1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * arch/sparc64/mm/fault.c: Page fault handlers for the 64-bit Sparc. 4 * 5 * Copyright (C) 1996, 2008 David S. Miller (davem@davemloft.net) 6 * Copyright (C) 1997, 1999 Jakub Jelinek (jj@ultra.linux.cz) 7 */ 8 9 #include <asm/head.h> 10 11 #include <linux/string.h> 12 #include <linux/types.h> 13 #include <linux/sched.h> 14 #include <linux/sched/debug.h> 15 #include <linux/ptrace.h> 16 #include <linux/mman.h> 17 #include <linux/signal.h> 18 #include <linux/mm.h> 19 #include <linux/extable.h> 20 #include <linux/init.h> 21 #include <linux/perf_event.h> 22 #include <linux/interrupt.h> 23 #include <linux/kprobes.h> 24 #include <linux/kdebug.h> 25 #include <linux/percpu.h> 26 #include <linux/context_tracking.h> 27 #include <linux/uaccess.h> 28 29 #include <asm/page.h> 30 #include <asm/pgtable.h> 31 #include <asm/openprom.h> 32 #include <asm/oplib.h> 33 #include <asm/asi.h> 34 #include <asm/lsu.h> 35 #include <asm/sections.h> 36 #include <asm/mmu_context.h> 37 #include <asm/setup.h> 38 39 int show_unhandled_signals = 1; 40 41 static inline __kprobes int notify_page_fault(struct pt_regs *regs) 42 { 43 int ret = 0; 44 45 /* kprobe_running() needs smp_processor_id() */ 46 if (kprobes_built_in() && !user_mode(regs)) { 47 preempt_disable(); 48 if (kprobe_running() && kprobe_fault_handler(regs, 0)) 49 ret = 1; 50 preempt_enable(); 51 } 52 return ret; 53 } 54 55 static void __kprobes unhandled_fault(unsigned long address, 56 struct task_struct *tsk, 57 struct pt_regs *regs) 58 { 59 if ((unsigned long) address < PAGE_SIZE) { 60 printk(KERN_ALERT "Unable to handle kernel NULL " 61 "pointer dereference\n"); 62 } else { 63 printk(KERN_ALERT "Unable to handle kernel paging request " 64 "at virtual address %016lx\n", (unsigned long)address); 65 } 66 printk(KERN_ALERT "tsk->{mm,active_mm}->context = %016lx\n", 67 (tsk->mm ? 68 CTX_HWBITS(tsk->mm->context) : 69 CTX_HWBITS(tsk->active_mm->context))); 70 printk(KERN_ALERT "tsk->{mm,active_mm}->pgd = %016lx\n", 71 (tsk->mm ? (unsigned long) tsk->mm->pgd : 72 (unsigned long) tsk->active_mm->pgd)); 73 die_if_kernel("Oops", regs); 74 } 75 76 static void __kprobes bad_kernel_pc(struct pt_regs *regs, unsigned long vaddr) 77 { 78 printk(KERN_CRIT "OOPS: Bogus kernel PC [%016lx] in fault handler\n", 79 regs->tpc); 80 printk(KERN_CRIT "OOPS: RPC [%016lx]\n", regs->u_regs[15]); 81 printk("OOPS: RPC <%pS>\n", (void *) regs->u_regs[15]); 82 printk(KERN_CRIT "OOPS: Fault was to vaddr[%lx]\n", vaddr); 83 dump_stack(); 84 unhandled_fault(regs->tpc, current, regs); 85 } 86 87 /* 88 * We now make sure that mmap_sem is held in all paths that call 89 * this. Additionally, to prevent kswapd from ripping ptes from 90 * under us, raise interrupts around the time that we look at the 91 * pte, kswapd will have to wait to get his smp ipi response from 92 * us. vmtruncate likewise. This saves us having to get pte lock. 93 */ 94 static unsigned int get_user_insn(unsigned long tpc) 95 { 96 pgd_t *pgdp = pgd_offset(current->mm, tpc); 97 pud_t *pudp; 98 pmd_t *pmdp; 99 pte_t *ptep, pte; 100 unsigned long pa; 101 u32 insn = 0; 102 103 if (pgd_none(*pgdp) || unlikely(pgd_bad(*pgdp))) 104 goto out; 105 pudp = pud_offset(pgdp, tpc); 106 if (pud_none(*pudp) || unlikely(pud_bad(*pudp))) 107 goto out; 108 109 /* This disables preemption for us as well. */ 110 local_irq_disable(); 111 112 pmdp = pmd_offset(pudp, tpc); 113 if (pmd_none(*pmdp) || unlikely(pmd_bad(*pmdp))) 114 goto out_irq_enable; 115 116 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE) 117 if (is_hugetlb_pmd(*pmdp)) { 118 pa = pmd_pfn(*pmdp) << PAGE_SHIFT; 119 pa += tpc & ~HPAGE_MASK; 120 121 /* Use phys bypass so we don't pollute dtlb/dcache. */ 122 __asm__ __volatile__("lduwa [%1] %2, %0" 123 : "=r" (insn) 124 : "r" (pa), "i" (ASI_PHYS_USE_EC)); 125 } else 126 #endif 127 { 128 ptep = pte_offset_map(pmdp, tpc); 129 pte = *ptep; 130 if (pte_present(pte)) { 131 pa = (pte_pfn(pte) << PAGE_SHIFT); 132 pa += (tpc & ~PAGE_MASK); 133 134 /* Use phys bypass so we don't pollute dtlb/dcache. */ 135 __asm__ __volatile__("lduwa [%1] %2, %0" 136 : "=r" (insn) 137 : "r" (pa), "i" (ASI_PHYS_USE_EC)); 138 } 139 pte_unmap(ptep); 140 } 141 out_irq_enable: 142 local_irq_enable(); 143 out: 144 return insn; 145 } 146 147 static inline void 148 show_signal_msg(struct pt_regs *regs, int sig, int code, 149 unsigned long address, struct task_struct *tsk) 150 { 151 if (!unhandled_signal(tsk, sig)) 152 return; 153 154 if (!printk_ratelimit()) 155 return; 156 157 printk("%s%s[%d]: segfault at %lx ip %px (rpc %px) sp %px error %x", 158 task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG, 159 tsk->comm, task_pid_nr(tsk), address, 160 (void *)regs->tpc, (void *)regs->u_regs[UREG_I7], 161 (void *)regs->u_regs[UREG_FP], code); 162 163 print_vma_addr(KERN_CONT " in ", regs->tpc); 164 165 printk(KERN_CONT "\n"); 166 } 167 168 static void do_fault_siginfo(int code, int sig, struct pt_regs *regs, 169 unsigned long fault_addr, unsigned int insn, 170 int fault_code) 171 { 172 unsigned long addr; 173 174 if (fault_code & FAULT_CODE_ITLB) { 175 addr = regs->tpc; 176 } else { 177 /* If we were able to probe the faulting instruction, use it 178 * to compute a precise fault address. Otherwise use the fault 179 * time provided address which may only have page granularity. 180 */ 181 if (insn) 182 addr = compute_effective_address(regs, insn, 0); 183 else 184 addr = fault_addr; 185 } 186 187 if (unlikely(show_unhandled_signals)) 188 show_signal_msg(regs, sig, code, addr, current); 189 190 force_sig_fault(sig, code, (void __user *) addr, 0, current); 191 } 192 193 static unsigned int get_fault_insn(struct pt_regs *regs, unsigned int insn) 194 { 195 if (!insn) { 196 if (!regs->tpc || (regs->tpc & 0x3)) 197 return 0; 198 if (regs->tstate & TSTATE_PRIV) { 199 insn = *(unsigned int *) regs->tpc; 200 } else { 201 insn = get_user_insn(regs->tpc); 202 } 203 } 204 return insn; 205 } 206 207 static void __kprobes do_kernel_fault(struct pt_regs *regs, int si_code, 208 int fault_code, unsigned int insn, 209 unsigned long address) 210 { 211 unsigned char asi = ASI_P; 212 213 if ((!insn) && (regs->tstate & TSTATE_PRIV)) 214 goto cannot_handle; 215 216 /* If user insn could be read (thus insn is zero), that 217 * is fine. We will just gun down the process with a signal 218 * in that case. 219 */ 220 221 if (!(fault_code & (FAULT_CODE_WRITE|FAULT_CODE_ITLB)) && 222 (insn & 0xc0800000) == 0xc0800000) { 223 if (insn & 0x2000) 224 asi = (regs->tstate >> 24); 225 else 226 asi = (insn >> 5); 227 if ((asi & 0xf2) == 0x82) { 228 if (insn & 0x1000000) { 229 handle_ldf_stq(insn, regs); 230 } else { 231 /* This was a non-faulting load. Just clear the 232 * destination register(s) and continue with the next 233 * instruction. -jj 234 */ 235 handle_ld_nf(insn, regs); 236 } 237 return; 238 } 239 } 240 241 /* Is this in ex_table? */ 242 if (regs->tstate & TSTATE_PRIV) { 243 const struct exception_table_entry *entry; 244 245 entry = search_exception_tables(regs->tpc); 246 if (entry) { 247 regs->tpc = entry->fixup; 248 regs->tnpc = regs->tpc + 4; 249 return; 250 } 251 } else { 252 /* The si_code was set to make clear whether 253 * this was a SEGV_MAPERR or SEGV_ACCERR fault. 254 */ 255 do_fault_siginfo(si_code, SIGSEGV, regs, address, insn, fault_code); 256 return; 257 } 258 259 cannot_handle: 260 unhandled_fault (address, current, regs); 261 } 262 263 static void noinline __kprobes bogus_32bit_fault_tpc(struct pt_regs *regs) 264 { 265 static int times; 266 267 if (times++ < 10) 268 printk(KERN_ERR "FAULT[%s:%d]: 32-bit process reports " 269 "64-bit TPC [%lx]\n", 270 current->comm, current->pid, 271 regs->tpc); 272 show_regs(regs); 273 } 274 275 asmlinkage void __kprobes do_sparc64_fault(struct pt_regs *regs) 276 { 277 enum ctx_state prev_state = exception_enter(); 278 struct mm_struct *mm = current->mm; 279 struct vm_area_struct *vma; 280 unsigned int insn = 0; 281 int si_code, fault_code, fault; 282 unsigned long address, mm_rss; 283 unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; 284 285 fault_code = get_thread_fault_code(); 286 287 if (notify_page_fault(regs)) 288 goto exit_exception; 289 290 si_code = SEGV_MAPERR; 291 address = current_thread_info()->fault_address; 292 293 if ((fault_code & FAULT_CODE_ITLB) && 294 (fault_code & FAULT_CODE_DTLB)) 295 BUG(); 296 297 if (test_thread_flag(TIF_32BIT)) { 298 if (!(regs->tstate & TSTATE_PRIV)) { 299 if (unlikely((regs->tpc >> 32) != 0)) { 300 bogus_32bit_fault_tpc(regs); 301 goto intr_or_no_mm; 302 } 303 } 304 if (unlikely((address >> 32) != 0)) 305 goto intr_or_no_mm; 306 } 307 308 if (regs->tstate & TSTATE_PRIV) { 309 unsigned long tpc = regs->tpc; 310 311 /* Sanity check the PC. */ 312 if ((tpc >= KERNBASE && tpc < (unsigned long) __init_end) || 313 (tpc >= MODULES_VADDR && tpc < MODULES_END)) { 314 /* Valid, no problems... */ 315 } else { 316 bad_kernel_pc(regs, address); 317 goto exit_exception; 318 } 319 } else 320 flags |= FAULT_FLAG_USER; 321 322 /* 323 * If we're in an interrupt or have no user 324 * context, we must not take the fault.. 325 */ 326 if (faulthandler_disabled() || !mm) 327 goto intr_or_no_mm; 328 329 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address); 330 331 if (!down_read_trylock(&mm->mmap_sem)) { 332 if ((regs->tstate & TSTATE_PRIV) && 333 !search_exception_tables(regs->tpc)) { 334 insn = get_fault_insn(regs, insn); 335 goto handle_kernel_fault; 336 } 337 338 retry: 339 down_read(&mm->mmap_sem); 340 } 341 342 if (fault_code & FAULT_CODE_BAD_RA) 343 goto do_sigbus; 344 345 vma = find_vma(mm, address); 346 if (!vma) 347 goto bad_area; 348 349 /* Pure DTLB misses do not tell us whether the fault causing 350 * load/store/atomic was a write or not, it only says that there 351 * was no match. So in such a case we (carefully) read the 352 * instruction to try and figure this out. It's an optimization 353 * so it's ok if we can't do this. 354 * 355 * Special hack, window spill/fill knows the exact fault type. 356 */ 357 if (((fault_code & 358 (FAULT_CODE_DTLB | FAULT_CODE_WRITE | FAULT_CODE_WINFIXUP)) == FAULT_CODE_DTLB) && 359 (vma->vm_flags & VM_WRITE) != 0) { 360 insn = get_fault_insn(regs, 0); 361 if (!insn) 362 goto continue_fault; 363 /* All loads, stores and atomics have bits 30 and 31 both set 364 * in the instruction. Bit 21 is set in all stores, but we 365 * have to avoid prefetches which also have bit 21 set. 366 */ 367 if ((insn & 0xc0200000) == 0xc0200000 && 368 (insn & 0x01780000) != 0x01680000) { 369 /* Don't bother updating thread struct value, 370 * because update_mmu_cache only cares which tlb 371 * the access came from. 372 */ 373 fault_code |= FAULT_CODE_WRITE; 374 } 375 } 376 continue_fault: 377 378 if (vma->vm_start <= address) 379 goto good_area; 380 if (!(vma->vm_flags & VM_GROWSDOWN)) 381 goto bad_area; 382 if (!(fault_code & FAULT_CODE_WRITE)) { 383 /* Non-faulting loads shouldn't expand stack. */ 384 insn = get_fault_insn(regs, insn); 385 if ((insn & 0xc0800000) == 0xc0800000) { 386 unsigned char asi; 387 388 if (insn & 0x2000) 389 asi = (regs->tstate >> 24); 390 else 391 asi = (insn >> 5); 392 if ((asi & 0xf2) == 0x82) 393 goto bad_area; 394 } 395 } 396 if (expand_stack(vma, address)) 397 goto bad_area; 398 /* 399 * Ok, we have a good vm_area for this memory access, so 400 * we can handle it.. 401 */ 402 good_area: 403 si_code = SEGV_ACCERR; 404 405 /* If we took a ITLB miss on a non-executable page, catch 406 * that here. 407 */ 408 if ((fault_code & FAULT_CODE_ITLB) && !(vma->vm_flags & VM_EXEC)) { 409 WARN(address != regs->tpc, 410 "address (%lx) != regs->tpc (%lx)\n", address, regs->tpc); 411 WARN_ON(regs->tstate & TSTATE_PRIV); 412 goto bad_area; 413 } 414 415 if (fault_code & FAULT_CODE_WRITE) { 416 if (!(vma->vm_flags & VM_WRITE)) 417 goto bad_area; 418 419 /* Spitfire has an icache which does not snoop 420 * processor stores. Later processors do... 421 */ 422 if (tlb_type == spitfire && 423 (vma->vm_flags & VM_EXEC) != 0 && 424 vma->vm_file != NULL) 425 set_thread_fault_code(fault_code | 426 FAULT_CODE_BLKCOMMIT); 427 428 flags |= FAULT_FLAG_WRITE; 429 } else { 430 /* Allow reads even for write-only mappings */ 431 if (!(vma->vm_flags & (VM_READ | VM_EXEC))) 432 goto bad_area; 433 } 434 435 fault = handle_mm_fault(vma, address, flags); 436 437 if ((fault & VM_FAULT_RETRY) && fatal_signal_pending(current)) 438 goto exit_exception; 439 440 if (unlikely(fault & VM_FAULT_ERROR)) { 441 if (fault & VM_FAULT_OOM) 442 goto out_of_memory; 443 else if (fault & VM_FAULT_SIGSEGV) 444 goto bad_area; 445 else if (fault & VM_FAULT_SIGBUS) 446 goto do_sigbus; 447 BUG(); 448 } 449 450 if (flags & FAULT_FLAG_ALLOW_RETRY) { 451 if (fault & VM_FAULT_MAJOR) { 452 current->maj_flt++; 453 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 454 1, regs, address); 455 } else { 456 current->min_flt++; 457 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 458 1, regs, address); 459 } 460 if (fault & VM_FAULT_RETRY) { 461 flags &= ~FAULT_FLAG_ALLOW_RETRY; 462 flags |= FAULT_FLAG_TRIED; 463 464 /* No need to up_read(&mm->mmap_sem) as we would 465 * have already released it in __lock_page_or_retry 466 * in mm/filemap.c. 467 */ 468 469 goto retry; 470 } 471 } 472 up_read(&mm->mmap_sem); 473 474 mm_rss = get_mm_rss(mm); 475 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) 476 mm_rss -= (mm->context.thp_pte_count * (HPAGE_SIZE / PAGE_SIZE)); 477 #endif 478 if (unlikely(mm_rss > 479 mm->context.tsb_block[MM_TSB_BASE].tsb_rss_limit)) 480 tsb_grow(mm, MM_TSB_BASE, mm_rss); 481 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE) 482 mm_rss = mm->context.hugetlb_pte_count + mm->context.thp_pte_count; 483 mm_rss *= REAL_HPAGE_PER_HPAGE; 484 if (unlikely(mm_rss > 485 mm->context.tsb_block[MM_TSB_HUGE].tsb_rss_limit)) { 486 if (mm->context.tsb_block[MM_TSB_HUGE].tsb) 487 tsb_grow(mm, MM_TSB_HUGE, mm_rss); 488 else 489 hugetlb_setup(regs); 490 491 } 492 #endif 493 exit_exception: 494 exception_exit(prev_state); 495 return; 496 497 /* 498 * Something tried to access memory that isn't in our memory map.. 499 * Fix it, but check if it's kernel or user first.. 500 */ 501 bad_area: 502 insn = get_fault_insn(regs, insn); 503 up_read(&mm->mmap_sem); 504 505 handle_kernel_fault: 506 do_kernel_fault(regs, si_code, fault_code, insn, address); 507 goto exit_exception; 508 509 /* 510 * We ran out of memory, or some other thing happened to us that made 511 * us unable to handle the page fault gracefully. 512 */ 513 out_of_memory: 514 insn = get_fault_insn(regs, insn); 515 up_read(&mm->mmap_sem); 516 if (!(regs->tstate & TSTATE_PRIV)) { 517 pagefault_out_of_memory(); 518 goto exit_exception; 519 } 520 goto handle_kernel_fault; 521 522 intr_or_no_mm: 523 insn = get_fault_insn(regs, 0); 524 goto handle_kernel_fault; 525 526 do_sigbus: 527 insn = get_fault_insn(regs, insn); 528 up_read(&mm->mmap_sem); 529 530 /* 531 * Send a sigbus, regardless of whether we were in kernel 532 * or user mode. 533 */ 534 do_fault_siginfo(BUS_ADRERR, SIGBUS, regs, address, insn, fault_code); 535 536 /* Kernel mode? Handle exceptions or die */ 537 if (regs->tstate & TSTATE_PRIV) 538 goto handle_kernel_fault; 539 } 540