1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * arch/sparc64/mm/fault.c: Page fault handlers for the 64-bit Sparc. 4 * 5 * Copyright (C) 1996, 2008 David S. Miller (davem@davemloft.net) 6 * Copyright (C) 1997, 1999 Jakub Jelinek (jj@ultra.linux.cz) 7 */ 8 9 #include <asm/head.h> 10 11 #include <linux/string.h> 12 #include <linux/types.h> 13 #include <linux/sched.h> 14 #include <linux/sched/debug.h> 15 #include <linux/ptrace.h> 16 #include <linux/mman.h> 17 #include <linux/signal.h> 18 #include <linux/mm.h> 19 #include <linux/extable.h> 20 #include <linux/init.h> 21 #include <linux/perf_event.h> 22 #include <linux/interrupt.h> 23 #include <linux/kprobes.h> 24 #include <linux/kdebug.h> 25 #include <linux/percpu.h> 26 #include <linux/context_tracking.h> 27 #include <linux/uaccess.h> 28 29 #include <asm/page.h> 30 #include <asm/pgtable.h> 31 #include <asm/openprom.h> 32 #include <asm/oplib.h> 33 #include <asm/asi.h> 34 #include <asm/lsu.h> 35 #include <asm/sections.h> 36 #include <asm/mmu_context.h> 37 #include <asm/setup.h> 38 39 int show_unhandled_signals = 1; 40 41 static inline __kprobes int notify_page_fault(struct pt_regs *regs) 42 { 43 int ret = 0; 44 45 /* kprobe_running() needs smp_processor_id() */ 46 if (kprobes_built_in() && !user_mode(regs)) { 47 preempt_disable(); 48 if (kprobe_running() && kprobe_fault_handler(regs, 0)) 49 ret = 1; 50 preempt_enable(); 51 } 52 return ret; 53 } 54 55 static void __kprobes unhandled_fault(unsigned long address, 56 struct task_struct *tsk, 57 struct pt_regs *regs) 58 { 59 if ((unsigned long) address < PAGE_SIZE) { 60 printk(KERN_ALERT "Unable to handle kernel NULL " 61 "pointer dereference\n"); 62 } else { 63 printk(KERN_ALERT "Unable to handle kernel paging request " 64 "at virtual address %016lx\n", (unsigned long)address); 65 } 66 printk(KERN_ALERT "tsk->{mm,active_mm}->context = %016lx\n", 67 (tsk->mm ? 68 CTX_HWBITS(tsk->mm->context) : 69 CTX_HWBITS(tsk->active_mm->context))); 70 printk(KERN_ALERT "tsk->{mm,active_mm}->pgd = %016lx\n", 71 (tsk->mm ? (unsigned long) tsk->mm->pgd : 72 (unsigned long) tsk->active_mm->pgd)); 73 die_if_kernel("Oops", regs); 74 } 75 76 static void __kprobes bad_kernel_pc(struct pt_regs *regs, unsigned long vaddr) 77 { 78 printk(KERN_CRIT "OOPS: Bogus kernel PC [%016lx] in fault handler\n", 79 regs->tpc); 80 printk(KERN_CRIT "OOPS: RPC [%016lx]\n", regs->u_regs[15]); 81 printk("OOPS: RPC <%pS>\n", (void *) regs->u_regs[15]); 82 printk(KERN_CRIT "OOPS: Fault was to vaddr[%lx]\n", vaddr); 83 dump_stack(); 84 unhandled_fault(regs->tpc, current, regs); 85 } 86 87 /* 88 * We now make sure that mmap_sem is held in all paths that call 89 * this. Additionally, to prevent kswapd from ripping ptes from 90 * under us, raise interrupts around the time that we look at the 91 * pte, kswapd will have to wait to get his smp ipi response from 92 * us. vmtruncate likewise. This saves us having to get pte lock. 93 */ 94 static unsigned int get_user_insn(unsigned long tpc) 95 { 96 pgd_t *pgdp = pgd_offset(current->mm, tpc); 97 pud_t *pudp; 98 pmd_t *pmdp; 99 pte_t *ptep, pte; 100 unsigned long pa; 101 u32 insn = 0; 102 103 if (pgd_none(*pgdp) || unlikely(pgd_bad(*pgdp))) 104 goto out; 105 pudp = pud_offset(pgdp, tpc); 106 if (pud_none(*pudp) || unlikely(pud_bad(*pudp))) 107 goto out; 108 109 /* This disables preemption for us as well. */ 110 local_irq_disable(); 111 112 pmdp = pmd_offset(pudp, tpc); 113 if (pmd_none(*pmdp) || unlikely(pmd_bad(*pmdp))) 114 goto out_irq_enable; 115 116 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE) 117 if (is_hugetlb_pmd(*pmdp)) { 118 pa = pmd_pfn(*pmdp) << PAGE_SHIFT; 119 pa += tpc & ~HPAGE_MASK; 120 121 /* Use phys bypass so we don't pollute dtlb/dcache. */ 122 __asm__ __volatile__("lduwa [%1] %2, %0" 123 : "=r" (insn) 124 : "r" (pa), "i" (ASI_PHYS_USE_EC)); 125 } else 126 #endif 127 { 128 ptep = pte_offset_map(pmdp, tpc); 129 pte = *ptep; 130 if (pte_present(pte)) { 131 pa = (pte_pfn(pte) << PAGE_SHIFT); 132 pa += (tpc & ~PAGE_MASK); 133 134 /* Use phys bypass so we don't pollute dtlb/dcache. */ 135 __asm__ __volatile__("lduwa [%1] %2, %0" 136 : "=r" (insn) 137 : "r" (pa), "i" (ASI_PHYS_USE_EC)); 138 } 139 pte_unmap(ptep); 140 } 141 out_irq_enable: 142 local_irq_enable(); 143 out: 144 return insn; 145 } 146 147 static inline void 148 show_signal_msg(struct pt_regs *regs, int sig, int code, 149 unsigned long address, struct task_struct *tsk) 150 { 151 if (!unhandled_signal(tsk, sig)) 152 return; 153 154 if (!printk_ratelimit()) 155 return; 156 157 printk("%s%s[%d]: segfault at %lx ip %p (rpc %p) sp %p error %x", 158 task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG, 159 tsk->comm, task_pid_nr(tsk), address, 160 (void *)regs->tpc, (void *)regs->u_regs[UREG_I7], 161 (void *)regs->u_regs[UREG_FP], code); 162 163 print_vma_addr(KERN_CONT " in ", regs->tpc); 164 165 printk(KERN_CONT "\n"); 166 } 167 168 static void do_fault_siginfo(int code, int sig, struct pt_regs *regs, 169 unsigned long fault_addr, unsigned int insn, 170 int fault_code) 171 { 172 unsigned long addr; 173 siginfo_t info; 174 175 info.si_code = code; 176 info.si_signo = sig; 177 info.si_errno = 0; 178 if (fault_code & FAULT_CODE_ITLB) { 179 addr = regs->tpc; 180 } else { 181 /* If we were able to probe the faulting instruction, use it 182 * to compute a precise fault address. Otherwise use the fault 183 * time provided address which may only have page granularity. 184 */ 185 if (insn) 186 addr = compute_effective_address(regs, insn, 0); 187 else 188 addr = fault_addr; 189 } 190 info.si_addr = (void __user *) addr; 191 info.si_trapno = 0; 192 193 if (unlikely(show_unhandled_signals)) 194 show_signal_msg(regs, sig, code, addr, current); 195 196 force_sig_info(sig, &info, current); 197 } 198 199 static unsigned int get_fault_insn(struct pt_regs *regs, unsigned int insn) 200 { 201 if (!insn) { 202 if (!regs->tpc || (regs->tpc & 0x3)) 203 return 0; 204 if (regs->tstate & TSTATE_PRIV) { 205 insn = *(unsigned int *) regs->tpc; 206 } else { 207 insn = get_user_insn(regs->tpc); 208 } 209 } 210 return insn; 211 } 212 213 static void __kprobes do_kernel_fault(struct pt_regs *regs, int si_code, 214 int fault_code, unsigned int insn, 215 unsigned long address) 216 { 217 unsigned char asi = ASI_P; 218 219 if ((!insn) && (regs->tstate & TSTATE_PRIV)) 220 goto cannot_handle; 221 222 /* If user insn could be read (thus insn is zero), that 223 * is fine. We will just gun down the process with a signal 224 * in that case. 225 */ 226 227 if (!(fault_code & (FAULT_CODE_WRITE|FAULT_CODE_ITLB)) && 228 (insn & 0xc0800000) == 0xc0800000) { 229 if (insn & 0x2000) 230 asi = (regs->tstate >> 24); 231 else 232 asi = (insn >> 5); 233 if ((asi & 0xf2) == 0x82) { 234 if (insn & 0x1000000) { 235 handle_ldf_stq(insn, regs); 236 } else { 237 /* This was a non-faulting load. Just clear the 238 * destination register(s) and continue with the next 239 * instruction. -jj 240 */ 241 handle_ld_nf(insn, regs); 242 } 243 return; 244 } 245 } 246 247 /* Is this in ex_table? */ 248 if (regs->tstate & TSTATE_PRIV) { 249 const struct exception_table_entry *entry; 250 251 entry = search_exception_tables(regs->tpc); 252 if (entry) { 253 regs->tpc = entry->fixup; 254 regs->tnpc = regs->tpc + 4; 255 return; 256 } 257 } else { 258 /* The si_code was set to make clear whether 259 * this was a SEGV_MAPERR or SEGV_ACCERR fault. 260 */ 261 do_fault_siginfo(si_code, SIGSEGV, regs, address, insn, fault_code); 262 return; 263 } 264 265 cannot_handle: 266 unhandled_fault (address, current, regs); 267 } 268 269 static void noinline __kprobes bogus_32bit_fault_tpc(struct pt_regs *regs) 270 { 271 static int times; 272 273 if (times++ < 10) 274 printk(KERN_ERR "FAULT[%s:%d]: 32-bit process reports " 275 "64-bit TPC [%lx]\n", 276 current->comm, current->pid, 277 regs->tpc); 278 show_regs(regs); 279 } 280 281 asmlinkage void __kprobes do_sparc64_fault(struct pt_regs *regs) 282 { 283 enum ctx_state prev_state = exception_enter(); 284 struct mm_struct *mm = current->mm; 285 struct vm_area_struct *vma; 286 unsigned int insn = 0; 287 int si_code, fault_code, fault; 288 unsigned long address, mm_rss; 289 unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; 290 291 fault_code = get_thread_fault_code(); 292 293 if (notify_page_fault(regs)) 294 goto exit_exception; 295 296 si_code = SEGV_MAPERR; 297 address = current_thread_info()->fault_address; 298 299 if ((fault_code & FAULT_CODE_ITLB) && 300 (fault_code & FAULT_CODE_DTLB)) 301 BUG(); 302 303 if (test_thread_flag(TIF_32BIT)) { 304 if (!(regs->tstate & TSTATE_PRIV)) { 305 if (unlikely((regs->tpc >> 32) != 0)) { 306 bogus_32bit_fault_tpc(regs); 307 goto intr_or_no_mm; 308 } 309 } 310 if (unlikely((address >> 32) != 0)) 311 goto intr_or_no_mm; 312 } 313 314 if (regs->tstate & TSTATE_PRIV) { 315 unsigned long tpc = regs->tpc; 316 317 /* Sanity check the PC. */ 318 if ((tpc >= KERNBASE && tpc < (unsigned long) __init_end) || 319 (tpc >= MODULES_VADDR && tpc < MODULES_END)) { 320 /* Valid, no problems... */ 321 } else { 322 bad_kernel_pc(regs, address); 323 goto exit_exception; 324 } 325 } else 326 flags |= FAULT_FLAG_USER; 327 328 /* 329 * If we're in an interrupt or have no user 330 * context, we must not take the fault.. 331 */ 332 if (faulthandler_disabled() || !mm) 333 goto intr_or_no_mm; 334 335 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address); 336 337 if (!down_read_trylock(&mm->mmap_sem)) { 338 if ((regs->tstate & TSTATE_PRIV) && 339 !search_exception_tables(regs->tpc)) { 340 insn = get_fault_insn(regs, insn); 341 goto handle_kernel_fault; 342 } 343 344 retry: 345 down_read(&mm->mmap_sem); 346 } 347 348 if (fault_code & FAULT_CODE_BAD_RA) 349 goto do_sigbus; 350 351 vma = find_vma(mm, address); 352 if (!vma) 353 goto bad_area; 354 355 /* Pure DTLB misses do not tell us whether the fault causing 356 * load/store/atomic was a write or not, it only says that there 357 * was no match. So in such a case we (carefully) read the 358 * instruction to try and figure this out. It's an optimization 359 * so it's ok if we can't do this. 360 * 361 * Special hack, window spill/fill knows the exact fault type. 362 */ 363 if (((fault_code & 364 (FAULT_CODE_DTLB | FAULT_CODE_WRITE | FAULT_CODE_WINFIXUP)) == FAULT_CODE_DTLB) && 365 (vma->vm_flags & VM_WRITE) != 0) { 366 insn = get_fault_insn(regs, 0); 367 if (!insn) 368 goto continue_fault; 369 /* All loads, stores and atomics have bits 30 and 31 both set 370 * in the instruction. Bit 21 is set in all stores, but we 371 * have to avoid prefetches which also have bit 21 set. 372 */ 373 if ((insn & 0xc0200000) == 0xc0200000 && 374 (insn & 0x01780000) != 0x01680000) { 375 /* Don't bother updating thread struct value, 376 * because update_mmu_cache only cares which tlb 377 * the access came from. 378 */ 379 fault_code |= FAULT_CODE_WRITE; 380 } 381 } 382 continue_fault: 383 384 if (vma->vm_start <= address) 385 goto good_area; 386 if (!(vma->vm_flags & VM_GROWSDOWN)) 387 goto bad_area; 388 if (!(fault_code & FAULT_CODE_WRITE)) { 389 /* Non-faulting loads shouldn't expand stack. */ 390 insn = get_fault_insn(regs, insn); 391 if ((insn & 0xc0800000) == 0xc0800000) { 392 unsigned char asi; 393 394 if (insn & 0x2000) 395 asi = (regs->tstate >> 24); 396 else 397 asi = (insn >> 5); 398 if ((asi & 0xf2) == 0x82) 399 goto bad_area; 400 } 401 } 402 if (expand_stack(vma, address)) 403 goto bad_area; 404 /* 405 * Ok, we have a good vm_area for this memory access, so 406 * we can handle it.. 407 */ 408 good_area: 409 si_code = SEGV_ACCERR; 410 411 /* If we took a ITLB miss on a non-executable page, catch 412 * that here. 413 */ 414 if ((fault_code & FAULT_CODE_ITLB) && !(vma->vm_flags & VM_EXEC)) { 415 WARN(address != regs->tpc, 416 "address (%lx) != regs->tpc (%lx)\n", address, regs->tpc); 417 WARN_ON(regs->tstate & TSTATE_PRIV); 418 goto bad_area; 419 } 420 421 if (fault_code & FAULT_CODE_WRITE) { 422 if (!(vma->vm_flags & VM_WRITE)) 423 goto bad_area; 424 425 /* Spitfire has an icache which does not snoop 426 * processor stores. Later processors do... 427 */ 428 if (tlb_type == spitfire && 429 (vma->vm_flags & VM_EXEC) != 0 && 430 vma->vm_file != NULL) 431 set_thread_fault_code(fault_code | 432 FAULT_CODE_BLKCOMMIT); 433 434 flags |= FAULT_FLAG_WRITE; 435 } else { 436 /* Allow reads even for write-only mappings */ 437 if (!(vma->vm_flags & (VM_READ | VM_EXEC))) 438 goto bad_area; 439 } 440 441 fault = handle_mm_fault(vma, address, flags); 442 443 if ((fault & VM_FAULT_RETRY) && fatal_signal_pending(current)) 444 goto exit_exception; 445 446 if (unlikely(fault & VM_FAULT_ERROR)) { 447 if (fault & VM_FAULT_OOM) 448 goto out_of_memory; 449 else if (fault & VM_FAULT_SIGSEGV) 450 goto bad_area; 451 else if (fault & VM_FAULT_SIGBUS) 452 goto do_sigbus; 453 BUG(); 454 } 455 456 if (flags & FAULT_FLAG_ALLOW_RETRY) { 457 if (fault & VM_FAULT_MAJOR) { 458 current->maj_flt++; 459 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 460 1, regs, address); 461 } else { 462 current->min_flt++; 463 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 464 1, regs, address); 465 } 466 if (fault & VM_FAULT_RETRY) { 467 flags &= ~FAULT_FLAG_ALLOW_RETRY; 468 flags |= FAULT_FLAG_TRIED; 469 470 /* No need to up_read(&mm->mmap_sem) as we would 471 * have already released it in __lock_page_or_retry 472 * in mm/filemap.c. 473 */ 474 475 goto retry; 476 } 477 } 478 up_read(&mm->mmap_sem); 479 480 mm_rss = get_mm_rss(mm); 481 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) 482 mm_rss -= (mm->context.thp_pte_count * (HPAGE_SIZE / PAGE_SIZE)); 483 #endif 484 if (unlikely(mm_rss > 485 mm->context.tsb_block[MM_TSB_BASE].tsb_rss_limit)) 486 tsb_grow(mm, MM_TSB_BASE, mm_rss); 487 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE) 488 mm_rss = mm->context.hugetlb_pte_count + mm->context.thp_pte_count; 489 mm_rss *= REAL_HPAGE_PER_HPAGE; 490 if (unlikely(mm_rss > 491 mm->context.tsb_block[MM_TSB_HUGE].tsb_rss_limit)) { 492 if (mm->context.tsb_block[MM_TSB_HUGE].tsb) 493 tsb_grow(mm, MM_TSB_HUGE, mm_rss); 494 else 495 hugetlb_setup(regs); 496 497 } 498 #endif 499 exit_exception: 500 exception_exit(prev_state); 501 return; 502 503 /* 504 * Something tried to access memory that isn't in our memory map.. 505 * Fix it, but check if it's kernel or user first.. 506 */ 507 bad_area: 508 insn = get_fault_insn(regs, insn); 509 up_read(&mm->mmap_sem); 510 511 handle_kernel_fault: 512 do_kernel_fault(regs, si_code, fault_code, insn, address); 513 goto exit_exception; 514 515 /* 516 * We ran out of memory, or some other thing happened to us that made 517 * us unable to handle the page fault gracefully. 518 */ 519 out_of_memory: 520 insn = get_fault_insn(regs, insn); 521 up_read(&mm->mmap_sem); 522 if (!(regs->tstate & TSTATE_PRIV)) { 523 pagefault_out_of_memory(); 524 goto exit_exception; 525 } 526 goto handle_kernel_fault; 527 528 intr_or_no_mm: 529 insn = get_fault_insn(regs, 0); 530 goto handle_kernel_fault; 531 532 do_sigbus: 533 insn = get_fault_insn(regs, insn); 534 up_read(&mm->mmap_sem); 535 536 /* 537 * Send a sigbus, regardless of whether we were in kernel 538 * or user mode. 539 */ 540 do_fault_siginfo(BUS_ADRERR, SIGBUS, regs, address, insn, fault_code); 541 542 /* Kernel mode? Handle exceptions or die */ 543 if (regs->tstate & TSTATE_PRIV) 544 goto handle_kernel_fault; 545 } 546