xref: /openbmc/linux/arch/sparc/mm/hugetlbpage.c (revision b627b4ed)
1 /*
2  * SPARC64 Huge TLB page support.
3  *
4  * Copyright (C) 2002, 2003, 2006 David S. Miller (davem@davemloft.net)
5  */
6 
7 #include <linux/init.h>
8 #include <linux/module.h>
9 #include <linux/fs.h>
10 #include <linux/mm.h>
11 #include <linux/hugetlb.h>
12 #include <linux/pagemap.h>
13 #include <linux/slab.h>
14 #include <linux/sysctl.h>
15 
16 #include <asm/mman.h>
17 #include <asm/pgalloc.h>
18 #include <asm/tlb.h>
19 #include <asm/tlbflush.h>
20 #include <asm/cacheflush.h>
21 #include <asm/mmu_context.h>
22 
23 /* Slightly simplified from the non-hugepage variant because by
24  * definition we don't have to worry about any page coloring stuff
25  */
26 #define VA_EXCLUDE_START (0x0000080000000000UL - (1UL << 32UL))
27 #define VA_EXCLUDE_END   (0xfffff80000000000UL + (1UL << 32UL))
28 
29 static unsigned long hugetlb_get_unmapped_area_bottomup(struct file *filp,
30 							unsigned long addr,
31 							unsigned long len,
32 							unsigned long pgoff,
33 							unsigned long flags)
34 {
35 	struct mm_struct *mm = current->mm;
36 	struct vm_area_struct * vma;
37 	unsigned long task_size = TASK_SIZE;
38 	unsigned long start_addr;
39 
40 	if (test_thread_flag(TIF_32BIT))
41 		task_size = STACK_TOP32;
42 	if (unlikely(len >= VA_EXCLUDE_START))
43 		return -ENOMEM;
44 
45 	if (len > mm->cached_hole_size) {
46 	        start_addr = addr = mm->free_area_cache;
47 	} else {
48 	        start_addr = addr = TASK_UNMAPPED_BASE;
49 	        mm->cached_hole_size = 0;
50 	}
51 
52 	task_size -= len;
53 
54 full_search:
55 	addr = ALIGN(addr, HPAGE_SIZE);
56 
57 	for (vma = find_vma(mm, addr); ; vma = vma->vm_next) {
58 		/* At this point:  (!vma || addr < vma->vm_end). */
59 		if (addr < VA_EXCLUDE_START &&
60 		    (addr + len) >= VA_EXCLUDE_START) {
61 			addr = VA_EXCLUDE_END;
62 			vma = find_vma(mm, VA_EXCLUDE_END);
63 		}
64 		if (unlikely(task_size < addr)) {
65 			if (start_addr != TASK_UNMAPPED_BASE) {
66 				start_addr = addr = TASK_UNMAPPED_BASE;
67 				mm->cached_hole_size = 0;
68 				goto full_search;
69 			}
70 			return -ENOMEM;
71 		}
72 		if (likely(!vma || addr + len <= vma->vm_start)) {
73 			/*
74 			 * Remember the place where we stopped the search:
75 			 */
76 			mm->free_area_cache = addr + len;
77 			return addr;
78 		}
79 		if (addr + mm->cached_hole_size < vma->vm_start)
80 		        mm->cached_hole_size = vma->vm_start - addr;
81 
82 		addr = ALIGN(vma->vm_end, HPAGE_SIZE);
83 	}
84 }
85 
86 static unsigned long
87 hugetlb_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
88 				  const unsigned long len,
89 				  const unsigned long pgoff,
90 				  const unsigned long flags)
91 {
92 	struct vm_area_struct *vma;
93 	struct mm_struct *mm = current->mm;
94 	unsigned long addr = addr0;
95 
96 	/* This should only ever run for 32-bit processes.  */
97 	BUG_ON(!test_thread_flag(TIF_32BIT));
98 
99 	/* check if free_area_cache is useful for us */
100 	if (len <= mm->cached_hole_size) {
101  	        mm->cached_hole_size = 0;
102  		mm->free_area_cache = mm->mmap_base;
103  	}
104 
105 	/* either no address requested or can't fit in requested address hole */
106 	addr = mm->free_area_cache & HPAGE_MASK;
107 
108 	/* make sure it can fit in the remaining address space */
109 	if (likely(addr > len)) {
110 		vma = find_vma(mm, addr-len);
111 		if (!vma || addr <= vma->vm_start) {
112 			/* remember the address as a hint for next time */
113 			return (mm->free_area_cache = addr-len);
114 		}
115 	}
116 
117 	if (unlikely(mm->mmap_base < len))
118 		goto bottomup;
119 
120 	addr = (mm->mmap_base-len) & HPAGE_MASK;
121 
122 	do {
123 		/*
124 		 * Lookup failure means no vma is above this address,
125 		 * else if new region fits below vma->vm_start,
126 		 * return with success:
127 		 */
128 		vma = find_vma(mm, addr);
129 		if (likely(!vma || addr+len <= vma->vm_start)) {
130 			/* remember the address as a hint for next time */
131 			return (mm->free_area_cache = addr);
132 		}
133 
134  		/* remember the largest hole we saw so far */
135  		if (addr + mm->cached_hole_size < vma->vm_start)
136  		        mm->cached_hole_size = vma->vm_start - addr;
137 
138 		/* try just below the current vma->vm_start */
139 		addr = (vma->vm_start-len) & HPAGE_MASK;
140 	} while (likely(len < vma->vm_start));
141 
142 bottomup:
143 	/*
144 	 * A failed mmap() very likely causes application failure,
145 	 * so fall back to the bottom-up function here. This scenario
146 	 * can happen with large stack limits and large mmap()
147 	 * allocations.
148 	 */
149 	mm->cached_hole_size = ~0UL;
150   	mm->free_area_cache = TASK_UNMAPPED_BASE;
151 	addr = arch_get_unmapped_area(filp, addr0, len, pgoff, flags);
152 	/*
153 	 * Restore the topdown base:
154 	 */
155 	mm->free_area_cache = mm->mmap_base;
156 	mm->cached_hole_size = ~0UL;
157 
158 	return addr;
159 }
160 
161 unsigned long
162 hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
163 		unsigned long len, unsigned long pgoff, unsigned long flags)
164 {
165 	struct mm_struct *mm = current->mm;
166 	struct vm_area_struct *vma;
167 	unsigned long task_size = TASK_SIZE;
168 
169 	if (test_thread_flag(TIF_32BIT))
170 		task_size = STACK_TOP32;
171 
172 	if (len & ~HPAGE_MASK)
173 		return -EINVAL;
174 	if (len > task_size)
175 		return -ENOMEM;
176 
177 	if (flags & MAP_FIXED) {
178 		if (prepare_hugepage_range(file, addr, len))
179 			return -EINVAL;
180 		return addr;
181 	}
182 
183 	if (addr) {
184 		addr = ALIGN(addr, HPAGE_SIZE);
185 		vma = find_vma(mm, addr);
186 		if (task_size - len >= addr &&
187 		    (!vma || addr + len <= vma->vm_start))
188 			return addr;
189 	}
190 	if (mm->get_unmapped_area == arch_get_unmapped_area)
191 		return hugetlb_get_unmapped_area_bottomup(file, addr, len,
192 				pgoff, flags);
193 	else
194 		return hugetlb_get_unmapped_area_topdown(file, addr, len,
195 				pgoff, flags);
196 }
197 
198 pte_t *huge_pte_alloc(struct mm_struct *mm,
199 			unsigned long addr, unsigned long sz)
200 {
201 	pgd_t *pgd;
202 	pud_t *pud;
203 	pmd_t *pmd;
204 	pte_t *pte = NULL;
205 
206 	/* We must align the address, because our caller will run
207 	 * set_huge_pte_at() on whatever we return, which writes out
208 	 * all of the sub-ptes for the hugepage range.  So we have
209 	 * to give it the first such sub-pte.
210 	 */
211 	addr &= HPAGE_MASK;
212 
213 	pgd = pgd_offset(mm, addr);
214 	pud = pud_alloc(mm, pgd, addr);
215 	if (pud) {
216 		pmd = pmd_alloc(mm, pud, addr);
217 		if (pmd)
218 			pte = pte_alloc_map(mm, pmd, addr);
219 	}
220 	return pte;
221 }
222 
223 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
224 {
225 	pgd_t *pgd;
226 	pud_t *pud;
227 	pmd_t *pmd;
228 	pte_t *pte = NULL;
229 
230 	addr &= HPAGE_MASK;
231 
232 	pgd = pgd_offset(mm, addr);
233 	if (!pgd_none(*pgd)) {
234 		pud = pud_offset(pgd, addr);
235 		if (!pud_none(*pud)) {
236 			pmd = pmd_offset(pud, addr);
237 			if (!pmd_none(*pmd))
238 				pte = pte_offset_map(pmd, addr);
239 		}
240 	}
241 	return pte;
242 }
243 
244 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
245 {
246 	return 0;
247 }
248 
249 void set_huge_pte_at(struct mm_struct *mm, unsigned long addr,
250 		     pte_t *ptep, pte_t entry)
251 {
252 	int i;
253 
254 	if (!pte_present(*ptep) && pte_present(entry))
255 		mm->context.huge_pte_count++;
256 
257 	addr &= HPAGE_MASK;
258 	for (i = 0; i < (1 << HUGETLB_PAGE_ORDER); i++) {
259 		set_pte_at(mm, addr, ptep, entry);
260 		ptep++;
261 		addr += PAGE_SIZE;
262 		pte_val(entry) += PAGE_SIZE;
263 	}
264 }
265 
266 pte_t huge_ptep_get_and_clear(struct mm_struct *mm, unsigned long addr,
267 			      pte_t *ptep)
268 {
269 	pte_t entry;
270 	int i;
271 
272 	entry = *ptep;
273 	if (pte_present(entry))
274 		mm->context.huge_pte_count--;
275 
276 	addr &= HPAGE_MASK;
277 
278 	for (i = 0; i < (1 << HUGETLB_PAGE_ORDER); i++) {
279 		pte_clear(mm, addr, ptep);
280 		addr += PAGE_SIZE;
281 		ptep++;
282 	}
283 
284 	return entry;
285 }
286 
287 struct page *follow_huge_addr(struct mm_struct *mm,
288 			      unsigned long address, int write)
289 {
290 	return ERR_PTR(-EINVAL);
291 }
292 
293 int pmd_huge(pmd_t pmd)
294 {
295 	return 0;
296 }
297 
298 int pud_huge(pud_t pud)
299 {
300 	return 0;
301 }
302 
303 struct page *follow_huge_pmd(struct mm_struct *mm, unsigned long address,
304 			     pmd_t *pmd, int write)
305 {
306 	return NULL;
307 }
308 
309 static void context_reload(void *__data)
310 {
311 	struct mm_struct *mm = __data;
312 
313 	if (mm == current->mm)
314 		load_secondary_context(mm);
315 }
316 
317 void hugetlb_prefault_arch_hook(struct mm_struct *mm)
318 {
319 	struct tsb_config *tp = &mm->context.tsb_block[MM_TSB_HUGE];
320 
321 	if (likely(tp->tsb != NULL))
322 		return;
323 
324 	tsb_grow(mm, MM_TSB_HUGE, 0);
325 	tsb_context_switch(mm);
326 	smp_tsb_sync(mm);
327 
328 	/* On UltraSPARC-III+ and later, configure the second half of
329 	 * the Data-TLB for huge pages.
330 	 */
331 	if (tlb_type == cheetah_plus) {
332 		unsigned long ctx;
333 
334 		spin_lock(&ctx_alloc_lock);
335 		ctx = mm->context.sparc64_ctx_val;
336 		ctx &= ~CTX_PGSZ_MASK;
337 		ctx |= CTX_PGSZ_BASE << CTX_PGSZ0_SHIFT;
338 		ctx |= CTX_PGSZ_HUGE << CTX_PGSZ1_SHIFT;
339 
340 		if (ctx != mm->context.sparc64_ctx_val) {
341 			/* When changing the page size fields, we
342 			 * must perform a context flush so that no
343 			 * stale entries match.  This flush must
344 			 * occur with the original context register
345 			 * settings.
346 			 */
347 			do_flush_tlb_mm(mm);
348 
349 			/* Reload the context register of all processors
350 			 * also executing in this address space.
351 			 */
352 			mm->context.sparc64_ctx_val = ctx;
353 			on_each_cpu(context_reload, mm, 0);
354 		}
355 		spin_unlock(&ctx_alloc_lock);
356 	}
357 }
358