1 /* 2 * linux/arch/sparc/mm/init.c 3 * 4 * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu) 5 * Copyright (C) 1995 Eddie C. Dost (ecd@skynet.be) 6 * Copyright (C) 1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz) 7 * Copyright (C) 2000 Anton Blanchard (anton@samba.org) 8 */ 9 10 #include <linux/module.h> 11 #include <linux/signal.h> 12 #include <linux/sched.h> 13 #include <linux/kernel.h> 14 #include <linux/errno.h> 15 #include <linux/string.h> 16 #include <linux/types.h> 17 #include <linux/ptrace.h> 18 #include <linux/mman.h> 19 #include <linux/mm.h> 20 #include <linux/swap.h> 21 #include <linux/initrd.h> 22 #include <linux/init.h> 23 #include <linux/highmem.h> 24 #include <linux/bootmem.h> 25 #include <linux/pagemap.h> 26 #include <linux/poison.h> 27 28 #include <asm/sections.h> 29 #include <asm/system.h> 30 #include <asm/vac-ops.h> 31 #include <asm/page.h> 32 #include <asm/pgtable.h> 33 #include <asm/vaddrs.h> 34 #include <asm/pgalloc.h> /* bug in asm-generic/tlb.h: check_pgt_cache */ 35 #include <asm/tlb.h> 36 #include <asm/prom.h> 37 #include <asm/leon.h> 38 39 DEFINE_PER_CPU(struct mmu_gather, mmu_gathers); 40 41 unsigned long *sparc_valid_addr_bitmap; 42 EXPORT_SYMBOL(sparc_valid_addr_bitmap); 43 44 unsigned long phys_base; 45 EXPORT_SYMBOL(phys_base); 46 47 unsigned long pfn_base; 48 EXPORT_SYMBOL(pfn_base); 49 50 unsigned long page_kernel; 51 EXPORT_SYMBOL(page_kernel); 52 53 struct sparc_phys_banks sp_banks[SPARC_PHYS_BANKS+1]; 54 unsigned long sparc_unmapped_base; 55 56 struct pgtable_cache_struct pgt_quicklists; 57 58 /* Initial ramdisk setup */ 59 extern unsigned int sparc_ramdisk_image; 60 extern unsigned int sparc_ramdisk_size; 61 62 unsigned long highstart_pfn, highend_pfn; 63 64 pte_t *kmap_pte; 65 pgprot_t kmap_prot; 66 67 #define kmap_get_fixmap_pte(vaddr) \ 68 pte_offset_kernel(pmd_offset(pgd_offset_k(vaddr), (vaddr)), (vaddr)) 69 70 void __init kmap_init(void) 71 { 72 /* cache the first kmap pte */ 73 kmap_pte = kmap_get_fixmap_pte(__fix_to_virt(FIX_KMAP_BEGIN)); 74 kmap_prot = __pgprot(SRMMU_ET_PTE | SRMMU_PRIV | SRMMU_CACHE); 75 } 76 77 void show_mem(void) 78 { 79 printk("Mem-info:\n"); 80 show_free_areas(); 81 printk("Free swap: %6ldkB\n", 82 nr_swap_pages << (PAGE_SHIFT-10)); 83 printk("%ld pages of RAM\n", totalram_pages); 84 printk("%ld free pages\n", nr_free_pages()); 85 #if 0 /* undefined pgtable_cache_size, pgd_cache_size */ 86 printk("%ld pages in page table cache\n",pgtable_cache_size); 87 #ifndef CONFIG_SMP 88 if (sparc_cpu_model == sun4m || sparc_cpu_model == sun4d) 89 printk("%ld entries in page dir cache\n",pgd_cache_size); 90 #endif 91 #endif 92 } 93 94 void __init sparc_context_init(int numctx) 95 { 96 int ctx; 97 98 ctx_list_pool = __alloc_bootmem(numctx * sizeof(struct ctx_list), SMP_CACHE_BYTES, 0UL); 99 100 for(ctx = 0; ctx < numctx; ctx++) { 101 struct ctx_list *clist; 102 103 clist = (ctx_list_pool + ctx); 104 clist->ctx_number = ctx; 105 clist->ctx_mm = NULL; 106 } 107 ctx_free.next = ctx_free.prev = &ctx_free; 108 ctx_used.next = ctx_used.prev = &ctx_used; 109 for(ctx = 0; ctx < numctx; ctx++) 110 add_to_free_ctxlist(ctx_list_pool + ctx); 111 } 112 113 extern unsigned long cmdline_memory_size; 114 unsigned long last_valid_pfn; 115 116 unsigned long calc_highpages(void) 117 { 118 int i; 119 int nr = 0; 120 121 for (i = 0; sp_banks[i].num_bytes != 0; i++) { 122 unsigned long start_pfn = sp_banks[i].base_addr >> PAGE_SHIFT; 123 unsigned long end_pfn = (sp_banks[i].base_addr + sp_banks[i].num_bytes) >> PAGE_SHIFT; 124 125 if (end_pfn <= max_low_pfn) 126 continue; 127 128 if (start_pfn < max_low_pfn) 129 start_pfn = max_low_pfn; 130 131 nr += end_pfn - start_pfn; 132 } 133 134 return nr; 135 } 136 137 static unsigned long calc_max_low_pfn(void) 138 { 139 int i; 140 unsigned long tmp = pfn_base + (SRMMU_MAXMEM >> PAGE_SHIFT); 141 unsigned long curr_pfn, last_pfn; 142 143 last_pfn = (sp_banks[0].base_addr + sp_banks[0].num_bytes) >> PAGE_SHIFT; 144 for (i = 1; sp_banks[i].num_bytes != 0; i++) { 145 curr_pfn = sp_banks[i].base_addr >> PAGE_SHIFT; 146 147 if (curr_pfn >= tmp) { 148 if (last_pfn < tmp) 149 tmp = last_pfn; 150 break; 151 } 152 153 last_pfn = (sp_banks[i].base_addr + sp_banks[i].num_bytes) >> PAGE_SHIFT; 154 } 155 156 return tmp; 157 } 158 159 unsigned long __init bootmem_init(unsigned long *pages_avail) 160 { 161 unsigned long bootmap_size, start_pfn; 162 unsigned long end_of_phys_memory = 0UL; 163 unsigned long bootmap_pfn, bytes_avail, size; 164 int i; 165 166 bytes_avail = 0UL; 167 for (i = 0; sp_banks[i].num_bytes != 0; i++) { 168 end_of_phys_memory = sp_banks[i].base_addr + 169 sp_banks[i].num_bytes; 170 bytes_avail += sp_banks[i].num_bytes; 171 if (cmdline_memory_size) { 172 if (bytes_avail > cmdline_memory_size) { 173 unsigned long slack = bytes_avail - cmdline_memory_size; 174 175 bytes_avail -= slack; 176 end_of_phys_memory -= slack; 177 178 sp_banks[i].num_bytes -= slack; 179 if (sp_banks[i].num_bytes == 0) { 180 sp_banks[i].base_addr = 0xdeadbeef; 181 } else { 182 sp_banks[i+1].num_bytes = 0; 183 sp_banks[i+1].base_addr = 0xdeadbeef; 184 } 185 break; 186 } 187 } 188 } 189 190 /* Start with page aligned address of last symbol in kernel 191 * image. 192 */ 193 start_pfn = (unsigned long)__pa(PAGE_ALIGN((unsigned long) &_end)); 194 195 /* Now shift down to get the real physical page frame number. */ 196 start_pfn >>= PAGE_SHIFT; 197 198 bootmap_pfn = start_pfn; 199 200 max_pfn = end_of_phys_memory >> PAGE_SHIFT; 201 202 max_low_pfn = max_pfn; 203 highstart_pfn = highend_pfn = max_pfn; 204 205 if (max_low_pfn > pfn_base + (SRMMU_MAXMEM >> PAGE_SHIFT)) { 206 highstart_pfn = pfn_base + (SRMMU_MAXMEM >> PAGE_SHIFT); 207 max_low_pfn = calc_max_low_pfn(); 208 printk(KERN_NOTICE "%ldMB HIGHMEM available.\n", 209 calc_highpages() >> (20 - PAGE_SHIFT)); 210 } 211 212 #ifdef CONFIG_BLK_DEV_INITRD 213 /* Now have to check initial ramdisk, so that bootmap does not overwrite it */ 214 if (sparc_ramdisk_image) { 215 if (sparc_ramdisk_image >= (unsigned long)&_end - 2 * PAGE_SIZE) 216 sparc_ramdisk_image -= KERNBASE; 217 initrd_start = sparc_ramdisk_image + phys_base; 218 initrd_end = initrd_start + sparc_ramdisk_size; 219 if (initrd_end > end_of_phys_memory) { 220 printk(KERN_CRIT "initrd extends beyond end of memory " 221 "(0x%016lx > 0x%016lx)\ndisabling initrd\n", 222 initrd_end, end_of_phys_memory); 223 initrd_start = 0; 224 } 225 if (initrd_start) { 226 if (initrd_start >= (start_pfn << PAGE_SHIFT) && 227 initrd_start < (start_pfn << PAGE_SHIFT) + 2 * PAGE_SIZE) 228 bootmap_pfn = PAGE_ALIGN (initrd_end) >> PAGE_SHIFT; 229 } 230 } 231 #endif 232 /* Initialize the boot-time allocator. */ 233 bootmap_size = init_bootmem_node(NODE_DATA(0), bootmap_pfn, pfn_base, 234 max_low_pfn); 235 236 /* Now register the available physical memory with the 237 * allocator. 238 */ 239 *pages_avail = 0; 240 for (i = 0; sp_banks[i].num_bytes != 0; i++) { 241 unsigned long curr_pfn, last_pfn; 242 243 curr_pfn = sp_banks[i].base_addr >> PAGE_SHIFT; 244 if (curr_pfn >= max_low_pfn) 245 break; 246 247 last_pfn = (sp_banks[i].base_addr + sp_banks[i].num_bytes) >> PAGE_SHIFT; 248 if (last_pfn > max_low_pfn) 249 last_pfn = max_low_pfn; 250 251 /* 252 * .. finally, did all the rounding and playing 253 * around just make the area go away? 254 */ 255 if (last_pfn <= curr_pfn) 256 continue; 257 258 size = (last_pfn - curr_pfn) << PAGE_SHIFT; 259 *pages_avail += last_pfn - curr_pfn; 260 261 free_bootmem(sp_banks[i].base_addr, size); 262 } 263 264 #ifdef CONFIG_BLK_DEV_INITRD 265 if (initrd_start) { 266 /* Reserve the initrd image area. */ 267 size = initrd_end - initrd_start; 268 reserve_bootmem(initrd_start, size, BOOTMEM_DEFAULT); 269 *pages_avail -= PAGE_ALIGN(size) >> PAGE_SHIFT; 270 271 initrd_start = (initrd_start - phys_base) + PAGE_OFFSET; 272 initrd_end = (initrd_end - phys_base) + PAGE_OFFSET; 273 } 274 #endif 275 /* Reserve the kernel text/data/bss. */ 276 size = (start_pfn << PAGE_SHIFT) - phys_base; 277 reserve_bootmem(phys_base, size, BOOTMEM_DEFAULT); 278 *pages_avail -= PAGE_ALIGN(size) >> PAGE_SHIFT; 279 280 /* Reserve the bootmem map. We do not account for it 281 * in pages_avail because we will release that memory 282 * in free_all_bootmem. 283 */ 284 size = bootmap_size; 285 reserve_bootmem((bootmap_pfn << PAGE_SHIFT), size, BOOTMEM_DEFAULT); 286 *pages_avail -= PAGE_ALIGN(size) >> PAGE_SHIFT; 287 288 return max_pfn; 289 } 290 291 /* 292 * check_pgt_cache 293 * 294 * This is called at the end of unmapping of VMA (zap_page_range), 295 * to rescan the page cache for architecture specific things, 296 * presumably something like sun4/sun4c PMEGs. Most architectures 297 * define check_pgt_cache empty. 298 * 299 * We simply copy the 2.4 implementation for now. 300 */ 301 static int pgt_cache_water[2] = { 25, 50 }; 302 303 void check_pgt_cache(void) 304 { 305 do_check_pgt_cache(pgt_cache_water[0], pgt_cache_water[1]); 306 } 307 308 /* 309 * paging_init() sets up the page tables: We call the MMU specific 310 * init routine based upon the Sun model type on the Sparc. 311 * 312 */ 313 extern void sun4c_paging_init(void); 314 extern void srmmu_paging_init(void); 315 extern void device_scan(void); 316 317 pgprot_t PAGE_SHARED __read_mostly; 318 EXPORT_SYMBOL(PAGE_SHARED); 319 320 void __init paging_init(void) 321 { 322 switch(sparc_cpu_model) { 323 case sun4c: 324 case sun4e: 325 case sun4: 326 sun4c_paging_init(); 327 sparc_unmapped_base = 0xe0000000; 328 BTFIXUPSET_SETHI(sparc_unmapped_base, 0xe0000000); 329 break; 330 case sparc_leon: 331 leon_init(); 332 /* fall through */ 333 case sun4m: 334 case sun4d: 335 srmmu_paging_init(); 336 sparc_unmapped_base = 0x50000000; 337 BTFIXUPSET_SETHI(sparc_unmapped_base, 0x50000000); 338 break; 339 default: 340 prom_printf("paging_init: Cannot init paging on this Sparc\n"); 341 prom_printf("paging_init: sparc_cpu_model = %d\n", sparc_cpu_model); 342 prom_printf("paging_init: Halting...\n"); 343 prom_halt(); 344 }; 345 346 /* Initialize the protection map with non-constant, MMU dependent values. */ 347 protection_map[0] = PAGE_NONE; 348 protection_map[1] = PAGE_READONLY; 349 protection_map[2] = PAGE_COPY; 350 protection_map[3] = PAGE_COPY; 351 protection_map[4] = PAGE_READONLY; 352 protection_map[5] = PAGE_READONLY; 353 protection_map[6] = PAGE_COPY; 354 protection_map[7] = PAGE_COPY; 355 protection_map[8] = PAGE_NONE; 356 protection_map[9] = PAGE_READONLY; 357 protection_map[10] = PAGE_SHARED; 358 protection_map[11] = PAGE_SHARED; 359 protection_map[12] = PAGE_READONLY; 360 protection_map[13] = PAGE_READONLY; 361 protection_map[14] = PAGE_SHARED; 362 protection_map[15] = PAGE_SHARED; 363 btfixup(); 364 prom_build_devicetree(); 365 of_fill_in_cpu_data(); 366 device_scan(); 367 } 368 369 static void __init taint_real_pages(void) 370 { 371 int i; 372 373 for (i = 0; sp_banks[i].num_bytes; i++) { 374 unsigned long start, end; 375 376 start = sp_banks[i].base_addr; 377 end = start + sp_banks[i].num_bytes; 378 379 while (start < end) { 380 set_bit(start >> 20, sparc_valid_addr_bitmap); 381 start += PAGE_SIZE; 382 } 383 } 384 } 385 386 static void map_high_region(unsigned long start_pfn, unsigned long end_pfn) 387 { 388 unsigned long tmp; 389 390 #ifdef CONFIG_DEBUG_HIGHMEM 391 printk("mapping high region %08lx - %08lx\n", start_pfn, end_pfn); 392 #endif 393 394 for (tmp = start_pfn; tmp < end_pfn; tmp++) { 395 struct page *page = pfn_to_page(tmp); 396 397 ClearPageReserved(page); 398 init_page_count(page); 399 __free_page(page); 400 totalhigh_pages++; 401 } 402 } 403 404 void __init mem_init(void) 405 { 406 int codepages = 0; 407 int datapages = 0; 408 int initpages = 0; 409 int reservedpages = 0; 410 int i; 411 412 if (PKMAP_BASE+LAST_PKMAP*PAGE_SIZE >= FIXADDR_START) { 413 prom_printf("BUG: fixmap and pkmap areas overlap\n"); 414 prom_printf("pkbase: 0x%lx pkend: 0x%lx fixstart 0x%lx\n", 415 PKMAP_BASE, 416 (unsigned long)PKMAP_BASE+LAST_PKMAP*PAGE_SIZE, 417 FIXADDR_START); 418 prom_printf("Please mail sparclinux@vger.kernel.org.\n"); 419 prom_halt(); 420 } 421 422 423 /* Saves us work later. */ 424 memset((void *)&empty_zero_page, 0, PAGE_SIZE); 425 426 i = last_valid_pfn >> ((20 - PAGE_SHIFT) + 5); 427 i += 1; 428 sparc_valid_addr_bitmap = (unsigned long *) 429 __alloc_bootmem(i << 2, SMP_CACHE_BYTES, 0UL); 430 431 if (sparc_valid_addr_bitmap == NULL) { 432 prom_printf("mem_init: Cannot alloc valid_addr_bitmap.\n"); 433 prom_halt(); 434 } 435 memset(sparc_valid_addr_bitmap, 0, i << 2); 436 437 taint_real_pages(); 438 439 max_mapnr = last_valid_pfn - pfn_base; 440 high_memory = __va(max_low_pfn << PAGE_SHIFT); 441 442 totalram_pages = free_all_bootmem(); 443 444 for (i = 0; sp_banks[i].num_bytes != 0; i++) { 445 unsigned long start_pfn = sp_banks[i].base_addr >> PAGE_SHIFT; 446 unsigned long end_pfn = (sp_banks[i].base_addr + sp_banks[i].num_bytes) >> PAGE_SHIFT; 447 448 num_physpages += sp_banks[i].num_bytes >> PAGE_SHIFT; 449 450 if (end_pfn <= highstart_pfn) 451 continue; 452 453 if (start_pfn < highstart_pfn) 454 start_pfn = highstart_pfn; 455 456 map_high_region(start_pfn, end_pfn); 457 } 458 459 totalram_pages += totalhigh_pages; 460 461 codepages = (((unsigned long) &_etext) - ((unsigned long)&_start)); 462 codepages = PAGE_ALIGN(codepages) >> PAGE_SHIFT; 463 datapages = (((unsigned long) &_edata) - ((unsigned long)&_etext)); 464 datapages = PAGE_ALIGN(datapages) >> PAGE_SHIFT; 465 initpages = (((unsigned long) &__init_end) - ((unsigned long) &__init_begin)); 466 initpages = PAGE_ALIGN(initpages) >> PAGE_SHIFT; 467 468 /* Ignore memory holes for the purpose of counting reserved pages */ 469 for (i=0; i < max_low_pfn; i++) 470 if (test_bit(i >> (20 - PAGE_SHIFT), sparc_valid_addr_bitmap) 471 && PageReserved(pfn_to_page(i))) 472 reservedpages++; 473 474 printk(KERN_INFO "Memory: %luk/%luk available (%dk kernel code, %dk reserved, %dk data, %dk init, %ldk highmem)\n", 475 nr_free_pages() << (PAGE_SHIFT-10), 476 num_physpages << (PAGE_SHIFT - 10), 477 codepages << (PAGE_SHIFT-10), 478 reservedpages << (PAGE_SHIFT - 10), 479 datapages << (PAGE_SHIFT-10), 480 initpages << (PAGE_SHIFT-10), 481 totalhigh_pages << (PAGE_SHIFT-10)); 482 } 483 484 void free_initmem (void) 485 { 486 unsigned long addr; 487 unsigned long freed; 488 489 addr = (unsigned long)(&__init_begin); 490 freed = (unsigned long)(&__init_end) - addr; 491 for (; addr < (unsigned long)(&__init_end); addr += PAGE_SIZE) { 492 struct page *p; 493 494 memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE); 495 p = virt_to_page(addr); 496 497 ClearPageReserved(p); 498 init_page_count(p); 499 __free_page(p); 500 totalram_pages++; 501 num_physpages++; 502 } 503 printk(KERN_INFO "Freeing unused kernel memory: %ldk freed\n", 504 freed >> 10); 505 } 506 507 #ifdef CONFIG_BLK_DEV_INITRD 508 void free_initrd_mem(unsigned long start, unsigned long end) 509 { 510 if (start < end) 511 printk(KERN_INFO "Freeing initrd memory: %ldk freed\n", 512 (end - start) >> 10); 513 for (; start < end; start += PAGE_SIZE) { 514 struct page *p; 515 516 memset((void *)start, POISON_FREE_INITMEM, PAGE_SIZE); 517 p = virt_to_page(start); 518 519 ClearPageReserved(p); 520 init_page_count(p); 521 __free_page(p); 522 totalram_pages++; 523 num_physpages++; 524 } 525 } 526 #endif 527 528 void sparc_flush_page_to_ram(struct page *page) 529 { 530 unsigned long vaddr = (unsigned long)page_address(page); 531 532 if (vaddr) 533 __flush_page_to_ram(vaddr); 534 } 535 EXPORT_SYMBOL(sparc_flush_page_to_ram); 536