xref: /openbmc/linux/arch/sparc/mm/fault_64.c (revision e82c878d)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * arch/sparc64/mm/fault.c: Page fault handlers for the 64-bit Sparc.
4  *
5  * Copyright (C) 1996, 2008 David S. Miller (davem@davemloft.net)
6  * Copyright (C) 1997, 1999 Jakub Jelinek (jj@ultra.linux.cz)
7  */
8 
9 #include <asm/head.h>
10 
11 #include <linux/string.h>
12 #include <linux/types.h>
13 #include <linux/sched.h>
14 #include <linux/sched/debug.h>
15 #include <linux/ptrace.h>
16 #include <linux/mman.h>
17 #include <linux/signal.h>
18 #include <linux/mm.h>
19 #include <linux/extable.h>
20 #include <linux/init.h>
21 #include <linux/perf_event.h>
22 #include <linux/interrupt.h>
23 #include <linux/kprobes.h>
24 #include <linux/kdebug.h>
25 #include <linux/percpu.h>
26 #include <linux/context_tracking.h>
27 #include <linux/uaccess.h>
28 
29 #include <asm/page.h>
30 #include <asm/pgtable.h>
31 #include <asm/openprom.h>
32 #include <asm/oplib.h>
33 #include <asm/asi.h>
34 #include <asm/lsu.h>
35 #include <asm/sections.h>
36 #include <asm/mmu_context.h>
37 #include <asm/setup.h>
38 
39 int show_unhandled_signals = 1;
40 
41 static void __kprobes unhandled_fault(unsigned long address,
42 				      struct task_struct *tsk,
43 				      struct pt_regs *regs)
44 {
45 	if ((unsigned long) address < PAGE_SIZE) {
46 		printk(KERN_ALERT "Unable to handle kernel NULL "
47 		       "pointer dereference\n");
48 	} else {
49 		printk(KERN_ALERT "Unable to handle kernel paging request "
50 		       "at virtual address %016lx\n", (unsigned long)address);
51 	}
52 	printk(KERN_ALERT "tsk->{mm,active_mm}->context = %016lx\n",
53 	       (tsk->mm ?
54 		CTX_HWBITS(tsk->mm->context) :
55 		CTX_HWBITS(tsk->active_mm->context)));
56 	printk(KERN_ALERT "tsk->{mm,active_mm}->pgd = %016lx\n",
57 	       (tsk->mm ? (unsigned long) tsk->mm->pgd :
58 		          (unsigned long) tsk->active_mm->pgd));
59 	die_if_kernel("Oops", regs);
60 }
61 
62 static void __kprobes bad_kernel_pc(struct pt_regs *regs, unsigned long vaddr)
63 {
64 	printk(KERN_CRIT "OOPS: Bogus kernel PC [%016lx] in fault handler\n",
65 	       regs->tpc);
66 	printk(KERN_CRIT "OOPS: RPC [%016lx]\n", regs->u_regs[15]);
67 	printk("OOPS: RPC <%pS>\n", (void *) regs->u_regs[15]);
68 	printk(KERN_CRIT "OOPS: Fault was to vaddr[%lx]\n", vaddr);
69 	dump_stack();
70 	unhandled_fault(regs->tpc, current, regs);
71 }
72 
73 /*
74  * We now make sure that mmap_sem is held in all paths that call
75  * this. Additionally, to prevent kswapd from ripping ptes from
76  * under us, raise interrupts around the time that we look at the
77  * pte, kswapd will have to wait to get his smp ipi response from
78  * us. vmtruncate likewise. This saves us having to get pte lock.
79  */
80 static unsigned int get_user_insn(unsigned long tpc)
81 {
82 	pgd_t *pgdp = pgd_offset(current->mm, tpc);
83 	p4d_t *p4dp;
84 	pud_t *pudp;
85 	pmd_t *pmdp;
86 	pte_t *ptep, pte;
87 	unsigned long pa;
88 	u32 insn = 0;
89 
90 	if (pgd_none(*pgdp) || unlikely(pgd_bad(*pgdp)))
91 		goto out;
92 	p4dp = p4d_offset(pgdp, tpc);
93 	if (p4d_none(*p4dp) || unlikely(p4d_bad(*p4dp)))
94 		goto out;
95 	pudp = pud_offset(p4dp, tpc);
96 	if (pud_none(*pudp) || unlikely(pud_bad(*pudp)))
97 		goto out;
98 
99 	/* This disables preemption for us as well. */
100 	local_irq_disable();
101 
102 	pmdp = pmd_offset(pudp, tpc);
103 	if (pmd_none(*pmdp) || unlikely(pmd_bad(*pmdp)))
104 		goto out_irq_enable;
105 
106 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
107 	if (is_hugetlb_pmd(*pmdp)) {
108 		pa  = pmd_pfn(*pmdp) << PAGE_SHIFT;
109 		pa += tpc & ~HPAGE_MASK;
110 
111 		/* Use phys bypass so we don't pollute dtlb/dcache. */
112 		__asm__ __volatile__("lduwa [%1] %2, %0"
113 				     : "=r" (insn)
114 				     : "r" (pa), "i" (ASI_PHYS_USE_EC));
115 	} else
116 #endif
117 	{
118 		ptep = pte_offset_map(pmdp, tpc);
119 		pte = *ptep;
120 		if (pte_present(pte)) {
121 			pa  = (pte_pfn(pte) << PAGE_SHIFT);
122 			pa += (tpc & ~PAGE_MASK);
123 
124 			/* Use phys bypass so we don't pollute dtlb/dcache. */
125 			__asm__ __volatile__("lduwa [%1] %2, %0"
126 					     : "=r" (insn)
127 					     : "r" (pa), "i" (ASI_PHYS_USE_EC));
128 		}
129 		pte_unmap(ptep);
130 	}
131 out_irq_enable:
132 	local_irq_enable();
133 out:
134 	return insn;
135 }
136 
137 static inline void
138 show_signal_msg(struct pt_regs *regs, int sig, int code,
139 		unsigned long address, struct task_struct *tsk)
140 {
141 	if (!unhandled_signal(tsk, sig))
142 		return;
143 
144 	if (!printk_ratelimit())
145 		return;
146 
147 	printk("%s%s[%d]: segfault at %lx ip %px (rpc %px) sp %px error %x",
148 	       task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG,
149 	       tsk->comm, task_pid_nr(tsk), address,
150 	       (void *)regs->tpc, (void *)regs->u_regs[UREG_I7],
151 	       (void *)regs->u_regs[UREG_FP], code);
152 
153 	print_vma_addr(KERN_CONT " in ", regs->tpc);
154 
155 	printk(KERN_CONT "\n");
156 }
157 
158 static void do_fault_siginfo(int code, int sig, struct pt_regs *regs,
159 			     unsigned long fault_addr, unsigned int insn,
160 			     int fault_code)
161 {
162 	unsigned long addr;
163 
164 	if (fault_code & FAULT_CODE_ITLB) {
165 		addr = regs->tpc;
166 	} else {
167 		/* If we were able to probe the faulting instruction, use it
168 		 * to compute a precise fault address.  Otherwise use the fault
169 		 * time provided address which may only have page granularity.
170 		 */
171 		if (insn)
172 			addr = compute_effective_address(regs, insn, 0);
173 		else
174 			addr = fault_addr;
175 	}
176 
177 	if (unlikely(show_unhandled_signals))
178 		show_signal_msg(regs, sig, code, addr, current);
179 
180 	force_sig_fault(sig, code, (void __user *) addr, 0);
181 }
182 
183 static unsigned int get_fault_insn(struct pt_regs *regs, unsigned int insn)
184 {
185 	if (!insn) {
186 		if (!regs->tpc || (regs->tpc & 0x3))
187 			return 0;
188 		if (regs->tstate & TSTATE_PRIV) {
189 			insn = *(unsigned int *) regs->tpc;
190 		} else {
191 			insn = get_user_insn(regs->tpc);
192 		}
193 	}
194 	return insn;
195 }
196 
197 static void __kprobes do_kernel_fault(struct pt_regs *regs, int si_code,
198 				      int fault_code, unsigned int insn,
199 				      unsigned long address)
200 {
201 	unsigned char asi = ASI_P;
202 
203 	if ((!insn) && (regs->tstate & TSTATE_PRIV))
204 		goto cannot_handle;
205 
206 	/* If user insn could be read (thus insn is zero), that
207 	 * is fine.  We will just gun down the process with a signal
208 	 * in that case.
209 	 */
210 
211 	if (!(fault_code & (FAULT_CODE_WRITE|FAULT_CODE_ITLB)) &&
212 	    (insn & 0xc0800000) == 0xc0800000) {
213 		if (insn & 0x2000)
214 			asi = (regs->tstate >> 24);
215 		else
216 			asi = (insn >> 5);
217 		if ((asi & 0xf2) == 0x82) {
218 			if (insn & 0x1000000) {
219 				handle_ldf_stq(insn, regs);
220 			} else {
221 				/* This was a non-faulting load. Just clear the
222 				 * destination register(s) and continue with the next
223 				 * instruction. -jj
224 				 */
225 				handle_ld_nf(insn, regs);
226 			}
227 			return;
228 		}
229 	}
230 
231 	/* Is this in ex_table? */
232 	if (regs->tstate & TSTATE_PRIV) {
233 		const struct exception_table_entry *entry;
234 
235 		entry = search_exception_tables(regs->tpc);
236 		if (entry) {
237 			regs->tpc = entry->fixup;
238 			regs->tnpc = regs->tpc + 4;
239 			return;
240 		}
241 	} else {
242 		/* The si_code was set to make clear whether
243 		 * this was a SEGV_MAPERR or SEGV_ACCERR fault.
244 		 */
245 		do_fault_siginfo(si_code, SIGSEGV, regs, address, insn, fault_code);
246 		return;
247 	}
248 
249 cannot_handle:
250 	unhandled_fault (address, current, regs);
251 }
252 
253 static void noinline __kprobes bogus_32bit_fault_tpc(struct pt_regs *regs)
254 {
255 	static int times;
256 
257 	if (times++ < 10)
258 		printk(KERN_ERR "FAULT[%s:%d]: 32-bit process reports "
259 		       "64-bit TPC [%lx]\n",
260 		       current->comm, current->pid,
261 		       regs->tpc);
262 	show_regs(regs);
263 }
264 
265 asmlinkage void __kprobes do_sparc64_fault(struct pt_regs *regs)
266 {
267 	enum ctx_state prev_state = exception_enter();
268 	struct mm_struct *mm = current->mm;
269 	struct vm_area_struct *vma;
270 	unsigned int insn = 0;
271 	int si_code, fault_code;
272 	vm_fault_t fault;
273 	unsigned long address, mm_rss;
274 	unsigned int flags = FAULT_FLAG_DEFAULT;
275 
276 	fault_code = get_thread_fault_code();
277 
278 	if (kprobe_page_fault(regs, 0))
279 		goto exit_exception;
280 
281 	si_code = SEGV_MAPERR;
282 	address = current_thread_info()->fault_address;
283 
284 	if ((fault_code & FAULT_CODE_ITLB) &&
285 	    (fault_code & FAULT_CODE_DTLB))
286 		BUG();
287 
288 	if (test_thread_flag(TIF_32BIT)) {
289 		if (!(regs->tstate & TSTATE_PRIV)) {
290 			if (unlikely((regs->tpc >> 32) != 0)) {
291 				bogus_32bit_fault_tpc(regs);
292 				goto intr_or_no_mm;
293 			}
294 		}
295 		if (unlikely((address >> 32) != 0))
296 			goto intr_or_no_mm;
297 	}
298 
299 	if (regs->tstate & TSTATE_PRIV) {
300 		unsigned long tpc = regs->tpc;
301 
302 		/* Sanity check the PC. */
303 		if ((tpc >= KERNBASE && tpc < (unsigned long) __init_end) ||
304 		    (tpc >= MODULES_VADDR && tpc < MODULES_END)) {
305 			/* Valid, no problems... */
306 		} else {
307 			bad_kernel_pc(regs, address);
308 			goto exit_exception;
309 		}
310 	} else
311 		flags |= FAULT_FLAG_USER;
312 
313 	/*
314 	 * If we're in an interrupt or have no user
315 	 * context, we must not take the fault..
316 	 */
317 	if (faulthandler_disabled() || !mm)
318 		goto intr_or_no_mm;
319 
320 	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
321 
322 	if (!down_read_trylock(&mm->mmap_sem)) {
323 		if ((regs->tstate & TSTATE_PRIV) &&
324 		    !search_exception_tables(regs->tpc)) {
325 			insn = get_fault_insn(regs, insn);
326 			goto handle_kernel_fault;
327 		}
328 
329 retry:
330 		down_read(&mm->mmap_sem);
331 	}
332 
333 	if (fault_code & FAULT_CODE_BAD_RA)
334 		goto do_sigbus;
335 
336 	vma = find_vma(mm, address);
337 	if (!vma)
338 		goto bad_area;
339 
340 	/* Pure DTLB misses do not tell us whether the fault causing
341 	 * load/store/atomic was a write or not, it only says that there
342 	 * was no match.  So in such a case we (carefully) read the
343 	 * instruction to try and figure this out.  It's an optimization
344 	 * so it's ok if we can't do this.
345 	 *
346 	 * Special hack, window spill/fill knows the exact fault type.
347 	 */
348 	if (((fault_code &
349 	      (FAULT_CODE_DTLB | FAULT_CODE_WRITE | FAULT_CODE_WINFIXUP)) == FAULT_CODE_DTLB) &&
350 	    (vma->vm_flags & VM_WRITE) != 0) {
351 		insn = get_fault_insn(regs, 0);
352 		if (!insn)
353 			goto continue_fault;
354 		/* All loads, stores and atomics have bits 30 and 31 both set
355 		 * in the instruction.  Bit 21 is set in all stores, but we
356 		 * have to avoid prefetches which also have bit 21 set.
357 		 */
358 		if ((insn & 0xc0200000) == 0xc0200000 &&
359 		    (insn & 0x01780000) != 0x01680000) {
360 			/* Don't bother updating thread struct value,
361 			 * because update_mmu_cache only cares which tlb
362 			 * the access came from.
363 			 */
364 			fault_code |= FAULT_CODE_WRITE;
365 		}
366 	}
367 continue_fault:
368 
369 	if (vma->vm_start <= address)
370 		goto good_area;
371 	if (!(vma->vm_flags & VM_GROWSDOWN))
372 		goto bad_area;
373 	if (!(fault_code & FAULT_CODE_WRITE)) {
374 		/* Non-faulting loads shouldn't expand stack. */
375 		insn = get_fault_insn(regs, insn);
376 		if ((insn & 0xc0800000) == 0xc0800000) {
377 			unsigned char asi;
378 
379 			if (insn & 0x2000)
380 				asi = (regs->tstate >> 24);
381 			else
382 				asi = (insn >> 5);
383 			if ((asi & 0xf2) == 0x82)
384 				goto bad_area;
385 		}
386 	}
387 	if (expand_stack(vma, address))
388 		goto bad_area;
389 	/*
390 	 * Ok, we have a good vm_area for this memory access, so
391 	 * we can handle it..
392 	 */
393 good_area:
394 	si_code = SEGV_ACCERR;
395 
396 	/* If we took a ITLB miss on a non-executable page, catch
397 	 * that here.
398 	 */
399 	if ((fault_code & FAULT_CODE_ITLB) && !(vma->vm_flags & VM_EXEC)) {
400 		WARN(address != regs->tpc,
401 		     "address (%lx) != regs->tpc (%lx)\n", address, regs->tpc);
402 		WARN_ON(regs->tstate & TSTATE_PRIV);
403 		goto bad_area;
404 	}
405 
406 	if (fault_code & FAULT_CODE_WRITE) {
407 		if (!(vma->vm_flags & VM_WRITE))
408 			goto bad_area;
409 
410 		/* Spitfire has an icache which does not snoop
411 		 * processor stores.  Later processors do...
412 		 */
413 		if (tlb_type == spitfire &&
414 		    (vma->vm_flags & VM_EXEC) != 0 &&
415 		    vma->vm_file != NULL)
416 			set_thread_fault_code(fault_code |
417 					      FAULT_CODE_BLKCOMMIT);
418 
419 		flags |= FAULT_FLAG_WRITE;
420 	} else {
421 		/* Allow reads even for write-only mappings */
422 		if (!(vma->vm_flags & (VM_READ | VM_EXEC)))
423 			goto bad_area;
424 	}
425 
426 	fault = handle_mm_fault(vma, address, flags);
427 
428 	if (fault_signal_pending(fault, regs))
429 		goto exit_exception;
430 
431 	if (unlikely(fault & VM_FAULT_ERROR)) {
432 		if (fault & VM_FAULT_OOM)
433 			goto out_of_memory;
434 		else if (fault & VM_FAULT_SIGSEGV)
435 			goto bad_area;
436 		else if (fault & VM_FAULT_SIGBUS)
437 			goto do_sigbus;
438 		BUG();
439 	}
440 
441 	if (flags & FAULT_FLAG_ALLOW_RETRY) {
442 		if (fault & VM_FAULT_MAJOR) {
443 			current->maj_flt++;
444 			perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ,
445 				      1, regs, address);
446 		} else {
447 			current->min_flt++;
448 			perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN,
449 				      1, regs, address);
450 		}
451 		if (fault & VM_FAULT_RETRY) {
452 			flags |= FAULT_FLAG_TRIED;
453 
454 			/* No need to up_read(&mm->mmap_sem) as we would
455 			 * have already released it in __lock_page_or_retry
456 			 * in mm/filemap.c.
457 			 */
458 
459 			goto retry;
460 		}
461 	}
462 	up_read(&mm->mmap_sem);
463 
464 	mm_rss = get_mm_rss(mm);
465 #if defined(CONFIG_TRANSPARENT_HUGEPAGE)
466 	mm_rss -= (mm->context.thp_pte_count * (HPAGE_SIZE / PAGE_SIZE));
467 #endif
468 	if (unlikely(mm_rss >
469 		     mm->context.tsb_block[MM_TSB_BASE].tsb_rss_limit))
470 		tsb_grow(mm, MM_TSB_BASE, mm_rss);
471 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
472 	mm_rss = mm->context.hugetlb_pte_count + mm->context.thp_pte_count;
473 	mm_rss *= REAL_HPAGE_PER_HPAGE;
474 	if (unlikely(mm_rss >
475 		     mm->context.tsb_block[MM_TSB_HUGE].tsb_rss_limit)) {
476 		if (mm->context.tsb_block[MM_TSB_HUGE].tsb)
477 			tsb_grow(mm, MM_TSB_HUGE, mm_rss);
478 		else
479 			hugetlb_setup(regs);
480 
481 	}
482 #endif
483 exit_exception:
484 	exception_exit(prev_state);
485 	return;
486 
487 	/*
488 	 * Something tried to access memory that isn't in our memory map..
489 	 * Fix it, but check if it's kernel or user first..
490 	 */
491 bad_area:
492 	insn = get_fault_insn(regs, insn);
493 	up_read(&mm->mmap_sem);
494 
495 handle_kernel_fault:
496 	do_kernel_fault(regs, si_code, fault_code, insn, address);
497 	goto exit_exception;
498 
499 /*
500  * We ran out of memory, or some other thing happened to us that made
501  * us unable to handle the page fault gracefully.
502  */
503 out_of_memory:
504 	insn = get_fault_insn(regs, insn);
505 	up_read(&mm->mmap_sem);
506 	if (!(regs->tstate & TSTATE_PRIV)) {
507 		pagefault_out_of_memory();
508 		goto exit_exception;
509 	}
510 	goto handle_kernel_fault;
511 
512 intr_or_no_mm:
513 	insn = get_fault_insn(regs, 0);
514 	goto handle_kernel_fault;
515 
516 do_sigbus:
517 	insn = get_fault_insn(regs, insn);
518 	up_read(&mm->mmap_sem);
519 
520 	/*
521 	 * Send a sigbus, regardless of whether we were in kernel
522 	 * or user mode.
523 	 */
524 	do_fault_siginfo(BUS_ADRERR, SIGBUS, regs, address, insn, fault_code);
525 
526 	/* Kernel mode? Handle exceptions or die */
527 	if (regs->tstate & TSTATE_PRIV)
528 		goto handle_kernel_fault;
529 }
530