1 /* 2 * linux/arch/sparc/mm/init.c 3 * 4 * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu) 5 * Copyright (C) 1995 Eddie C. Dost (ecd@skynet.be) 6 * Copyright (C) 1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz) 7 * Copyright (C) 2000 Anton Blanchard (anton@samba.org) 8 */ 9 10 #include <linux/module.h> 11 #include <linux/signal.h> 12 #include <linux/sched.h> 13 #include <linux/kernel.h> 14 #include <linux/errno.h> 15 #include <linux/string.h> 16 #include <linux/types.h> 17 #include <linux/ptrace.h> 18 #include <linux/mman.h> 19 #include <linux/mm.h> 20 #include <linux/swap.h> 21 #include <linux/initrd.h> 22 #include <linux/init.h> 23 #include <linux/highmem.h> 24 #include <linux/bootmem.h> 25 #include <linux/pagemap.h> 26 #include <linux/poison.h> 27 28 #include <asm/sections.h> 29 #include <asm/system.h> 30 #include <asm/vac-ops.h> 31 #include <asm/page.h> 32 #include <asm/pgtable.h> 33 #include <asm/vaddrs.h> 34 #include <asm/pgalloc.h> /* bug in asm-generic/tlb.h: check_pgt_cache */ 35 #include <asm/tlb.h> 36 #include <asm/prom.h> 37 38 DEFINE_PER_CPU(struct mmu_gather, mmu_gathers); 39 40 unsigned long *sparc_valid_addr_bitmap; 41 EXPORT_SYMBOL(sparc_valid_addr_bitmap); 42 43 unsigned long phys_base; 44 EXPORT_SYMBOL(phys_base); 45 46 unsigned long pfn_base; 47 EXPORT_SYMBOL(pfn_base); 48 49 unsigned long page_kernel; 50 EXPORT_SYMBOL(page_kernel); 51 52 struct sparc_phys_banks sp_banks[SPARC_PHYS_BANKS+1]; 53 unsigned long sparc_unmapped_base; 54 55 struct pgtable_cache_struct pgt_quicklists; 56 57 /* Initial ramdisk setup */ 58 extern unsigned int sparc_ramdisk_image; 59 extern unsigned int sparc_ramdisk_size; 60 61 unsigned long highstart_pfn, highend_pfn; 62 63 pte_t *kmap_pte; 64 pgprot_t kmap_prot; 65 66 #define kmap_get_fixmap_pte(vaddr) \ 67 pte_offset_kernel(pmd_offset(pgd_offset_k(vaddr), (vaddr)), (vaddr)) 68 69 void __init kmap_init(void) 70 { 71 /* cache the first kmap pte */ 72 kmap_pte = kmap_get_fixmap_pte(__fix_to_virt(FIX_KMAP_BEGIN)); 73 kmap_prot = __pgprot(SRMMU_ET_PTE | SRMMU_PRIV | SRMMU_CACHE); 74 } 75 76 void show_mem(void) 77 { 78 printk("Mem-info:\n"); 79 show_free_areas(); 80 printk("Free swap: %6ldkB\n", 81 nr_swap_pages << (PAGE_SHIFT-10)); 82 printk("%ld pages of RAM\n", totalram_pages); 83 printk("%ld free pages\n", nr_free_pages()); 84 #if 0 /* undefined pgtable_cache_size, pgd_cache_size */ 85 printk("%ld pages in page table cache\n",pgtable_cache_size); 86 #ifndef CONFIG_SMP 87 if (sparc_cpu_model == sun4m || sparc_cpu_model == sun4d) 88 printk("%ld entries in page dir cache\n",pgd_cache_size); 89 #endif 90 #endif 91 } 92 93 void __init sparc_context_init(int numctx) 94 { 95 int ctx; 96 97 ctx_list_pool = __alloc_bootmem(numctx * sizeof(struct ctx_list), SMP_CACHE_BYTES, 0UL); 98 99 for(ctx = 0; ctx < numctx; ctx++) { 100 struct ctx_list *clist; 101 102 clist = (ctx_list_pool + ctx); 103 clist->ctx_number = ctx; 104 clist->ctx_mm = NULL; 105 } 106 ctx_free.next = ctx_free.prev = &ctx_free; 107 ctx_used.next = ctx_used.prev = &ctx_used; 108 for(ctx = 0; ctx < numctx; ctx++) 109 add_to_free_ctxlist(ctx_list_pool + ctx); 110 } 111 112 extern unsigned long cmdline_memory_size; 113 unsigned long last_valid_pfn; 114 115 unsigned long calc_highpages(void) 116 { 117 int i; 118 int nr = 0; 119 120 for (i = 0; sp_banks[i].num_bytes != 0; i++) { 121 unsigned long start_pfn = sp_banks[i].base_addr >> PAGE_SHIFT; 122 unsigned long end_pfn = (sp_banks[i].base_addr + sp_banks[i].num_bytes) >> PAGE_SHIFT; 123 124 if (end_pfn <= max_low_pfn) 125 continue; 126 127 if (start_pfn < max_low_pfn) 128 start_pfn = max_low_pfn; 129 130 nr += end_pfn - start_pfn; 131 } 132 133 return nr; 134 } 135 136 static unsigned long calc_max_low_pfn(void) 137 { 138 int i; 139 unsigned long tmp = pfn_base + (SRMMU_MAXMEM >> PAGE_SHIFT); 140 unsigned long curr_pfn, last_pfn; 141 142 last_pfn = (sp_banks[0].base_addr + sp_banks[0].num_bytes) >> PAGE_SHIFT; 143 for (i = 1; sp_banks[i].num_bytes != 0; i++) { 144 curr_pfn = sp_banks[i].base_addr >> PAGE_SHIFT; 145 146 if (curr_pfn >= tmp) { 147 if (last_pfn < tmp) 148 tmp = last_pfn; 149 break; 150 } 151 152 last_pfn = (sp_banks[i].base_addr + sp_banks[i].num_bytes) >> PAGE_SHIFT; 153 } 154 155 return tmp; 156 } 157 158 unsigned long __init bootmem_init(unsigned long *pages_avail) 159 { 160 unsigned long bootmap_size, start_pfn; 161 unsigned long end_of_phys_memory = 0UL; 162 unsigned long bootmap_pfn, bytes_avail, size; 163 int i; 164 165 bytes_avail = 0UL; 166 for (i = 0; sp_banks[i].num_bytes != 0; i++) { 167 end_of_phys_memory = sp_banks[i].base_addr + 168 sp_banks[i].num_bytes; 169 bytes_avail += sp_banks[i].num_bytes; 170 if (cmdline_memory_size) { 171 if (bytes_avail > cmdline_memory_size) { 172 unsigned long slack = bytes_avail - cmdline_memory_size; 173 174 bytes_avail -= slack; 175 end_of_phys_memory -= slack; 176 177 sp_banks[i].num_bytes -= slack; 178 if (sp_banks[i].num_bytes == 0) { 179 sp_banks[i].base_addr = 0xdeadbeef; 180 } else { 181 sp_banks[i+1].num_bytes = 0; 182 sp_banks[i+1].base_addr = 0xdeadbeef; 183 } 184 break; 185 } 186 } 187 } 188 189 /* Start with page aligned address of last symbol in kernel 190 * image. 191 */ 192 start_pfn = (unsigned long)__pa(PAGE_ALIGN((unsigned long) &_end)); 193 194 /* Now shift down to get the real physical page frame number. */ 195 start_pfn >>= PAGE_SHIFT; 196 197 bootmap_pfn = start_pfn; 198 199 max_pfn = end_of_phys_memory >> PAGE_SHIFT; 200 201 max_low_pfn = max_pfn; 202 highstart_pfn = highend_pfn = max_pfn; 203 204 if (max_low_pfn > pfn_base + (SRMMU_MAXMEM >> PAGE_SHIFT)) { 205 highstart_pfn = pfn_base + (SRMMU_MAXMEM >> PAGE_SHIFT); 206 max_low_pfn = calc_max_low_pfn(); 207 printk(KERN_NOTICE "%ldMB HIGHMEM available.\n", 208 calc_highpages() >> (20 - PAGE_SHIFT)); 209 } 210 211 #ifdef CONFIG_BLK_DEV_INITRD 212 /* Now have to check initial ramdisk, so that bootmap does not overwrite it */ 213 if (sparc_ramdisk_image) { 214 if (sparc_ramdisk_image >= (unsigned long)&_end - 2 * PAGE_SIZE) 215 sparc_ramdisk_image -= KERNBASE; 216 initrd_start = sparc_ramdisk_image + phys_base; 217 initrd_end = initrd_start + sparc_ramdisk_size; 218 if (initrd_end > end_of_phys_memory) { 219 printk(KERN_CRIT "initrd extends beyond end of memory " 220 "(0x%016lx > 0x%016lx)\ndisabling initrd\n", 221 initrd_end, end_of_phys_memory); 222 initrd_start = 0; 223 } 224 if (initrd_start) { 225 if (initrd_start >= (start_pfn << PAGE_SHIFT) && 226 initrd_start < (start_pfn << PAGE_SHIFT) + 2 * PAGE_SIZE) 227 bootmap_pfn = PAGE_ALIGN (initrd_end) >> PAGE_SHIFT; 228 } 229 } 230 #endif 231 /* Initialize the boot-time allocator. */ 232 bootmap_size = init_bootmem_node(NODE_DATA(0), bootmap_pfn, pfn_base, 233 max_low_pfn); 234 235 /* Now register the available physical memory with the 236 * allocator. 237 */ 238 *pages_avail = 0; 239 for (i = 0; sp_banks[i].num_bytes != 0; i++) { 240 unsigned long curr_pfn, last_pfn; 241 242 curr_pfn = sp_banks[i].base_addr >> PAGE_SHIFT; 243 if (curr_pfn >= max_low_pfn) 244 break; 245 246 last_pfn = (sp_banks[i].base_addr + sp_banks[i].num_bytes) >> PAGE_SHIFT; 247 if (last_pfn > max_low_pfn) 248 last_pfn = max_low_pfn; 249 250 /* 251 * .. finally, did all the rounding and playing 252 * around just make the area go away? 253 */ 254 if (last_pfn <= curr_pfn) 255 continue; 256 257 size = (last_pfn - curr_pfn) << PAGE_SHIFT; 258 *pages_avail += last_pfn - curr_pfn; 259 260 free_bootmem(sp_banks[i].base_addr, size); 261 } 262 263 #ifdef CONFIG_BLK_DEV_INITRD 264 if (initrd_start) { 265 /* Reserve the initrd image area. */ 266 size = initrd_end - initrd_start; 267 reserve_bootmem(initrd_start, size, BOOTMEM_DEFAULT); 268 *pages_avail -= PAGE_ALIGN(size) >> PAGE_SHIFT; 269 270 initrd_start = (initrd_start - phys_base) + PAGE_OFFSET; 271 initrd_end = (initrd_end - phys_base) + PAGE_OFFSET; 272 } 273 #endif 274 /* Reserve the kernel text/data/bss. */ 275 size = (start_pfn << PAGE_SHIFT) - phys_base; 276 reserve_bootmem(phys_base, size, BOOTMEM_DEFAULT); 277 *pages_avail -= PAGE_ALIGN(size) >> PAGE_SHIFT; 278 279 /* Reserve the bootmem map. We do not account for it 280 * in pages_avail because we will release that memory 281 * in free_all_bootmem. 282 */ 283 size = bootmap_size; 284 reserve_bootmem((bootmap_pfn << PAGE_SHIFT), size, BOOTMEM_DEFAULT); 285 *pages_avail -= PAGE_ALIGN(size) >> PAGE_SHIFT; 286 287 return max_pfn; 288 } 289 290 /* 291 * check_pgt_cache 292 * 293 * This is called at the end of unmapping of VMA (zap_page_range), 294 * to rescan the page cache for architecture specific things, 295 * presumably something like sun4/sun4c PMEGs. Most architectures 296 * define check_pgt_cache empty. 297 * 298 * We simply copy the 2.4 implementation for now. 299 */ 300 static int pgt_cache_water[2] = { 25, 50 }; 301 302 void check_pgt_cache(void) 303 { 304 do_check_pgt_cache(pgt_cache_water[0], pgt_cache_water[1]); 305 } 306 307 /* 308 * paging_init() sets up the page tables: We call the MMU specific 309 * init routine based upon the Sun model type on the Sparc. 310 * 311 */ 312 extern void sun4c_paging_init(void); 313 extern void srmmu_paging_init(void); 314 extern void device_scan(void); 315 316 pgprot_t PAGE_SHARED __read_mostly; 317 EXPORT_SYMBOL(PAGE_SHARED); 318 319 void __init paging_init(void) 320 { 321 switch(sparc_cpu_model) { 322 case sun4c: 323 case sun4e: 324 case sun4: 325 sun4c_paging_init(); 326 sparc_unmapped_base = 0xe0000000; 327 BTFIXUPSET_SETHI(sparc_unmapped_base, 0xe0000000); 328 break; 329 case sun4m: 330 case sun4d: 331 srmmu_paging_init(); 332 sparc_unmapped_base = 0x50000000; 333 BTFIXUPSET_SETHI(sparc_unmapped_base, 0x50000000); 334 break; 335 default: 336 prom_printf("paging_init: Cannot init paging on this Sparc\n"); 337 prom_printf("paging_init: sparc_cpu_model = %d\n", sparc_cpu_model); 338 prom_printf("paging_init: Halting...\n"); 339 prom_halt(); 340 }; 341 342 /* Initialize the protection map with non-constant, MMU dependent values. */ 343 protection_map[0] = PAGE_NONE; 344 protection_map[1] = PAGE_READONLY; 345 protection_map[2] = PAGE_COPY; 346 protection_map[3] = PAGE_COPY; 347 protection_map[4] = PAGE_READONLY; 348 protection_map[5] = PAGE_READONLY; 349 protection_map[6] = PAGE_COPY; 350 protection_map[7] = PAGE_COPY; 351 protection_map[8] = PAGE_NONE; 352 protection_map[9] = PAGE_READONLY; 353 protection_map[10] = PAGE_SHARED; 354 protection_map[11] = PAGE_SHARED; 355 protection_map[12] = PAGE_READONLY; 356 protection_map[13] = PAGE_READONLY; 357 protection_map[14] = PAGE_SHARED; 358 protection_map[15] = PAGE_SHARED; 359 btfixup(); 360 prom_build_devicetree(); 361 device_scan(); 362 } 363 364 static void __init taint_real_pages(void) 365 { 366 int i; 367 368 for (i = 0; sp_banks[i].num_bytes; i++) { 369 unsigned long start, end; 370 371 start = sp_banks[i].base_addr; 372 end = start + sp_banks[i].num_bytes; 373 374 while (start < end) { 375 set_bit(start >> 20, sparc_valid_addr_bitmap); 376 start += PAGE_SIZE; 377 } 378 } 379 } 380 381 static void map_high_region(unsigned long start_pfn, unsigned long end_pfn) 382 { 383 unsigned long tmp; 384 385 #ifdef CONFIG_DEBUG_HIGHMEM 386 printk("mapping high region %08lx - %08lx\n", start_pfn, end_pfn); 387 #endif 388 389 for (tmp = start_pfn; tmp < end_pfn; tmp++) { 390 struct page *page = pfn_to_page(tmp); 391 392 ClearPageReserved(page); 393 init_page_count(page); 394 __free_page(page); 395 totalhigh_pages++; 396 } 397 } 398 399 void __init mem_init(void) 400 { 401 int codepages = 0; 402 int datapages = 0; 403 int initpages = 0; 404 int reservedpages = 0; 405 int i; 406 407 if (PKMAP_BASE+LAST_PKMAP*PAGE_SIZE >= FIXADDR_START) { 408 prom_printf("BUG: fixmap and pkmap areas overlap\n"); 409 prom_printf("pkbase: 0x%lx pkend: 0x%lx fixstart 0x%lx\n", 410 PKMAP_BASE, 411 (unsigned long)PKMAP_BASE+LAST_PKMAP*PAGE_SIZE, 412 FIXADDR_START); 413 prom_printf("Please mail sparclinux@vger.kernel.org.\n"); 414 prom_halt(); 415 } 416 417 418 /* Saves us work later. */ 419 memset((void *)&empty_zero_page, 0, PAGE_SIZE); 420 421 i = last_valid_pfn >> ((20 - PAGE_SHIFT) + 5); 422 i += 1; 423 sparc_valid_addr_bitmap = (unsigned long *) 424 __alloc_bootmem(i << 2, SMP_CACHE_BYTES, 0UL); 425 426 if (sparc_valid_addr_bitmap == NULL) { 427 prom_printf("mem_init: Cannot alloc valid_addr_bitmap.\n"); 428 prom_halt(); 429 } 430 memset(sparc_valid_addr_bitmap, 0, i << 2); 431 432 taint_real_pages(); 433 434 max_mapnr = last_valid_pfn - pfn_base; 435 high_memory = __va(max_low_pfn << PAGE_SHIFT); 436 437 totalram_pages = free_all_bootmem(); 438 439 for (i = 0; sp_banks[i].num_bytes != 0; i++) { 440 unsigned long start_pfn = sp_banks[i].base_addr >> PAGE_SHIFT; 441 unsigned long end_pfn = (sp_banks[i].base_addr + sp_banks[i].num_bytes) >> PAGE_SHIFT; 442 443 num_physpages += sp_banks[i].num_bytes >> PAGE_SHIFT; 444 445 if (end_pfn <= highstart_pfn) 446 continue; 447 448 if (start_pfn < highstart_pfn) 449 start_pfn = highstart_pfn; 450 451 map_high_region(start_pfn, end_pfn); 452 } 453 454 totalram_pages += totalhigh_pages; 455 456 codepages = (((unsigned long) &_etext) - ((unsigned long)&_start)); 457 codepages = PAGE_ALIGN(codepages) >> PAGE_SHIFT; 458 datapages = (((unsigned long) &_edata) - ((unsigned long)&_etext)); 459 datapages = PAGE_ALIGN(datapages) >> PAGE_SHIFT; 460 initpages = (((unsigned long) &__init_end) - ((unsigned long) &__init_begin)); 461 initpages = PAGE_ALIGN(initpages) >> PAGE_SHIFT; 462 463 /* Ignore memory holes for the purpose of counting reserved pages */ 464 for (i=0; i < max_low_pfn; i++) 465 if (test_bit(i >> (20 - PAGE_SHIFT), sparc_valid_addr_bitmap) 466 && PageReserved(pfn_to_page(i))) 467 reservedpages++; 468 469 printk(KERN_INFO "Memory: %luk/%luk available (%dk kernel code, %dk reserved, %dk data, %dk init, %ldk highmem)\n", 470 (unsigned long) nr_free_pages() << (PAGE_SHIFT-10), 471 num_physpages << (PAGE_SHIFT - 10), 472 codepages << (PAGE_SHIFT-10), 473 reservedpages << (PAGE_SHIFT - 10), 474 datapages << (PAGE_SHIFT-10), 475 initpages << (PAGE_SHIFT-10), 476 totalhigh_pages << (PAGE_SHIFT-10)); 477 } 478 479 void free_initmem (void) 480 { 481 unsigned long addr; 482 unsigned long freed; 483 484 addr = (unsigned long)(&__init_begin); 485 freed = (unsigned long)(&__init_end) - addr; 486 for (; addr < (unsigned long)(&__init_end); addr += PAGE_SIZE) { 487 struct page *p; 488 489 memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE); 490 p = virt_to_page(addr); 491 492 ClearPageReserved(p); 493 init_page_count(p); 494 __free_page(p); 495 totalram_pages++; 496 num_physpages++; 497 } 498 printk(KERN_INFO "Freeing unused kernel memory: %ldk freed\n", 499 freed >> 10); 500 } 501 502 #ifdef CONFIG_BLK_DEV_INITRD 503 void free_initrd_mem(unsigned long start, unsigned long end) 504 { 505 if (start < end) 506 printk(KERN_INFO "Freeing initrd memory: %ldk freed\n", 507 (end - start) >> 10); 508 for (; start < end; start += PAGE_SIZE) { 509 struct page *p; 510 511 memset((void *)start, POISON_FREE_INITMEM, PAGE_SIZE); 512 p = virt_to_page(start); 513 514 ClearPageReserved(p); 515 init_page_count(p); 516 __free_page(p); 517 totalram_pages++; 518 num_physpages++; 519 } 520 } 521 #endif 522 523 void sparc_flush_page_to_ram(struct page *page) 524 { 525 unsigned long vaddr = (unsigned long)page_address(page); 526 527 if (vaddr) 528 __flush_page_to_ram(vaddr); 529 } 530 EXPORT_SYMBOL(sparc_flush_page_to_ram); 531