xref: /openbmc/linux/arch/sparc/mm/init_64.c (revision 0cb4228f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  arch/sparc64/mm/init.c
4  *
5  *  Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu)
6  *  Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
7  */
8 
9 #include <linux/extable.h>
10 #include <linux/kernel.h>
11 #include <linux/sched.h>
12 #include <linux/string.h>
13 #include <linux/init.h>
14 #include <linux/memblock.h>
15 #include <linux/mm.h>
16 #include <linux/hugetlb.h>
17 #include <linux/initrd.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/poison.h>
21 #include <linux/fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/kprobes.h>
24 #include <linux/cache.h>
25 #include <linux/sort.h>
26 #include <linux/ioport.h>
27 #include <linux/percpu.h>
28 #include <linux/mmzone.h>
29 #include <linux/gfp.h>
30 #include <linux/bootmem_info.h>
31 
32 #include <asm/head.h>
33 #include <asm/page.h>
34 #include <asm/pgalloc.h>
35 #include <asm/oplib.h>
36 #include <asm/iommu.h>
37 #include <asm/io.h>
38 #include <linux/uaccess.h>
39 #include <asm/mmu_context.h>
40 #include <asm/tlbflush.h>
41 #include <asm/dma.h>
42 #include <asm/starfire.h>
43 #include <asm/tlb.h>
44 #include <asm/spitfire.h>
45 #include <asm/sections.h>
46 #include <asm/tsb.h>
47 #include <asm/hypervisor.h>
48 #include <asm/prom.h>
49 #include <asm/mdesc.h>
50 #include <asm/cpudata.h>
51 #include <asm/setup.h>
52 #include <asm/irq.h>
53 
54 #include "init_64.h"
55 
56 unsigned long kern_linear_pte_xor[4] __read_mostly;
57 static unsigned long page_cache4v_flag;
58 
59 /* A bitmap, two bits for every 256MB of physical memory.  These two
60  * bits determine what page size we use for kernel linear
61  * translations.  They form an index into kern_linear_pte_xor[].  The
62  * value in the indexed slot is XOR'd with the TLB miss virtual
63  * address to form the resulting TTE.  The mapping is:
64  *
65  *	0	==>	4MB
66  *	1	==>	256MB
67  *	2	==>	2GB
68  *	3	==>	16GB
69  *
70  * All sun4v chips support 256MB pages.  Only SPARC-T4 and later
71  * support 2GB pages, and hopefully future cpus will support the 16GB
72  * pages as well.  For slots 2 and 3, we encode a 256MB TTE xor there
73  * if these larger page sizes are not supported by the cpu.
74  *
75  * It would be nice to determine this from the machine description
76  * 'cpu' properties, but we need to have this table setup before the
77  * MDESC is initialized.
78  */
79 
80 #ifndef CONFIG_DEBUG_PAGEALLOC
81 /* A special kernel TSB for 4MB, 256MB, 2GB and 16GB linear mappings.
82  * Space is allocated for this right after the trap table in
83  * arch/sparc64/kernel/head.S
84  */
85 extern struct tsb swapper_4m_tsb[KERNEL_TSB4M_NENTRIES];
86 #endif
87 extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
88 
89 static unsigned long cpu_pgsz_mask;
90 
91 #define MAX_BANKS	1024
92 
93 static struct linux_prom64_registers pavail[MAX_BANKS];
94 static int pavail_ents;
95 
96 u64 numa_latency[MAX_NUMNODES][MAX_NUMNODES];
97 
98 static int cmp_p64(const void *a, const void *b)
99 {
100 	const struct linux_prom64_registers *x = a, *y = b;
101 
102 	if (x->phys_addr > y->phys_addr)
103 		return 1;
104 	if (x->phys_addr < y->phys_addr)
105 		return -1;
106 	return 0;
107 }
108 
109 static void __init read_obp_memory(const char *property,
110 				   struct linux_prom64_registers *regs,
111 				   int *num_ents)
112 {
113 	phandle node = prom_finddevice("/memory");
114 	int prop_size = prom_getproplen(node, property);
115 	int ents, ret, i;
116 
117 	ents = prop_size / sizeof(struct linux_prom64_registers);
118 	if (ents > MAX_BANKS) {
119 		prom_printf("The machine has more %s property entries than "
120 			    "this kernel can support (%d).\n",
121 			    property, MAX_BANKS);
122 		prom_halt();
123 	}
124 
125 	ret = prom_getproperty(node, property, (char *) regs, prop_size);
126 	if (ret == -1) {
127 		prom_printf("Couldn't get %s property from /memory.\n",
128 				property);
129 		prom_halt();
130 	}
131 
132 	/* Sanitize what we got from the firmware, by page aligning
133 	 * everything.
134 	 */
135 	for (i = 0; i < ents; i++) {
136 		unsigned long base, size;
137 
138 		base = regs[i].phys_addr;
139 		size = regs[i].reg_size;
140 
141 		size &= PAGE_MASK;
142 		if (base & ~PAGE_MASK) {
143 			unsigned long new_base = PAGE_ALIGN(base);
144 
145 			size -= new_base - base;
146 			if ((long) size < 0L)
147 				size = 0UL;
148 			base = new_base;
149 		}
150 		if (size == 0UL) {
151 			/* If it is empty, simply get rid of it.
152 			 * This simplifies the logic of the other
153 			 * functions that process these arrays.
154 			 */
155 			memmove(&regs[i], &regs[i + 1],
156 				(ents - i - 1) * sizeof(regs[0]));
157 			i--;
158 			ents--;
159 			continue;
160 		}
161 		regs[i].phys_addr = base;
162 		regs[i].reg_size = size;
163 	}
164 
165 	*num_ents = ents;
166 
167 	sort(regs, ents, sizeof(struct linux_prom64_registers),
168 	     cmp_p64, NULL);
169 }
170 
171 /* Kernel physical address base and size in bytes.  */
172 unsigned long kern_base __read_mostly;
173 unsigned long kern_size __read_mostly;
174 
175 /* Initial ramdisk setup */
176 extern unsigned long sparc_ramdisk_image64;
177 extern unsigned int sparc_ramdisk_image;
178 extern unsigned int sparc_ramdisk_size;
179 
180 struct page *mem_map_zero __read_mostly;
181 EXPORT_SYMBOL(mem_map_zero);
182 
183 unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly;
184 
185 unsigned long sparc64_kern_pri_context __read_mostly;
186 unsigned long sparc64_kern_pri_nuc_bits __read_mostly;
187 unsigned long sparc64_kern_sec_context __read_mostly;
188 
189 int num_kernel_image_mappings;
190 
191 #ifdef CONFIG_DEBUG_DCFLUSH
192 atomic_t dcpage_flushes = ATOMIC_INIT(0);
193 #ifdef CONFIG_SMP
194 atomic_t dcpage_flushes_xcall = ATOMIC_INIT(0);
195 #endif
196 #endif
197 
198 inline void flush_dcache_page_impl(struct page *page)
199 {
200 	BUG_ON(tlb_type == hypervisor);
201 #ifdef CONFIG_DEBUG_DCFLUSH
202 	atomic_inc(&dcpage_flushes);
203 #endif
204 
205 #ifdef DCACHE_ALIASING_POSSIBLE
206 	__flush_dcache_page(page_address(page),
207 			    ((tlb_type == spitfire) &&
208 			     page_mapping_file(page) != NULL));
209 #else
210 	if (page_mapping_file(page) != NULL &&
211 	    tlb_type == spitfire)
212 		__flush_icache_page(__pa(page_address(page)));
213 #endif
214 }
215 
216 #define PG_dcache_dirty		PG_arch_1
217 #define PG_dcache_cpu_shift	32UL
218 #define PG_dcache_cpu_mask	\
219 	((1UL<<ilog2(roundup_pow_of_two(NR_CPUS)))-1UL)
220 
221 #define dcache_dirty_cpu(page) \
222 	(((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask)
223 
224 static inline void set_dcache_dirty(struct page *page, int this_cpu)
225 {
226 	unsigned long mask = this_cpu;
227 	unsigned long non_cpu_bits;
228 
229 	non_cpu_bits = ~(PG_dcache_cpu_mask << PG_dcache_cpu_shift);
230 	mask = (mask << PG_dcache_cpu_shift) | (1UL << PG_dcache_dirty);
231 
232 	__asm__ __volatile__("1:\n\t"
233 			     "ldx	[%2], %%g7\n\t"
234 			     "and	%%g7, %1, %%g1\n\t"
235 			     "or	%%g1, %0, %%g1\n\t"
236 			     "casx	[%2], %%g7, %%g1\n\t"
237 			     "cmp	%%g7, %%g1\n\t"
238 			     "bne,pn	%%xcc, 1b\n\t"
239 			     " nop"
240 			     : /* no outputs */
241 			     : "r" (mask), "r" (non_cpu_bits), "r" (&page->flags)
242 			     : "g1", "g7");
243 }
244 
245 static inline void clear_dcache_dirty_cpu(struct page *page, unsigned long cpu)
246 {
247 	unsigned long mask = (1UL << PG_dcache_dirty);
248 
249 	__asm__ __volatile__("! test_and_clear_dcache_dirty\n"
250 			     "1:\n\t"
251 			     "ldx	[%2], %%g7\n\t"
252 			     "srlx	%%g7, %4, %%g1\n\t"
253 			     "and	%%g1, %3, %%g1\n\t"
254 			     "cmp	%%g1, %0\n\t"
255 			     "bne,pn	%%icc, 2f\n\t"
256 			     " andn	%%g7, %1, %%g1\n\t"
257 			     "casx	[%2], %%g7, %%g1\n\t"
258 			     "cmp	%%g7, %%g1\n\t"
259 			     "bne,pn	%%xcc, 1b\n\t"
260 			     " nop\n"
261 			     "2:"
262 			     : /* no outputs */
263 			     : "r" (cpu), "r" (mask), "r" (&page->flags),
264 			       "i" (PG_dcache_cpu_mask),
265 			       "i" (PG_dcache_cpu_shift)
266 			     : "g1", "g7");
267 }
268 
269 static inline void tsb_insert(struct tsb *ent, unsigned long tag, unsigned long pte)
270 {
271 	unsigned long tsb_addr = (unsigned long) ent;
272 
273 	if (tlb_type == cheetah_plus || tlb_type == hypervisor)
274 		tsb_addr = __pa(tsb_addr);
275 
276 	__tsb_insert(tsb_addr, tag, pte);
277 }
278 
279 unsigned long _PAGE_ALL_SZ_BITS __read_mostly;
280 
281 static void flush_dcache(unsigned long pfn)
282 {
283 	struct page *page;
284 
285 	page = pfn_to_page(pfn);
286 	if (page) {
287 		unsigned long pg_flags;
288 
289 		pg_flags = page->flags;
290 		if (pg_flags & (1UL << PG_dcache_dirty)) {
291 			int cpu = ((pg_flags >> PG_dcache_cpu_shift) &
292 				   PG_dcache_cpu_mask);
293 			int this_cpu = get_cpu();
294 
295 			/* This is just to optimize away some function calls
296 			 * in the SMP case.
297 			 */
298 			if (cpu == this_cpu)
299 				flush_dcache_page_impl(page);
300 			else
301 				smp_flush_dcache_page_impl(page, cpu);
302 
303 			clear_dcache_dirty_cpu(page, cpu);
304 
305 			put_cpu();
306 		}
307 	}
308 }
309 
310 /* mm->context.lock must be held */
311 static void __update_mmu_tsb_insert(struct mm_struct *mm, unsigned long tsb_index,
312 				    unsigned long tsb_hash_shift, unsigned long address,
313 				    unsigned long tte)
314 {
315 	struct tsb *tsb = mm->context.tsb_block[tsb_index].tsb;
316 	unsigned long tag;
317 
318 	if (unlikely(!tsb))
319 		return;
320 
321 	tsb += ((address >> tsb_hash_shift) &
322 		(mm->context.tsb_block[tsb_index].tsb_nentries - 1UL));
323 	tag = (address >> 22UL);
324 	tsb_insert(tsb, tag, tte);
325 }
326 
327 #ifdef CONFIG_HUGETLB_PAGE
328 static int __init hugetlbpage_init(void)
329 {
330 	hugetlb_add_hstate(HPAGE_64K_SHIFT - PAGE_SHIFT);
331 	hugetlb_add_hstate(HPAGE_SHIFT - PAGE_SHIFT);
332 	hugetlb_add_hstate(HPAGE_256MB_SHIFT - PAGE_SHIFT);
333 	hugetlb_add_hstate(HPAGE_2GB_SHIFT - PAGE_SHIFT);
334 
335 	return 0;
336 }
337 
338 arch_initcall(hugetlbpage_init);
339 
340 static void __init pud_huge_patch(void)
341 {
342 	struct pud_huge_patch_entry *p;
343 	unsigned long addr;
344 
345 	p = &__pud_huge_patch;
346 	addr = p->addr;
347 	*(unsigned int *)addr = p->insn;
348 
349 	__asm__ __volatile__("flush %0" : : "r" (addr));
350 }
351 
352 bool __init arch_hugetlb_valid_size(unsigned long size)
353 {
354 	unsigned int hugepage_shift = ilog2(size);
355 	unsigned short hv_pgsz_idx;
356 	unsigned int hv_pgsz_mask;
357 
358 	switch (hugepage_shift) {
359 	case HPAGE_16GB_SHIFT:
360 		hv_pgsz_mask = HV_PGSZ_MASK_16GB;
361 		hv_pgsz_idx = HV_PGSZ_IDX_16GB;
362 		pud_huge_patch();
363 		break;
364 	case HPAGE_2GB_SHIFT:
365 		hv_pgsz_mask = HV_PGSZ_MASK_2GB;
366 		hv_pgsz_idx = HV_PGSZ_IDX_2GB;
367 		break;
368 	case HPAGE_256MB_SHIFT:
369 		hv_pgsz_mask = HV_PGSZ_MASK_256MB;
370 		hv_pgsz_idx = HV_PGSZ_IDX_256MB;
371 		break;
372 	case HPAGE_SHIFT:
373 		hv_pgsz_mask = HV_PGSZ_MASK_4MB;
374 		hv_pgsz_idx = HV_PGSZ_IDX_4MB;
375 		break;
376 	case HPAGE_64K_SHIFT:
377 		hv_pgsz_mask = HV_PGSZ_MASK_64K;
378 		hv_pgsz_idx = HV_PGSZ_IDX_64K;
379 		break;
380 	default:
381 		hv_pgsz_mask = 0;
382 	}
383 
384 	if ((hv_pgsz_mask & cpu_pgsz_mask) == 0U)
385 		return false;
386 
387 	return true;
388 }
389 #endif	/* CONFIG_HUGETLB_PAGE */
390 
391 void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t *ptep)
392 {
393 	struct mm_struct *mm;
394 	unsigned long flags;
395 	bool is_huge_tsb;
396 	pte_t pte = *ptep;
397 
398 	if (tlb_type != hypervisor) {
399 		unsigned long pfn = pte_pfn(pte);
400 
401 		if (pfn_valid(pfn))
402 			flush_dcache(pfn);
403 	}
404 
405 	mm = vma->vm_mm;
406 
407 	/* Don't insert a non-valid PTE into the TSB, we'll deadlock.  */
408 	if (!pte_accessible(mm, pte))
409 		return;
410 
411 	spin_lock_irqsave(&mm->context.lock, flags);
412 
413 	is_huge_tsb = false;
414 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
415 	if (mm->context.hugetlb_pte_count || mm->context.thp_pte_count) {
416 		unsigned long hugepage_size = PAGE_SIZE;
417 
418 		if (is_vm_hugetlb_page(vma))
419 			hugepage_size = huge_page_size(hstate_vma(vma));
420 
421 		if (hugepage_size >= PUD_SIZE) {
422 			unsigned long mask = 0x1ffc00000UL;
423 
424 			/* Transfer bits [32:22] from address to resolve
425 			 * at 4M granularity.
426 			 */
427 			pte_val(pte) &= ~mask;
428 			pte_val(pte) |= (address & mask);
429 		} else if (hugepage_size >= PMD_SIZE) {
430 			/* We are fabricating 8MB pages using 4MB
431 			 * real hw pages.
432 			 */
433 			pte_val(pte) |= (address & (1UL << REAL_HPAGE_SHIFT));
434 		}
435 
436 		if (hugepage_size >= PMD_SIZE) {
437 			__update_mmu_tsb_insert(mm, MM_TSB_HUGE,
438 				REAL_HPAGE_SHIFT, address, pte_val(pte));
439 			is_huge_tsb = true;
440 		}
441 	}
442 #endif
443 	if (!is_huge_tsb)
444 		__update_mmu_tsb_insert(mm, MM_TSB_BASE, PAGE_SHIFT,
445 					address, pte_val(pte));
446 
447 	spin_unlock_irqrestore(&mm->context.lock, flags);
448 }
449 
450 void flush_dcache_page(struct page *page)
451 {
452 	struct address_space *mapping;
453 	int this_cpu;
454 
455 	if (tlb_type == hypervisor)
456 		return;
457 
458 	/* Do not bother with the expensive D-cache flush if it
459 	 * is merely the zero page.  The 'bigcore' testcase in GDB
460 	 * causes this case to run millions of times.
461 	 */
462 	if (page == ZERO_PAGE(0))
463 		return;
464 
465 	this_cpu = get_cpu();
466 
467 	mapping = page_mapping_file(page);
468 	if (mapping && !mapping_mapped(mapping)) {
469 		int dirty = test_bit(PG_dcache_dirty, &page->flags);
470 		if (dirty) {
471 			int dirty_cpu = dcache_dirty_cpu(page);
472 
473 			if (dirty_cpu == this_cpu)
474 				goto out;
475 			smp_flush_dcache_page_impl(page, dirty_cpu);
476 		}
477 		set_dcache_dirty(page, this_cpu);
478 	} else {
479 		/* We could delay the flush for the !page_mapping
480 		 * case too.  But that case is for exec env/arg
481 		 * pages and those are %99 certainly going to get
482 		 * faulted into the tlb (and thus flushed) anyways.
483 		 */
484 		flush_dcache_page_impl(page);
485 	}
486 
487 out:
488 	put_cpu();
489 }
490 EXPORT_SYMBOL(flush_dcache_page);
491 
492 void __kprobes flush_icache_range(unsigned long start, unsigned long end)
493 {
494 	/* Cheetah and Hypervisor platform cpus have coherent I-cache. */
495 	if (tlb_type == spitfire) {
496 		unsigned long kaddr;
497 
498 		/* This code only runs on Spitfire cpus so this is
499 		 * why we can assume _PAGE_PADDR_4U.
500 		 */
501 		for (kaddr = start; kaddr < end; kaddr += PAGE_SIZE) {
502 			unsigned long paddr, mask = _PAGE_PADDR_4U;
503 
504 			if (kaddr >= PAGE_OFFSET)
505 				paddr = kaddr & mask;
506 			else {
507 				pte_t *ptep = virt_to_kpte(kaddr);
508 
509 				paddr = pte_val(*ptep) & mask;
510 			}
511 			__flush_icache_page(paddr);
512 		}
513 	}
514 }
515 EXPORT_SYMBOL(flush_icache_range);
516 
517 void mmu_info(struct seq_file *m)
518 {
519 	static const char *pgsz_strings[] = {
520 		"8K", "64K", "512K", "4MB", "32MB",
521 		"256MB", "2GB", "16GB",
522 	};
523 	int i, printed;
524 
525 	if (tlb_type == cheetah)
526 		seq_printf(m, "MMU Type\t: Cheetah\n");
527 	else if (tlb_type == cheetah_plus)
528 		seq_printf(m, "MMU Type\t: Cheetah+\n");
529 	else if (tlb_type == spitfire)
530 		seq_printf(m, "MMU Type\t: Spitfire\n");
531 	else if (tlb_type == hypervisor)
532 		seq_printf(m, "MMU Type\t: Hypervisor (sun4v)\n");
533 	else
534 		seq_printf(m, "MMU Type\t: ???\n");
535 
536 	seq_printf(m, "MMU PGSZs\t: ");
537 	printed = 0;
538 	for (i = 0; i < ARRAY_SIZE(pgsz_strings); i++) {
539 		if (cpu_pgsz_mask & (1UL << i)) {
540 			seq_printf(m, "%s%s",
541 				   printed ? "," : "", pgsz_strings[i]);
542 			printed++;
543 		}
544 	}
545 	seq_putc(m, '\n');
546 
547 #ifdef CONFIG_DEBUG_DCFLUSH
548 	seq_printf(m, "DCPageFlushes\t: %d\n",
549 		   atomic_read(&dcpage_flushes));
550 #ifdef CONFIG_SMP
551 	seq_printf(m, "DCPageFlushesXC\t: %d\n",
552 		   atomic_read(&dcpage_flushes_xcall));
553 #endif /* CONFIG_SMP */
554 #endif /* CONFIG_DEBUG_DCFLUSH */
555 }
556 
557 struct linux_prom_translation prom_trans[512] __read_mostly;
558 unsigned int prom_trans_ents __read_mostly;
559 
560 unsigned long kern_locked_tte_data;
561 
562 /* The obp translations are saved based on 8k pagesize, since obp can
563  * use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS ->
564  * HI_OBP_ADDRESS range are handled in ktlb.S.
565  */
566 static inline int in_obp_range(unsigned long vaddr)
567 {
568 	return (vaddr >= LOW_OBP_ADDRESS &&
569 		vaddr < HI_OBP_ADDRESS);
570 }
571 
572 static int cmp_ptrans(const void *a, const void *b)
573 {
574 	const struct linux_prom_translation *x = a, *y = b;
575 
576 	if (x->virt > y->virt)
577 		return 1;
578 	if (x->virt < y->virt)
579 		return -1;
580 	return 0;
581 }
582 
583 /* Read OBP translations property into 'prom_trans[]'.  */
584 static void __init read_obp_translations(void)
585 {
586 	int n, node, ents, first, last, i;
587 
588 	node = prom_finddevice("/virtual-memory");
589 	n = prom_getproplen(node, "translations");
590 	if (unlikely(n == 0 || n == -1)) {
591 		prom_printf("prom_mappings: Couldn't get size.\n");
592 		prom_halt();
593 	}
594 	if (unlikely(n > sizeof(prom_trans))) {
595 		prom_printf("prom_mappings: Size %d is too big.\n", n);
596 		prom_halt();
597 	}
598 
599 	if ((n = prom_getproperty(node, "translations",
600 				  (char *)&prom_trans[0],
601 				  sizeof(prom_trans))) == -1) {
602 		prom_printf("prom_mappings: Couldn't get property.\n");
603 		prom_halt();
604 	}
605 
606 	n = n / sizeof(struct linux_prom_translation);
607 
608 	ents = n;
609 
610 	sort(prom_trans, ents, sizeof(struct linux_prom_translation),
611 	     cmp_ptrans, NULL);
612 
613 	/* Now kick out all the non-OBP entries.  */
614 	for (i = 0; i < ents; i++) {
615 		if (in_obp_range(prom_trans[i].virt))
616 			break;
617 	}
618 	first = i;
619 	for (; i < ents; i++) {
620 		if (!in_obp_range(prom_trans[i].virt))
621 			break;
622 	}
623 	last = i;
624 
625 	for (i = 0; i < (last - first); i++) {
626 		struct linux_prom_translation *src = &prom_trans[i + first];
627 		struct linux_prom_translation *dest = &prom_trans[i];
628 
629 		*dest = *src;
630 	}
631 	for (; i < ents; i++) {
632 		struct linux_prom_translation *dest = &prom_trans[i];
633 		dest->virt = dest->size = dest->data = 0x0UL;
634 	}
635 
636 	prom_trans_ents = last - first;
637 
638 	if (tlb_type == spitfire) {
639 		/* Clear diag TTE bits. */
640 		for (i = 0; i < prom_trans_ents; i++)
641 			prom_trans[i].data &= ~0x0003fe0000000000UL;
642 	}
643 
644 	/* Force execute bit on.  */
645 	for (i = 0; i < prom_trans_ents; i++)
646 		prom_trans[i].data |= (tlb_type == hypervisor ?
647 				       _PAGE_EXEC_4V : _PAGE_EXEC_4U);
648 }
649 
650 static void __init hypervisor_tlb_lock(unsigned long vaddr,
651 				       unsigned long pte,
652 				       unsigned long mmu)
653 {
654 	unsigned long ret = sun4v_mmu_map_perm_addr(vaddr, 0, pte, mmu);
655 
656 	if (ret != 0) {
657 		prom_printf("hypervisor_tlb_lock[%lx:%x:%lx:%lx]: "
658 			    "errors with %lx\n", vaddr, 0, pte, mmu, ret);
659 		prom_halt();
660 	}
661 }
662 
663 static unsigned long kern_large_tte(unsigned long paddr);
664 
665 static void __init remap_kernel(void)
666 {
667 	unsigned long phys_page, tte_vaddr, tte_data;
668 	int i, tlb_ent = sparc64_highest_locked_tlbent();
669 
670 	tte_vaddr = (unsigned long) KERNBASE;
671 	phys_page = (prom_boot_mapping_phys_low >> ILOG2_4MB) << ILOG2_4MB;
672 	tte_data = kern_large_tte(phys_page);
673 
674 	kern_locked_tte_data = tte_data;
675 
676 	/* Now lock us into the TLBs via Hypervisor or OBP. */
677 	if (tlb_type == hypervisor) {
678 		for (i = 0; i < num_kernel_image_mappings; i++) {
679 			hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU);
680 			hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU);
681 			tte_vaddr += 0x400000;
682 			tte_data += 0x400000;
683 		}
684 	} else {
685 		for (i = 0; i < num_kernel_image_mappings; i++) {
686 			prom_dtlb_load(tlb_ent - i, tte_data, tte_vaddr);
687 			prom_itlb_load(tlb_ent - i, tte_data, tte_vaddr);
688 			tte_vaddr += 0x400000;
689 			tte_data += 0x400000;
690 		}
691 		sparc64_highest_unlocked_tlb_ent = tlb_ent - i;
692 	}
693 	if (tlb_type == cheetah_plus) {
694 		sparc64_kern_pri_context = (CTX_CHEETAH_PLUS_CTX0 |
695 					    CTX_CHEETAH_PLUS_NUC);
696 		sparc64_kern_pri_nuc_bits = CTX_CHEETAH_PLUS_NUC;
697 		sparc64_kern_sec_context = CTX_CHEETAH_PLUS_CTX0;
698 	}
699 }
700 
701 
702 static void __init inherit_prom_mappings(void)
703 {
704 	/* Now fixup OBP's idea about where we really are mapped. */
705 	printk("Remapping the kernel... ");
706 	remap_kernel();
707 	printk("done.\n");
708 }
709 
710 void prom_world(int enter)
711 {
712 	/*
713 	 * No need to change the address space any more, just flush
714 	 * the register windows
715 	 */
716 	__asm__ __volatile__("flushw");
717 }
718 
719 void __flush_dcache_range(unsigned long start, unsigned long end)
720 {
721 	unsigned long va;
722 
723 	if (tlb_type == spitfire) {
724 		int n = 0;
725 
726 		for (va = start; va < end; va += 32) {
727 			spitfire_put_dcache_tag(va & 0x3fe0, 0x0);
728 			if (++n >= 512)
729 				break;
730 		}
731 	} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
732 		start = __pa(start);
733 		end = __pa(end);
734 		for (va = start; va < end; va += 32)
735 			__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
736 					     "membar #Sync"
737 					     : /* no outputs */
738 					     : "r" (va),
739 					       "i" (ASI_DCACHE_INVALIDATE));
740 	}
741 }
742 EXPORT_SYMBOL(__flush_dcache_range);
743 
744 /* get_new_mmu_context() uses "cache + 1".  */
745 DEFINE_SPINLOCK(ctx_alloc_lock);
746 unsigned long tlb_context_cache = CTX_FIRST_VERSION;
747 #define MAX_CTX_NR	(1UL << CTX_NR_BITS)
748 #define CTX_BMAP_SLOTS	BITS_TO_LONGS(MAX_CTX_NR)
749 DECLARE_BITMAP(mmu_context_bmap, MAX_CTX_NR);
750 DEFINE_PER_CPU(struct mm_struct *, per_cpu_secondary_mm) = {0};
751 
752 static void mmu_context_wrap(void)
753 {
754 	unsigned long old_ver = tlb_context_cache & CTX_VERSION_MASK;
755 	unsigned long new_ver, new_ctx, old_ctx;
756 	struct mm_struct *mm;
757 	int cpu;
758 
759 	bitmap_zero(mmu_context_bmap, 1 << CTX_NR_BITS);
760 
761 	/* Reserve kernel context */
762 	set_bit(0, mmu_context_bmap);
763 
764 	new_ver = (tlb_context_cache & CTX_VERSION_MASK) + CTX_FIRST_VERSION;
765 	if (unlikely(new_ver == 0))
766 		new_ver = CTX_FIRST_VERSION;
767 	tlb_context_cache = new_ver;
768 
769 	/*
770 	 * Make sure that any new mm that are added into per_cpu_secondary_mm,
771 	 * are going to go through get_new_mmu_context() path.
772 	 */
773 	mb();
774 
775 	/*
776 	 * Updated versions to current on those CPUs that had valid secondary
777 	 * contexts
778 	 */
779 	for_each_online_cpu(cpu) {
780 		/*
781 		 * If a new mm is stored after we took this mm from the array,
782 		 * it will go into get_new_mmu_context() path, because we
783 		 * already bumped the version in tlb_context_cache.
784 		 */
785 		mm = per_cpu(per_cpu_secondary_mm, cpu);
786 
787 		if (unlikely(!mm || mm == &init_mm))
788 			continue;
789 
790 		old_ctx = mm->context.sparc64_ctx_val;
791 		if (likely((old_ctx & CTX_VERSION_MASK) == old_ver)) {
792 			new_ctx = (old_ctx & ~CTX_VERSION_MASK) | new_ver;
793 			set_bit(new_ctx & CTX_NR_MASK, mmu_context_bmap);
794 			mm->context.sparc64_ctx_val = new_ctx;
795 		}
796 	}
797 }
798 
799 /* Caller does TLB context flushing on local CPU if necessary.
800  * The caller also ensures that CTX_VALID(mm->context) is false.
801  *
802  * We must be careful about boundary cases so that we never
803  * let the user have CTX 0 (nucleus) or we ever use a CTX
804  * version of zero (and thus NO_CONTEXT would not be caught
805  * by version mis-match tests in mmu_context.h).
806  *
807  * Always invoked with interrupts disabled.
808  */
809 void get_new_mmu_context(struct mm_struct *mm)
810 {
811 	unsigned long ctx, new_ctx;
812 	unsigned long orig_pgsz_bits;
813 
814 	spin_lock(&ctx_alloc_lock);
815 retry:
816 	/* wrap might have happened, test again if our context became valid */
817 	if (unlikely(CTX_VALID(mm->context)))
818 		goto out;
819 	orig_pgsz_bits = (mm->context.sparc64_ctx_val & CTX_PGSZ_MASK);
820 	ctx = (tlb_context_cache + 1) & CTX_NR_MASK;
821 	new_ctx = find_next_zero_bit(mmu_context_bmap, 1 << CTX_NR_BITS, ctx);
822 	if (new_ctx >= (1 << CTX_NR_BITS)) {
823 		new_ctx = find_next_zero_bit(mmu_context_bmap, ctx, 1);
824 		if (new_ctx >= ctx) {
825 			mmu_context_wrap();
826 			goto retry;
827 		}
828 	}
829 	if (mm->context.sparc64_ctx_val)
830 		cpumask_clear(mm_cpumask(mm));
831 	mmu_context_bmap[new_ctx>>6] |= (1UL << (new_ctx & 63));
832 	new_ctx |= (tlb_context_cache & CTX_VERSION_MASK);
833 	tlb_context_cache = new_ctx;
834 	mm->context.sparc64_ctx_val = new_ctx | orig_pgsz_bits;
835 out:
836 	spin_unlock(&ctx_alloc_lock);
837 }
838 
839 static int numa_enabled = 1;
840 static int numa_debug;
841 
842 static int __init early_numa(char *p)
843 {
844 	if (!p)
845 		return 0;
846 
847 	if (strstr(p, "off"))
848 		numa_enabled = 0;
849 
850 	if (strstr(p, "debug"))
851 		numa_debug = 1;
852 
853 	return 0;
854 }
855 early_param("numa", early_numa);
856 
857 #define numadbg(f, a...) \
858 do {	if (numa_debug) \
859 		printk(KERN_INFO f, ## a); \
860 } while (0)
861 
862 static void __init find_ramdisk(unsigned long phys_base)
863 {
864 #ifdef CONFIG_BLK_DEV_INITRD
865 	if (sparc_ramdisk_image || sparc_ramdisk_image64) {
866 		unsigned long ramdisk_image;
867 
868 		/* Older versions of the bootloader only supported a
869 		 * 32-bit physical address for the ramdisk image
870 		 * location, stored at sparc_ramdisk_image.  Newer
871 		 * SILO versions set sparc_ramdisk_image to zero and
872 		 * provide a full 64-bit physical address at
873 		 * sparc_ramdisk_image64.
874 		 */
875 		ramdisk_image = sparc_ramdisk_image;
876 		if (!ramdisk_image)
877 			ramdisk_image = sparc_ramdisk_image64;
878 
879 		/* Another bootloader quirk.  The bootloader normalizes
880 		 * the physical address to KERNBASE, so we have to
881 		 * factor that back out and add in the lowest valid
882 		 * physical page address to get the true physical address.
883 		 */
884 		ramdisk_image -= KERNBASE;
885 		ramdisk_image += phys_base;
886 
887 		numadbg("Found ramdisk at physical address 0x%lx, size %u\n",
888 			ramdisk_image, sparc_ramdisk_size);
889 
890 		initrd_start = ramdisk_image;
891 		initrd_end = ramdisk_image + sparc_ramdisk_size;
892 
893 		memblock_reserve(initrd_start, sparc_ramdisk_size);
894 
895 		initrd_start += PAGE_OFFSET;
896 		initrd_end += PAGE_OFFSET;
897 	}
898 #endif
899 }
900 
901 struct node_mem_mask {
902 	unsigned long mask;
903 	unsigned long match;
904 };
905 static struct node_mem_mask node_masks[MAX_NUMNODES];
906 static int num_node_masks;
907 
908 #ifdef CONFIG_NUMA
909 
910 struct mdesc_mlgroup {
911 	u64	node;
912 	u64	latency;
913 	u64	match;
914 	u64	mask;
915 };
916 
917 static struct mdesc_mlgroup *mlgroups;
918 static int num_mlgroups;
919 
920 int numa_cpu_lookup_table[NR_CPUS];
921 cpumask_t numa_cpumask_lookup_table[MAX_NUMNODES];
922 
923 struct mdesc_mblock {
924 	u64	base;
925 	u64	size;
926 	u64	offset; /* RA-to-PA */
927 };
928 static struct mdesc_mblock *mblocks;
929 static int num_mblocks;
930 
931 static struct mdesc_mblock * __init addr_to_mblock(unsigned long addr)
932 {
933 	struct mdesc_mblock *m = NULL;
934 	int i;
935 
936 	for (i = 0; i < num_mblocks; i++) {
937 		m = &mblocks[i];
938 
939 		if (addr >= m->base &&
940 		    addr < (m->base + m->size)) {
941 			break;
942 		}
943 	}
944 
945 	return m;
946 }
947 
948 static u64 __init memblock_nid_range_sun4u(u64 start, u64 end, int *nid)
949 {
950 	int prev_nid, new_nid;
951 
952 	prev_nid = NUMA_NO_NODE;
953 	for ( ; start < end; start += PAGE_SIZE) {
954 		for (new_nid = 0; new_nid < num_node_masks; new_nid++) {
955 			struct node_mem_mask *p = &node_masks[new_nid];
956 
957 			if ((start & p->mask) == p->match) {
958 				if (prev_nid == NUMA_NO_NODE)
959 					prev_nid = new_nid;
960 				break;
961 			}
962 		}
963 
964 		if (new_nid == num_node_masks) {
965 			prev_nid = 0;
966 			WARN_ONCE(1, "addr[%Lx] doesn't match a NUMA node rule. Some memory will be owned by node 0.",
967 				  start);
968 			break;
969 		}
970 
971 		if (prev_nid != new_nid)
972 			break;
973 	}
974 	*nid = prev_nid;
975 
976 	return start > end ? end : start;
977 }
978 
979 static u64 __init memblock_nid_range(u64 start, u64 end, int *nid)
980 {
981 	u64 ret_end, pa_start, m_mask, m_match, m_end;
982 	struct mdesc_mblock *mblock;
983 	int _nid, i;
984 
985 	if (tlb_type != hypervisor)
986 		return memblock_nid_range_sun4u(start, end, nid);
987 
988 	mblock = addr_to_mblock(start);
989 	if (!mblock) {
990 		WARN_ONCE(1, "memblock_nid_range: Can't find mblock addr[%Lx]",
991 			  start);
992 
993 		_nid = 0;
994 		ret_end = end;
995 		goto done;
996 	}
997 
998 	pa_start = start + mblock->offset;
999 	m_match = 0;
1000 	m_mask = 0;
1001 
1002 	for (_nid = 0; _nid < num_node_masks; _nid++) {
1003 		struct node_mem_mask *const m = &node_masks[_nid];
1004 
1005 		if ((pa_start & m->mask) == m->match) {
1006 			m_match = m->match;
1007 			m_mask = m->mask;
1008 			break;
1009 		}
1010 	}
1011 
1012 	if (num_node_masks == _nid) {
1013 		/* We could not find NUMA group, so default to 0, but lets
1014 		 * search for latency group, so we could calculate the correct
1015 		 * end address that we return
1016 		 */
1017 		_nid = 0;
1018 
1019 		for (i = 0; i < num_mlgroups; i++) {
1020 			struct mdesc_mlgroup *const m = &mlgroups[i];
1021 
1022 			if ((pa_start & m->mask) == m->match) {
1023 				m_match = m->match;
1024 				m_mask = m->mask;
1025 				break;
1026 			}
1027 		}
1028 
1029 		if (i == num_mlgroups) {
1030 			WARN_ONCE(1, "memblock_nid_range: Can't find latency group addr[%Lx]",
1031 				  start);
1032 
1033 			ret_end = end;
1034 			goto done;
1035 		}
1036 	}
1037 
1038 	/*
1039 	 * Each latency group has match and mask, and each memory block has an
1040 	 * offset.  An address belongs to a latency group if its address matches
1041 	 * the following formula: ((addr + offset) & mask) == match
1042 	 * It is, however, slow to check every single page if it matches a
1043 	 * particular latency group. As optimization we calculate end value by
1044 	 * using bit arithmetics.
1045 	 */
1046 	m_end = m_match + (1ul << __ffs(m_mask)) - mblock->offset;
1047 	m_end += pa_start & ~((1ul << fls64(m_mask)) - 1);
1048 	ret_end = m_end > end ? end : m_end;
1049 
1050 done:
1051 	*nid = _nid;
1052 	return ret_end;
1053 }
1054 #endif
1055 
1056 /* This must be invoked after performing all of the necessary
1057  * memblock_set_node() calls for 'nid'.  We need to be able to get
1058  * correct data from get_pfn_range_for_nid().
1059  */
1060 static void __init allocate_node_data(int nid)
1061 {
1062 	struct pglist_data *p;
1063 	unsigned long start_pfn, end_pfn;
1064 #ifdef CONFIG_NUMA
1065 
1066 	NODE_DATA(nid) = memblock_alloc_node(sizeof(struct pglist_data),
1067 					     SMP_CACHE_BYTES, nid);
1068 	if (!NODE_DATA(nid)) {
1069 		prom_printf("Cannot allocate pglist_data for nid[%d]\n", nid);
1070 		prom_halt();
1071 	}
1072 
1073 	NODE_DATA(nid)->node_id = nid;
1074 #endif
1075 
1076 	p = NODE_DATA(nid);
1077 
1078 	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
1079 	p->node_start_pfn = start_pfn;
1080 	p->node_spanned_pages = end_pfn - start_pfn;
1081 }
1082 
1083 static void init_node_masks_nonnuma(void)
1084 {
1085 #ifdef CONFIG_NUMA
1086 	int i;
1087 #endif
1088 
1089 	numadbg("Initializing tables for non-numa.\n");
1090 
1091 	node_masks[0].mask = 0;
1092 	node_masks[0].match = 0;
1093 	num_node_masks = 1;
1094 
1095 #ifdef CONFIG_NUMA
1096 	for (i = 0; i < NR_CPUS; i++)
1097 		numa_cpu_lookup_table[i] = 0;
1098 
1099 	cpumask_setall(&numa_cpumask_lookup_table[0]);
1100 #endif
1101 }
1102 
1103 #ifdef CONFIG_NUMA
1104 struct pglist_data *node_data[MAX_NUMNODES];
1105 
1106 EXPORT_SYMBOL(numa_cpu_lookup_table);
1107 EXPORT_SYMBOL(numa_cpumask_lookup_table);
1108 EXPORT_SYMBOL(node_data);
1109 
1110 static int scan_pio_for_cfg_handle(struct mdesc_handle *md, u64 pio,
1111 				   u32 cfg_handle)
1112 {
1113 	u64 arc;
1114 
1115 	mdesc_for_each_arc(arc, md, pio, MDESC_ARC_TYPE_FWD) {
1116 		u64 target = mdesc_arc_target(md, arc);
1117 		const u64 *val;
1118 
1119 		val = mdesc_get_property(md, target,
1120 					 "cfg-handle", NULL);
1121 		if (val && *val == cfg_handle)
1122 			return 0;
1123 	}
1124 	return -ENODEV;
1125 }
1126 
1127 static int scan_arcs_for_cfg_handle(struct mdesc_handle *md, u64 grp,
1128 				    u32 cfg_handle)
1129 {
1130 	u64 arc, candidate, best_latency = ~(u64)0;
1131 
1132 	candidate = MDESC_NODE_NULL;
1133 	mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1134 		u64 target = mdesc_arc_target(md, arc);
1135 		const char *name = mdesc_node_name(md, target);
1136 		const u64 *val;
1137 
1138 		if (strcmp(name, "pio-latency-group"))
1139 			continue;
1140 
1141 		val = mdesc_get_property(md, target, "latency", NULL);
1142 		if (!val)
1143 			continue;
1144 
1145 		if (*val < best_latency) {
1146 			candidate = target;
1147 			best_latency = *val;
1148 		}
1149 	}
1150 
1151 	if (candidate == MDESC_NODE_NULL)
1152 		return -ENODEV;
1153 
1154 	return scan_pio_for_cfg_handle(md, candidate, cfg_handle);
1155 }
1156 
1157 int of_node_to_nid(struct device_node *dp)
1158 {
1159 	const struct linux_prom64_registers *regs;
1160 	struct mdesc_handle *md;
1161 	u32 cfg_handle;
1162 	int count, nid;
1163 	u64 grp;
1164 
1165 	/* This is the right thing to do on currently supported
1166 	 * SUN4U NUMA platforms as well, as the PCI controller does
1167 	 * not sit behind any particular memory controller.
1168 	 */
1169 	if (!mlgroups)
1170 		return -1;
1171 
1172 	regs = of_get_property(dp, "reg", NULL);
1173 	if (!regs)
1174 		return -1;
1175 
1176 	cfg_handle = (regs->phys_addr >> 32UL) & 0x0fffffff;
1177 
1178 	md = mdesc_grab();
1179 
1180 	count = 0;
1181 	nid = NUMA_NO_NODE;
1182 	mdesc_for_each_node_by_name(md, grp, "group") {
1183 		if (!scan_arcs_for_cfg_handle(md, grp, cfg_handle)) {
1184 			nid = count;
1185 			break;
1186 		}
1187 		count++;
1188 	}
1189 
1190 	mdesc_release(md);
1191 
1192 	return nid;
1193 }
1194 
1195 static void __init add_node_ranges(void)
1196 {
1197 	phys_addr_t start, end;
1198 	unsigned long prev_max;
1199 	u64 i;
1200 
1201 memblock_resized:
1202 	prev_max = memblock.memory.max;
1203 
1204 	for_each_mem_range(i, &start, &end) {
1205 		while (start < end) {
1206 			unsigned long this_end;
1207 			int nid;
1208 
1209 			this_end = memblock_nid_range(start, end, &nid);
1210 
1211 			numadbg("Setting memblock NUMA node nid[%d] "
1212 				"start[%llx] end[%lx]\n",
1213 				nid, start, this_end);
1214 
1215 			memblock_set_node(start, this_end - start,
1216 					  &memblock.memory, nid);
1217 			if (memblock.memory.max != prev_max)
1218 				goto memblock_resized;
1219 			start = this_end;
1220 		}
1221 	}
1222 }
1223 
1224 static int __init grab_mlgroups(struct mdesc_handle *md)
1225 {
1226 	unsigned long paddr;
1227 	int count = 0;
1228 	u64 node;
1229 
1230 	mdesc_for_each_node_by_name(md, node, "memory-latency-group")
1231 		count++;
1232 	if (!count)
1233 		return -ENOENT;
1234 
1235 	paddr = memblock_phys_alloc(count * sizeof(struct mdesc_mlgroup),
1236 				    SMP_CACHE_BYTES);
1237 	if (!paddr)
1238 		return -ENOMEM;
1239 
1240 	mlgroups = __va(paddr);
1241 	num_mlgroups = count;
1242 
1243 	count = 0;
1244 	mdesc_for_each_node_by_name(md, node, "memory-latency-group") {
1245 		struct mdesc_mlgroup *m = &mlgroups[count++];
1246 		const u64 *val;
1247 
1248 		m->node = node;
1249 
1250 		val = mdesc_get_property(md, node, "latency", NULL);
1251 		m->latency = *val;
1252 		val = mdesc_get_property(md, node, "address-match", NULL);
1253 		m->match = *val;
1254 		val = mdesc_get_property(md, node, "address-mask", NULL);
1255 		m->mask = *val;
1256 
1257 		numadbg("MLGROUP[%d]: node[%llx] latency[%llx] "
1258 			"match[%llx] mask[%llx]\n",
1259 			count - 1, m->node, m->latency, m->match, m->mask);
1260 	}
1261 
1262 	return 0;
1263 }
1264 
1265 static int __init grab_mblocks(struct mdesc_handle *md)
1266 {
1267 	unsigned long paddr;
1268 	int count = 0;
1269 	u64 node;
1270 
1271 	mdesc_for_each_node_by_name(md, node, "mblock")
1272 		count++;
1273 	if (!count)
1274 		return -ENOENT;
1275 
1276 	paddr = memblock_phys_alloc(count * sizeof(struct mdesc_mblock),
1277 				    SMP_CACHE_BYTES);
1278 	if (!paddr)
1279 		return -ENOMEM;
1280 
1281 	mblocks = __va(paddr);
1282 	num_mblocks = count;
1283 
1284 	count = 0;
1285 	mdesc_for_each_node_by_name(md, node, "mblock") {
1286 		struct mdesc_mblock *m = &mblocks[count++];
1287 		const u64 *val;
1288 
1289 		val = mdesc_get_property(md, node, "base", NULL);
1290 		m->base = *val;
1291 		val = mdesc_get_property(md, node, "size", NULL);
1292 		m->size = *val;
1293 		val = mdesc_get_property(md, node,
1294 					 "address-congruence-offset", NULL);
1295 
1296 		/* The address-congruence-offset property is optional.
1297 		 * Explicity zero it be identifty this.
1298 		 */
1299 		if (val)
1300 			m->offset = *val;
1301 		else
1302 			m->offset = 0UL;
1303 
1304 		numadbg("MBLOCK[%d]: base[%llx] size[%llx] offset[%llx]\n",
1305 			count - 1, m->base, m->size, m->offset);
1306 	}
1307 
1308 	return 0;
1309 }
1310 
1311 static void __init numa_parse_mdesc_group_cpus(struct mdesc_handle *md,
1312 					       u64 grp, cpumask_t *mask)
1313 {
1314 	u64 arc;
1315 
1316 	cpumask_clear(mask);
1317 
1318 	mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_BACK) {
1319 		u64 target = mdesc_arc_target(md, arc);
1320 		const char *name = mdesc_node_name(md, target);
1321 		const u64 *id;
1322 
1323 		if (strcmp(name, "cpu"))
1324 			continue;
1325 		id = mdesc_get_property(md, target, "id", NULL);
1326 		if (*id < nr_cpu_ids)
1327 			cpumask_set_cpu(*id, mask);
1328 	}
1329 }
1330 
1331 static struct mdesc_mlgroup * __init find_mlgroup(u64 node)
1332 {
1333 	int i;
1334 
1335 	for (i = 0; i < num_mlgroups; i++) {
1336 		struct mdesc_mlgroup *m = &mlgroups[i];
1337 		if (m->node == node)
1338 			return m;
1339 	}
1340 	return NULL;
1341 }
1342 
1343 int __node_distance(int from, int to)
1344 {
1345 	if ((from >= MAX_NUMNODES) || (to >= MAX_NUMNODES)) {
1346 		pr_warn("Returning default NUMA distance value for %d->%d\n",
1347 			from, to);
1348 		return (from == to) ? LOCAL_DISTANCE : REMOTE_DISTANCE;
1349 	}
1350 	return numa_latency[from][to];
1351 }
1352 EXPORT_SYMBOL(__node_distance);
1353 
1354 static int __init find_best_numa_node_for_mlgroup(struct mdesc_mlgroup *grp)
1355 {
1356 	int i;
1357 
1358 	for (i = 0; i < MAX_NUMNODES; i++) {
1359 		struct node_mem_mask *n = &node_masks[i];
1360 
1361 		if ((grp->mask == n->mask) && (grp->match == n->match))
1362 			break;
1363 	}
1364 	return i;
1365 }
1366 
1367 static void __init find_numa_latencies_for_group(struct mdesc_handle *md,
1368 						 u64 grp, int index)
1369 {
1370 	u64 arc;
1371 
1372 	mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1373 		int tnode;
1374 		u64 target = mdesc_arc_target(md, arc);
1375 		struct mdesc_mlgroup *m = find_mlgroup(target);
1376 
1377 		if (!m)
1378 			continue;
1379 		tnode = find_best_numa_node_for_mlgroup(m);
1380 		if (tnode == MAX_NUMNODES)
1381 			continue;
1382 		numa_latency[index][tnode] = m->latency;
1383 	}
1384 }
1385 
1386 static int __init numa_attach_mlgroup(struct mdesc_handle *md, u64 grp,
1387 				      int index)
1388 {
1389 	struct mdesc_mlgroup *candidate = NULL;
1390 	u64 arc, best_latency = ~(u64)0;
1391 	struct node_mem_mask *n;
1392 
1393 	mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1394 		u64 target = mdesc_arc_target(md, arc);
1395 		struct mdesc_mlgroup *m = find_mlgroup(target);
1396 		if (!m)
1397 			continue;
1398 		if (m->latency < best_latency) {
1399 			candidate = m;
1400 			best_latency = m->latency;
1401 		}
1402 	}
1403 	if (!candidate)
1404 		return -ENOENT;
1405 
1406 	if (num_node_masks != index) {
1407 		printk(KERN_ERR "Inconsistent NUMA state, "
1408 		       "index[%d] != num_node_masks[%d]\n",
1409 		       index, num_node_masks);
1410 		return -EINVAL;
1411 	}
1412 
1413 	n = &node_masks[num_node_masks++];
1414 
1415 	n->mask = candidate->mask;
1416 	n->match = candidate->match;
1417 
1418 	numadbg("NUMA NODE[%d]: mask[%lx] match[%lx] (latency[%llx])\n",
1419 		index, n->mask, n->match, candidate->latency);
1420 
1421 	return 0;
1422 }
1423 
1424 static int __init numa_parse_mdesc_group(struct mdesc_handle *md, u64 grp,
1425 					 int index)
1426 {
1427 	cpumask_t mask;
1428 	int cpu;
1429 
1430 	numa_parse_mdesc_group_cpus(md, grp, &mask);
1431 
1432 	for_each_cpu(cpu, &mask)
1433 		numa_cpu_lookup_table[cpu] = index;
1434 	cpumask_copy(&numa_cpumask_lookup_table[index], &mask);
1435 
1436 	if (numa_debug) {
1437 		printk(KERN_INFO "NUMA GROUP[%d]: cpus [ ", index);
1438 		for_each_cpu(cpu, &mask)
1439 			printk("%d ", cpu);
1440 		printk("]\n");
1441 	}
1442 
1443 	return numa_attach_mlgroup(md, grp, index);
1444 }
1445 
1446 static int __init numa_parse_mdesc(void)
1447 {
1448 	struct mdesc_handle *md = mdesc_grab();
1449 	int i, j, err, count;
1450 	u64 node;
1451 
1452 	node = mdesc_node_by_name(md, MDESC_NODE_NULL, "latency-groups");
1453 	if (node == MDESC_NODE_NULL) {
1454 		mdesc_release(md);
1455 		return -ENOENT;
1456 	}
1457 
1458 	err = grab_mblocks(md);
1459 	if (err < 0)
1460 		goto out;
1461 
1462 	err = grab_mlgroups(md);
1463 	if (err < 0)
1464 		goto out;
1465 
1466 	count = 0;
1467 	mdesc_for_each_node_by_name(md, node, "group") {
1468 		err = numa_parse_mdesc_group(md, node, count);
1469 		if (err < 0)
1470 			break;
1471 		count++;
1472 	}
1473 
1474 	count = 0;
1475 	mdesc_for_each_node_by_name(md, node, "group") {
1476 		find_numa_latencies_for_group(md, node, count);
1477 		count++;
1478 	}
1479 
1480 	/* Normalize numa latency matrix according to ACPI SLIT spec. */
1481 	for (i = 0; i < MAX_NUMNODES; i++) {
1482 		u64 self_latency = numa_latency[i][i];
1483 
1484 		for (j = 0; j < MAX_NUMNODES; j++) {
1485 			numa_latency[i][j] =
1486 				(numa_latency[i][j] * LOCAL_DISTANCE) /
1487 				self_latency;
1488 		}
1489 	}
1490 
1491 	add_node_ranges();
1492 
1493 	for (i = 0; i < num_node_masks; i++) {
1494 		allocate_node_data(i);
1495 		node_set_online(i);
1496 	}
1497 
1498 	err = 0;
1499 out:
1500 	mdesc_release(md);
1501 	return err;
1502 }
1503 
1504 static int __init numa_parse_jbus(void)
1505 {
1506 	unsigned long cpu, index;
1507 
1508 	/* NUMA node id is encoded in bits 36 and higher, and there is
1509 	 * a 1-to-1 mapping from CPU ID to NUMA node ID.
1510 	 */
1511 	index = 0;
1512 	for_each_present_cpu(cpu) {
1513 		numa_cpu_lookup_table[cpu] = index;
1514 		cpumask_copy(&numa_cpumask_lookup_table[index], cpumask_of(cpu));
1515 		node_masks[index].mask = ~((1UL << 36UL) - 1UL);
1516 		node_masks[index].match = cpu << 36UL;
1517 
1518 		index++;
1519 	}
1520 	num_node_masks = index;
1521 
1522 	add_node_ranges();
1523 
1524 	for (index = 0; index < num_node_masks; index++) {
1525 		allocate_node_data(index);
1526 		node_set_online(index);
1527 	}
1528 
1529 	return 0;
1530 }
1531 
1532 static int __init numa_parse_sun4u(void)
1533 {
1534 	if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1535 		unsigned long ver;
1536 
1537 		__asm__ ("rdpr %%ver, %0" : "=r" (ver));
1538 		if ((ver >> 32UL) == __JALAPENO_ID ||
1539 		    (ver >> 32UL) == __SERRANO_ID)
1540 			return numa_parse_jbus();
1541 	}
1542 	return -1;
1543 }
1544 
1545 static int __init bootmem_init_numa(void)
1546 {
1547 	int i, j;
1548 	int err = -1;
1549 
1550 	numadbg("bootmem_init_numa()\n");
1551 
1552 	/* Some sane defaults for numa latency values */
1553 	for (i = 0; i < MAX_NUMNODES; i++) {
1554 		for (j = 0; j < MAX_NUMNODES; j++)
1555 			numa_latency[i][j] = (i == j) ?
1556 				LOCAL_DISTANCE : REMOTE_DISTANCE;
1557 	}
1558 
1559 	if (numa_enabled) {
1560 		if (tlb_type == hypervisor)
1561 			err = numa_parse_mdesc();
1562 		else
1563 			err = numa_parse_sun4u();
1564 	}
1565 	return err;
1566 }
1567 
1568 #else
1569 
1570 static int bootmem_init_numa(void)
1571 {
1572 	return -1;
1573 }
1574 
1575 #endif
1576 
1577 static void __init bootmem_init_nonnuma(void)
1578 {
1579 	unsigned long top_of_ram = memblock_end_of_DRAM();
1580 	unsigned long total_ram = memblock_phys_mem_size();
1581 
1582 	numadbg("bootmem_init_nonnuma()\n");
1583 
1584 	printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
1585 	       top_of_ram, total_ram);
1586 	printk(KERN_INFO "Memory hole size: %ldMB\n",
1587 	       (top_of_ram - total_ram) >> 20);
1588 
1589 	init_node_masks_nonnuma();
1590 	memblock_set_node(0, PHYS_ADDR_MAX, &memblock.memory, 0);
1591 	allocate_node_data(0);
1592 	node_set_online(0);
1593 }
1594 
1595 static unsigned long __init bootmem_init(unsigned long phys_base)
1596 {
1597 	unsigned long end_pfn;
1598 
1599 	end_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
1600 	max_pfn = max_low_pfn = end_pfn;
1601 	min_low_pfn = (phys_base >> PAGE_SHIFT);
1602 
1603 	if (bootmem_init_numa() < 0)
1604 		bootmem_init_nonnuma();
1605 
1606 	/* Dump memblock with node info. */
1607 	memblock_dump_all();
1608 
1609 	/* XXX cpu notifier XXX */
1610 
1611 	sparse_init();
1612 
1613 	return end_pfn;
1614 }
1615 
1616 static struct linux_prom64_registers pall[MAX_BANKS] __initdata;
1617 static int pall_ents __initdata;
1618 
1619 static unsigned long max_phys_bits = 40;
1620 
1621 bool kern_addr_valid(unsigned long addr)
1622 {
1623 	pgd_t *pgd;
1624 	p4d_t *p4d;
1625 	pud_t *pud;
1626 	pmd_t *pmd;
1627 	pte_t *pte;
1628 
1629 	if ((long)addr < 0L) {
1630 		unsigned long pa = __pa(addr);
1631 
1632 		if ((pa >> max_phys_bits) != 0UL)
1633 			return false;
1634 
1635 		return pfn_valid(pa >> PAGE_SHIFT);
1636 	}
1637 
1638 	if (addr >= (unsigned long) KERNBASE &&
1639 	    addr < (unsigned long)&_end)
1640 		return true;
1641 
1642 	pgd = pgd_offset_k(addr);
1643 	if (pgd_none(*pgd))
1644 		return false;
1645 
1646 	p4d = p4d_offset(pgd, addr);
1647 	if (p4d_none(*p4d))
1648 		return false;
1649 
1650 	pud = pud_offset(p4d, addr);
1651 	if (pud_none(*pud))
1652 		return false;
1653 
1654 	if (pud_large(*pud))
1655 		return pfn_valid(pud_pfn(*pud));
1656 
1657 	pmd = pmd_offset(pud, addr);
1658 	if (pmd_none(*pmd))
1659 		return false;
1660 
1661 	if (pmd_large(*pmd))
1662 		return pfn_valid(pmd_pfn(*pmd));
1663 
1664 	pte = pte_offset_kernel(pmd, addr);
1665 	if (pte_none(*pte))
1666 		return false;
1667 
1668 	return pfn_valid(pte_pfn(*pte));
1669 }
1670 
1671 static unsigned long __ref kernel_map_hugepud(unsigned long vstart,
1672 					      unsigned long vend,
1673 					      pud_t *pud)
1674 {
1675 	const unsigned long mask16gb = (1UL << 34) - 1UL;
1676 	u64 pte_val = vstart;
1677 
1678 	/* Each PUD is 8GB */
1679 	if ((vstart & mask16gb) ||
1680 	    (vend - vstart <= mask16gb)) {
1681 		pte_val ^= kern_linear_pte_xor[2];
1682 		pud_val(*pud) = pte_val | _PAGE_PUD_HUGE;
1683 
1684 		return vstart + PUD_SIZE;
1685 	}
1686 
1687 	pte_val ^= kern_linear_pte_xor[3];
1688 	pte_val |= _PAGE_PUD_HUGE;
1689 
1690 	vend = vstart + mask16gb + 1UL;
1691 	while (vstart < vend) {
1692 		pud_val(*pud) = pte_val;
1693 
1694 		pte_val += PUD_SIZE;
1695 		vstart += PUD_SIZE;
1696 		pud++;
1697 	}
1698 	return vstart;
1699 }
1700 
1701 static bool kernel_can_map_hugepud(unsigned long vstart, unsigned long vend,
1702 				   bool guard)
1703 {
1704 	if (guard && !(vstart & ~PUD_MASK) && (vend - vstart) >= PUD_SIZE)
1705 		return true;
1706 
1707 	return false;
1708 }
1709 
1710 static unsigned long __ref kernel_map_hugepmd(unsigned long vstart,
1711 					      unsigned long vend,
1712 					      pmd_t *pmd)
1713 {
1714 	const unsigned long mask256mb = (1UL << 28) - 1UL;
1715 	const unsigned long mask2gb = (1UL << 31) - 1UL;
1716 	u64 pte_val = vstart;
1717 
1718 	/* Each PMD is 8MB */
1719 	if ((vstart & mask256mb) ||
1720 	    (vend - vstart <= mask256mb)) {
1721 		pte_val ^= kern_linear_pte_xor[0];
1722 		pmd_val(*pmd) = pte_val | _PAGE_PMD_HUGE;
1723 
1724 		return vstart + PMD_SIZE;
1725 	}
1726 
1727 	if ((vstart & mask2gb) ||
1728 	    (vend - vstart <= mask2gb)) {
1729 		pte_val ^= kern_linear_pte_xor[1];
1730 		pte_val |= _PAGE_PMD_HUGE;
1731 		vend = vstart + mask256mb + 1UL;
1732 	} else {
1733 		pte_val ^= kern_linear_pte_xor[2];
1734 		pte_val |= _PAGE_PMD_HUGE;
1735 		vend = vstart + mask2gb + 1UL;
1736 	}
1737 
1738 	while (vstart < vend) {
1739 		pmd_val(*pmd) = pte_val;
1740 
1741 		pte_val += PMD_SIZE;
1742 		vstart += PMD_SIZE;
1743 		pmd++;
1744 	}
1745 
1746 	return vstart;
1747 }
1748 
1749 static bool kernel_can_map_hugepmd(unsigned long vstart, unsigned long vend,
1750 				   bool guard)
1751 {
1752 	if (guard && !(vstart & ~PMD_MASK) && (vend - vstart) >= PMD_SIZE)
1753 		return true;
1754 
1755 	return false;
1756 }
1757 
1758 static unsigned long __ref kernel_map_range(unsigned long pstart,
1759 					    unsigned long pend, pgprot_t prot,
1760 					    bool use_huge)
1761 {
1762 	unsigned long vstart = PAGE_OFFSET + pstart;
1763 	unsigned long vend = PAGE_OFFSET + pend;
1764 	unsigned long alloc_bytes = 0UL;
1765 
1766 	if ((vstart & ~PAGE_MASK) || (vend & ~PAGE_MASK)) {
1767 		prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n",
1768 			    vstart, vend);
1769 		prom_halt();
1770 	}
1771 
1772 	while (vstart < vend) {
1773 		unsigned long this_end, paddr = __pa(vstart);
1774 		pgd_t *pgd = pgd_offset_k(vstart);
1775 		p4d_t *p4d;
1776 		pud_t *pud;
1777 		pmd_t *pmd;
1778 		pte_t *pte;
1779 
1780 		if (pgd_none(*pgd)) {
1781 			pud_t *new;
1782 
1783 			new = memblock_alloc_from(PAGE_SIZE, PAGE_SIZE,
1784 						  PAGE_SIZE);
1785 			if (!new)
1786 				goto err_alloc;
1787 			alloc_bytes += PAGE_SIZE;
1788 			pgd_populate(&init_mm, pgd, new);
1789 		}
1790 
1791 		p4d = p4d_offset(pgd, vstart);
1792 		if (p4d_none(*p4d)) {
1793 			pud_t *new;
1794 
1795 			new = memblock_alloc_from(PAGE_SIZE, PAGE_SIZE,
1796 						  PAGE_SIZE);
1797 			if (!new)
1798 				goto err_alloc;
1799 			alloc_bytes += PAGE_SIZE;
1800 			p4d_populate(&init_mm, p4d, new);
1801 		}
1802 
1803 		pud = pud_offset(p4d, vstart);
1804 		if (pud_none(*pud)) {
1805 			pmd_t *new;
1806 
1807 			if (kernel_can_map_hugepud(vstart, vend, use_huge)) {
1808 				vstart = kernel_map_hugepud(vstart, vend, pud);
1809 				continue;
1810 			}
1811 			new = memblock_alloc_from(PAGE_SIZE, PAGE_SIZE,
1812 						  PAGE_SIZE);
1813 			if (!new)
1814 				goto err_alloc;
1815 			alloc_bytes += PAGE_SIZE;
1816 			pud_populate(&init_mm, pud, new);
1817 		}
1818 
1819 		pmd = pmd_offset(pud, vstart);
1820 		if (pmd_none(*pmd)) {
1821 			pte_t *new;
1822 
1823 			if (kernel_can_map_hugepmd(vstart, vend, use_huge)) {
1824 				vstart = kernel_map_hugepmd(vstart, vend, pmd);
1825 				continue;
1826 			}
1827 			new = memblock_alloc_from(PAGE_SIZE, PAGE_SIZE,
1828 						  PAGE_SIZE);
1829 			if (!new)
1830 				goto err_alloc;
1831 			alloc_bytes += PAGE_SIZE;
1832 			pmd_populate_kernel(&init_mm, pmd, new);
1833 		}
1834 
1835 		pte = pte_offset_kernel(pmd, vstart);
1836 		this_end = (vstart + PMD_SIZE) & PMD_MASK;
1837 		if (this_end > vend)
1838 			this_end = vend;
1839 
1840 		while (vstart < this_end) {
1841 			pte_val(*pte) = (paddr | pgprot_val(prot));
1842 
1843 			vstart += PAGE_SIZE;
1844 			paddr += PAGE_SIZE;
1845 			pte++;
1846 		}
1847 	}
1848 
1849 	return alloc_bytes;
1850 
1851 err_alloc:
1852 	panic("%s: Failed to allocate %lu bytes align=%lx from=%lx\n",
1853 	      __func__, PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1854 	return -ENOMEM;
1855 }
1856 
1857 static void __init flush_all_kernel_tsbs(void)
1858 {
1859 	int i;
1860 
1861 	for (i = 0; i < KERNEL_TSB_NENTRIES; i++) {
1862 		struct tsb *ent = &swapper_tsb[i];
1863 
1864 		ent->tag = (1UL << TSB_TAG_INVALID_BIT);
1865 	}
1866 #ifndef CONFIG_DEBUG_PAGEALLOC
1867 	for (i = 0; i < KERNEL_TSB4M_NENTRIES; i++) {
1868 		struct tsb *ent = &swapper_4m_tsb[i];
1869 
1870 		ent->tag = (1UL << TSB_TAG_INVALID_BIT);
1871 	}
1872 #endif
1873 }
1874 
1875 extern unsigned int kvmap_linear_patch[1];
1876 
1877 static void __init kernel_physical_mapping_init(void)
1878 {
1879 	unsigned long i, mem_alloced = 0UL;
1880 	bool use_huge = true;
1881 
1882 #ifdef CONFIG_DEBUG_PAGEALLOC
1883 	use_huge = false;
1884 #endif
1885 	for (i = 0; i < pall_ents; i++) {
1886 		unsigned long phys_start, phys_end;
1887 
1888 		phys_start = pall[i].phys_addr;
1889 		phys_end = phys_start + pall[i].reg_size;
1890 
1891 		mem_alloced += kernel_map_range(phys_start, phys_end,
1892 						PAGE_KERNEL, use_huge);
1893 	}
1894 
1895 	printk("Allocated %ld bytes for kernel page tables.\n",
1896 	       mem_alloced);
1897 
1898 	kvmap_linear_patch[0] = 0x01000000; /* nop */
1899 	flushi(&kvmap_linear_patch[0]);
1900 
1901 	flush_all_kernel_tsbs();
1902 
1903 	__flush_tlb_all();
1904 }
1905 
1906 #ifdef CONFIG_DEBUG_PAGEALLOC
1907 void __kernel_map_pages(struct page *page, int numpages, int enable)
1908 {
1909 	unsigned long phys_start = page_to_pfn(page) << PAGE_SHIFT;
1910 	unsigned long phys_end = phys_start + (numpages * PAGE_SIZE);
1911 
1912 	kernel_map_range(phys_start, phys_end,
1913 			 (enable ? PAGE_KERNEL : __pgprot(0)), false);
1914 
1915 	flush_tsb_kernel_range(PAGE_OFFSET + phys_start,
1916 			       PAGE_OFFSET + phys_end);
1917 
1918 	/* we should perform an IPI and flush all tlbs,
1919 	 * but that can deadlock->flush only current cpu.
1920 	 */
1921 	__flush_tlb_kernel_range(PAGE_OFFSET + phys_start,
1922 				 PAGE_OFFSET + phys_end);
1923 }
1924 #endif
1925 
1926 unsigned long __init find_ecache_flush_span(unsigned long size)
1927 {
1928 	int i;
1929 
1930 	for (i = 0; i < pavail_ents; i++) {
1931 		if (pavail[i].reg_size >= size)
1932 			return pavail[i].phys_addr;
1933 	}
1934 
1935 	return ~0UL;
1936 }
1937 
1938 unsigned long PAGE_OFFSET;
1939 EXPORT_SYMBOL(PAGE_OFFSET);
1940 
1941 unsigned long VMALLOC_END   = 0x0000010000000000UL;
1942 EXPORT_SYMBOL(VMALLOC_END);
1943 
1944 unsigned long sparc64_va_hole_top =    0xfffff80000000000UL;
1945 unsigned long sparc64_va_hole_bottom = 0x0000080000000000UL;
1946 
1947 static void __init setup_page_offset(void)
1948 {
1949 	if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1950 		/* Cheetah/Panther support a full 64-bit virtual
1951 		 * address, so we can use all that our page tables
1952 		 * support.
1953 		 */
1954 		sparc64_va_hole_top =    0xfff0000000000000UL;
1955 		sparc64_va_hole_bottom = 0x0010000000000000UL;
1956 
1957 		max_phys_bits = 42;
1958 	} else if (tlb_type == hypervisor) {
1959 		switch (sun4v_chip_type) {
1960 		case SUN4V_CHIP_NIAGARA1:
1961 		case SUN4V_CHIP_NIAGARA2:
1962 			/* T1 and T2 support 48-bit virtual addresses.  */
1963 			sparc64_va_hole_top =    0xffff800000000000UL;
1964 			sparc64_va_hole_bottom = 0x0000800000000000UL;
1965 
1966 			max_phys_bits = 39;
1967 			break;
1968 		case SUN4V_CHIP_NIAGARA3:
1969 			/* T3 supports 48-bit virtual addresses.  */
1970 			sparc64_va_hole_top =    0xffff800000000000UL;
1971 			sparc64_va_hole_bottom = 0x0000800000000000UL;
1972 
1973 			max_phys_bits = 43;
1974 			break;
1975 		case SUN4V_CHIP_NIAGARA4:
1976 		case SUN4V_CHIP_NIAGARA5:
1977 		case SUN4V_CHIP_SPARC64X:
1978 		case SUN4V_CHIP_SPARC_M6:
1979 			/* T4 and later support 52-bit virtual addresses.  */
1980 			sparc64_va_hole_top =    0xfff8000000000000UL;
1981 			sparc64_va_hole_bottom = 0x0008000000000000UL;
1982 			max_phys_bits = 47;
1983 			break;
1984 		case SUN4V_CHIP_SPARC_M7:
1985 		case SUN4V_CHIP_SPARC_SN:
1986 			/* M7 and later support 52-bit virtual addresses.  */
1987 			sparc64_va_hole_top =    0xfff8000000000000UL;
1988 			sparc64_va_hole_bottom = 0x0008000000000000UL;
1989 			max_phys_bits = 49;
1990 			break;
1991 		case SUN4V_CHIP_SPARC_M8:
1992 		default:
1993 			/* M8 and later support 54-bit virtual addresses.
1994 			 * However, restricting M8 and above VA bits to 53
1995 			 * as 4-level page table cannot support more than
1996 			 * 53 VA bits.
1997 			 */
1998 			sparc64_va_hole_top =    0xfff0000000000000UL;
1999 			sparc64_va_hole_bottom = 0x0010000000000000UL;
2000 			max_phys_bits = 51;
2001 			break;
2002 		}
2003 	}
2004 
2005 	if (max_phys_bits > MAX_PHYS_ADDRESS_BITS) {
2006 		prom_printf("MAX_PHYS_ADDRESS_BITS is too small, need %lu\n",
2007 			    max_phys_bits);
2008 		prom_halt();
2009 	}
2010 
2011 	PAGE_OFFSET = sparc64_va_hole_top;
2012 	VMALLOC_END = ((sparc64_va_hole_bottom >> 1) +
2013 		       (sparc64_va_hole_bottom >> 2));
2014 
2015 	pr_info("MM: PAGE_OFFSET is 0x%016lx (max_phys_bits == %lu)\n",
2016 		PAGE_OFFSET, max_phys_bits);
2017 	pr_info("MM: VMALLOC [0x%016lx --> 0x%016lx]\n",
2018 		VMALLOC_START, VMALLOC_END);
2019 	pr_info("MM: VMEMMAP [0x%016lx --> 0x%016lx]\n",
2020 		VMEMMAP_BASE, VMEMMAP_BASE << 1);
2021 }
2022 
2023 static void __init tsb_phys_patch(void)
2024 {
2025 	struct tsb_ldquad_phys_patch_entry *pquad;
2026 	struct tsb_phys_patch_entry *p;
2027 
2028 	pquad = &__tsb_ldquad_phys_patch;
2029 	while (pquad < &__tsb_ldquad_phys_patch_end) {
2030 		unsigned long addr = pquad->addr;
2031 
2032 		if (tlb_type == hypervisor)
2033 			*(unsigned int *) addr = pquad->sun4v_insn;
2034 		else
2035 			*(unsigned int *) addr = pquad->sun4u_insn;
2036 		wmb();
2037 		__asm__ __volatile__("flush	%0"
2038 				     : /* no outputs */
2039 				     : "r" (addr));
2040 
2041 		pquad++;
2042 	}
2043 
2044 	p = &__tsb_phys_patch;
2045 	while (p < &__tsb_phys_patch_end) {
2046 		unsigned long addr = p->addr;
2047 
2048 		*(unsigned int *) addr = p->insn;
2049 		wmb();
2050 		__asm__ __volatile__("flush	%0"
2051 				     : /* no outputs */
2052 				     : "r" (addr));
2053 
2054 		p++;
2055 	}
2056 }
2057 
2058 /* Don't mark as init, we give this to the Hypervisor.  */
2059 #ifndef CONFIG_DEBUG_PAGEALLOC
2060 #define NUM_KTSB_DESCR	2
2061 #else
2062 #define NUM_KTSB_DESCR	1
2063 #endif
2064 static struct hv_tsb_descr ktsb_descr[NUM_KTSB_DESCR];
2065 
2066 /* The swapper TSBs are loaded with a base sequence of:
2067  *
2068  *	sethi	%uhi(SYMBOL), REG1
2069  *	sethi	%hi(SYMBOL), REG2
2070  *	or	REG1, %ulo(SYMBOL), REG1
2071  *	or	REG2, %lo(SYMBOL), REG2
2072  *	sllx	REG1, 32, REG1
2073  *	or	REG1, REG2, REG1
2074  *
2075  * When we use physical addressing for the TSB accesses, we patch the
2076  * first four instructions in the above sequence.
2077  */
2078 
2079 static void patch_one_ktsb_phys(unsigned int *start, unsigned int *end, unsigned long pa)
2080 {
2081 	unsigned long high_bits, low_bits;
2082 
2083 	high_bits = (pa >> 32) & 0xffffffff;
2084 	low_bits = (pa >> 0) & 0xffffffff;
2085 
2086 	while (start < end) {
2087 		unsigned int *ia = (unsigned int *)(unsigned long)*start;
2088 
2089 		ia[0] = (ia[0] & ~0x3fffff) | (high_bits >> 10);
2090 		__asm__ __volatile__("flush	%0" : : "r" (ia));
2091 
2092 		ia[1] = (ia[1] & ~0x3fffff) | (low_bits >> 10);
2093 		__asm__ __volatile__("flush	%0" : : "r" (ia + 1));
2094 
2095 		ia[2] = (ia[2] & ~0x1fff) | (high_bits & 0x3ff);
2096 		__asm__ __volatile__("flush	%0" : : "r" (ia + 2));
2097 
2098 		ia[3] = (ia[3] & ~0x1fff) | (low_bits & 0x3ff);
2099 		__asm__ __volatile__("flush	%0" : : "r" (ia + 3));
2100 
2101 		start++;
2102 	}
2103 }
2104 
2105 static void ktsb_phys_patch(void)
2106 {
2107 	extern unsigned int __swapper_tsb_phys_patch;
2108 	extern unsigned int __swapper_tsb_phys_patch_end;
2109 	unsigned long ktsb_pa;
2110 
2111 	ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
2112 	patch_one_ktsb_phys(&__swapper_tsb_phys_patch,
2113 			    &__swapper_tsb_phys_patch_end, ktsb_pa);
2114 #ifndef CONFIG_DEBUG_PAGEALLOC
2115 	{
2116 	extern unsigned int __swapper_4m_tsb_phys_patch;
2117 	extern unsigned int __swapper_4m_tsb_phys_patch_end;
2118 	ktsb_pa = (kern_base +
2119 		   ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
2120 	patch_one_ktsb_phys(&__swapper_4m_tsb_phys_patch,
2121 			    &__swapper_4m_tsb_phys_patch_end, ktsb_pa);
2122 	}
2123 #endif
2124 }
2125 
2126 static void __init sun4v_ktsb_init(void)
2127 {
2128 	unsigned long ktsb_pa;
2129 
2130 	/* First KTSB for PAGE_SIZE mappings.  */
2131 	ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
2132 
2133 	switch (PAGE_SIZE) {
2134 	case 8 * 1024:
2135 	default:
2136 		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_8K;
2137 		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_8K;
2138 		break;
2139 
2140 	case 64 * 1024:
2141 		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_64K;
2142 		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_64K;
2143 		break;
2144 
2145 	case 512 * 1024:
2146 		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_512K;
2147 		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_512K;
2148 		break;
2149 
2150 	case 4 * 1024 * 1024:
2151 		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_4MB;
2152 		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_4MB;
2153 		break;
2154 	}
2155 
2156 	ktsb_descr[0].assoc = 1;
2157 	ktsb_descr[0].num_ttes = KERNEL_TSB_NENTRIES;
2158 	ktsb_descr[0].ctx_idx = 0;
2159 	ktsb_descr[0].tsb_base = ktsb_pa;
2160 	ktsb_descr[0].resv = 0;
2161 
2162 #ifndef CONFIG_DEBUG_PAGEALLOC
2163 	/* Second KTSB for 4MB/256MB/2GB/16GB mappings.  */
2164 	ktsb_pa = (kern_base +
2165 		   ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
2166 
2167 	ktsb_descr[1].pgsz_idx = HV_PGSZ_IDX_4MB;
2168 	ktsb_descr[1].pgsz_mask = ((HV_PGSZ_MASK_4MB |
2169 				    HV_PGSZ_MASK_256MB |
2170 				    HV_PGSZ_MASK_2GB |
2171 				    HV_PGSZ_MASK_16GB) &
2172 				   cpu_pgsz_mask);
2173 	ktsb_descr[1].assoc = 1;
2174 	ktsb_descr[1].num_ttes = KERNEL_TSB4M_NENTRIES;
2175 	ktsb_descr[1].ctx_idx = 0;
2176 	ktsb_descr[1].tsb_base = ktsb_pa;
2177 	ktsb_descr[1].resv = 0;
2178 #endif
2179 }
2180 
2181 void sun4v_ktsb_register(void)
2182 {
2183 	unsigned long pa, ret;
2184 
2185 	pa = kern_base + ((unsigned long)&ktsb_descr[0] - KERNBASE);
2186 
2187 	ret = sun4v_mmu_tsb_ctx0(NUM_KTSB_DESCR, pa);
2188 	if (ret != 0) {
2189 		prom_printf("hypervisor_mmu_tsb_ctx0[%lx]: "
2190 			    "errors with %lx\n", pa, ret);
2191 		prom_halt();
2192 	}
2193 }
2194 
2195 static void __init sun4u_linear_pte_xor_finalize(void)
2196 {
2197 #ifndef CONFIG_DEBUG_PAGEALLOC
2198 	/* This is where we would add Panther support for
2199 	 * 32MB and 256MB pages.
2200 	 */
2201 #endif
2202 }
2203 
2204 static void __init sun4v_linear_pte_xor_finalize(void)
2205 {
2206 	unsigned long pagecv_flag;
2207 
2208 	/* Bit 9 of TTE is no longer CV bit on M7 processor and it instead
2209 	 * enables MCD error. Do not set bit 9 on M7 processor.
2210 	 */
2211 	switch (sun4v_chip_type) {
2212 	case SUN4V_CHIP_SPARC_M7:
2213 	case SUN4V_CHIP_SPARC_M8:
2214 	case SUN4V_CHIP_SPARC_SN:
2215 		pagecv_flag = 0x00;
2216 		break;
2217 	default:
2218 		pagecv_flag = _PAGE_CV_4V;
2219 		break;
2220 	}
2221 #ifndef CONFIG_DEBUG_PAGEALLOC
2222 	if (cpu_pgsz_mask & HV_PGSZ_MASK_256MB) {
2223 		kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZ256MB_4V) ^
2224 			PAGE_OFFSET;
2225 		kern_linear_pte_xor[1] |= (_PAGE_CP_4V | pagecv_flag |
2226 					   _PAGE_P_4V | _PAGE_W_4V);
2227 	} else {
2228 		kern_linear_pte_xor[1] = kern_linear_pte_xor[0];
2229 	}
2230 
2231 	if (cpu_pgsz_mask & HV_PGSZ_MASK_2GB) {
2232 		kern_linear_pte_xor[2] = (_PAGE_VALID | _PAGE_SZ2GB_4V) ^
2233 			PAGE_OFFSET;
2234 		kern_linear_pte_xor[2] |= (_PAGE_CP_4V | pagecv_flag |
2235 					   _PAGE_P_4V | _PAGE_W_4V);
2236 	} else {
2237 		kern_linear_pte_xor[2] = kern_linear_pte_xor[1];
2238 	}
2239 
2240 	if (cpu_pgsz_mask & HV_PGSZ_MASK_16GB) {
2241 		kern_linear_pte_xor[3] = (_PAGE_VALID | _PAGE_SZ16GB_4V) ^
2242 			PAGE_OFFSET;
2243 		kern_linear_pte_xor[3] |= (_PAGE_CP_4V | pagecv_flag |
2244 					   _PAGE_P_4V | _PAGE_W_4V);
2245 	} else {
2246 		kern_linear_pte_xor[3] = kern_linear_pte_xor[2];
2247 	}
2248 #endif
2249 }
2250 
2251 /* paging_init() sets up the page tables */
2252 
2253 static unsigned long last_valid_pfn;
2254 
2255 static void sun4u_pgprot_init(void);
2256 static void sun4v_pgprot_init(void);
2257 
2258 #define _PAGE_CACHE_4U	(_PAGE_CP_4U | _PAGE_CV_4U)
2259 #define _PAGE_CACHE_4V	(_PAGE_CP_4V | _PAGE_CV_4V)
2260 #define __DIRTY_BITS_4U	 (_PAGE_MODIFIED_4U | _PAGE_WRITE_4U | _PAGE_W_4U)
2261 #define __DIRTY_BITS_4V	 (_PAGE_MODIFIED_4V | _PAGE_WRITE_4V | _PAGE_W_4V)
2262 #define __ACCESS_BITS_4U (_PAGE_ACCESSED_4U | _PAGE_READ_4U | _PAGE_R)
2263 #define __ACCESS_BITS_4V (_PAGE_ACCESSED_4V | _PAGE_READ_4V | _PAGE_R)
2264 
2265 /* We need to exclude reserved regions. This exclusion will include
2266  * vmlinux and initrd. To be more precise the initrd size could be used to
2267  * compute a new lower limit because it is freed later during initialization.
2268  */
2269 static void __init reduce_memory(phys_addr_t limit_ram)
2270 {
2271 	limit_ram += memblock_reserved_size();
2272 	memblock_enforce_memory_limit(limit_ram);
2273 }
2274 
2275 void __init paging_init(void)
2276 {
2277 	unsigned long end_pfn, shift, phys_base;
2278 	unsigned long real_end, i;
2279 
2280 	setup_page_offset();
2281 
2282 	/* These build time checkes make sure that the dcache_dirty_cpu()
2283 	 * page->flags usage will work.
2284 	 *
2285 	 * When a page gets marked as dcache-dirty, we store the
2286 	 * cpu number starting at bit 32 in the page->flags.  Also,
2287 	 * functions like clear_dcache_dirty_cpu use the cpu mask
2288 	 * in 13-bit signed-immediate instruction fields.
2289 	 */
2290 
2291 	/*
2292 	 * Page flags must not reach into upper 32 bits that are used
2293 	 * for the cpu number
2294 	 */
2295 	BUILD_BUG_ON(NR_PAGEFLAGS > 32);
2296 
2297 	/*
2298 	 * The bit fields placed in the high range must not reach below
2299 	 * the 32 bit boundary. Otherwise we cannot place the cpu field
2300 	 * at the 32 bit boundary.
2301 	 */
2302 	BUILD_BUG_ON(SECTIONS_WIDTH + NODES_WIDTH + ZONES_WIDTH +
2303 		ilog2(roundup_pow_of_two(NR_CPUS)) > 32);
2304 
2305 	BUILD_BUG_ON(NR_CPUS > 4096);
2306 
2307 	kern_base = (prom_boot_mapping_phys_low >> ILOG2_4MB) << ILOG2_4MB;
2308 	kern_size = (unsigned long)&_end - (unsigned long)KERNBASE;
2309 
2310 	/* Invalidate both kernel TSBs.  */
2311 	memset(swapper_tsb, 0x40, sizeof(swapper_tsb));
2312 #ifndef CONFIG_DEBUG_PAGEALLOC
2313 	memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
2314 #endif
2315 
2316 	/* TTE.cv bit on sparc v9 occupies the same position as TTE.mcde
2317 	 * bit on M7 processor. This is a conflicting usage of the same
2318 	 * bit. Enabling TTE.cv on M7 would turn on Memory Corruption
2319 	 * Detection error on all pages and this will lead to problems
2320 	 * later. Kernel does not run with MCD enabled and hence rest
2321 	 * of the required steps to fully configure memory corruption
2322 	 * detection are not taken. We need to ensure TTE.mcde is not
2323 	 * set on M7 processor. Compute the value of cacheability
2324 	 * flag for use later taking this into consideration.
2325 	 */
2326 	switch (sun4v_chip_type) {
2327 	case SUN4V_CHIP_SPARC_M7:
2328 	case SUN4V_CHIP_SPARC_M8:
2329 	case SUN4V_CHIP_SPARC_SN:
2330 		page_cache4v_flag = _PAGE_CP_4V;
2331 		break;
2332 	default:
2333 		page_cache4v_flag = _PAGE_CACHE_4V;
2334 		break;
2335 	}
2336 
2337 	if (tlb_type == hypervisor)
2338 		sun4v_pgprot_init();
2339 	else
2340 		sun4u_pgprot_init();
2341 
2342 	if (tlb_type == cheetah_plus ||
2343 	    tlb_type == hypervisor) {
2344 		tsb_phys_patch();
2345 		ktsb_phys_patch();
2346 	}
2347 
2348 	if (tlb_type == hypervisor)
2349 		sun4v_patch_tlb_handlers();
2350 
2351 	/* Find available physical memory...
2352 	 *
2353 	 * Read it twice in order to work around a bug in openfirmware.
2354 	 * The call to grab this table itself can cause openfirmware to
2355 	 * allocate memory, which in turn can take away some space from
2356 	 * the list of available memory.  Reading it twice makes sure
2357 	 * we really do get the final value.
2358 	 */
2359 	read_obp_translations();
2360 	read_obp_memory("reg", &pall[0], &pall_ents);
2361 	read_obp_memory("available", &pavail[0], &pavail_ents);
2362 	read_obp_memory("available", &pavail[0], &pavail_ents);
2363 
2364 	phys_base = 0xffffffffffffffffUL;
2365 	for (i = 0; i < pavail_ents; i++) {
2366 		phys_base = min(phys_base, pavail[i].phys_addr);
2367 		memblock_add(pavail[i].phys_addr, pavail[i].reg_size);
2368 	}
2369 
2370 	memblock_reserve(kern_base, kern_size);
2371 
2372 	find_ramdisk(phys_base);
2373 
2374 	if (cmdline_memory_size)
2375 		reduce_memory(cmdline_memory_size);
2376 
2377 	memblock_allow_resize();
2378 	memblock_dump_all();
2379 
2380 	set_bit(0, mmu_context_bmap);
2381 
2382 	shift = kern_base + PAGE_OFFSET - ((unsigned long)KERNBASE);
2383 
2384 	real_end = (unsigned long)_end;
2385 	num_kernel_image_mappings = DIV_ROUND_UP(real_end - KERNBASE, 1 << ILOG2_4MB);
2386 	printk("Kernel: Using %d locked TLB entries for main kernel image.\n",
2387 	       num_kernel_image_mappings);
2388 
2389 	/* Set kernel pgd to upper alias so physical page computations
2390 	 * work.
2391 	 */
2392 	init_mm.pgd += ((shift) / (sizeof(pgd_t)));
2393 
2394 	memset(swapper_pg_dir, 0, sizeof(swapper_pg_dir));
2395 
2396 	inherit_prom_mappings();
2397 
2398 	/* Ok, we can use our TLB miss and window trap handlers safely.  */
2399 	setup_tba();
2400 
2401 	__flush_tlb_all();
2402 
2403 	prom_build_devicetree();
2404 	of_populate_present_mask();
2405 #ifndef CONFIG_SMP
2406 	of_fill_in_cpu_data();
2407 #endif
2408 
2409 	if (tlb_type == hypervisor) {
2410 		sun4v_mdesc_init();
2411 		mdesc_populate_present_mask(cpu_all_mask);
2412 #ifndef CONFIG_SMP
2413 		mdesc_fill_in_cpu_data(cpu_all_mask);
2414 #endif
2415 		mdesc_get_page_sizes(cpu_all_mask, &cpu_pgsz_mask);
2416 
2417 		sun4v_linear_pte_xor_finalize();
2418 
2419 		sun4v_ktsb_init();
2420 		sun4v_ktsb_register();
2421 	} else {
2422 		unsigned long impl, ver;
2423 
2424 		cpu_pgsz_mask = (HV_PGSZ_MASK_8K | HV_PGSZ_MASK_64K |
2425 				 HV_PGSZ_MASK_512K | HV_PGSZ_MASK_4MB);
2426 
2427 		__asm__ __volatile__("rdpr %%ver, %0" : "=r" (ver));
2428 		impl = ((ver >> 32) & 0xffff);
2429 		if (impl == PANTHER_IMPL)
2430 			cpu_pgsz_mask |= (HV_PGSZ_MASK_32MB |
2431 					  HV_PGSZ_MASK_256MB);
2432 
2433 		sun4u_linear_pte_xor_finalize();
2434 	}
2435 
2436 	/* Flush the TLBs and the 4M TSB so that the updated linear
2437 	 * pte XOR settings are realized for all mappings.
2438 	 */
2439 	__flush_tlb_all();
2440 #ifndef CONFIG_DEBUG_PAGEALLOC
2441 	memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
2442 #endif
2443 	__flush_tlb_all();
2444 
2445 	/* Setup bootmem... */
2446 	last_valid_pfn = end_pfn = bootmem_init(phys_base);
2447 
2448 	kernel_physical_mapping_init();
2449 
2450 	{
2451 		unsigned long max_zone_pfns[MAX_NR_ZONES];
2452 
2453 		memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
2454 
2455 		max_zone_pfns[ZONE_NORMAL] = end_pfn;
2456 
2457 		free_area_init(max_zone_pfns);
2458 	}
2459 
2460 	printk("Booting Linux...\n");
2461 }
2462 
2463 int page_in_phys_avail(unsigned long paddr)
2464 {
2465 	int i;
2466 
2467 	paddr &= PAGE_MASK;
2468 
2469 	for (i = 0; i < pavail_ents; i++) {
2470 		unsigned long start, end;
2471 
2472 		start = pavail[i].phys_addr;
2473 		end = start + pavail[i].reg_size;
2474 
2475 		if (paddr >= start && paddr < end)
2476 			return 1;
2477 	}
2478 	if (paddr >= kern_base && paddr < (kern_base + kern_size))
2479 		return 1;
2480 #ifdef CONFIG_BLK_DEV_INITRD
2481 	if (paddr >= __pa(initrd_start) &&
2482 	    paddr < __pa(PAGE_ALIGN(initrd_end)))
2483 		return 1;
2484 #endif
2485 
2486 	return 0;
2487 }
2488 
2489 static void __init register_page_bootmem_info(void)
2490 {
2491 #ifdef CONFIG_NUMA
2492 	int i;
2493 
2494 	for_each_online_node(i)
2495 		if (NODE_DATA(i)->node_spanned_pages)
2496 			register_page_bootmem_info_node(NODE_DATA(i));
2497 #endif
2498 }
2499 void __init mem_init(void)
2500 {
2501 	high_memory = __va(last_valid_pfn << PAGE_SHIFT);
2502 
2503 	memblock_free_all();
2504 
2505 	/*
2506 	 * Must be done after boot memory is put on freelist, because here we
2507 	 * might set fields in deferred struct pages that have not yet been
2508 	 * initialized, and memblock_free_all() initializes all the reserved
2509 	 * deferred pages for us.
2510 	 */
2511 	register_page_bootmem_info();
2512 
2513 	/*
2514 	 * Set up the zero page, mark it reserved, so that page count
2515 	 * is not manipulated when freeing the page from user ptes.
2516 	 */
2517 	mem_map_zero = alloc_pages(GFP_KERNEL|__GFP_ZERO, 0);
2518 	if (mem_map_zero == NULL) {
2519 		prom_printf("paging_init: Cannot alloc zero page.\n");
2520 		prom_halt();
2521 	}
2522 	mark_page_reserved(mem_map_zero);
2523 
2524 
2525 	if (tlb_type == cheetah || tlb_type == cheetah_plus)
2526 		cheetah_ecache_flush_init();
2527 }
2528 
2529 void free_initmem(void)
2530 {
2531 	unsigned long addr, initend;
2532 	int do_free = 1;
2533 
2534 	/* If the physical memory maps were trimmed by kernel command
2535 	 * line options, don't even try freeing this initmem stuff up.
2536 	 * The kernel image could have been in the trimmed out region
2537 	 * and if so the freeing below will free invalid page structs.
2538 	 */
2539 	if (cmdline_memory_size)
2540 		do_free = 0;
2541 
2542 	/*
2543 	 * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes.
2544 	 */
2545 	addr = PAGE_ALIGN((unsigned long)(__init_begin));
2546 	initend = (unsigned long)(__init_end) & PAGE_MASK;
2547 	for (; addr < initend; addr += PAGE_SIZE) {
2548 		unsigned long page;
2549 
2550 		page = (addr +
2551 			((unsigned long) __va(kern_base)) -
2552 			((unsigned long) KERNBASE));
2553 		memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
2554 
2555 		if (do_free)
2556 			free_reserved_page(virt_to_page(page));
2557 	}
2558 }
2559 
2560 pgprot_t PAGE_KERNEL __read_mostly;
2561 EXPORT_SYMBOL(PAGE_KERNEL);
2562 
2563 pgprot_t PAGE_KERNEL_LOCKED __read_mostly;
2564 pgprot_t PAGE_COPY __read_mostly;
2565 
2566 pgprot_t PAGE_SHARED __read_mostly;
2567 EXPORT_SYMBOL(PAGE_SHARED);
2568 
2569 unsigned long pg_iobits __read_mostly;
2570 
2571 unsigned long _PAGE_IE __read_mostly;
2572 EXPORT_SYMBOL(_PAGE_IE);
2573 
2574 unsigned long _PAGE_E __read_mostly;
2575 EXPORT_SYMBOL(_PAGE_E);
2576 
2577 unsigned long _PAGE_CACHE __read_mostly;
2578 EXPORT_SYMBOL(_PAGE_CACHE);
2579 
2580 #ifdef CONFIG_SPARSEMEM_VMEMMAP
2581 int __meminit vmemmap_populate(unsigned long vstart, unsigned long vend,
2582 			       int node, struct vmem_altmap *altmap)
2583 {
2584 	unsigned long pte_base;
2585 
2586 	pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2587 		    _PAGE_CP_4U | _PAGE_CV_4U |
2588 		    _PAGE_P_4U | _PAGE_W_4U);
2589 	if (tlb_type == hypervisor)
2590 		pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2591 			    page_cache4v_flag | _PAGE_P_4V | _PAGE_W_4V);
2592 
2593 	pte_base |= _PAGE_PMD_HUGE;
2594 
2595 	vstart = vstart & PMD_MASK;
2596 	vend = ALIGN(vend, PMD_SIZE);
2597 	for (; vstart < vend; vstart += PMD_SIZE) {
2598 		pgd_t *pgd = vmemmap_pgd_populate(vstart, node);
2599 		unsigned long pte;
2600 		p4d_t *p4d;
2601 		pud_t *pud;
2602 		pmd_t *pmd;
2603 
2604 		if (!pgd)
2605 			return -ENOMEM;
2606 
2607 		p4d = vmemmap_p4d_populate(pgd, vstart, node);
2608 		if (!p4d)
2609 			return -ENOMEM;
2610 
2611 		pud = vmemmap_pud_populate(p4d, vstart, node);
2612 		if (!pud)
2613 			return -ENOMEM;
2614 
2615 		pmd = pmd_offset(pud, vstart);
2616 		pte = pmd_val(*pmd);
2617 		if (!(pte & _PAGE_VALID)) {
2618 			void *block = vmemmap_alloc_block(PMD_SIZE, node);
2619 
2620 			if (!block)
2621 				return -ENOMEM;
2622 
2623 			pmd_val(*pmd) = pte_base | __pa(block);
2624 		}
2625 	}
2626 
2627 	return 0;
2628 }
2629 
2630 void vmemmap_free(unsigned long start, unsigned long end,
2631 		struct vmem_altmap *altmap)
2632 {
2633 }
2634 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
2635 
2636 /* These are actually filled in at boot time by sun4{u,v}_pgprot_init() */
2637 static pgprot_t protection_map[16] __ro_after_init;
2638 
2639 static void prot_init_common(unsigned long page_none,
2640 			     unsigned long page_shared,
2641 			     unsigned long page_copy,
2642 			     unsigned long page_readonly,
2643 			     unsigned long page_exec_bit)
2644 {
2645 	PAGE_COPY = __pgprot(page_copy);
2646 	PAGE_SHARED = __pgprot(page_shared);
2647 
2648 	protection_map[0x0] = __pgprot(page_none);
2649 	protection_map[0x1] = __pgprot(page_readonly & ~page_exec_bit);
2650 	protection_map[0x2] = __pgprot(page_copy & ~page_exec_bit);
2651 	protection_map[0x3] = __pgprot(page_copy & ~page_exec_bit);
2652 	protection_map[0x4] = __pgprot(page_readonly);
2653 	protection_map[0x5] = __pgprot(page_readonly);
2654 	protection_map[0x6] = __pgprot(page_copy);
2655 	protection_map[0x7] = __pgprot(page_copy);
2656 	protection_map[0x8] = __pgprot(page_none);
2657 	protection_map[0x9] = __pgprot(page_readonly & ~page_exec_bit);
2658 	protection_map[0xa] = __pgprot(page_shared & ~page_exec_bit);
2659 	protection_map[0xb] = __pgprot(page_shared & ~page_exec_bit);
2660 	protection_map[0xc] = __pgprot(page_readonly);
2661 	protection_map[0xd] = __pgprot(page_readonly);
2662 	protection_map[0xe] = __pgprot(page_shared);
2663 	protection_map[0xf] = __pgprot(page_shared);
2664 }
2665 
2666 static void __init sun4u_pgprot_init(void)
2667 {
2668 	unsigned long page_none, page_shared, page_copy, page_readonly;
2669 	unsigned long page_exec_bit;
2670 	int i;
2671 
2672 	PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2673 				_PAGE_CACHE_4U | _PAGE_P_4U |
2674 				__ACCESS_BITS_4U | __DIRTY_BITS_4U |
2675 				_PAGE_EXEC_4U);
2676 	PAGE_KERNEL_LOCKED = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2677 				       _PAGE_CACHE_4U | _PAGE_P_4U |
2678 				       __ACCESS_BITS_4U | __DIRTY_BITS_4U |
2679 				       _PAGE_EXEC_4U | _PAGE_L_4U);
2680 
2681 	_PAGE_IE = _PAGE_IE_4U;
2682 	_PAGE_E = _PAGE_E_4U;
2683 	_PAGE_CACHE = _PAGE_CACHE_4U;
2684 
2685 	pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4U | __DIRTY_BITS_4U |
2686 		     __ACCESS_BITS_4U | _PAGE_E_4U);
2687 
2688 #ifdef CONFIG_DEBUG_PAGEALLOC
2689 	kern_linear_pte_xor[0] = _PAGE_VALID ^ PAGE_OFFSET;
2690 #else
2691 	kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4U) ^
2692 		PAGE_OFFSET;
2693 #endif
2694 	kern_linear_pte_xor[0] |= (_PAGE_CP_4U | _PAGE_CV_4U |
2695 				   _PAGE_P_4U | _PAGE_W_4U);
2696 
2697 	for (i = 1; i < 4; i++)
2698 		kern_linear_pte_xor[i] = kern_linear_pte_xor[0];
2699 
2700 	_PAGE_ALL_SZ_BITS =  (_PAGE_SZ4MB_4U | _PAGE_SZ512K_4U |
2701 			      _PAGE_SZ64K_4U | _PAGE_SZ8K_4U |
2702 			      _PAGE_SZ32MB_4U | _PAGE_SZ256MB_4U);
2703 
2704 
2705 	page_none = _PAGE_PRESENT_4U | _PAGE_ACCESSED_4U | _PAGE_CACHE_4U;
2706 	page_shared = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2707 		       __ACCESS_BITS_4U | _PAGE_WRITE_4U | _PAGE_EXEC_4U);
2708 	page_copy   = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2709 		       __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2710 	page_readonly   = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2711 			   __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2712 
2713 	page_exec_bit = _PAGE_EXEC_4U;
2714 
2715 	prot_init_common(page_none, page_shared, page_copy, page_readonly,
2716 			 page_exec_bit);
2717 }
2718 
2719 static void __init sun4v_pgprot_init(void)
2720 {
2721 	unsigned long page_none, page_shared, page_copy, page_readonly;
2722 	unsigned long page_exec_bit;
2723 	int i;
2724 
2725 	PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4V | _PAGE_VALID |
2726 				page_cache4v_flag | _PAGE_P_4V |
2727 				__ACCESS_BITS_4V | __DIRTY_BITS_4V |
2728 				_PAGE_EXEC_4V);
2729 	PAGE_KERNEL_LOCKED = PAGE_KERNEL;
2730 
2731 	_PAGE_IE = _PAGE_IE_4V;
2732 	_PAGE_E = _PAGE_E_4V;
2733 	_PAGE_CACHE = page_cache4v_flag;
2734 
2735 #ifdef CONFIG_DEBUG_PAGEALLOC
2736 	kern_linear_pte_xor[0] = _PAGE_VALID ^ PAGE_OFFSET;
2737 #else
2738 	kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4V) ^
2739 		PAGE_OFFSET;
2740 #endif
2741 	kern_linear_pte_xor[0] |= (page_cache4v_flag | _PAGE_P_4V |
2742 				   _PAGE_W_4V);
2743 
2744 	for (i = 1; i < 4; i++)
2745 		kern_linear_pte_xor[i] = kern_linear_pte_xor[0];
2746 
2747 	pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4V | __DIRTY_BITS_4V |
2748 		     __ACCESS_BITS_4V | _PAGE_E_4V);
2749 
2750 	_PAGE_ALL_SZ_BITS = (_PAGE_SZ16GB_4V | _PAGE_SZ2GB_4V |
2751 			     _PAGE_SZ256MB_4V | _PAGE_SZ32MB_4V |
2752 			     _PAGE_SZ4MB_4V | _PAGE_SZ512K_4V |
2753 			     _PAGE_SZ64K_4V | _PAGE_SZ8K_4V);
2754 
2755 	page_none = _PAGE_PRESENT_4V | _PAGE_ACCESSED_4V | page_cache4v_flag;
2756 	page_shared = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag |
2757 		       __ACCESS_BITS_4V | _PAGE_WRITE_4V | _PAGE_EXEC_4V);
2758 	page_copy   = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag |
2759 		       __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2760 	page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag |
2761 			 __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2762 
2763 	page_exec_bit = _PAGE_EXEC_4V;
2764 
2765 	prot_init_common(page_none, page_shared, page_copy, page_readonly,
2766 			 page_exec_bit);
2767 }
2768 
2769 unsigned long pte_sz_bits(unsigned long sz)
2770 {
2771 	if (tlb_type == hypervisor) {
2772 		switch (sz) {
2773 		case 8 * 1024:
2774 		default:
2775 			return _PAGE_SZ8K_4V;
2776 		case 64 * 1024:
2777 			return _PAGE_SZ64K_4V;
2778 		case 512 * 1024:
2779 			return _PAGE_SZ512K_4V;
2780 		case 4 * 1024 * 1024:
2781 			return _PAGE_SZ4MB_4V;
2782 		}
2783 	} else {
2784 		switch (sz) {
2785 		case 8 * 1024:
2786 		default:
2787 			return _PAGE_SZ8K_4U;
2788 		case 64 * 1024:
2789 			return _PAGE_SZ64K_4U;
2790 		case 512 * 1024:
2791 			return _PAGE_SZ512K_4U;
2792 		case 4 * 1024 * 1024:
2793 			return _PAGE_SZ4MB_4U;
2794 		}
2795 	}
2796 }
2797 
2798 pte_t mk_pte_io(unsigned long page, pgprot_t prot, int space, unsigned long page_size)
2799 {
2800 	pte_t pte;
2801 
2802 	pte_val(pte)  = page | pgprot_val(pgprot_noncached(prot));
2803 	pte_val(pte) |= (((unsigned long)space) << 32);
2804 	pte_val(pte) |= pte_sz_bits(page_size);
2805 
2806 	return pte;
2807 }
2808 
2809 static unsigned long kern_large_tte(unsigned long paddr)
2810 {
2811 	unsigned long val;
2812 
2813 	val = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2814 	       _PAGE_CP_4U | _PAGE_CV_4U | _PAGE_P_4U |
2815 	       _PAGE_EXEC_4U | _PAGE_L_4U | _PAGE_W_4U);
2816 	if (tlb_type == hypervisor)
2817 		val = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2818 		       page_cache4v_flag | _PAGE_P_4V |
2819 		       _PAGE_EXEC_4V | _PAGE_W_4V);
2820 
2821 	return val | paddr;
2822 }
2823 
2824 /* If not locked, zap it. */
2825 void __flush_tlb_all(void)
2826 {
2827 	unsigned long pstate;
2828 	int i;
2829 
2830 	__asm__ __volatile__("flushw\n\t"
2831 			     "rdpr	%%pstate, %0\n\t"
2832 			     "wrpr	%0, %1, %%pstate"
2833 			     : "=r" (pstate)
2834 			     : "i" (PSTATE_IE));
2835 	if (tlb_type == hypervisor) {
2836 		sun4v_mmu_demap_all();
2837 	} else if (tlb_type == spitfire) {
2838 		for (i = 0; i < 64; i++) {
2839 			/* Spitfire Errata #32 workaround */
2840 			/* NOTE: Always runs on spitfire, so no
2841 			 *       cheetah+ page size encodings.
2842 			 */
2843 			__asm__ __volatile__("stxa	%0, [%1] %2\n\t"
2844 					     "flush	%%g6"
2845 					     : /* No outputs */
2846 					     : "r" (0),
2847 					     "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2848 
2849 			if (!(spitfire_get_dtlb_data(i) & _PAGE_L_4U)) {
2850 				__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2851 						     "membar #Sync"
2852 						     : /* no outputs */
2853 						     : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
2854 				spitfire_put_dtlb_data(i, 0x0UL);
2855 			}
2856 
2857 			/* Spitfire Errata #32 workaround */
2858 			/* NOTE: Always runs on spitfire, so no
2859 			 *       cheetah+ page size encodings.
2860 			 */
2861 			__asm__ __volatile__("stxa	%0, [%1] %2\n\t"
2862 					     "flush	%%g6"
2863 					     : /* No outputs */
2864 					     : "r" (0),
2865 					     "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2866 
2867 			if (!(spitfire_get_itlb_data(i) & _PAGE_L_4U)) {
2868 				__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2869 						     "membar #Sync"
2870 						     : /* no outputs */
2871 						     : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU));
2872 				spitfire_put_itlb_data(i, 0x0UL);
2873 			}
2874 		}
2875 	} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
2876 		cheetah_flush_dtlb_all();
2877 		cheetah_flush_itlb_all();
2878 	}
2879 	__asm__ __volatile__("wrpr	%0, 0, %%pstate"
2880 			     : : "r" (pstate));
2881 }
2882 
2883 pte_t *pte_alloc_one_kernel(struct mm_struct *mm)
2884 {
2885 	struct page *page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2886 	pte_t *pte = NULL;
2887 
2888 	if (page)
2889 		pte = (pte_t *) page_address(page);
2890 
2891 	return pte;
2892 }
2893 
2894 pgtable_t pte_alloc_one(struct mm_struct *mm)
2895 {
2896 	struct page *page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2897 	if (!page)
2898 		return NULL;
2899 	if (!pgtable_pte_page_ctor(page)) {
2900 		__free_page(page);
2901 		return NULL;
2902 	}
2903 	return (pte_t *) page_address(page);
2904 }
2905 
2906 void pte_free_kernel(struct mm_struct *mm, pte_t *pte)
2907 {
2908 	free_page((unsigned long)pte);
2909 }
2910 
2911 static void __pte_free(pgtable_t pte)
2912 {
2913 	struct page *page = virt_to_page(pte);
2914 
2915 	pgtable_pte_page_dtor(page);
2916 	__free_page(page);
2917 }
2918 
2919 void pte_free(struct mm_struct *mm, pgtable_t pte)
2920 {
2921 	__pte_free(pte);
2922 }
2923 
2924 void pgtable_free(void *table, bool is_page)
2925 {
2926 	if (is_page)
2927 		__pte_free(table);
2928 	else
2929 		kmem_cache_free(pgtable_cache, table);
2930 }
2931 
2932 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2933 void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr,
2934 			  pmd_t *pmd)
2935 {
2936 	unsigned long pte, flags;
2937 	struct mm_struct *mm;
2938 	pmd_t entry = *pmd;
2939 
2940 	if (!pmd_large(entry) || !pmd_young(entry))
2941 		return;
2942 
2943 	pte = pmd_val(entry);
2944 
2945 	/* Don't insert a non-valid PMD into the TSB, we'll deadlock.  */
2946 	if (!(pte & _PAGE_VALID))
2947 		return;
2948 
2949 	/* We are fabricating 8MB pages using 4MB real hw pages.  */
2950 	pte |= (addr & (1UL << REAL_HPAGE_SHIFT));
2951 
2952 	mm = vma->vm_mm;
2953 
2954 	spin_lock_irqsave(&mm->context.lock, flags);
2955 
2956 	if (mm->context.tsb_block[MM_TSB_HUGE].tsb != NULL)
2957 		__update_mmu_tsb_insert(mm, MM_TSB_HUGE, REAL_HPAGE_SHIFT,
2958 					addr, pte);
2959 
2960 	spin_unlock_irqrestore(&mm->context.lock, flags);
2961 }
2962 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2963 
2964 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
2965 static void context_reload(void *__data)
2966 {
2967 	struct mm_struct *mm = __data;
2968 
2969 	if (mm == current->mm)
2970 		load_secondary_context(mm);
2971 }
2972 
2973 void hugetlb_setup(struct pt_regs *regs)
2974 {
2975 	struct mm_struct *mm = current->mm;
2976 	struct tsb_config *tp;
2977 
2978 	if (faulthandler_disabled() || !mm) {
2979 		const struct exception_table_entry *entry;
2980 
2981 		entry = search_exception_tables(regs->tpc);
2982 		if (entry) {
2983 			regs->tpc = entry->fixup;
2984 			regs->tnpc = regs->tpc + 4;
2985 			return;
2986 		}
2987 		pr_alert("Unexpected HugeTLB setup in atomic context.\n");
2988 		die_if_kernel("HugeTSB in atomic", regs);
2989 	}
2990 
2991 	tp = &mm->context.tsb_block[MM_TSB_HUGE];
2992 	if (likely(tp->tsb == NULL))
2993 		tsb_grow(mm, MM_TSB_HUGE, 0);
2994 
2995 	tsb_context_switch(mm);
2996 	smp_tsb_sync(mm);
2997 
2998 	/* On UltraSPARC-III+ and later, configure the second half of
2999 	 * the Data-TLB for huge pages.
3000 	 */
3001 	if (tlb_type == cheetah_plus) {
3002 		bool need_context_reload = false;
3003 		unsigned long ctx;
3004 
3005 		spin_lock_irq(&ctx_alloc_lock);
3006 		ctx = mm->context.sparc64_ctx_val;
3007 		ctx &= ~CTX_PGSZ_MASK;
3008 		ctx |= CTX_PGSZ_BASE << CTX_PGSZ0_SHIFT;
3009 		ctx |= CTX_PGSZ_HUGE << CTX_PGSZ1_SHIFT;
3010 
3011 		if (ctx != mm->context.sparc64_ctx_val) {
3012 			/* When changing the page size fields, we
3013 			 * must perform a context flush so that no
3014 			 * stale entries match.  This flush must
3015 			 * occur with the original context register
3016 			 * settings.
3017 			 */
3018 			do_flush_tlb_mm(mm);
3019 
3020 			/* Reload the context register of all processors
3021 			 * also executing in this address space.
3022 			 */
3023 			mm->context.sparc64_ctx_val = ctx;
3024 			need_context_reload = true;
3025 		}
3026 		spin_unlock_irq(&ctx_alloc_lock);
3027 
3028 		if (need_context_reload)
3029 			on_each_cpu(context_reload, mm, 0);
3030 	}
3031 }
3032 #endif
3033 
3034 static struct resource code_resource = {
3035 	.name	= "Kernel code",
3036 	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
3037 };
3038 
3039 static struct resource data_resource = {
3040 	.name	= "Kernel data",
3041 	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
3042 };
3043 
3044 static struct resource bss_resource = {
3045 	.name	= "Kernel bss",
3046 	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
3047 };
3048 
3049 static inline resource_size_t compute_kern_paddr(void *addr)
3050 {
3051 	return (resource_size_t) (addr - KERNBASE + kern_base);
3052 }
3053 
3054 static void __init kernel_lds_init(void)
3055 {
3056 	code_resource.start = compute_kern_paddr(_text);
3057 	code_resource.end   = compute_kern_paddr(_etext - 1);
3058 	data_resource.start = compute_kern_paddr(_etext);
3059 	data_resource.end   = compute_kern_paddr(_edata - 1);
3060 	bss_resource.start  = compute_kern_paddr(__bss_start);
3061 	bss_resource.end    = compute_kern_paddr(_end - 1);
3062 }
3063 
3064 static int __init report_memory(void)
3065 {
3066 	int i;
3067 	struct resource *res;
3068 
3069 	kernel_lds_init();
3070 
3071 	for (i = 0; i < pavail_ents; i++) {
3072 		res = kzalloc(sizeof(struct resource), GFP_KERNEL);
3073 
3074 		if (!res) {
3075 			pr_warn("Failed to allocate source.\n");
3076 			break;
3077 		}
3078 
3079 		res->name = "System RAM";
3080 		res->start = pavail[i].phys_addr;
3081 		res->end = pavail[i].phys_addr + pavail[i].reg_size - 1;
3082 		res->flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM;
3083 
3084 		if (insert_resource(&iomem_resource, res) < 0) {
3085 			pr_warn("Resource insertion failed.\n");
3086 			break;
3087 		}
3088 
3089 		insert_resource(res, &code_resource);
3090 		insert_resource(res, &data_resource);
3091 		insert_resource(res, &bss_resource);
3092 	}
3093 
3094 	return 0;
3095 }
3096 arch_initcall(report_memory);
3097 
3098 #ifdef CONFIG_SMP
3099 #define do_flush_tlb_kernel_range	smp_flush_tlb_kernel_range
3100 #else
3101 #define do_flush_tlb_kernel_range	__flush_tlb_kernel_range
3102 #endif
3103 
3104 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
3105 {
3106 	if (start < HI_OBP_ADDRESS && end > LOW_OBP_ADDRESS) {
3107 		if (start < LOW_OBP_ADDRESS) {
3108 			flush_tsb_kernel_range(start, LOW_OBP_ADDRESS);
3109 			do_flush_tlb_kernel_range(start, LOW_OBP_ADDRESS);
3110 		}
3111 		if (end > HI_OBP_ADDRESS) {
3112 			flush_tsb_kernel_range(HI_OBP_ADDRESS, end);
3113 			do_flush_tlb_kernel_range(HI_OBP_ADDRESS, end);
3114 		}
3115 	} else {
3116 		flush_tsb_kernel_range(start, end);
3117 		do_flush_tlb_kernel_range(start, end);
3118 	}
3119 }
3120 
3121 void copy_user_highpage(struct page *to, struct page *from,
3122 	unsigned long vaddr, struct vm_area_struct *vma)
3123 {
3124 	char *vfrom, *vto;
3125 
3126 	vfrom = kmap_atomic(from);
3127 	vto = kmap_atomic(to);
3128 	copy_user_page(vto, vfrom, vaddr, to);
3129 	kunmap_atomic(vto);
3130 	kunmap_atomic(vfrom);
3131 
3132 	/* If this page has ADI enabled, copy over any ADI tags
3133 	 * as well
3134 	 */
3135 	if (vma->vm_flags & VM_SPARC_ADI) {
3136 		unsigned long pfrom, pto, i, adi_tag;
3137 
3138 		pfrom = page_to_phys(from);
3139 		pto = page_to_phys(to);
3140 
3141 		for (i = pfrom; i < (pfrom + PAGE_SIZE); i += adi_blksize()) {
3142 			asm volatile("ldxa [%1] %2, %0\n\t"
3143 					: "=r" (adi_tag)
3144 					:  "r" (i), "i" (ASI_MCD_REAL));
3145 			asm volatile("stxa %0, [%1] %2\n\t"
3146 					:
3147 					: "r" (adi_tag), "r" (pto),
3148 					  "i" (ASI_MCD_REAL));
3149 			pto += adi_blksize();
3150 		}
3151 		asm volatile("membar #Sync\n\t");
3152 	}
3153 }
3154 EXPORT_SYMBOL(copy_user_highpage);
3155 
3156 void copy_highpage(struct page *to, struct page *from)
3157 {
3158 	char *vfrom, *vto;
3159 
3160 	vfrom = kmap_atomic(from);
3161 	vto = kmap_atomic(to);
3162 	copy_page(vto, vfrom);
3163 	kunmap_atomic(vto);
3164 	kunmap_atomic(vfrom);
3165 
3166 	/* If this platform is ADI enabled, copy any ADI tags
3167 	 * as well
3168 	 */
3169 	if (adi_capable()) {
3170 		unsigned long pfrom, pto, i, adi_tag;
3171 
3172 		pfrom = page_to_phys(from);
3173 		pto = page_to_phys(to);
3174 
3175 		for (i = pfrom; i < (pfrom + PAGE_SIZE); i += adi_blksize()) {
3176 			asm volatile("ldxa [%1] %2, %0\n\t"
3177 					: "=r" (adi_tag)
3178 					:  "r" (i), "i" (ASI_MCD_REAL));
3179 			asm volatile("stxa %0, [%1] %2\n\t"
3180 					:
3181 					: "r" (adi_tag), "r" (pto),
3182 					  "i" (ASI_MCD_REAL));
3183 			pto += adi_blksize();
3184 		}
3185 		asm volatile("membar #Sync\n\t");
3186 	}
3187 }
3188 EXPORT_SYMBOL(copy_highpage);
3189 
3190 pgprot_t vm_get_page_prot(unsigned long vm_flags)
3191 {
3192 	unsigned long prot = pgprot_val(protection_map[vm_flags &
3193 					(VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]);
3194 
3195 	if (vm_flags & VM_SPARC_ADI)
3196 		prot |= _PAGE_MCD_4V;
3197 
3198 	return __pgprot(prot);
3199 }
3200 EXPORT_SYMBOL(vm_get_page_prot);
3201