1 /* 2 * linux/arch/sparc/mm/init.c 3 * 4 * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu) 5 * Copyright (C) 1995 Eddie C. Dost (ecd@skynet.be) 6 * Copyright (C) 1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz) 7 * Copyright (C) 2000 Anton Blanchard (anton@samba.org) 8 */ 9 10 #include <linux/module.h> 11 #include <linux/signal.h> 12 #include <linux/sched.h> 13 #include <linux/kernel.h> 14 #include <linux/errno.h> 15 #include <linux/string.h> 16 #include <linux/types.h> 17 #include <linux/ptrace.h> 18 #include <linux/mman.h> 19 #include <linux/mm.h> 20 #include <linux/swap.h> 21 #include <linux/initrd.h> 22 #include <linux/init.h> 23 #include <linux/highmem.h> 24 #include <linux/bootmem.h> 25 #include <linux/pagemap.h> 26 #include <linux/poison.h> 27 #include <linux/gfp.h> 28 29 #include <asm/sections.h> 30 #include <asm/system.h> 31 #include <asm/vac-ops.h> 32 #include <asm/page.h> 33 #include <asm/pgtable.h> 34 #include <asm/vaddrs.h> 35 #include <asm/pgalloc.h> /* bug in asm-generic/tlb.h: check_pgt_cache */ 36 #include <asm/tlb.h> 37 #include <asm/prom.h> 38 #include <asm/leon.h> 39 40 DEFINE_PER_CPU(struct mmu_gather, mmu_gathers); 41 42 unsigned long *sparc_valid_addr_bitmap; 43 EXPORT_SYMBOL(sparc_valid_addr_bitmap); 44 45 unsigned long phys_base; 46 EXPORT_SYMBOL(phys_base); 47 48 unsigned long pfn_base; 49 EXPORT_SYMBOL(pfn_base); 50 51 unsigned long page_kernel; 52 EXPORT_SYMBOL(page_kernel); 53 54 struct sparc_phys_banks sp_banks[SPARC_PHYS_BANKS+1]; 55 unsigned long sparc_unmapped_base; 56 57 struct pgtable_cache_struct pgt_quicklists; 58 59 /* Initial ramdisk setup */ 60 extern unsigned int sparc_ramdisk_image; 61 extern unsigned int sparc_ramdisk_size; 62 63 unsigned long highstart_pfn, highend_pfn; 64 65 pte_t *kmap_pte; 66 pgprot_t kmap_prot; 67 68 #define kmap_get_fixmap_pte(vaddr) \ 69 pte_offset_kernel(pmd_offset(pgd_offset_k(vaddr), (vaddr)), (vaddr)) 70 71 void __init kmap_init(void) 72 { 73 /* cache the first kmap pte */ 74 kmap_pte = kmap_get_fixmap_pte(__fix_to_virt(FIX_KMAP_BEGIN)); 75 kmap_prot = __pgprot(SRMMU_ET_PTE | SRMMU_PRIV | SRMMU_CACHE); 76 } 77 78 void show_mem(void) 79 { 80 printk("Mem-info:\n"); 81 show_free_areas(); 82 printk("Free swap: %6ldkB\n", 83 nr_swap_pages << (PAGE_SHIFT-10)); 84 printk("%ld pages of RAM\n", totalram_pages); 85 printk("%ld free pages\n", nr_free_pages()); 86 #if 0 /* undefined pgtable_cache_size, pgd_cache_size */ 87 printk("%ld pages in page table cache\n",pgtable_cache_size); 88 #ifndef CONFIG_SMP 89 if (sparc_cpu_model == sun4m || sparc_cpu_model == sun4d) 90 printk("%ld entries in page dir cache\n",pgd_cache_size); 91 #endif 92 #endif 93 } 94 95 void __init sparc_context_init(int numctx) 96 { 97 int ctx; 98 99 ctx_list_pool = __alloc_bootmem(numctx * sizeof(struct ctx_list), SMP_CACHE_BYTES, 0UL); 100 101 for(ctx = 0; ctx < numctx; ctx++) { 102 struct ctx_list *clist; 103 104 clist = (ctx_list_pool + ctx); 105 clist->ctx_number = ctx; 106 clist->ctx_mm = NULL; 107 } 108 ctx_free.next = ctx_free.prev = &ctx_free; 109 ctx_used.next = ctx_used.prev = &ctx_used; 110 for(ctx = 0; ctx < numctx; ctx++) 111 add_to_free_ctxlist(ctx_list_pool + ctx); 112 } 113 114 extern unsigned long cmdline_memory_size; 115 unsigned long last_valid_pfn; 116 117 unsigned long calc_highpages(void) 118 { 119 int i; 120 int nr = 0; 121 122 for (i = 0; sp_banks[i].num_bytes != 0; i++) { 123 unsigned long start_pfn = sp_banks[i].base_addr >> PAGE_SHIFT; 124 unsigned long end_pfn = (sp_banks[i].base_addr + sp_banks[i].num_bytes) >> PAGE_SHIFT; 125 126 if (end_pfn <= max_low_pfn) 127 continue; 128 129 if (start_pfn < max_low_pfn) 130 start_pfn = max_low_pfn; 131 132 nr += end_pfn - start_pfn; 133 } 134 135 return nr; 136 } 137 138 static unsigned long calc_max_low_pfn(void) 139 { 140 int i; 141 unsigned long tmp = pfn_base + (SRMMU_MAXMEM >> PAGE_SHIFT); 142 unsigned long curr_pfn, last_pfn; 143 144 last_pfn = (sp_banks[0].base_addr + sp_banks[0].num_bytes) >> PAGE_SHIFT; 145 for (i = 1; sp_banks[i].num_bytes != 0; i++) { 146 curr_pfn = sp_banks[i].base_addr >> PAGE_SHIFT; 147 148 if (curr_pfn >= tmp) { 149 if (last_pfn < tmp) 150 tmp = last_pfn; 151 break; 152 } 153 154 last_pfn = (sp_banks[i].base_addr + sp_banks[i].num_bytes) >> PAGE_SHIFT; 155 } 156 157 return tmp; 158 } 159 160 unsigned long __init bootmem_init(unsigned long *pages_avail) 161 { 162 unsigned long bootmap_size, start_pfn; 163 unsigned long end_of_phys_memory = 0UL; 164 unsigned long bootmap_pfn, bytes_avail, size; 165 int i; 166 167 bytes_avail = 0UL; 168 for (i = 0; sp_banks[i].num_bytes != 0; i++) { 169 end_of_phys_memory = sp_banks[i].base_addr + 170 sp_banks[i].num_bytes; 171 bytes_avail += sp_banks[i].num_bytes; 172 if (cmdline_memory_size) { 173 if (bytes_avail > cmdline_memory_size) { 174 unsigned long slack = bytes_avail - cmdline_memory_size; 175 176 bytes_avail -= slack; 177 end_of_phys_memory -= slack; 178 179 sp_banks[i].num_bytes -= slack; 180 if (sp_banks[i].num_bytes == 0) { 181 sp_banks[i].base_addr = 0xdeadbeef; 182 } else { 183 sp_banks[i+1].num_bytes = 0; 184 sp_banks[i+1].base_addr = 0xdeadbeef; 185 } 186 break; 187 } 188 } 189 } 190 191 /* Start with page aligned address of last symbol in kernel 192 * image. 193 */ 194 start_pfn = (unsigned long)__pa(PAGE_ALIGN((unsigned long) &_end)); 195 196 /* Now shift down to get the real physical page frame number. */ 197 start_pfn >>= PAGE_SHIFT; 198 199 bootmap_pfn = start_pfn; 200 201 max_pfn = end_of_phys_memory >> PAGE_SHIFT; 202 203 max_low_pfn = max_pfn; 204 highstart_pfn = highend_pfn = max_pfn; 205 206 if (max_low_pfn > pfn_base + (SRMMU_MAXMEM >> PAGE_SHIFT)) { 207 highstart_pfn = pfn_base + (SRMMU_MAXMEM >> PAGE_SHIFT); 208 max_low_pfn = calc_max_low_pfn(); 209 printk(KERN_NOTICE "%ldMB HIGHMEM available.\n", 210 calc_highpages() >> (20 - PAGE_SHIFT)); 211 } 212 213 #ifdef CONFIG_BLK_DEV_INITRD 214 /* Now have to check initial ramdisk, so that bootmap does not overwrite it */ 215 if (sparc_ramdisk_image) { 216 if (sparc_ramdisk_image >= (unsigned long)&_end - 2 * PAGE_SIZE) 217 sparc_ramdisk_image -= KERNBASE; 218 initrd_start = sparc_ramdisk_image + phys_base; 219 initrd_end = initrd_start + sparc_ramdisk_size; 220 if (initrd_end > end_of_phys_memory) { 221 printk(KERN_CRIT "initrd extends beyond end of memory " 222 "(0x%016lx > 0x%016lx)\ndisabling initrd\n", 223 initrd_end, end_of_phys_memory); 224 initrd_start = 0; 225 } 226 if (initrd_start) { 227 if (initrd_start >= (start_pfn << PAGE_SHIFT) && 228 initrd_start < (start_pfn << PAGE_SHIFT) + 2 * PAGE_SIZE) 229 bootmap_pfn = PAGE_ALIGN (initrd_end) >> PAGE_SHIFT; 230 } 231 } 232 #endif 233 /* Initialize the boot-time allocator. */ 234 bootmap_size = init_bootmem_node(NODE_DATA(0), bootmap_pfn, pfn_base, 235 max_low_pfn); 236 237 /* Now register the available physical memory with the 238 * allocator. 239 */ 240 *pages_avail = 0; 241 for (i = 0; sp_banks[i].num_bytes != 0; i++) { 242 unsigned long curr_pfn, last_pfn; 243 244 curr_pfn = sp_banks[i].base_addr >> PAGE_SHIFT; 245 if (curr_pfn >= max_low_pfn) 246 break; 247 248 last_pfn = (sp_banks[i].base_addr + sp_banks[i].num_bytes) >> PAGE_SHIFT; 249 if (last_pfn > max_low_pfn) 250 last_pfn = max_low_pfn; 251 252 /* 253 * .. finally, did all the rounding and playing 254 * around just make the area go away? 255 */ 256 if (last_pfn <= curr_pfn) 257 continue; 258 259 size = (last_pfn - curr_pfn) << PAGE_SHIFT; 260 *pages_avail += last_pfn - curr_pfn; 261 262 free_bootmem(sp_banks[i].base_addr, size); 263 } 264 265 #ifdef CONFIG_BLK_DEV_INITRD 266 if (initrd_start) { 267 /* Reserve the initrd image area. */ 268 size = initrd_end - initrd_start; 269 reserve_bootmem(initrd_start, size, BOOTMEM_DEFAULT); 270 *pages_avail -= PAGE_ALIGN(size) >> PAGE_SHIFT; 271 272 initrd_start = (initrd_start - phys_base) + PAGE_OFFSET; 273 initrd_end = (initrd_end - phys_base) + PAGE_OFFSET; 274 } 275 #endif 276 /* Reserve the kernel text/data/bss. */ 277 size = (start_pfn << PAGE_SHIFT) - phys_base; 278 reserve_bootmem(phys_base, size, BOOTMEM_DEFAULT); 279 *pages_avail -= PAGE_ALIGN(size) >> PAGE_SHIFT; 280 281 /* Reserve the bootmem map. We do not account for it 282 * in pages_avail because we will release that memory 283 * in free_all_bootmem. 284 */ 285 size = bootmap_size; 286 reserve_bootmem((bootmap_pfn << PAGE_SHIFT), size, BOOTMEM_DEFAULT); 287 *pages_avail -= PAGE_ALIGN(size) >> PAGE_SHIFT; 288 289 return max_pfn; 290 } 291 292 /* 293 * check_pgt_cache 294 * 295 * This is called at the end of unmapping of VMA (zap_page_range), 296 * to rescan the page cache for architecture specific things, 297 * presumably something like sun4/sun4c PMEGs. Most architectures 298 * define check_pgt_cache empty. 299 * 300 * We simply copy the 2.4 implementation for now. 301 */ 302 static int pgt_cache_water[2] = { 25, 50 }; 303 304 void check_pgt_cache(void) 305 { 306 do_check_pgt_cache(pgt_cache_water[0], pgt_cache_water[1]); 307 } 308 309 /* 310 * paging_init() sets up the page tables: We call the MMU specific 311 * init routine based upon the Sun model type on the Sparc. 312 * 313 */ 314 extern void sun4c_paging_init(void); 315 extern void srmmu_paging_init(void); 316 extern void device_scan(void); 317 318 pgprot_t PAGE_SHARED __read_mostly; 319 EXPORT_SYMBOL(PAGE_SHARED); 320 321 void __init paging_init(void) 322 { 323 switch(sparc_cpu_model) { 324 case sun4c: 325 case sun4e: 326 case sun4: 327 sun4c_paging_init(); 328 sparc_unmapped_base = 0xe0000000; 329 BTFIXUPSET_SETHI(sparc_unmapped_base, 0xe0000000); 330 break; 331 case sparc_leon: 332 leon_init(); 333 /* fall through */ 334 case sun4m: 335 case sun4d: 336 srmmu_paging_init(); 337 sparc_unmapped_base = 0x50000000; 338 BTFIXUPSET_SETHI(sparc_unmapped_base, 0x50000000); 339 break; 340 default: 341 prom_printf("paging_init: Cannot init paging on this Sparc\n"); 342 prom_printf("paging_init: sparc_cpu_model = %d\n", sparc_cpu_model); 343 prom_printf("paging_init: Halting...\n"); 344 prom_halt(); 345 }; 346 347 /* Initialize the protection map with non-constant, MMU dependent values. */ 348 protection_map[0] = PAGE_NONE; 349 protection_map[1] = PAGE_READONLY; 350 protection_map[2] = PAGE_COPY; 351 protection_map[3] = PAGE_COPY; 352 protection_map[4] = PAGE_READONLY; 353 protection_map[5] = PAGE_READONLY; 354 protection_map[6] = PAGE_COPY; 355 protection_map[7] = PAGE_COPY; 356 protection_map[8] = PAGE_NONE; 357 protection_map[9] = PAGE_READONLY; 358 protection_map[10] = PAGE_SHARED; 359 protection_map[11] = PAGE_SHARED; 360 protection_map[12] = PAGE_READONLY; 361 protection_map[13] = PAGE_READONLY; 362 protection_map[14] = PAGE_SHARED; 363 protection_map[15] = PAGE_SHARED; 364 btfixup(); 365 prom_build_devicetree(); 366 of_fill_in_cpu_data(); 367 device_scan(); 368 } 369 370 static void __init taint_real_pages(void) 371 { 372 int i; 373 374 for (i = 0; sp_banks[i].num_bytes; i++) { 375 unsigned long start, end; 376 377 start = sp_banks[i].base_addr; 378 end = start + sp_banks[i].num_bytes; 379 380 while (start < end) { 381 set_bit(start >> 20, sparc_valid_addr_bitmap); 382 start += PAGE_SIZE; 383 } 384 } 385 } 386 387 static void map_high_region(unsigned long start_pfn, unsigned long end_pfn) 388 { 389 unsigned long tmp; 390 391 #ifdef CONFIG_DEBUG_HIGHMEM 392 printk("mapping high region %08lx - %08lx\n", start_pfn, end_pfn); 393 #endif 394 395 for (tmp = start_pfn; tmp < end_pfn; tmp++) { 396 struct page *page = pfn_to_page(tmp); 397 398 ClearPageReserved(page); 399 init_page_count(page); 400 __free_page(page); 401 totalhigh_pages++; 402 } 403 } 404 405 void __init mem_init(void) 406 { 407 int codepages = 0; 408 int datapages = 0; 409 int initpages = 0; 410 int reservedpages = 0; 411 int i; 412 413 if (PKMAP_BASE+LAST_PKMAP*PAGE_SIZE >= FIXADDR_START) { 414 prom_printf("BUG: fixmap and pkmap areas overlap\n"); 415 prom_printf("pkbase: 0x%lx pkend: 0x%lx fixstart 0x%lx\n", 416 PKMAP_BASE, 417 (unsigned long)PKMAP_BASE+LAST_PKMAP*PAGE_SIZE, 418 FIXADDR_START); 419 prom_printf("Please mail sparclinux@vger.kernel.org.\n"); 420 prom_halt(); 421 } 422 423 424 /* Saves us work later. */ 425 memset((void *)&empty_zero_page, 0, PAGE_SIZE); 426 427 i = last_valid_pfn >> ((20 - PAGE_SHIFT) + 5); 428 i += 1; 429 sparc_valid_addr_bitmap = (unsigned long *) 430 __alloc_bootmem(i << 2, SMP_CACHE_BYTES, 0UL); 431 432 if (sparc_valid_addr_bitmap == NULL) { 433 prom_printf("mem_init: Cannot alloc valid_addr_bitmap.\n"); 434 prom_halt(); 435 } 436 memset(sparc_valid_addr_bitmap, 0, i << 2); 437 438 taint_real_pages(); 439 440 max_mapnr = last_valid_pfn - pfn_base; 441 high_memory = __va(max_low_pfn << PAGE_SHIFT); 442 443 totalram_pages = free_all_bootmem(); 444 445 for (i = 0; sp_banks[i].num_bytes != 0; i++) { 446 unsigned long start_pfn = sp_banks[i].base_addr >> PAGE_SHIFT; 447 unsigned long end_pfn = (sp_banks[i].base_addr + sp_banks[i].num_bytes) >> PAGE_SHIFT; 448 449 num_physpages += sp_banks[i].num_bytes >> PAGE_SHIFT; 450 451 if (end_pfn <= highstart_pfn) 452 continue; 453 454 if (start_pfn < highstart_pfn) 455 start_pfn = highstart_pfn; 456 457 map_high_region(start_pfn, end_pfn); 458 } 459 460 totalram_pages += totalhigh_pages; 461 462 codepages = (((unsigned long) &_etext) - ((unsigned long)&_start)); 463 codepages = PAGE_ALIGN(codepages) >> PAGE_SHIFT; 464 datapages = (((unsigned long) &_edata) - ((unsigned long)&_etext)); 465 datapages = PAGE_ALIGN(datapages) >> PAGE_SHIFT; 466 initpages = (((unsigned long) &__init_end) - ((unsigned long) &__init_begin)); 467 initpages = PAGE_ALIGN(initpages) >> PAGE_SHIFT; 468 469 /* Ignore memory holes for the purpose of counting reserved pages */ 470 for (i=0; i < max_low_pfn; i++) 471 if (test_bit(i >> (20 - PAGE_SHIFT), sparc_valid_addr_bitmap) 472 && PageReserved(pfn_to_page(i))) 473 reservedpages++; 474 475 printk(KERN_INFO "Memory: %luk/%luk available (%dk kernel code, %dk reserved, %dk data, %dk init, %ldk highmem)\n", 476 nr_free_pages() << (PAGE_SHIFT-10), 477 num_physpages << (PAGE_SHIFT - 10), 478 codepages << (PAGE_SHIFT-10), 479 reservedpages << (PAGE_SHIFT - 10), 480 datapages << (PAGE_SHIFT-10), 481 initpages << (PAGE_SHIFT-10), 482 totalhigh_pages << (PAGE_SHIFT-10)); 483 } 484 485 void free_initmem (void) 486 { 487 unsigned long addr; 488 unsigned long freed; 489 490 addr = (unsigned long)(&__init_begin); 491 freed = (unsigned long)(&__init_end) - addr; 492 for (; addr < (unsigned long)(&__init_end); addr += PAGE_SIZE) { 493 struct page *p; 494 495 memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE); 496 p = virt_to_page(addr); 497 498 ClearPageReserved(p); 499 init_page_count(p); 500 __free_page(p); 501 totalram_pages++; 502 num_physpages++; 503 } 504 printk(KERN_INFO "Freeing unused kernel memory: %ldk freed\n", 505 freed >> 10); 506 } 507 508 #ifdef CONFIG_BLK_DEV_INITRD 509 void free_initrd_mem(unsigned long start, unsigned long end) 510 { 511 if (start < end) 512 printk(KERN_INFO "Freeing initrd memory: %ldk freed\n", 513 (end - start) >> 10); 514 for (; start < end; start += PAGE_SIZE) { 515 struct page *p; 516 517 memset((void *)start, POISON_FREE_INITMEM, PAGE_SIZE); 518 p = virt_to_page(start); 519 520 ClearPageReserved(p); 521 init_page_count(p); 522 __free_page(p); 523 totalram_pages++; 524 num_physpages++; 525 } 526 } 527 #endif 528 529 void sparc_flush_page_to_ram(struct page *page) 530 { 531 unsigned long vaddr = (unsigned long)page_address(page); 532 533 if (vaddr) 534 __flush_page_to_ram(vaddr); 535 } 536 EXPORT_SYMBOL(sparc_flush_page_to_ram); 537