1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * arch/sparc64/mm/fault.c: Page fault handlers for the 64-bit Sparc. 4 * 5 * Copyright (C) 1996, 2008 David S. Miller (davem@davemloft.net) 6 * Copyright (C) 1997, 1999 Jakub Jelinek (jj@ultra.linux.cz) 7 */ 8 9 #include <asm/head.h> 10 11 #include <linux/string.h> 12 #include <linux/types.h> 13 #include <linux/sched.h> 14 #include <linux/sched/debug.h> 15 #include <linux/ptrace.h> 16 #include <linux/mman.h> 17 #include <linux/signal.h> 18 #include <linux/mm.h> 19 #include <linux/extable.h> 20 #include <linux/init.h> 21 #include <linux/perf_event.h> 22 #include <linux/interrupt.h> 23 #include <linux/kprobes.h> 24 #include <linux/kdebug.h> 25 #include <linux/percpu.h> 26 #include <linux/context_tracking.h> 27 #include <linux/uaccess.h> 28 29 #include <asm/page.h> 30 #include <asm/pgtable.h> 31 #include <asm/openprom.h> 32 #include <asm/oplib.h> 33 #include <asm/asi.h> 34 #include <asm/lsu.h> 35 #include <asm/sections.h> 36 #include <asm/mmu_context.h> 37 #include <asm/setup.h> 38 39 int show_unhandled_signals = 1; 40 41 static void __kprobes unhandled_fault(unsigned long address, 42 struct task_struct *tsk, 43 struct pt_regs *regs) 44 { 45 if ((unsigned long) address < PAGE_SIZE) { 46 printk(KERN_ALERT "Unable to handle kernel NULL " 47 "pointer dereference\n"); 48 } else { 49 printk(KERN_ALERT "Unable to handle kernel paging request " 50 "at virtual address %016lx\n", (unsigned long)address); 51 } 52 printk(KERN_ALERT "tsk->{mm,active_mm}->context = %016lx\n", 53 (tsk->mm ? 54 CTX_HWBITS(tsk->mm->context) : 55 CTX_HWBITS(tsk->active_mm->context))); 56 printk(KERN_ALERT "tsk->{mm,active_mm}->pgd = %016lx\n", 57 (tsk->mm ? (unsigned long) tsk->mm->pgd : 58 (unsigned long) tsk->active_mm->pgd)); 59 die_if_kernel("Oops", regs); 60 } 61 62 static void __kprobes bad_kernel_pc(struct pt_regs *regs, unsigned long vaddr) 63 { 64 printk(KERN_CRIT "OOPS: Bogus kernel PC [%016lx] in fault handler\n", 65 regs->tpc); 66 printk(KERN_CRIT "OOPS: RPC [%016lx]\n", regs->u_regs[15]); 67 printk("OOPS: RPC <%pS>\n", (void *) regs->u_regs[15]); 68 printk(KERN_CRIT "OOPS: Fault was to vaddr[%lx]\n", vaddr); 69 dump_stack(); 70 unhandled_fault(regs->tpc, current, regs); 71 } 72 73 /* 74 * We now make sure that mmap_sem is held in all paths that call 75 * this. Additionally, to prevent kswapd from ripping ptes from 76 * under us, raise interrupts around the time that we look at the 77 * pte, kswapd will have to wait to get his smp ipi response from 78 * us. vmtruncate likewise. This saves us having to get pte lock. 79 */ 80 static unsigned int get_user_insn(unsigned long tpc) 81 { 82 pgd_t *pgdp = pgd_offset(current->mm, tpc); 83 pud_t *pudp; 84 pmd_t *pmdp; 85 pte_t *ptep, pte; 86 unsigned long pa; 87 u32 insn = 0; 88 89 if (pgd_none(*pgdp) || unlikely(pgd_bad(*pgdp))) 90 goto out; 91 pudp = pud_offset(pgdp, tpc); 92 if (pud_none(*pudp) || unlikely(pud_bad(*pudp))) 93 goto out; 94 95 /* This disables preemption for us as well. */ 96 local_irq_disable(); 97 98 pmdp = pmd_offset(pudp, tpc); 99 if (pmd_none(*pmdp) || unlikely(pmd_bad(*pmdp))) 100 goto out_irq_enable; 101 102 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE) 103 if (is_hugetlb_pmd(*pmdp)) { 104 pa = pmd_pfn(*pmdp) << PAGE_SHIFT; 105 pa += tpc & ~HPAGE_MASK; 106 107 /* Use phys bypass so we don't pollute dtlb/dcache. */ 108 __asm__ __volatile__("lduwa [%1] %2, %0" 109 : "=r" (insn) 110 : "r" (pa), "i" (ASI_PHYS_USE_EC)); 111 } else 112 #endif 113 { 114 ptep = pte_offset_map(pmdp, tpc); 115 pte = *ptep; 116 if (pte_present(pte)) { 117 pa = (pte_pfn(pte) << PAGE_SHIFT); 118 pa += (tpc & ~PAGE_MASK); 119 120 /* Use phys bypass so we don't pollute dtlb/dcache. */ 121 __asm__ __volatile__("lduwa [%1] %2, %0" 122 : "=r" (insn) 123 : "r" (pa), "i" (ASI_PHYS_USE_EC)); 124 } 125 pte_unmap(ptep); 126 } 127 out_irq_enable: 128 local_irq_enable(); 129 out: 130 return insn; 131 } 132 133 static inline void 134 show_signal_msg(struct pt_regs *regs, int sig, int code, 135 unsigned long address, struct task_struct *tsk) 136 { 137 if (!unhandled_signal(tsk, sig)) 138 return; 139 140 if (!printk_ratelimit()) 141 return; 142 143 printk("%s%s[%d]: segfault at %lx ip %px (rpc %px) sp %px error %x", 144 task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG, 145 tsk->comm, task_pid_nr(tsk), address, 146 (void *)regs->tpc, (void *)regs->u_regs[UREG_I7], 147 (void *)regs->u_regs[UREG_FP], code); 148 149 print_vma_addr(KERN_CONT " in ", regs->tpc); 150 151 printk(KERN_CONT "\n"); 152 } 153 154 static void do_fault_siginfo(int code, int sig, struct pt_regs *regs, 155 unsigned long fault_addr, unsigned int insn, 156 int fault_code) 157 { 158 unsigned long addr; 159 160 if (fault_code & FAULT_CODE_ITLB) { 161 addr = regs->tpc; 162 } else { 163 /* If we were able to probe the faulting instruction, use it 164 * to compute a precise fault address. Otherwise use the fault 165 * time provided address which may only have page granularity. 166 */ 167 if (insn) 168 addr = compute_effective_address(regs, insn, 0); 169 else 170 addr = fault_addr; 171 } 172 173 if (unlikely(show_unhandled_signals)) 174 show_signal_msg(regs, sig, code, addr, current); 175 176 force_sig_fault(sig, code, (void __user *) addr, 0); 177 } 178 179 static unsigned int get_fault_insn(struct pt_regs *regs, unsigned int insn) 180 { 181 if (!insn) { 182 if (!regs->tpc || (regs->tpc & 0x3)) 183 return 0; 184 if (regs->tstate & TSTATE_PRIV) { 185 insn = *(unsigned int *) regs->tpc; 186 } else { 187 insn = get_user_insn(regs->tpc); 188 } 189 } 190 return insn; 191 } 192 193 static void __kprobes do_kernel_fault(struct pt_regs *regs, int si_code, 194 int fault_code, unsigned int insn, 195 unsigned long address) 196 { 197 unsigned char asi = ASI_P; 198 199 if ((!insn) && (regs->tstate & TSTATE_PRIV)) 200 goto cannot_handle; 201 202 /* If user insn could be read (thus insn is zero), that 203 * is fine. We will just gun down the process with a signal 204 * in that case. 205 */ 206 207 if (!(fault_code & (FAULT_CODE_WRITE|FAULT_CODE_ITLB)) && 208 (insn & 0xc0800000) == 0xc0800000) { 209 if (insn & 0x2000) 210 asi = (regs->tstate >> 24); 211 else 212 asi = (insn >> 5); 213 if ((asi & 0xf2) == 0x82) { 214 if (insn & 0x1000000) { 215 handle_ldf_stq(insn, regs); 216 } else { 217 /* This was a non-faulting load. Just clear the 218 * destination register(s) and continue with the next 219 * instruction. -jj 220 */ 221 handle_ld_nf(insn, regs); 222 } 223 return; 224 } 225 } 226 227 /* Is this in ex_table? */ 228 if (regs->tstate & TSTATE_PRIV) { 229 const struct exception_table_entry *entry; 230 231 entry = search_exception_tables(regs->tpc); 232 if (entry) { 233 regs->tpc = entry->fixup; 234 regs->tnpc = regs->tpc + 4; 235 return; 236 } 237 } else { 238 /* The si_code was set to make clear whether 239 * this was a SEGV_MAPERR or SEGV_ACCERR fault. 240 */ 241 do_fault_siginfo(si_code, SIGSEGV, regs, address, insn, fault_code); 242 return; 243 } 244 245 cannot_handle: 246 unhandled_fault (address, current, regs); 247 } 248 249 static void noinline __kprobes bogus_32bit_fault_tpc(struct pt_regs *regs) 250 { 251 static int times; 252 253 if (times++ < 10) 254 printk(KERN_ERR "FAULT[%s:%d]: 32-bit process reports " 255 "64-bit TPC [%lx]\n", 256 current->comm, current->pid, 257 regs->tpc); 258 show_regs(regs); 259 } 260 261 asmlinkage void __kprobes do_sparc64_fault(struct pt_regs *regs) 262 { 263 enum ctx_state prev_state = exception_enter(); 264 struct mm_struct *mm = current->mm; 265 struct vm_area_struct *vma; 266 unsigned int insn = 0; 267 int si_code, fault_code; 268 vm_fault_t fault; 269 unsigned long address, mm_rss; 270 unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; 271 272 fault_code = get_thread_fault_code(); 273 274 if (kprobe_page_fault(regs, 0)) 275 goto exit_exception; 276 277 si_code = SEGV_MAPERR; 278 address = current_thread_info()->fault_address; 279 280 if ((fault_code & FAULT_CODE_ITLB) && 281 (fault_code & FAULT_CODE_DTLB)) 282 BUG(); 283 284 if (test_thread_flag(TIF_32BIT)) { 285 if (!(regs->tstate & TSTATE_PRIV)) { 286 if (unlikely((regs->tpc >> 32) != 0)) { 287 bogus_32bit_fault_tpc(regs); 288 goto intr_or_no_mm; 289 } 290 } 291 if (unlikely((address >> 32) != 0)) 292 goto intr_or_no_mm; 293 } 294 295 if (regs->tstate & TSTATE_PRIV) { 296 unsigned long tpc = regs->tpc; 297 298 /* Sanity check the PC. */ 299 if ((tpc >= KERNBASE && tpc < (unsigned long) __init_end) || 300 (tpc >= MODULES_VADDR && tpc < MODULES_END)) { 301 /* Valid, no problems... */ 302 } else { 303 bad_kernel_pc(regs, address); 304 goto exit_exception; 305 } 306 } else 307 flags |= FAULT_FLAG_USER; 308 309 /* 310 * If we're in an interrupt or have no user 311 * context, we must not take the fault.. 312 */ 313 if (faulthandler_disabled() || !mm) 314 goto intr_or_no_mm; 315 316 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address); 317 318 if (!down_read_trylock(&mm->mmap_sem)) { 319 if ((regs->tstate & TSTATE_PRIV) && 320 !search_exception_tables(regs->tpc)) { 321 insn = get_fault_insn(regs, insn); 322 goto handle_kernel_fault; 323 } 324 325 retry: 326 down_read(&mm->mmap_sem); 327 } 328 329 if (fault_code & FAULT_CODE_BAD_RA) 330 goto do_sigbus; 331 332 vma = find_vma(mm, address); 333 if (!vma) 334 goto bad_area; 335 336 /* Pure DTLB misses do not tell us whether the fault causing 337 * load/store/atomic was a write or not, it only says that there 338 * was no match. So in such a case we (carefully) read the 339 * instruction to try and figure this out. It's an optimization 340 * so it's ok if we can't do this. 341 * 342 * Special hack, window spill/fill knows the exact fault type. 343 */ 344 if (((fault_code & 345 (FAULT_CODE_DTLB | FAULT_CODE_WRITE | FAULT_CODE_WINFIXUP)) == FAULT_CODE_DTLB) && 346 (vma->vm_flags & VM_WRITE) != 0) { 347 insn = get_fault_insn(regs, 0); 348 if (!insn) 349 goto continue_fault; 350 /* All loads, stores and atomics have bits 30 and 31 both set 351 * in the instruction. Bit 21 is set in all stores, but we 352 * have to avoid prefetches which also have bit 21 set. 353 */ 354 if ((insn & 0xc0200000) == 0xc0200000 && 355 (insn & 0x01780000) != 0x01680000) { 356 /* Don't bother updating thread struct value, 357 * because update_mmu_cache only cares which tlb 358 * the access came from. 359 */ 360 fault_code |= FAULT_CODE_WRITE; 361 } 362 } 363 continue_fault: 364 365 if (vma->vm_start <= address) 366 goto good_area; 367 if (!(vma->vm_flags & VM_GROWSDOWN)) 368 goto bad_area; 369 if (!(fault_code & FAULT_CODE_WRITE)) { 370 /* Non-faulting loads shouldn't expand stack. */ 371 insn = get_fault_insn(regs, insn); 372 if ((insn & 0xc0800000) == 0xc0800000) { 373 unsigned char asi; 374 375 if (insn & 0x2000) 376 asi = (regs->tstate >> 24); 377 else 378 asi = (insn >> 5); 379 if ((asi & 0xf2) == 0x82) 380 goto bad_area; 381 } 382 } 383 if (expand_stack(vma, address)) 384 goto bad_area; 385 /* 386 * Ok, we have a good vm_area for this memory access, so 387 * we can handle it.. 388 */ 389 good_area: 390 si_code = SEGV_ACCERR; 391 392 /* If we took a ITLB miss on a non-executable page, catch 393 * that here. 394 */ 395 if ((fault_code & FAULT_CODE_ITLB) && !(vma->vm_flags & VM_EXEC)) { 396 WARN(address != regs->tpc, 397 "address (%lx) != regs->tpc (%lx)\n", address, regs->tpc); 398 WARN_ON(regs->tstate & TSTATE_PRIV); 399 goto bad_area; 400 } 401 402 if (fault_code & FAULT_CODE_WRITE) { 403 if (!(vma->vm_flags & VM_WRITE)) 404 goto bad_area; 405 406 /* Spitfire has an icache which does not snoop 407 * processor stores. Later processors do... 408 */ 409 if (tlb_type == spitfire && 410 (vma->vm_flags & VM_EXEC) != 0 && 411 vma->vm_file != NULL) 412 set_thread_fault_code(fault_code | 413 FAULT_CODE_BLKCOMMIT); 414 415 flags |= FAULT_FLAG_WRITE; 416 } else { 417 /* Allow reads even for write-only mappings */ 418 if (!(vma->vm_flags & (VM_READ | VM_EXEC))) 419 goto bad_area; 420 } 421 422 fault = handle_mm_fault(vma, address, flags); 423 424 if ((fault & VM_FAULT_RETRY) && fatal_signal_pending(current)) 425 goto exit_exception; 426 427 if (unlikely(fault & VM_FAULT_ERROR)) { 428 if (fault & VM_FAULT_OOM) 429 goto out_of_memory; 430 else if (fault & VM_FAULT_SIGSEGV) 431 goto bad_area; 432 else if (fault & VM_FAULT_SIGBUS) 433 goto do_sigbus; 434 BUG(); 435 } 436 437 if (flags & FAULT_FLAG_ALLOW_RETRY) { 438 if (fault & VM_FAULT_MAJOR) { 439 current->maj_flt++; 440 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 441 1, regs, address); 442 } else { 443 current->min_flt++; 444 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 445 1, regs, address); 446 } 447 if (fault & VM_FAULT_RETRY) { 448 flags &= ~FAULT_FLAG_ALLOW_RETRY; 449 flags |= FAULT_FLAG_TRIED; 450 451 /* No need to up_read(&mm->mmap_sem) as we would 452 * have already released it in __lock_page_or_retry 453 * in mm/filemap.c. 454 */ 455 456 goto retry; 457 } 458 } 459 up_read(&mm->mmap_sem); 460 461 mm_rss = get_mm_rss(mm); 462 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) 463 mm_rss -= (mm->context.thp_pte_count * (HPAGE_SIZE / PAGE_SIZE)); 464 #endif 465 if (unlikely(mm_rss > 466 mm->context.tsb_block[MM_TSB_BASE].tsb_rss_limit)) 467 tsb_grow(mm, MM_TSB_BASE, mm_rss); 468 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE) 469 mm_rss = mm->context.hugetlb_pte_count + mm->context.thp_pte_count; 470 mm_rss *= REAL_HPAGE_PER_HPAGE; 471 if (unlikely(mm_rss > 472 mm->context.tsb_block[MM_TSB_HUGE].tsb_rss_limit)) { 473 if (mm->context.tsb_block[MM_TSB_HUGE].tsb) 474 tsb_grow(mm, MM_TSB_HUGE, mm_rss); 475 else 476 hugetlb_setup(regs); 477 478 } 479 #endif 480 exit_exception: 481 exception_exit(prev_state); 482 return; 483 484 /* 485 * Something tried to access memory that isn't in our memory map.. 486 * Fix it, but check if it's kernel or user first.. 487 */ 488 bad_area: 489 insn = get_fault_insn(regs, insn); 490 up_read(&mm->mmap_sem); 491 492 handle_kernel_fault: 493 do_kernel_fault(regs, si_code, fault_code, insn, address); 494 goto exit_exception; 495 496 /* 497 * We ran out of memory, or some other thing happened to us that made 498 * us unable to handle the page fault gracefully. 499 */ 500 out_of_memory: 501 insn = get_fault_insn(regs, insn); 502 up_read(&mm->mmap_sem); 503 if (!(regs->tstate & TSTATE_PRIV)) { 504 pagefault_out_of_memory(); 505 goto exit_exception; 506 } 507 goto handle_kernel_fault; 508 509 intr_or_no_mm: 510 insn = get_fault_insn(regs, 0); 511 goto handle_kernel_fault; 512 513 do_sigbus: 514 insn = get_fault_insn(regs, insn); 515 up_read(&mm->mmap_sem); 516 517 /* 518 * Send a sigbus, regardless of whether we were in kernel 519 * or user mode. 520 */ 521 do_fault_siginfo(BUS_ADRERR, SIGBUS, regs, address, insn, fault_code); 522 523 /* Kernel mode? Handle exceptions or die */ 524 if (regs->tstate & TSTATE_PRIV) 525 goto handle_kernel_fault; 526 } 527