xref: /openbmc/linux/arch/sparc/mm/fault_64.c (revision b34e08d5)
1 /*
2  * arch/sparc64/mm/fault.c: Page fault handlers for the 64-bit Sparc.
3  *
4  * Copyright (C) 1996, 2008 David S. Miller (davem@davemloft.net)
5  * Copyright (C) 1997, 1999 Jakub Jelinek (jj@ultra.linux.cz)
6  */
7 
8 #include <asm/head.h>
9 
10 #include <linux/string.h>
11 #include <linux/types.h>
12 #include <linux/sched.h>
13 #include <linux/ptrace.h>
14 #include <linux/mman.h>
15 #include <linux/signal.h>
16 #include <linux/mm.h>
17 #include <linux/module.h>
18 #include <linux/init.h>
19 #include <linux/perf_event.h>
20 #include <linux/interrupt.h>
21 #include <linux/kprobes.h>
22 #include <linux/kdebug.h>
23 #include <linux/percpu.h>
24 #include <linux/context_tracking.h>
25 
26 #include <asm/page.h>
27 #include <asm/pgtable.h>
28 #include <asm/openprom.h>
29 #include <asm/oplib.h>
30 #include <asm/uaccess.h>
31 #include <asm/asi.h>
32 #include <asm/lsu.h>
33 #include <asm/sections.h>
34 #include <asm/mmu_context.h>
35 
36 int show_unhandled_signals = 1;
37 
38 static inline __kprobes int notify_page_fault(struct pt_regs *regs)
39 {
40 	int ret = 0;
41 
42 	/* kprobe_running() needs smp_processor_id() */
43 	if (kprobes_built_in() && !user_mode(regs)) {
44 		preempt_disable();
45 		if (kprobe_running() && kprobe_fault_handler(regs, 0))
46 			ret = 1;
47 		preempt_enable();
48 	}
49 	return ret;
50 }
51 
52 static void __kprobes unhandled_fault(unsigned long address,
53 				      struct task_struct *tsk,
54 				      struct pt_regs *regs)
55 {
56 	if ((unsigned long) address < PAGE_SIZE) {
57 		printk(KERN_ALERT "Unable to handle kernel NULL "
58 		       "pointer dereference\n");
59 	} else {
60 		printk(KERN_ALERT "Unable to handle kernel paging request "
61 		       "at virtual address %016lx\n", (unsigned long)address);
62 	}
63 	printk(KERN_ALERT "tsk->{mm,active_mm}->context = %016lx\n",
64 	       (tsk->mm ?
65 		CTX_HWBITS(tsk->mm->context) :
66 		CTX_HWBITS(tsk->active_mm->context)));
67 	printk(KERN_ALERT "tsk->{mm,active_mm}->pgd = %016lx\n",
68 	       (tsk->mm ? (unsigned long) tsk->mm->pgd :
69 		          (unsigned long) tsk->active_mm->pgd));
70 	die_if_kernel("Oops", regs);
71 }
72 
73 static void __kprobes bad_kernel_pc(struct pt_regs *regs, unsigned long vaddr)
74 {
75 	printk(KERN_CRIT "OOPS: Bogus kernel PC [%016lx] in fault handler\n",
76 	       regs->tpc);
77 	printk(KERN_CRIT "OOPS: RPC [%016lx]\n", regs->u_regs[15]);
78 	printk("OOPS: RPC <%pS>\n", (void *) regs->u_regs[15]);
79 	printk(KERN_CRIT "OOPS: Fault was to vaddr[%lx]\n", vaddr);
80 	dump_stack();
81 	unhandled_fault(regs->tpc, current, regs);
82 }
83 
84 /*
85  * We now make sure that mmap_sem is held in all paths that call
86  * this. Additionally, to prevent kswapd from ripping ptes from
87  * under us, raise interrupts around the time that we look at the
88  * pte, kswapd will have to wait to get his smp ipi response from
89  * us. vmtruncate likewise. This saves us having to get pte lock.
90  */
91 static unsigned int get_user_insn(unsigned long tpc)
92 {
93 	pgd_t *pgdp = pgd_offset(current->mm, tpc);
94 	pud_t *pudp;
95 	pmd_t *pmdp;
96 	pte_t *ptep, pte;
97 	unsigned long pa;
98 	u32 insn = 0;
99 	unsigned long pstate;
100 
101 	if (pgd_none(*pgdp))
102 		goto outret;
103 	pudp = pud_offset(pgdp, tpc);
104 	if (pud_none(*pudp))
105 		goto outret;
106 	pmdp = pmd_offset(pudp, tpc);
107 	if (pmd_none(*pmdp))
108 		goto outret;
109 
110 	/* This disables preemption for us as well. */
111 	__asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
112 	__asm__ __volatile__("wrpr %0, %1, %%pstate"
113 				: : "r" (pstate), "i" (PSTATE_IE));
114 	ptep = pte_offset_map(pmdp, tpc);
115 	pte = *ptep;
116 	if (!pte_present(pte))
117 		goto out;
118 
119 	pa  = (pte_pfn(pte) << PAGE_SHIFT);
120 	pa += (tpc & ~PAGE_MASK);
121 
122 	/* Use phys bypass so we don't pollute dtlb/dcache. */
123 	__asm__ __volatile__("lduwa [%1] %2, %0"
124 			     : "=r" (insn)
125 			     : "r" (pa), "i" (ASI_PHYS_USE_EC));
126 
127 out:
128 	pte_unmap(ptep);
129 	__asm__ __volatile__("wrpr %0, 0x0, %%pstate" : : "r" (pstate));
130 outret:
131 	return insn;
132 }
133 
134 static inline void
135 show_signal_msg(struct pt_regs *regs, int sig, int code,
136 		unsigned long address, struct task_struct *tsk)
137 {
138 	if (!unhandled_signal(tsk, sig))
139 		return;
140 
141 	if (!printk_ratelimit())
142 		return;
143 
144 	printk("%s%s[%d]: segfault at %lx ip %p (rpc %p) sp %p error %x",
145 	       task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG,
146 	       tsk->comm, task_pid_nr(tsk), address,
147 	       (void *)regs->tpc, (void *)regs->u_regs[UREG_I7],
148 	       (void *)regs->u_regs[UREG_FP], code);
149 
150 	print_vma_addr(KERN_CONT " in ", regs->tpc);
151 
152 	printk(KERN_CONT "\n");
153 }
154 
155 static void do_fault_siginfo(int code, int sig, struct pt_regs *regs,
156 			     unsigned int insn, int fault_code)
157 {
158 	unsigned long addr;
159 	siginfo_t info;
160 
161 	info.si_code = code;
162 	info.si_signo = sig;
163 	info.si_errno = 0;
164 	if (fault_code & FAULT_CODE_ITLB)
165 		addr = regs->tpc;
166 	else
167 		addr = compute_effective_address(regs, insn, 0);
168 	info.si_addr = (void __user *) addr;
169 	info.si_trapno = 0;
170 
171 	if (unlikely(show_unhandled_signals))
172 		show_signal_msg(regs, sig, code, addr, current);
173 
174 	force_sig_info(sig, &info, current);
175 }
176 
177 extern int handle_ldf_stq(u32, struct pt_regs *);
178 extern int handle_ld_nf(u32, struct pt_regs *);
179 
180 static unsigned int get_fault_insn(struct pt_regs *regs, unsigned int insn)
181 {
182 	if (!insn) {
183 		if (!regs->tpc || (regs->tpc & 0x3))
184 			return 0;
185 		if (regs->tstate & TSTATE_PRIV) {
186 			insn = *(unsigned int *) regs->tpc;
187 		} else {
188 			insn = get_user_insn(regs->tpc);
189 		}
190 	}
191 	return insn;
192 }
193 
194 static void __kprobes do_kernel_fault(struct pt_regs *regs, int si_code,
195 				      int fault_code, unsigned int insn,
196 				      unsigned long address)
197 {
198 	unsigned char asi = ASI_P;
199 
200 	if ((!insn) && (regs->tstate & TSTATE_PRIV))
201 		goto cannot_handle;
202 
203 	/* If user insn could be read (thus insn is zero), that
204 	 * is fine.  We will just gun down the process with a signal
205 	 * in that case.
206 	 */
207 
208 	if (!(fault_code & (FAULT_CODE_WRITE|FAULT_CODE_ITLB)) &&
209 	    (insn & 0xc0800000) == 0xc0800000) {
210 		if (insn & 0x2000)
211 			asi = (regs->tstate >> 24);
212 		else
213 			asi = (insn >> 5);
214 		if ((asi & 0xf2) == 0x82) {
215 			if (insn & 0x1000000) {
216 				handle_ldf_stq(insn, regs);
217 			} else {
218 				/* This was a non-faulting load. Just clear the
219 				 * destination register(s) and continue with the next
220 				 * instruction. -jj
221 				 */
222 				handle_ld_nf(insn, regs);
223 			}
224 			return;
225 		}
226 	}
227 
228 	/* Is this in ex_table? */
229 	if (regs->tstate & TSTATE_PRIV) {
230 		const struct exception_table_entry *entry;
231 
232 		entry = search_exception_tables(regs->tpc);
233 		if (entry) {
234 			regs->tpc = entry->fixup;
235 			regs->tnpc = regs->tpc + 4;
236 			return;
237 		}
238 	} else {
239 		/* The si_code was set to make clear whether
240 		 * this was a SEGV_MAPERR or SEGV_ACCERR fault.
241 		 */
242 		do_fault_siginfo(si_code, SIGSEGV, regs, insn, fault_code);
243 		return;
244 	}
245 
246 cannot_handle:
247 	unhandled_fault (address, current, regs);
248 }
249 
250 static void noinline __kprobes bogus_32bit_fault_tpc(struct pt_regs *regs)
251 {
252 	static int times;
253 
254 	if (times++ < 10)
255 		printk(KERN_ERR "FAULT[%s:%d]: 32-bit process reports "
256 		       "64-bit TPC [%lx]\n",
257 		       current->comm, current->pid,
258 		       regs->tpc);
259 	show_regs(regs);
260 }
261 
262 static void noinline __kprobes bogus_32bit_fault_address(struct pt_regs *regs,
263 							 unsigned long addr)
264 {
265 	static int times;
266 
267 	if (times++ < 10)
268 		printk(KERN_ERR "FAULT[%s:%d]: 32-bit process "
269 		       "reports 64-bit fault address [%lx]\n",
270 		       current->comm, current->pid, addr);
271 	show_regs(regs);
272 }
273 
274 asmlinkage void __kprobes do_sparc64_fault(struct pt_regs *regs)
275 {
276 	enum ctx_state prev_state = exception_enter();
277 	struct mm_struct *mm = current->mm;
278 	struct vm_area_struct *vma;
279 	unsigned int insn = 0;
280 	int si_code, fault_code, fault;
281 	unsigned long address, mm_rss;
282 	unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
283 
284 	fault_code = get_thread_fault_code();
285 
286 	if (notify_page_fault(regs))
287 		goto exit_exception;
288 
289 	si_code = SEGV_MAPERR;
290 	address = current_thread_info()->fault_address;
291 
292 	if ((fault_code & FAULT_CODE_ITLB) &&
293 	    (fault_code & FAULT_CODE_DTLB))
294 		BUG();
295 
296 	if (test_thread_flag(TIF_32BIT)) {
297 		if (!(regs->tstate & TSTATE_PRIV)) {
298 			if (unlikely((regs->tpc >> 32) != 0)) {
299 				bogus_32bit_fault_tpc(regs);
300 				goto intr_or_no_mm;
301 			}
302 		}
303 		if (unlikely((address >> 32) != 0)) {
304 			bogus_32bit_fault_address(regs, address);
305 			goto intr_or_no_mm;
306 		}
307 	}
308 
309 	if (regs->tstate & TSTATE_PRIV) {
310 		unsigned long tpc = regs->tpc;
311 
312 		/* Sanity check the PC. */
313 		if ((tpc >= KERNBASE && tpc < (unsigned long) __init_end) ||
314 		    (tpc >= MODULES_VADDR && tpc < MODULES_END)) {
315 			/* Valid, no problems... */
316 		} else {
317 			bad_kernel_pc(regs, address);
318 			goto exit_exception;
319 		}
320 	} else
321 		flags |= FAULT_FLAG_USER;
322 
323 	/*
324 	 * If we're in an interrupt or have no user
325 	 * context, we must not take the fault..
326 	 */
327 	if (in_atomic() || !mm)
328 		goto intr_or_no_mm;
329 
330 	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
331 
332 	if (!down_read_trylock(&mm->mmap_sem)) {
333 		if ((regs->tstate & TSTATE_PRIV) &&
334 		    !search_exception_tables(regs->tpc)) {
335 			insn = get_fault_insn(regs, insn);
336 			goto handle_kernel_fault;
337 		}
338 
339 retry:
340 		down_read(&mm->mmap_sem);
341 	}
342 
343 	vma = find_vma(mm, address);
344 	if (!vma)
345 		goto bad_area;
346 
347 	/* Pure DTLB misses do not tell us whether the fault causing
348 	 * load/store/atomic was a write or not, it only says that there
349 	 * was no match.  So in such a case we (carefully) read the
350 	 * instruction to try and figure this out.  It's an optimization
351 	 * so it's ok if we can't do this.
352 	 *
353 	 * Special hack, window spill/fill knows the exact fault type.
354 	 */
355 	if (((fault_code &
356 	      (FAULT_CODE_DTLB | FAULT_CODE_WRITE | FAULT_CODE_WINFIXUP)) == FAULT_CODE_DTLB) &&
357 	    (vma->vm_flags & VM_WRITE) != 0) {
358 		insn = get_fault_insn(regs, 0);
359 		if (!insn)
360 			goto continue_fault;
361 		/* All loads, stores and atomics have bits 30 and 31 both set
362 		 * in the instruction.  Bit 21 is set in all stores, but we
363 		 * have to avoid prefetches which also have bit 21 set.
364 		 */
365 		if ((insn & 0xc0200000) == 0xc0200000 &&
366 		    (insn & 0x01780000) != 0x01680000) {
367 			/* Don't bother updating thread struct value,
368 			 * because update_mmu_cache only cares which tlb
369 			 * the access came from.
370 			 */
371 			fault_code |= FAULT_CODE_WRITE;
372 		}
373 	}
374 continue_fault:
375 
376 	if (vma->vm_start <= address)
377 		goto good_area;
378 	if (!(vma->vm_flags & VM_GROWSDOWN))
379 		goto bad_area;
380 	if (!(fault_code & FAULT_CODE_WRITE)) {
381 		/* Non-faulting loads shouldn't expand stack. */
382 		insn = get_fault_insn(regs, insn);
383 		if ((insn & 0xc0800000) == 0xc0800000) {
384 			unsigned char asi;
385 
386 			if (insn & 0x2000)
387 				asi = (regs->tstate >> 24);
388 			else
389 				asi = (insn >> 5);
390 			if ((asi & 0xf2) == 0x82)
391 				goto bad_area;
392 		}
393 	}
394 	if (expand_stack(vma, address))
395 		goto bad_area;
396 	/*
397 	 * Ok, we have a good vm_area for this memory access, so
398 	 * we can handle it..
399 	 */
400 good_area:
401 	si_code = SEGV_ACCERR;
402 
403 	/* If we took a ITLB miss on a non-executable page, catch
404 	 * that here.
405 	 */
406 	if ((fault_code & FAULT_CODE_ITLB) && !(vma->vm_flags & VM_EXEC)) {
407 		BUG_ON(address != regs->tpc);
408 		BUG_ON(regs->tstate & TSTATE_PRIV);
409 		goto bad_area;
410 	}
411 
412 	if (fault_code & FAULT_CODE_WRITE) {
413 		if (!(vma->vm_flags & VM_WRITE))
414 			goto bad_area;
415 
416 		/* Spitfire has an icache which does not snoop
417 		 * processor stores.  Later processors do...
418 		 */
419 		if (tlb_type == spitfire &&
420 		    (vma->vm_flags & VM_EXEC) != 0 &&
421 		    vma->vm_file != NULL)
422 			set_thread_fault_code(fault_code |
423 					      FAULT_CODE_BLKCOMMIT);
424 
425 		flags |= FAULT_FLAG_WRITE;
426 	} else {
427 		/* Allow reads even for write-only mappings */
428 		if (!(vma->vm_flags & (VM_READ | VM_EXEC)))
429 			goto bad_area;
430 	}
431 
432 	fault = handle_mm_fault(mm, vma, address, flags);
433 
434 	if ((fault & VM_FAULT_RETRY) && fatal_signal_pending(current))
435 		goto exit_exception;
436 
437 	if (unlikely(fault & VM_FAULT_ERROR)) {
438 		if (fault & VM_FAULT_OOM)
439 			goto out_of_memory;
440 		else if (fault & VM_FAULT_SIGBUS)
441 			goto do_sigbus;
442 		BUG();
443 	}
444 
445 	if (flags & FAULT_FLAG_ALLOW_RETRY) {
446 		if (fault & VM_FAULT_MAJOR) {
447 			current->maj_flt++;
448 			perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ,
449 				      1, regs, address);
450 		} else {
451 			current->min_flt++;
452 			perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN,
453 				      1, regs, address);
454 		}
455 		if (fault & VM_FAULT_RETRY) {
456 			flags &= ~FAULT_FLAG_ALLOW_RETRY;
457 			flags |= FAULT_FLAG_TRIED;
458 
459 			/* No need to up_read(&mm->mmap_sem) as we would
460 			 * have already released it in __lock_page_or_retry
461 			 * in mm/filemap.c.
462 			 */
463 
464 			goto retry;
465 		}
466 	}
467 	up_read(&mm->mmap_sem);
468 
469 	mm_rss = get_mm_rss(mm);
470 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
471 	mm_rss -= (mm->context.huge_pte_count * (HPAGE_SIZE / PAGE_SIZE));
472 #endif
473 	if (unlikely(mm_rss >
474 		     mm->context.tsb_block[MM_TSB_BASE].tsb_rss_limit))
475 		tsb_grow(mm, MM_TSB_BASE, mm_rss);
476 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
477 	mm_rss = mm->context.huge_pte_count;
478 	if (unlikely(mm_rss >
479 		     mm->context.tsb_block[MM_TSB_HUGE].tsb_rss_limit)) {
480 		if (mm->context.tsb_block[MM_TSB_HUGE].tsb)
481 			tsb_grow(mm, MM_TSB_HUGE, mm_rss);
482 		else
483 			hugetlb_setup(regs);
484 
485 	}
486 #endif
487 exit_exception:
488 	exception_exit(prev_state);
489 	return;
490 
491 	/*
492 	 * Something tried to access memory that isn't in our memory map..
493 	 * Fix it, but check if it's kernel or user first..
494 	 */
495 bad_area:
496 	insn = get_fault_insn(regs, insn);
497 	up_read(&mm->mmap_sem);
498 
499 handle_kernel_fault:
500 	do_kernel_fault(regs, si_code, fault_code, insn, address);
501 	goto exit_exception;
502 
503 /*
504  * We ran out of memory, or some other thing happened to us that made
505  * us unable to handle the page fault gracefully.
506  */
507 out_of_memory:
508 	insn = get_fault_insn(regs, insn);
509 	up_read(&mm->mmap_sem);
510 	if (!(regs->tstate & TSTATE_PRIV)) {
511 		pagefault_out_of_memory();
512 		goto exit_exception;
513 	}
514 	goto handle_kernel_fault;
515 
516 intr_or_no_mm:
517 	insn = get_fault_insn(regs, 0);
518 	goto handle_kernel_fault;
519 
520 do_sigbus:
521 	insn = get_fault_insn(regs, insn);
522 	up_read(&mm->mmap_sem);
523 
524 	/*
525 	 * Send a sigbus, regardless of whether we were in kernel
526 	 * or user mode.
527 	 */
528 	do_fault_siginfo(BUS_ADRERR, SIGBUS, regs, insn, fault_code);
529 
530 	/* Kernel mode? Handle exceptions or die */
531 	if (regs->tstate & TSTATE_PRIV)
532 		goto handle_kernel_fault;
533 }
534