsb_ldquad_phys_patch;
1572 	while (pquad < &__tsb_ldquad_phys_patch_end) {
1573 		unsigned long addr = pquad->addr;
1574 
1575 		if (tlb_type == hypervisor)
1576 			*(unsigned int *) addr = pquad->sun4v_insn;
1577 		else
1578 			*(unsigned int *) addr = pquad->sun4u_insn;
1579 		wmb();
1580 		__asm__ __volatile__("flush	%0"
1581 				     : /* no outputs */
1582 				     : "r" (addr));
1583 
1584 		pquad++;
1585 	}
1586 
1587 	p = &__tsb_phys_patch;
1588 	while (p < &__tsb_phys_patch_end) {
1589 		unsigned long addr = p->addr;
1590 
1591 		*(unsigned int *) addr = p->insn;
1592 		wmb();
1593 		__asm__ __volatile__("flush	%0"
1594 				     : /* no outputs */
1595 				     : "r" (addr));
1596 
1597 		p++;
1598 	}
1599 }
1600 
1601 /* Don't mark as init, we give this to the Hypervisor.  */
1602 #ifndef CONFIG_DEBUG_PAGEALLOC
1603 #define NUM_KTSB_DESCR	2
1604 #else
1605 #define NUM_KTSB_DESCR	1
1606 #endif
1607 static struct hv_tsb_descr ktsb_descr[NUM_KTSB_DESCR];
1608 extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
1609 
1610 static void __init sun4v_ktsb_init(void)
1611 {
1612 	unsigned long ktsb_pa;
1613 
1614 	/* First KTSB for PAGE_SIZE mappings.  */
1615 	ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
1616 
1617 	switch (PAGE_SIZE) {
1618 	case 8 * 1024:
1619 	default:
1620 		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_8K;
1621 		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_8K;
1622 		break;
1623 
1624 	case 64 * 1024:
1625 		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_64K;
1626 		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_64K;
1627 		break;
1628 
1629 	case 512 * 1024:
1630 		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_512K;
1631 		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_512K;
1632 		break;
1633 
1634 	case 4 * 1024 * 1024:
1635 		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_4MB;
1636 		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_4MB;
1637 		break;
1638 	};
1639 
1640 	ktsb_descr[0].assoc = 1;
1641 	ktsb_descr[0].num_ttes = KERNEL_TSB_NENTRIES;
1642 	ktsb_descr[0].ctx_idx = 0;
1643 	ktsb_descr[0].tsb_base = ktsb_pa;
1644 	ktsb_descr[0].resv = 0;
1645 
1646 #ifndef CONFIG_DEBUG_PAGEALLOC
1647 	/* Second KTSB for 4MB/256MB mappings.  */
1648 	ktsb_pa = (kern_base +
1649 		   ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
1650 
1651 	ktsb_descr[1].pgsz_idx = HV_PGSZ_IDX_4MB;
1652 	ktsb_descr[1].pgsz_mask = (HV_PGSZ_MASK_4MB |
1653 				   HV_PGSZ_MASK_256MB);
1654 	ktsb_descr[1].assoc = 1;
1655 	ktsb_descr[1].num_ttes = KERNEL_TSB4M_NENTRIES;
1656 	ktsb_descr[1].ctx_idx = 0;
1657 	ktsb_descr[1].tsb_base = ktsb_pa;
1658 	ktsb_descr[1].resv = 0;
1659 #endif
1660 }
1661 
1662 void __cpuinit sun4v_ktsb_register(void)
1663 {
1664 	unsigned long pa, ret;
1665 
1666 	pa = kern_base + ((unsigned long)&ktsb_descr[0] - KERNBASE);
1667 
1668 	ret = sun4v_mmu_tsb_ctx0(NUM_KTSB_DESCR, pa);
1669 	if (ret != 0) {
1670 		prom_printf("hypervisor_mmu_tsb_ctx0[%lx]: "
1671 			    "errors with %lx\n", pa, ret);
1672 		prom_halt();
1673 	}
1674 }
1675 
1676 /* paging_init() sets up the page tables */
1677 
1678 static unsigned long last_valid_pfn;
1679 pgd_t swapper_pg_dir[2048];
1680 
1681 static void sun4u_pgprot_init(void);
1682 static void sun4v_pgprot_init(void);
1683 
1684 void __init paging_init(void)
1685 {
1686 	unsigned long end_pfn, shift, phys_base;
1687 	unsigned long real_end, i;
1688 
1689 	/* These build time checkes make sure that the dcache_dirty_cpu()
1690 	 * page->flags usage will work.
1691 	 *
1692 	 * When a page gets marked as dcache-dirty, we store the
1693 	 * cpu number starting at bit 32 in the page->flags.  Also,
1694 	 * functions like clear_dcache_dirty_cpu use the cpu mask
1695 	 * in 13-bit signed-immediate instruction fields.
1696 	 */
1697 
1698 	/*
1699 	 * Page flags must not reach into upper 32 bits that are used
1700 	 * for the cpu number
1701 	 */
1702 	BUILD_BUG_ON(NR_PAGEFLAGS > 32);
1703 
1704 	/*
1705 	 * The bit fields placed in the high range must not reach below
1706 	 * the 32 bit boundary. Otherwise we cannot place the cpu field
1707 	 * at the 32 bit boundary.
1708 	 */
1709 	BUILD_BUG_ON(SECTIONS_WIDTH + NODES_WIDTH + ZONES_WIDTH +
1710 		ilog2(roundup_pow_of_two(NR_CPUS)) > 32);
1711 
1712 	BUILD_BUG_ON(NR_CPUS > 4096);
1713 
1714 	kern_base = (prom_boot_mapping_phys_low >> 22UL) << 22UL;
1715 	kern_size = (unsigned long)&_end - (unsigned long)KERNBASE;
1716 
1717 	/* Invalidate both kernel TSBs.  */
1718 	memset(swapper_tsb, 0x40, sizeof(swapper_tsb));
1719 #ifndef CONFIG_DEBUG_PAGEALLOC
1720 	memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
1721 #endif
1722 
1723 	if (tlb_type == hypervisor)
1724 		sun4v_pgprot_init();
1725 	else
1726 		sun4u_pgprot_init();
1727 
1728 	if (tlb_type == cheetah_plus ||
1729 	    tlb_type == hypervisor)
1730 		tsb_phys_patch();
1731 
1732 	if (tlb_type == hypervisor) {
1733 		sun4v_patch_tlb_handlers();
1734 		sun4v_ktsb_init();
1735 	}
1736 
1737 	lmb_init();
1738 
1739 	/* Find available physical memory...
1740 	 *
1741 	 * Read it twice in order to work around a bug in openfirmware.
1742 	 * The call to grab this table itself can cause openfirmware to
1743 	 * allocate memory, which in turn can take away some space from
1744 	 * the list of available memory.  Reading it twice makes sure
1745 	 * we really do get the final value.
1746 	 */
1747 	read_obp_translations();
1748 	read_obp_memory("reg", &pall[0], &pall_ents);
1749 	read_obp_memory("available", &pavail[0], &pavail_ents);
1750 	read_obp_memory("available", &pavail[0], &pavail_ents);
1751 
1752 	phys_base = 0xffffffffffffffffUL;
1753 	for (i = 0; i < pavail_ents; i++) {
1754 		phys_base = min(phys_base, pavail[i].phys_addr);
1755 		lmb_add(pavail[i].phys_addr, pavail[i].reg_size);
1756 	}
1757 
1758 	lmb_reserve(kern_base, kern_size);
1759 
1760 	find_ramdisk(phys_base);
1761 
1762 	lmb_enforce_memory_limit(cmdline_memory_size);
1763 
1764 	lmb_analyze();
1765 	lmb_dump_all();
1766 
1767 	set_bit(0, mmu_context_bmap);
1768 
1769 	shift = kern_base + PAGE_OFFSET - ((unsigned long)KERNBASE);
1770 
1771 	real_end = (unsigned long)_end;
1772 	num_kernel_image_mappings = DIV_ROUND_UP(real_end - KERNBASE, 1 << 22);
1773 	printk("Kernel: Using %d locked TLB entries for main kernel image.\n",
1774 	       num_kernel_image_mappings);
1775 
1776 	/* Set kernel pgd to upper alias so physical page computations
1777 	 * work.
1778 	 */
1779 	init_mm.pgd += ((shift) / (sizeof(pgd_t)));
1780 
1781 	memset(swapper_low_pmd_dir, 0, sizeof(swapper_low_pmd_dir));
1782 
1783 	/* Now can init the kernel/bad page tables. */
1784 	pud_set(pud_offset(&swapper_pg_dir[0], 0),
1785 		swapper_low_pmd_dir + (shift / sizeof(pgd_t)));
1786 
1787 	inherit_prom_mappings();
1788 
1789 	init_kpte_bitmap();
1790 
1791 	/* Ok, we can use our TLB miss and window trap handlers safely.  */
1792 	setup_tba();
1793 
1794 	__flush_tlb_all();
1795 
1796 	if (tlb_type == hypervisor)
1797 		sun4v_ktsb_register();
1798 
1799 	prom_build_devicetree();
1800 	of_populate_present_mask();
1801 #ifndef CONFIG_SMP
1802 	of_fill_in_cpu_data();
1803 #endif
1804 
1805 	if (tlb_type == hypervisor) {
1806 		sun4v_mdesc_init();
1807 		mdesc_populate_present_mask(cpu_all_mask);
1808 #ifndef CONFIG_SMP
1809 		mdesc_fill_in_cpu_data(cpu_all_mask);
1810 #endif
1811 	}
1812 
1813 	/* Once the OF device tree and MDESC have been setup, we know
1814 	 * the list of possible cpus.  Therefore we can allocate the
1815 	 * IRQ stacks.
1816 	 */
1817 	for_each_possible_cpu(i) {
1818 		/* XXX Use node local allocations... XXX */
1819 		softirq_stack[i] = __va(lmb_alloc(THREAD_SIZE, THREAD_SIZE));
1820 		hardirq_stack[i] = __va(lmb_alloc(THREAD_SIZE, THREAD_SIZE));
1821 	}
1822 
1823 	/* Setup bootmem... */
1824 	last_valid_pfn = end_pfn = bootmem_init(phys_base);
1825 
1826 #ifndef CONFIG_NEED_MULTIPLE_NODES
1827 	max_mapnr = last_valid_pfn;
1828 #endif
1829 	kernel_physical_mapping_init();
1830 
1831 	{
1832 		unsigned long max_zone_pfns[MAX_NR_ZONES];
1833 
1834 		memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
1835 
1836 		max_zone_pfns[ZONE_NORMAL] = end_pfn;
1837 
1838 		free_area_init_nodes(max_zone_pfns);
1839 	}
1840 
1841 	printk("Booting Linux...\n");
1842 }
1843 
1844 int __devinit page_in_phys_avail(unsigned long paddr)
1845 {
1846 	int i;
1847 
1848 	paddr &= PAGE_MASK;
1849 
1850 	for (i = 0; i < pavail_ents; i++) {
1851 		unsigned long start, end;
1852 
1853 		start = pavail[i].phys_addr;
1854 		end = start + pavail[i].reg_size;
1855 
1856 		if (paddr >= start && paddr < end)
1857 			return 1;
1858 	}
1859 	if (paddr >= kern_base && paddr < (kern_base + kern_size))
1860 		return 1;
1861 #ifdef CONFIG_BLK_DEV_INITRD
1862 	if (paddr >= __pa(initrd_start) &&
1863 	    paddr < __pa(PAGE_ALIGN(initrd_end)))
1864 		return 1;
1865 #endif
1866 
1867 	return 0;
1868 }
1869 
1870 static struct linux_prom64_registers pavail_rescan[MAX_BANKS] __initdata;
1871 static int pavail_rescan_ents __initdata;
1872 
1873 /* Certain OBP calls, such as fetching "available" properties, can
1874  * claim physical memory.  So, along with initializing the valid
1875  * address bitmap, what we do here is refetch the physical available
1876  * memory list again, and make sure it provides at least as much
1877  * memory as 'pavail' does.
1878  */
1879 static void __init setup_valid_addr_bitmap_from_pavail(unsigned long *bitmap)
1880 {
1881 	int i;
1882 
1883 	read_obp_memory("available", &pavail_rescan[0], &pavail_rescan_ents);
1884 
1885 	for (i = 0; i < pavail_ents; i++) {
1886 		unsigned long old_start, old_end;
1887 
1888 		old_start = pavail[i].phys_addr;
1889 		old_end = old_start + pavail[i].reg_size;
1890 		while (old_start < old_end) {
1891 			int n;
1892 
1893 			for (n = 0; n < pavail_rescan_ents; n++) {
1894 				unsigned long new_start, new_end;
1895 
1896 				new_start = pavail_rescan[n].phys_addr;
1897 				new_end = new_start +
1898 					pavail_rescan[n].reg_size;
1899 
1900 				if (new_start <= old_start &&
1901 				    new_end >= (old_start + PAGE_SIZE)) {
1902 					set_bit(old_start >> 22, bitmap);
1903 					goto do_next_page;
1904 				}
1905 			}
1906 
1907 			prom_printf("mem_init: Lost memory in pavail\n");
1908 			prom_printf("mem_init: OLD start[%lx] size[%lx]\n",
1909 				    pavail[i].phys_addr,
1910 				    pavail[i].reg_size);
1911 			prom_printf("mem_init: NEW start[%lx] size[%lx]\n",
1912 				    pavail_rescan[i].phys_addr,
1913 				    pavail_rescan[i].reg_size);
1914 			prom_printf("mem_init: Cannot continue, aborting.\n");
1915 			prom_halt();
1916 
1917 		do_next_page:
1918 			old_start += PAGE_SIZE;
1919 		}
1920 	}
1921 }
1922 
1923 static void __init patch_tlb_miss_handler_bitmap(void)
1924 {
1925 	extern unsigned int valid_addr_bitmap_insn[];
1926 	extern unsigned int valid_addr_bitmap_patch[];
1927 
1928 	valid_addr_bitmap_insn[1] = valid_addr_bitmap_patch[1];
1929 	mb();
1930 	valid_addr_bitmap_insn[0] = valid_addr_bitmap_patch[0];
1931 	flushi(&valid_addr_bitmap_insn[0]);
1932 }
1933 
1934 void __init mem_init(void)
1935 {
1936 	unsigned long codepages, datapages, initpages;
1937 	unsigned long addr, last;
1938 
1939 	addr = PAGE_OFFSET + kern_base;
1940 	last = PAGE_ALIGN(kern_size) + addr;
1941 	while (addr < last) {
1942 		set_bit(__pa(addr) >> 22, sparc64_valid_addr_bitmap);
1943 		addr += PAGE_SIZE;
1944 	}
1945 
1946 	setup_valid_addr_bitmap_from_pavail(sparc64_valid_addr_bitmap);
1947 	patch_tlb_miss_handler_bitmap();
1948 
1949 	high_memory = __va(last_valid_pfn << PAGE_SHIFT);
1950 
1951 #ifdef CONFIG_NEED_MULTIPLE_NODES
1952 	{
1953 		int i;
1954 		for_each_online_node(i) {
1955 			if (NODE_DATA(i)->node_spanned_pages != 0) {
1956 				totalram_pages +=
1957 					free_all_bootmem_node(NODE_DATA(i));
1958 			}
1959 		}
1960 	}
1961 #else
1962 	totalram_pages = free_all_bootmem();
1963 #endif
1964 
1965 	/* We subtract one to account for the mem_map_zero page
1966 	 * allocated below.
1967 	 */
1968 	totalram_pages -= 1;
1969 	num_physpages = totalram_pages;
1970 
1971 	/*
1972 	 * Set up the zero page, mark it reserved, so that page count
1973 	 * is not manipulated when freeing the page from user ptes.
1974 	 */
1975 	mem_map_zero = alloc_pages(GFP_KERNEL|__GFP_ZERO, 0);
1976 	if (mem_map_zero == NULL) {
1977 		prom_printf("paging_init: Cannot alloc zero page.\n");
1978 		prom_halt();
1979 	}
1980 	SetPageReserved(mem_map_zero);
1981 
1982 	codepages = (((unsigned long) _etext) - ((unsigned long) _start));
1983 	codepages = PAGE_ALIGN(codepages) >> PAGE_SHIFT;
1984 	datapages = (((unsigned long) _edata) - ((unsigned long) _etext));
1985 	datapages = PAGE_ALIGN(datapages) >> PAGE_SHIFT;
1986 	initpages = (((unsigned long) __init_end) - ((unsigned long) __init_begin));
1987 	initpages = PAGE_ALIGN(initpages) >> PAGE_SHIFT;
1988 
1989 	printk("Memory: %luk available (%ldk kernel code, %ldk data, %ldk init) [%016lx,%016lx]\n",
1990 	       nr_free_pages() << (PAGE_SHIFT-10),
1991 	       codepages << (PAGE_SHIFT-10),
1992 	       datapages << (PAGE_SHIFT-10),
1993 	       initpages << (PAGE_SHIFT-10),
1994 	       PAGE_OFFSET, (last_valid_pfn << PAGE_SHIFT));
1995 
1996 	if (tlb_type == cheetah || tlb_type == cheetah_plus)
1997 		cheetah_ecache_flush_init();
1998 }
1999 
2000 void free_initmem(void)
2001 {
2002 	unsigned long addr, initend;
2003 	int do_free = 1;
2004 
2005 	/* If the physical memory maps were trimmed by kernel command
2006 	 * line options, don't even try freeing this initmem stuff up.
2007 	 * The kernel image could have been in the trimmed out region
2008 	 * and if so the freeing below will free invalid page structs.
2009 	 */
2010 	if (cmdline_memory_size)
2011 		do_free = 0;
2012 
2013 	/*
2014 	 * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes.
2015 	 */
2016 	addr = PAGE_ALIGN((unsigned long)(__init_begin));
2017 	initend = (unsigned long)(__init_end) & PAGE_MASK;
2018 	for (; addr < initend; addr += PAGE_SIZE) {
2019 		unsigned long page;
2020 		struct page *p;
2021 
2022 		page = (addr +
2023 			((unsigned long) __va(kern_base)) -
2024 			((unsigned long) KERNBASE));
2025 		memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
2026 
2027 		if (do_free) {
2028 			p = virt_to_page(page);
2029 
2030 			ClearPageReserved(p);
2031 			init_page_count(p);
2032 			__free_page(p);
2033 			num_physpages++;
2034 			totalram_pages++;
2035 		}
2036 	}
2037 }
2038 
2039 #ifdef CONFIG_BLK_DEV_INITRD
2040 void free_initrd_mem(unsigned long start, unsigned long end)
2041 {
2042 	if (start < end)
2043 		printk ("Freeing initrd memory: %ldk freed\n", (end - start) >> 10);
2044 	for (; start < end; start += PAGE_SIZE) {
2045 		struct page *p = virt_to_page(start);
2046 
2047 		ClearPageReserved(p);
2048 		init_page_count(p);
2049 		__free_page(p);
2050 		num_physpages++;
2051 		totalram_pages++;
2052 	}
2053 }
2054 #endif
2055 
2056 #define _PAGE_CACHE_4U	(_PAGE_CP_4U | _PAGE_CV_4U)
2057 #define _PAGE_CACHE_4V	(_PAGE_CP_4V | _PAGE_CV_4V)
2058 #define __DIRTY_BITS_4U	 (_PAGE_MODIFIED_4U | _PAGE_WRITE_4U | _PAGE_W_4U)
2059 #define __DIRTY_BITS_4V	 (_PAGE_MODIFIED_4V | _PAGE_WRITE_4V | _PAGE_W_4V)
2060 #define __ACCESS_BITS_4U (_PAGE_ACCESSED_4U | _PAGE_READ_4U | _PAGE_R)
2061 #define __ACCESS_BITS_4V (_PAGE_ACCESSED_4V | _PAGE_READ_4V | _PAGE_R)
2062 
2063 pgprot_t PAGE_KERNEL __read_mostly;
2064 EXPORT_SYMBOL(PAGE_KERNEL);
2065 
2066 pgprot_t PAGE_KERNEL_LOCKED __read_mostly;
2067 pgprot_t PAGE_COPY __read_mostly;
2068 
2069 pgprot_t PAGE_SHARED __read_mostly;
2070 EXPORT_SYMBOL(PAGE_SHARED);
2071 
2072 unsigned long pg_iobits __read_mostly;
2073 
2074 unsigned long _PAGE_IE __read_mostly;
2075 EXPORT_SYMBOL(_PAGE_IE);
2076 
2077 unsigned long _PAGE_E __read_mostly;
2078 EXPORT_SYMBOL(_PAGE_E);
2079 
2080 unsigned long _PAGE_CACHE __read_mostly;
2081 EXPORT_SYMBOL(_PAGE_CACHE);
2082 
2083 #ifdef CONFIG_SPARSEMEM_VMEMMAP
2084 unsigned long vmemmap_table[VMEMMAP_SIZE];
2085 
2086 int __meminit vmemmap_populate(struct page *start, unsigned long nr, int node)
2087 {
2088 	unsigned long vstart = (unsigned long) start;
2089 	unsigned long vend = (unsigned long) (start + nr);
2090 	unsigned long phys_start = (vstart - VMEMMAP_BASE);
2091 	unsigned long phys_end = (vend - VMEMMAP_BASE);
2092 	unsigned long addr = phys_start & VMEMMAP_CHUNK_MASK;
2093 	unsigned long end = VMEMMAP_ALIGN(phys_end);
2094 	unsigned long pte_base;
2095 
2096 	pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2097 		    _PAGE_CP_4U | _PAGE_CV_4U |
2098 		    _PAGE_P_4U | _PAGE_W_4U);
2099 	if (tlb_type == hypervisor)
2100 		pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2101 			    _PAGE_CP_4V | _PAGE_CV_4V |
2102 			    _PAGE_P_4V | _PAGE_W_4V);
2103 
2104 	for (; addr < end; addr += VMEMMAP_CHUNK) {
2105 		unsigned long *vmem_pp =
2106 			vmemmap_table + (addr >> VMEMMAP_CHUNK_SHIFT);
2107 		void *block;
2108 
2109 		if (!(*vmem_pp & _PAGE_VALID)) {
2110 			block = vmemmap_alloc_block(1UL << 22, node);
2111 			if (!block)
2112 				return -ENOMEM;
2113 
2114 			*vmem_pp = pte_base | __pa(block);
2115 
2116 			printk(KERN_INFO "[%p-%p] page_structs=%lu "
2117 			       "node=%d entry=%lu/%lu\n", start, block, nr,
2118 			       node,
2119 			       addr >> VMEMMAP_CHUNK_SHIFT,
2120 			       VMEMMAP_SIZE);
2121 		}
2122 	}
2123 	return 0;
2124 }
2125 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
2126 
2127 static void prot_init_common(unsigned long page_none,
2128 			     unsigned long page_shared,
2129 			     unsigned long page_copy,
2130 			     unsigned long page_readonly,
2131 			     unsigned long page_exec_bit)
2132 {
2133 	PAGE_COPY = __pgprot(page_copy);
2134 	PAGE_SHARED = __pgprot(page_shared);
2135 
2136 	protection_map[0x0] = __pgprot(page_none);
2137 	protection_map[0x1] = __pgprot(page_readonly & ~page_exec_bit);
2138 	protection_map[0x2] = __pgprot(page_copy & ~page_exec_bit);
2139 	protection_map[0x3] = __pgprot(page_copy & ~page_exec_bit);
2140 	protection_map[0x4] = __pgprot(page_readonly);
2141 	protection_map[0x5] = __pgprot(page_readonly);
2142 	protection_map[0x6] = __pgprot(page_copy);
2143 	protection_map[0x7] = __pgprot(page_copy);
2144 	protection_map[0x8] = __pgprot(page_none);
2145 	protection_map[0x9] = __pgprot(page_readonly & ~page_exec_bit);
2146 	protection_map[0xa] = __pgprot(page_shared & ~page_exec_bit);
2147 	protection_map[0xb] = __pgprot(page_shared & ~page_exec_bit);
2148 	protection_map[0xc] = __pgprot(page_readonly);
2149 	protection_map[0xd] = __pgprot(page_readonly);
2150 	protection_map[0xe] = __pgprot(page_shared);
2151 	protection_map[0xf] = __pgprot(page_shared);
2152 }
2153 
2154 static void __init sun4u_pgprot_init(void)
2155 {
2156 	unsigned long page_none, page_shared, page_copy, page_readonly;
2157 	unsigned long page_exec_bit;
2158 
2159 	PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2160 				_PAGE_CACHE_4U | _PAGE_P_4U |
2161 				__ACCESS_BITS_4U | __DIRTY_BITS_4U |
2162 				_PAGE_EXEC_4U);
2163 	PAGE_KERNEL_LOCKED = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2164 				       _PAGE_CACHE_4U | _PAGE_P_4U |
2165 				       __ACCESS_BITS_4U | __DIRTY_BITS_4U |
2166 				       _PAGE_EXEC_4U | _PAGE_L_4U);
2167 
2168 	_PAGE_IE = _PAGE_IE_4U;
2169 	_PAGE_E = _PAGE_E_4U;
2170 	_PAGE_CACHE = _PAGE_CACHE_4U;
2171 
2172 	pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4U | __DIRTY_BITS_4U |
2173 		     __ACCESS_BITS_4U | _PAGE_E_4U);
2174 
2175 #ifdef CONFIG_DEBUG_PAGEALLOC
2176 	kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZBITS_4U) ^
2177 		0xfffff80000000000UL;
2178 #else
2179 	kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4U) ^
2180 		0xfffff80000000000UL;
2181 #endif
2182 	kern_linear_pte_xor[0] |= (_PAGE_CP_4U | _PAGE_CV_4U |
2183 				   _PAGE_P_4U | _PAGE_W_4U);
2184 
2185 	/* XXX Should use 256MB on Panther. XXX */
2186 	kern_linear_pte_xor[1] = kern_linear_pte_xor[0];
2187 
2188 	_PAGE_SZBITS = _PAGE_SZBITS_4U;
2189 	_PAGE_ALL_SZ_BITS =  (_PAGE_SZ4MB_4U | _PAGE_SZ512K_4U |
2190 			      _PAGE_SZ64K_4U | _PAGE_SZ8K_4U |
2191 			      _PAGE_SZ32MB_4U | _PAGE_SZ256MB_4U);
2192 
2193 
2194 	page_none = _PAGE_PRESENT_4U | _PAGE_ACCESSED_4U | _PAGE_CACHE_4U;
2195 	page_shared = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2196 		       __ACCESS_BITS_4U | _PAGE_WRITE_4U | _PAGE_EXEC_4U);
2197 	page_copy   = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2198 		       __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2199 	page_readonly   = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2200 			   __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2201 
2202 	page_exec_bit = _PAGE_EXEC_4U;
2203 
2204 	prot_init_common(page_none, page_shared, page_copy, page_readonly,
2205 			 page_exec_bit);
2206 }
2207 
2208 static void __init sun4v_pgprot_init(void)
2209 {
2210 	unsigned long page_none, page_shared, page_copy, page_readonly;
2211 	unsigned long page_exec_bit;
2212 
2213 	PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4V | _PAGE_VALID |
2214 				_PAGE_CACHE_4V | _PAGE_P_4V |
2215 				__ACCESS_BITS_4V | __DIRTY_BITS_4V |
2216 				_PAGE_EXEC_4V);
2217 	PAGE_KERNEL_LOCKED = PAGE_KERNEL;
2218 
2219 	_PAGE_IE = _PAGE_IE_4V;
2220 	_PAGE_E = _PAGE_E_4V;
2221 	_PAGE_CACHE = _PAGE_CACHE_4V;
2222 
2223 #ifdef CONFIG_DEBUG_PAGEALLOC
2224 	kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZBITS_4V) ^
2225 		0xfffff80000000000UL;
2226 #else
2227 	kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4V) ^
2228 		0xfffff80000000000UL;
2229 #endif
2230 	kern_linear_pte_xor[0] |= (_PAGE_CP_4V | _PAGE_CV_4V |
2231 				   _PAGE_P_4V | _PAGE_W_4V);
2232 
2233 #ifdef CONFIG_DEBUG_PAGEALLOC
2234 	kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZBITS_4V) ^
2235 		0xfffff80000000000UL;
2236 #else
2237 	kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZ256MB_4V) ^
2238 		0xfffff80000000000UL;
2239 #endif
2240 	kern_linear_pte_xor[1] |= (_PAGE_CP_4V | _PAGE_CV_4V |
2241 				   _PAGE_P_4V | _PAGE_W_4V);
2242 
2243 	pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4V | __DIRTY_BITS_4V |
2244 		     __ACCESS_BITS_4V | _PAGE_E_4V);
2245 
2246 	_PAGE_SZBITS = _PAGE_SZBITS_4V;
2247 	_PAGE_ALL_SZ_BITS = (_PAGE_SZ16GB_4V | _PAGE_SZ2GB_4V |
2248 			     _PAGE_SZ256MB_4V | _PAGE_SZ32MB_4V |
2249 			     _PAGE_SZ4MB_4V | _PAGE_SZ512K_4V |
2250 			     _PAGE_SZ64K_4V | _PAGE_SZ8K_4V);
2251 
2252 	page_none = _PAGE_PRESENT_4V | _PAGE_ACCESSED_4V | _PAGE_CACHE_4V;
2253 	page_shared = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
2254 		       __ACCESS_BITS_4V | _PAGE_WRITE_4V | _PAGE_EXEC_4V);
2255 	page_copy   = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
2256 		       __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2257 	page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
2258 			 __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2259 
2260 	page_exec_bit = _PAGE_EXEC_4V;
2261 
2262 	prot_init_common(page_none, page_shared, page_copy, page_readonly,
2263 			 page_exec_bit);
2264 }
2265 
2266 unsigned long pte_sz_bits(unsigned long sz)
2267 {
2268 	if (tlb_type == hypervisor) {
2269 		switch (sz) {
2270 		case 8 * 1024:
2271 		default:
2272 			return _PAGE_SZ8K_4V;
2273 		case 64 * 1024:
2274 			return _PAGE_SZ64K_4V;
2275 		case 512 * 1024:
2276 			return _PAGE_SZ512K_4V;
2277 		case 4 * 1024 * 1024:
2278 			return _PAGE_SZ4MB_4V;
2279 		};
2280 	} else {
2281 		switch (sz) {
2282 		case 8 * 1024:
2283 		default:
2284 			return _PAGE_SZ8K_4U;
2285 		case 64 * 1024:
2286 			return _PAGE_SZ64K_4U;
2287 		case 512 * 1024:
2288 			return _PAGE_SZ512K_4U;
2289 		case 4 * 1024 * 1024:
2290 			return _PAGE_SZ4MB_4U;
2291 		};
2292 	}
2293 }
2294 
2295 pte_t mk_pte_io(unsigned long page, pgprot_t prot, int space, unsigned long page_size)
2296 {
2297 	pte_t pte;
2298 
2299 	pte_val(pte)  = page | pgprot_val(pgprot_noncached(prot));
2300 	pte_val(pte) |= (((unsigned long)space) << 32);
2301 	pte_val(pte) |= pte_sz_bits(page_size);
2302 
2303 	return pte;
2304 }
2305 
2306 static unsigned long kern_large_tte(unsigned long paddr)
2307 {
2308 	unsigned long val;
2309 
2310 	val = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2311 	       _PAGE_CP_4U | _PAGE_CV_4U | _PAGE_P_4U |
2312 	       _PAGE_EXEC_4U | _PAGE_L_4U | _PAGE_W_4U);
2313 	if (tlb_type == hypervisor)
2314 		val = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2315 		       _PAGE_CP_4V | _PAGE_CV_4V | _PAGE_P_4V |
2316 		       _PAGE_EXEC_4V | _PAGE_W_4V);
2317 
2318 	return val | paddr;
2319 }
2320 
2321 /* If not locked, zap it. */
2322 void __flush_tlb_all(void)
2323 {
2324 	unsigned long pstate;
2325 	int i;
2326 
2327 	__asm__ __volatile__("flushw\n\t"
2328 			     "rdpr	%%pstate, %0\n\t"
2329 			     "wrpr	%0, %1, %%pstate"
2330 			     : "=r" (pstate)
2331 			     : "i" (PSTATE_IE));
2332 	if (tlb_type == hypervisor) {
2333 		sun4v_mmu_demap_all();
2334 	} else if (tlb_type == spitfire) {
2335 		for (i = 0; i < 64; i++) {
2336 			/* Spitfire Errata #32 workaround */
2337 			/* NOTE: Always runs on spitfire, so no
2338 			 *       cheetah+ page size encodings.
2339 			 */
2340 			__asm__ __volatile__("stxa	%0, [%1] %2\n\t"
2341 					     "flush	%%g6"
2342 					     : /* No outputs */
2343 					     : "r" (0),
2344 					     "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2345 
2346 			if (!(spitfire_get_dtlb_data(i) & _PAGE_L_4U)) {
2347 				__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2348 						     "membar #Sync"
2349 						     : /* no outputs */
2350 						     : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
2351 				spitfire_put_dtlb_data(i, 0x0UL);
2352 			}
2353 
2354 			/* Spitfire Errata #32 workaround */
2355 			/* NOTE: Always runs on spitfire, so no
2356 			 *       cheetah+ page size encodings.
2357 			 */
2358 			__asm__ __volatile__("stxa	%0, [%1] %2\n\t"
2359 					     "flush	%%g6"
2360 					     : /* No outputs */
2361 					     : "r" (0),
2362 					     "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2363 
2364 			if (!(spitfire_get_itlb_data(i) & _PAGE_L_4U)) {
2365 				__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2366 						     "membar #Sync"
2367 						     : /* no outputs */
2368 						     : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU));
2369 				spitfire_put_itlb_data(i, 0x0UL);
2370 			}
2371 		}
2372 	} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
2373 		cheetah_flush_dtlb_all();
2374 		cheetah_flush_itlb_all();
2375 	}
2376 	__asm__ __volatile__("wrpr	%0, 0, %%pstate"
2377 			     : : "r" (pstate));
2378 }
2379