1 /* 2 * linux/arch/sparc/mm/init.c 3 * 4 * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu) 5 * Copyright (C) 1995 Eddie C. Dost (ecd@skynet.be) 6 * Copyright (C) 1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz) 7 * Copyright (C) 2000 Anton Blanchard (anton@samba.org) 8 */ 9 10 #include <linux/module.h> 11 #include <linux/signal.h> 12 #include <linux/sched.h> 13 #include <linux/kernel.h> 14 #include <linux/errno.h> 15 #include <linux/string.h> 16 #include <linux/types.h> 17 #include <linux/ptrace.h> 18 #include <linux/mman.h> 19 #include <linux/mm.h> 20 #include <linux/swap.h> 21 #include <linux/initrd.h> 22 #include <linux/init.h> 23 #include <linux/highmem.h> 24 #include <linux/bootmem.h> 25 #include <linux/pagemap.h> 26 #include <linux/poison.h> 27 #include <linux/gfp.h> 28 29 #include <asm/sections.h> 30 #include <asm/vac-ops.h> 31 #include <asm/page.h> 32 #include <asm/pgtable.h> 33 #include <asm/vaddrs.h> 34 #include <asm/pgalloc.h> /* bug in asm-generic/tlb.h: check_pgt_cache */ 35 #include <asm/tlb.h> 36 #include <asm/prom.h> 37 #include <asm/leon.h> 38 39 unsigned long *sparc_valid_addr_bitmap; 40 EXPORT_SYMBOL(sparc_valid_addr_bitmap); 41 42 unsigned long phys_base; 43 EXPORT_SYMBOL(phys_base); 44 45 unsigned long pfn_base; 46 EXPORT_SYMBOL(pfn_base); 47 48 unsigned long page_kernel; 49 EXPORT_SYMBOL(page_kernel); 50 51 struct sparc_phys_banks sp_banks[SPARC_PHYS_BANKS+1]; 52 unsigned long sparc_unmapped_base; 53 54 struct pgtable_cache_struct pgt_quicklists; 55 56 /* Initial ramdisk setup */ 57 extern unsigned int sparc_ramdisk_image; 58 extern unsigned int sparc_ramdisk_size; 59 60 unsigned long highstart_pfn, highend_pfn; 61 62 pte_t *kmap_pte; 63 pgprot_t kmap_prot; 64 65 #define kmap_get_fixmap_pte(vaddr) \ 66 pte_offset_kernel(pmd_offset(pgd_offset_k(vaddr), (vaddr)), (vaddr)) 67 68 void __init kmap_init(void) 69 { 70 /* cache the first kmap pte */ 71 kmap_pte = kmap_get_fixmap_pte(__fix_to_virt(FIX_KMAP_BEGIN)); 72 kmap_prot = __pgprot(SRMMU_ET_PTE | SRMMU_PRIV | SRMMU_CACHE); 73 } 74 75 void show_mem(unsigned int filter) 76 { 77 printk("Mem-info:\n"); 78 show_free_areas(filter); 79 printk("Free swap: %6ldkB\n", 80 nr_swap_pages << (PAGE_SHIFT-10)); 81 printk("%ld pages of RAM\n", totalram_pages); 82 printk("%ld free pages\n", nr_free_pages()); 83 #if 0 /* undefined pgtable_cache_size, pgd_cache_size */ 84 printk("%ld pages in page table cache\n",pgtable_cache_size); 85 #ifndef CONFIG_SMP 86 if (sparc_cpu_model == sun4m || sparc_cpu_model == sun4d) 87 printk("%ld entries in page dir cache\n",pgd_cache_size); 88 #endif 89 #endif 90 } 91 92 void __init sparc_context_init(int numctx) 93 { 94 int ctx; 95 96 ctx_list_pool = __alloc_bootmem(numctx * sizeof(struct ctx_list), SMP_CACHE_BYTES, 0UL); 97 98 for(ctx = 0; ctx < numctx; ctx++) { 99 struct ctx_list *clist; 100 101 clist = (ctx_list_pool + ctx); 102 clist->ctx_number = ctx; 103 clist->ctx_mm = NULL; 104 } 105 ctx_free.next = ctx_free.prev = &ctx_free; 106 ctx_used.next = ctx_used.prev = &ctx_used; 107 for(ctx = 0; ctx < numctx; ctx++) 108 add_to_free_ctxlist(ctx_list_pool + ctx); 109 } 110 111 extern unsigned long cmdline_memory_size; 112 unsigned long last_valid_pfn; 113 114 unsigned long calc_highpages(void) 115 { 116 int i; 117 int nr = 0; 118 119 for (i = 0; sp_banks[i].num_bytes != 0; i++) { 120 unsigned long start_pfn = sp_banks[i].base_addr >> PAGE_SHIFT; 121 unsigned long end_pfn = (sp_banks[i].base_addr + sp_banks[i].num_bytes) >> PAGE_SHIFT; 122 123 if (end_pfn <= max_low_pfn) 124 continue; 125 126 if (start_pfn < max_low_pfn) 127 start_pfn = max_low_pfn; 128 129 nr += end_pfn - start_pfn; 130 } 131 132 return nr; 133 } 134 135 static unsigned long calc_max_low_pfn(void) 136 { 137 int i; 138 unsigned long tmp = pfn_base + (SRMMU_MAXMEM >> PAGE_SHIFT); 139 unsigned long curr_pfn, last_pfn; 140 141 last_pfn = (sp_banks[0].base_addr + sp_banks[0].num_bytes) >> PAGE_SHIFT; 142 for (i = 1; sp_banks[i].num_bytes != 0; i++) { 143 curr_pfn = sp_banks[i].base_addr >> PAGE_SHIFT; 144 145 if (curr_pfn >= tmp) { 146 if (last_pfn < tmp) 147 tmp = last_pfn; 148 break; 149 } 150 151 last_pfn = (sp_banks[i].base_addr + sp_banks[i].num_bytes) >> PAGE_SHIFT; 152 } 153 154 return tmp; 155 } 156 157 unsigned long __init bootmem_init(unsigned long *pages_avail) 158 { 159 unsigned long bootmap_size, start_pfn; 160 unsigned long end_of_phys_memory = 0UL; 161 unsigned long bootmap_pfn, bytes_avail, size; 162 int i; 163 164 bytes_avail = 0UL; 165 for (i = 0; sp_banks[i].num_bytes != 0; i++) { 166 end_of_phys_memory = sp_banks[i].base_addr + 167 sp_banks[i].num_bytes; 168 bytes_avail += sp_banks[i].num_bytes; 169 if (cmdline_memory_size) { 170 if (bytes_avail > cmdline_memory_size) { 171 unsigned long slack = bytes_avail - cmdline_memory_size; 172 173 bytes_avail -= slack; 174 end_of_phys_memory -= slack; 175 176 sp_banks[i].num_bytes -= slack; 177 if (sp_banks[i].num_bytes == 0) { 178 sp_banks[i].base_addr = 0xdeadbeef; 179 } else { 180 sp_banks[i+1].num_bytes = 0; 181 sp_banks[i+1].base_addr = 0xdeadbeef; 182 } 183 break; 184 } 185 } 186 } 187 188 /* Start with page aligned address of last symbol in kernel 189 * image. 190 */ 191 start_pfn = (unsigned long)__pa(PAGE_ALIGN((unsigned long) &_end)); 192 193 /* Now shift down to get the real physical page frame number. */ 194 start_pfn >>= PAGE_SHIFT; 195 196 bootmap_pfn = start_pfn; 197 198 max_pfn = end_of_phys_memory >> PAGE_SHIFT; 199 200 max_low_pfn = max_pfn; 201 highstart_pfn = highend_pfn = max_pfn; 202 203 if (max_low_pfn > pfn_base + (SRMMU_MAXMEM >> PAGE_SHIFT)) { 204 highstart_pfn = pfn_base + (SRMMU_MAXMEM >> PAGE_SHIFT); 205 max_low_pfn = calc_max_low_pfn(); 206 printk(KERN_NOTICE "%ldMB HIGHMEM available.\n", 207 calc_highpages() >> (20 - PAGE_SHIFT)); 208 } 209 210 #ifdef CONFIG_BLK_DEV_INITRD 211 /* Now have to check initial ramdisk, so that bootmap does not overwrite it */ 212 if (sparc_ramdisk_image) { 213 if (sparc_ramdisk_image >= (unsigned long)&_end - 2 * PAGE_SIZE) 214 sparc_ramdisk_image -= KERNBASE; 215 initrd_start = sparc_ramdisk_image + phys_base; 216 initrd_end = initrd_start + sparc_ramdisk_size; 217 if (initrd_end > end_of_phys_memory) { 218 printk(KERN_CRIT "initrd extends beyond end of memory " 219 "(0x%016lx > 0x%016lx)\ndisabling initrd\n", 220 initrd_end, end_of_phys_memory); 221 initrd_start = 0; 222 } 223 if (initrd_start) { 224 if (initrd_start >= (start_pfn << PAGE_SHIFT) && 225 initrd_start < (start_pfn << PAGE_SHIFT) + 2 * PAGE_SIZE) 226 bootmap_pfn = PAGE_ALIGN (initrd_end) >> PAGE_SHIFT; 227 } 228 } 229 #endif 230 /* Initialize the boot-time allocator. */ 231 bootmap_size = init_bootmem_node(NODE_DATA(0), bootmap_pfn, pfn_base, 232 max_low_pfn); 233 234 /* Now register the available physical memory with the 235 * allocator. 236 */ 237 *pages_avail = 0; 238 for (i = 0; sp_banks[i].num_bytes != 0; i++) { 239 unsigned long curr_pfn, last_pfn; 240 241 curr_pfn = sp_banks[i].base_addr >> PAGE_SHIFT; 242 if (curr_pfn >= max_low_pfn) 243 break; 244 245 last_pfn = (sp_banks[i].base_addr + sp_banks[i].num_bytes) >> PAGE_SHIFT; 246 if (last_pfn > max_low_pfn) 247 last_pfn = max_low_pfn; 248 249 /* 250 * .. finally, did all the rounding and playing 251 * around just make the area go away? 252 */ 253 if (last_pfn <= curr_pfn) 254 continue; 255 256 size = (last_pfn - curr_pfn) << PAGE_SHIFT; 257 *pages_avail += last_pfn - curr_pfn; 258 259 free_bootmem(sp_banks[i].base_addr, size); 260 } 261 262 #ifdef CONFIG_BLK_DEV_INITRD 263 if (initrd_start) { 264 /* Reserve the initrd image area. */ 265 size = initrd_end - initrd_start; 266 reserve_bootmem(initrd_start, size, BOOTMEM_DEFAULT); 267 *pages_avail -= PAGE_ALIGN(size) >> PAGE_SHIFT; 268 269 initrd_start = (initrd_start - phys_base) + PAGE_OFFSET; 270 initrd_end = (initrd_end - phys_base) + PAGE_OFFSET; 271 } 272 #endif 273 /* Reserve the kernel text/data/bss. */ 274 size = (start_pfn << PAGE_SHIFT) - phys_base; 275 reserve_bootmem(phys_base, size, BOOTMEM_DEFAULT); 276 *pages_avail -= PAGE_ALIGN(size) >> PAGE_SHIFT; 277 278 /* Reserve the bootmem map. We do not account for it 279 * in pages_avail because we will release that memory 280 * in free_all_bootmem. 281 */ 282 size = bootmap_size; 283 reserve_bootmem((bootmap_pfn << PAGE_SHIFT), size, BOOTMEM_DEFAULT); 284 *pages_avail -= PAGE_ALIGN(size) >> PAGE_SHIFT; 285 286 return max_pfn; 287 } 288 289 /* 290 * check_pgt_cache 291 * 292 * This is called at the end of unmapping of VMA (zap_page_range), 293 * to rescan the page cache for architecture specific things, 294 * presumably something like sun4/sun4c PMEGs. Most architectures 295 * define check_pgt_cache empty. 296 * 297 * We simply copy the 2.4 implementation for now. 298 */ 299 static int pgt_cache_water[2] = { 25, 50 }; 300 301 void check_pgt_cache(void) 302 { 303 do_check_pgt_cache(pgt_cache_water[0], pgt_cache_water[1]); 304 } 305 306 /* 307 * paging_init() sets up the page tables: We call the MMU specific 308 * init routine based upon the Sun model type on the Sparc. 309 * 310 */ 311 extern void sun4c_paging_init(void); 312 extern void srmmu_paging_init(void); 313 extern void device_scan(void); 314 315 pgprot_t PAGE_SHARED __read_mostly; 316 EXPORT_SYMBOL(PAGE_SHARED); 317 318 void __init paging_init(void) 319 { 320 switch(sparc_cpu_model) { 321 case sun4c: 322 case sun4e: 323 case sun4: 324 sun4c_paging_init(); 325 sparc_unmapped_base = 0xe0000000; 326 BTFIXUPSET_SETHI(sparc_unmapped_base, 0xe0000000); 327 break; 328 case sparc_leon: 329 leon_init(); 330 /* fall through */ 331 case sun4m: 332 case sun4d: 333 srmmu_paging_init(); 334 sparc_unmapped_base = 0x50000000; 335 BTFIXUPSET_SETHI(sparc_unmapped_base, 0x50000000); 336 break; 337 default: 338 prom_printf("paging_init: Cannot init paging on this Sparc\n"); 339 prom_printf("paging_init: sparc_cpu_model = %d\n", sparc_cpu_model); 340 prom_printf("paging_init: Halting...\n"); 341 prom_halt(); 342 } 343 344 /* Initialize the protection map with non-constant, MMU dependent values. */ 345 protection_map[0] = PAGE_NONE; 346 protection_map[1] = PAGE_READONLY; 347 protection_map[2] = PAGE_COPY; 348 protection_map[3] = PAGE_COPY; 349 protection_map[4] = PAGE_READONLY; 350 protection_map[5] = PAGE_READONLY; 351 protection_map[6] = PAGE_COPY; 352 protection_map[7] = PAGE_COPY; 353 protection_map[8] = PAGE_NONE; 354 protection_map[9] = PAGE_READONLY; 355 protection_map[10] = PAGE_SHARED; 356 protection_map[11] = PAGE_SHARED; 357 protection_map[12] = PAGE_READONLY; 358 protection_map[13] = PAGE_READONLY; 359 protection_map[14] = PAGE_SHARED; 360 protection_map[15] = PAGE_SHARED; 361 btfixup(); 362 prom_build_devicetree(); 363 of_fill_in_cpu_data(); 364 device_scan(); 365 } 366 367 static void __init taint_real_pages(void) 368 { 369 int i; 370 371 for (i = 0; sp_banks[i].num_bytes; i++) { 372 unsigned long start, end; 373 374 start = sp_banks[i].base_addr; 375 end = start + sp_banks[i].num_bytes; 376 377 while (start < end) { 378 set_bit(start >> 20, sparc_valid_addr_bitmap); 379 start += PAGE_SIZE; 380 } 381 } 382 } 383 384 static void map_high_region(unsigned long start_pfn, unsigned long end_pfn) 385 { 386 unsigned long tmp; 387 388 #ifdef CONFIG_DEBUG_HIGHMEM 389 printk("mapping high region %08lx - %08lx\n", start_pfn, end_pfn); 390 #endif 391 392 for (tmp = start_pfn; tmp < end_pfn; tmp++) { 393 struct page *page = pfn_to_page(tmp); 394 395 ClearPageReserved(page); 396 init_page_count(page); 397 __free_page(page); 398 totalhigh_pages++; 399 } 400 } 401 402 void __init mem_init(void) 403 { 404 int codepages = 0; 405 int datapages = 0; 406 int initpages = 0; 407 int reservedpages = 0; 408 int i; 409 410 if (PKMAP_BASE+LAST_PKMAP*PAGE_SIZE >= FIXADDR_START) { 411 prom_printf("BUG: fixmap and pkmap areas overlap\n"); 412 prom_printf("pkbase: 0x%lx pkend: 0x%lx fixstart 0x%lx\n", 413 PKMAP_BASE, 414 (unsigned long)PKMAP_BASE+LAST_PKMAP*PAGE_SIZE, 415 FIXADDR_START); 416 prom_printf("Please mail sparclinux@vger.kernel.org.\n"); 417 prom_halt(); 418 } 419 420 421 /* Saves us work later. */ 422 memset((void *)&empty_zero_page, 0, PAGE_SIZE); 423 424 i = last_valid_pfn >> ((20 - PAGE_SHIFT) + 5); 425 i += 1; 426 sparc_valid_addr_bitmap = (unsigned long *) 427 __alloc_bootmem(i << 2, SMP_CACHE_BYTES, 0UL); 428 429 if (sparc_valid_addr_bitmap == NULL) { 430 prom_printf("mem_init: Cannot alloc valid_addr_bitmap.\n"); 431 prom_halt(); 432 } 433 memset(sparc_valid_addr_bitmap, 0, i << 2); 434 435 taint_real_pages(); 436 437 max_mapnr = last_valid_pfn - pfn_base; 438 high_memory = __va(max_low_pfn << PAGE_SHIFT); 439 440 totalram_pages = free_all_bootmem(); 441 442 for (i = 0; sp_banks[i].num_bytes != 0; i++) { 443 unsigned long start_pfn = sp_banks[i].base_addr >> PAGE_SHIFT; 444 unsigned long end_pfn = (sp_banks[i].base_addr + sp_banks[i].num_bytes) >> PAGE_SHIFT; 445 446 num_physpages += sp_banks[i].num_bytes >> PAGE_SHIFT; 447 448 if (end_pfn <= highstart_pfn) 449 continue; 450 451 if (start_pfn < highstart_pfn) 452 start_pfn = highstart_pfn; 453 454 map_high_region(start_pfn, end_pfn); 455 } 456 457 totalram_pages += totalhigh_pages; 458 459 codepages = (((unsigned long) &_etext) - ((unsigned long)&_start)); 460 codepages = PAGE_ALIGN(codepages) >> PAGE_SHIFT; 461 datapages = (((unsigned long) &_edata) - ((unsigned long)&_etext)); 462 datapages = PAGE_ALIGN(datapages) >> PAGE_SHIFT; 463 initpages = (((unsigned long) &__init_end) - ((unsigned long) &__init_begin)); 464 initpages = PAGE_ALIGN(initpages) >> PAGE_SHIFT; 465 466 /* Ignore memory holes for the purpose of counting reserved pages */ 467 for (i=0; i < max_low_pfn; i++) 468 if (test_bit(i >> (20 - PAGE_SHIFT), sparc_valid_addr_bitmap) 469 && PageReserved(pfn_to_page(i))) 470 reservedpages++; 471 472 printk(KERN_INFO "Memory: %luk/%luk available (%dk kernel code, %dk reserved, %dk data, %dk init, %ldk highmem)\n", 473 nr_free_pages() << (PAGE_SHIFT-10), 474 num_physpages << (PAGE_SHIFT - 10), 475 codepages << (PAGE_SHIFT-10), 476 reservedpages << (PAGE_SHIFT - 10), 477 datapages << (PAGE_SHIFT-10), 478 initpages << (PAGE_SHIFT-10), 479 totalhigh_pages << (PAGE_SHIFT-10)); 480 } 481 482 void free_initmem (void) 483 { 484 unsigned long addr; 485 unsigned long freed; 486 487 addr = (unsigned long)(&__init_begin); 488 freed = (unsigned long)(&__init_end) - addr; 489 for (; addr < (unsigned long)(&__init_end); addr += PAGE_SIZE) { 490 struct page *p; 491 492 memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE); 493 p = virt_to_page(addr); 494 495 ClearPageReserved(p); 496 init_page_count(p); 497 __free_page(p); 498 totalram_pages++; 499 num_physpages++; 500 } 501 printk(KERN_INFO "Freeing unused kernel memory: %ldk freed\n", 502 freed >> 10); 503 } 504 505 #ifdef CONFIG_BLK_DEV_INITRD 506 void free_initrd_mem(unsigned long start, unsigned long end) 507 { 508 if (start < end) 509 printk(KERN_INFO "Freeing initrd memory: %ldk freed\n", 510 (end - start) >> 10); 511 for (; start < end; start += PAGE_SIZE) { 512 struct page *p; 513 514 memset((void *)start, POISON_FREE_INITMEM, PAGE_SIZE); 515 p = virt_to_page(start); 516 517 ClearPageReserved(p); 518 init_page_count(p); 519 __free_page(p); 520 totalram_pages++; 521 num_physpages++; 522 } 523 } 524 #endif 525 526 void sparc_flush_page_to_ram(struct page *page) 527 { 528 unsigned long vaddr = (unsigned long)page_address(page); 529 530 if (vaddr) 531 __flush_page_to_ram(vaddr); 532 } 533 EXPORT_SYMBOL(sparc_flush_page_to_ram); 534