1 /* 2 * arch/sparc64/mm/fault.c: Page fault handlers for the 64-bit Sparc. 3 * 4 * Copyright (C) 1996, 2008 David S. Miller (davem@davemloft.net) 5 * Copyright (C) 1997, 1999 Jakub Jelinek (jj@ultra.linux.cz) 6 */ 7 8 #include <asm/head.h> 9 10 #include <linux/string.h> 11 #include <linux/types.h> 12 #include <linux/sched.h> 13 #include <linux/ptrace.h> 14 #include <linux/mman.h> 15 #include <linux/signal.h> 16 #include <linux/mm.h> 17 #include <linux/module.h> 18 #include <linux/init.h> 19 #include <linux/perf_event.h> 20 #include <linux/interrupt.h> 21 #include <linux/kprobes.h> 22 #include <linux/kdebug.h> 23 #include <linux/percpu.h> 24 25 #include <asm/page.h> 26 #include <asm/pgtable.h> 27 #include <asm/openprom.h> 28 #include <asm/oplib.h> 29 #include <asm/uaccess.h> 30 #include <asm/asi.h> 31 #include <asm/lsu.h> 32 #include <asm/sections.h> 33 #include <asm/mmu_context.h> 34 35 int show_unhandled_signals = 1; 36 37 static inline __kprobes int notify_page_fault(struct pt_regs *regs) 38 { 39 int ret = 0; 40 41 /* kprobe_running() needs smp_processor_id() */ 42 if (kprobes_built_in() && !user_mode(regs)) { 43 preempt_disable(); 44 if (kprobe_running() && kprobe_fault_handler(regs, 0)) 45 ret = 1; 46 preempt_enable(); 47 } 48 return ret; 49 } 50 51 static void __kprobes unhandled_fault(unsigned long address, 52 struct task_struct *tsk, 53 struct pt_regs *regs) 54 { 55 if ((unsigned long) address < PAGE_SIZE) { 56 printk(KERN_ALERT "Unable to handle kernel NULL " 57 "pointer dereference\n"); 58 } else { 59 printk(KERN_ALERT "Unable to handle kernel paging request " 60 "at virtual address %016lx\n", (unsigned long)address); 61 } 62 printk(KERN_ALERT "tsk->{mm,active_mm}->context = %016lx\n", 63 (tsk->mm ? 64 CTX_HWBITS(tsk->mm->context) : 65 CTX_HWBITS(tsk->active_mm->context))); 66 printk(KERN_ALERT "tsk->{mm,active_mm}->pgd = %016lx\n", 67 (tsk->mm ? (unsigned long) tsk->mm->pgd : 68 (unsigned long) tsk->active_mm->pgd)); 69 die_if_kernel("Oops", regs); 70 } 71 72 static void __kprobes bad_kernel_pc(struct pt_regs *regs, unsigned long vaddr) 73 { 74 printk(KERN_CRIT "OOPS: Bogus kernel PC [%016lx] in fault handler\n", 75 regs->tpc); 76 printk(KERN_CRIT "OOPS: RPC [%016lx]\n", regs->u_regs[15]); 77 printk("OOPS: RPC <%pS>\n", (void *) regs->u_regs[15]); 78 printk(KERN_CRIT "OOPS: Fault was to vaddr[%lx]\n", vaddr); 79 dump_stack(); 80 unhandled_fault(regs->tpc, current, regs); 81 } 82 83 /* 84 * We now make sure that mmap_sem is held in all paths that call 85 * this. Additionally, to prevent kswapd from ripping ptes from 86 * under us, raise interrupts around the time that we look at the 87 * pte, kswapd will have to wait to get his smp ipi response from 88 * us. vmtruncate likewise. This saves us having to get pte lock. 89 */ 90 static unsigned int get_user_insn(unsigned long tpc) 91 { 92 pgd_t *pgdp = pgd_offset(current->mm, tpc); 93 pud_t *pudp; 94 pmd_t *pmdp; 95 pte_t *ptep, pte; 96 unsigned long pa; 97 u32 insn = 0; 98 unsigned long pstate; 99 100 if (pgd_none(*pgdp)) 101 goto outret; 102 pudp = pud_offset(pgdp, tpc); 103 if (pud_none(*pudp)) 104 goto outret; 105 pmdp = pmd_offset(pudp, tpc); 106 if (pmd_none(*pmdp)) 107 goto outret; 108 109 /* This disables preemption for us as well. */ 110 __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate)); 111 __asm__ __volatile__("wrpr %0, %1, %%pstate" 112 : : "r" (pstate), "i" (PSTATE_IE)); 113 ptep = pte_offset_map(pmdp, tpc); 114 pte = *ptep; 115 if (!pte_present(pte)) 116 goto out; 117 118 pa = (pte_pfn(pte) << PAGE_SHIFT); 119 pa += (tpc & ~PAGE_MASK); 120 121 /* Use phys bypass so we don't pollute dtlb/dcache. */ 122 __asm__ __volatile__("lduwa [%1] %2, %0" 123 : "=r" (insn) 124 : "r" (pa), "i" (ASI_PHYS_USE_EC)); 125 126 out: 127 pte_unmap(ptep); 128 __asm__ __volatile__("wrpr %0, 0x0, %%pstate" : : "r" (pstate)); 129 outret: 130 return insn; 131 } 132 133 static inline void 134 show_signal_msg(struct pt_regs *regs, int sig, int code, 135 unsigned long address, struct task_struct *tsk) 136 { 137 if (!unhandled_signal(tsk, sig)) 138 return; 139 140 if (!printk_ratelimit()) 141 return; 142 143 printk("%s%s[%d]: segfault at %lx ip %p (rpc %p) sp %p error %x", 144 task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG, 145 tsk->comm, task_pid_nr(tsk), address, 146 (void *)regs->tpc, (void *)regs->u_regs[UREG_I7], 147 (void *)regs->u_regs[UREG_FP], code); 148 149 print_vma_addr(KERN_CONT " in ", regs->tpc); 150 151 printk(KERN_CONT "\n"); 152 } 153 154 extern unsigned long compute_effective_address(struct pt_regs *, unsigned int, unsigned int); 155 156 static void do_fault_siginfo(int code, int sig, struct pt_regs *regs, 157 unsigned int insn, int fault_code) 158 { 159 unsigned long addr; 160 siginfo_t info; 161 162 info.si_code = code; 163 info.si_signo = sig; 164 info.si_errno = 0; 165 if (fault_code & FAULT_CODE_ITLB) 166 addr = regs->tpc; 167 else 168 addr = compute_effective_address(regs, insn, 0); 169 info.si_addr = (void __user *) addr; 170 info.si_trapno = 0; 171 172 if (unlikely(show_unhandled_signals)) 173 show_signal_msg(regs, sig, code, addr, current); 174 175 force_sig_info(sig, &info, current); 176 } 177 178 extern int handle_ldf_stq(u32, struct pt_regs *); 179 extern int handle_ld_nf(u32, struct pt_regs *); 180 181 static unsigned int get_fault_insn(struct pt_regs *regs, unsigned int insn) 182 { 183 if (!insn) { 184 if (!regs->tpc || (regs->tpc & 0x3)) 185 return 0; 186 if (regs->tstate & TSTATE_PRIV) { 187 insn = *(unsigned int *) regs->tpc; 188 } else { 189 insn = get_user_insn(regs->tpc); 190 } 191 } 192 return insn; 193 } 194 195 static void __kprobes do_kernel_fault(struct pt_regs *regs, int si_code, 196 int fault_code, unsigned int insn, 197 unsigned long address) 198 { 199 unsigned char asi = ASI_P; 200 201 if ((!insn) && (regs->tstate & TSTATE_PRIV)) 202 goto cannot_handle; 203 204 /* If user insn could be read (thus insn is zero), that 205 * is fine. We will just gun down the process with a signal 206 * in that case. 207 */ 208 209 if (!(fault_code & (FAULT_CODE_WRITE|FAULT_CODE_ITLB)) && 210 (insn & 0xc0800000) == 0xc0800000) { 211 if (insn & 0x2000) 212 asi = (regs->tstate >> 24); 213 else 214 asi = (insn >> 5); 215 if ((asi & 0xf2) == 0x82) { 216 if (insn & 0x1000000) { 217 handle_ldf_stq(insn, regs); 218 } else { 219 /* This was a non-faulting load. Just clear the 220 * destination register(s) and continue with the next 221 * instruction. -jj 222 */ 223 handle_ld_nf(insn, regs); 224 } 225 return; 226 } 227 } 228 229 /* Is this in ex_table? */ 230 if (regs->tstate & TSTATE_PRIV) { 231 const struct exception_table_entry *entry; 232 233 entry = search_exception_tables(regs->tpc); 234 if (entry) { 235 regs->tpc = entry->fixup; 236 regs->tnpc = regs->tpc + 4; 237 return; 238 } 239 } else { 240 /* The si_code was set to make clear whether 241 * this was a SEGV_MAPERR or SEGV_ACCERR fault. 242 */ 243 do_fault_siginfo(si_code, SIGSEGV, regs, insn, fault_code); 244 return; 245 } 246 247 cannot_handle: 248 unhandled_fault (address, current, regs); 249 } 250 251 static void noinline __kprobes bogus_32bit_fault_tpc(struct pt_regs *regs) 252 { 253 static int times; 254 255 if (times++ < 10) 256 printk(KERN_ERR "FAULT[%s:%d]: 32-bit process reports " 257 "64-bit TPC [%lx]\n", 258 current->comm, current->pid, 259 regs->tpc); 260 show_regs(regs); 261 } 262 263 static void noinline __kprobes bogus_32bit_fault_address(struct pt_regs *regs, 264 unsigned long addr) 265 { 266 static int times; 267 268 if (times++ < 10) 269 printk(KERN_ERR "FAULT[%s:%d]: 32-bit process " 270 "reports 64-bit fault address [%lx]\n", 271 current->comm, current->pid, addr); 272 show_regs(regs); 273 } 274 275 asmlinkage void __kprobes do_sparc64_fault(struct pt_regs *regs) 276 { 277 struct mm_struct *mm = current->mm; 278 struct vm_area_struct *vma; 279 unsigned int insn = 0; 280 int si_code, fault_code, fault; 281 unsigned long address, mm_rss; 282 283 fault_code = get_thread_fault_code(); 284 285 if (notify_page_fault(regs)) 286 return; 287 288 si_code = SEGV_MAPERR; 289 address = current_thread_info()->fault_address; 290 291 if ((fault_code & FAULT_CODE_ITLB) && 292 (fault_code & FAULT_CODE_DTLB)) 293 BUG(); 294 295 if (test_thread_flag(TIF_32BIT)) { 296 if (!(regs->tstate & TSTATE_PRIV)) { 297 if (unlikely((regs->tpc >> 32) != 0)) { 298 bogus_32bit_fault_tpc(regs); 299 goto intr_or_no_mm; 300 } 301 } 302 if (unlikely((address >> 32) != 0)) { 303 bogus_32bit_fault_address(regs, address); 304 goto intr_or_no_mm; 305 } 306 } 307 308 if (regs->tstate & TSTATE_PRIV) { 309 unsigned long tpc = regs->tpc; 310 311 /* Sanity check the PC. */ 312 if ((tpc >= KERNBASE && tpc < (unsigned long) __init_end) || 313 (tpc >= MODULES_VADDR && tpc < MODULES_END)) { 314 /* Valid, no problems... */ 315 } else { 316 bad_kernel_pc(regs, address); 317 return; 318 } 319 } 320 321 /* 322 * If we're in an interrupt or have no user 323 * context, we must not take the fault.. 324 */ 325 if (in_atomic() || !mm) 326 goto intr_or_no_mm; 327 328 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, 0, regs, address); 329 330 if (!down_read_trylock(&mm->mmap_sem)) { 331 if ((regs->tstate & TSTATE_PRIV) && 332 !search_exception_tables(regs->tpc)) { 333 insn = get_fault_insn(regs, insn); 334 goto handle_kernel_fault; 335 } 336 down_read(&mm->mmap_sem); 337 } 338 339 vma = find_vma(mm, address); 340 if (!vma) 341 goto bad_area; 342 343 /* Pure DTLB misses do not tell us whether the fault causing 344 * load/store/atomic was a write or not, it only says that there 345 * was no match. So in such a case we (carefully) read the 346 * instruction to try and figure this out. It's an optimization 347 * so it's ok if we can't do this. 348 * 349 * Special hack, window spill/fill knows the exact fault type. 350 */ 351 if (((fault_code & 352 (FAULT_CODE_DTLB | FAULT_CODE_WRITE | FAULT_CODE_WINFIXUP)) == FAULT_CODE_DTLB) && 353 (vma->vm_flags & VM_WRITE) != 0) { 354 insn = get_fault_insn(regs, 0); 355 if (!insn) 356 goto continue_fault; 357 /* All loads, stores and atomics have bits 30 and 31 both set 358 * in the instruction. Bit 21 is set in all stores, but we 359 * have to avoid prefetches which also have bit 21 set. 360 */ 361 if ((insn & 0xc0200000) == 0xc0200000 && 362 (insn & 0x01780000) != 0x01680000) { 363 /* Don't bother updating thread struct value, 364 * because update_mmu_cache only cares which tlb 365 * the access came from. 366 */ 367 fault_code |= FAULT_CODE_WRITE; 368 } 369 } 370 continue_fault: 371 372 if (vma->vm_start <= address) 373 goto good_area; 374 if (!(vma->vm_flags & VM_GROWSDOWN)) 375 goto bad_area; 376 if (!(fault_code & FAULT_CODE_WRITE)) { 377 /* Non-faulting loads shouldn't expand stack. */ 378 insn = get_fault_insn(regs, insn); 379 if ((insn & 0xc0800000) == 0xc0800000) { 380 unsigned char asi; 381 382 if (insn & 0x2000) 383 asi = (regs->tstate >> 24); 384 else 385 asi = (insn >> 5); 386 if ((asi & 0xf2) == 0x82) 387 goto bad_area; 388 } 389 } 390 if (expand_stack(vma, address)) 391 goto bad_area; 392 /* 393 * Ok, we have a good vm_area for this memory access, so 394 * we can handle it.. 395 */ 396 good_area: 397 si_code = SEGV_ACCERR; 398 399 /* If we took a ITLB miss on a non-executable page, catch 400 * that here. 401 */ 402 if ((fault_code & FAULT_CODE_ITLB) && !(vma->vm_flags & VM_EXEC)) { 403 BUG_ON(address != regs->tpc); 404 BUG_ON(regs->tstate & TSTATE_PRIV); 405 goto bad_area; 406 } 407 408 if (fault_code & FAULT_CODE_WRITE) { 409 if (!(vma->vm_flags & VM_WRITE)) 410 goto bad_area; 411 412 /* Spitfire has an icache which does not snoop 413 * processor stores. Later processors do... 414 */ 415 if (tlb_type == spitfire && 416 (vma->vm_flags & VM_EXEC) != 0 && 417 vma->vm_file != NULL) 418 set_thread_fault_code(fault_code | 419 FAULT_CODE_BLKCOMMIT); 420 } else { 421 /* Allow reads even for write-only mappings */ 422 if (!(vma->vm_flags & (VM_READ | VM_EXEC))) 423 goto bad_area; 424 } 425 426 fault = handle_mm_fault(mm, vma, address, (fault_code & FAULT_CODE_WRITE) ? FAULT_FLAG_WRITE : 0); 427 if (unlikely(fault & VM_FAULT_ERROR)) { 428 if (fault & VM_FAULT_OOM) 429 goto out_of_memory; 430 else if (fault & VM_FAULT_SIGBUS) 431 goto do_sigbus; 432 BUG(); 433 } 434 if (fault & VM_FAULT_MAJOR) { 435 current->maj_flt++; 436 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, 0, 437 regs, address); 438 } else { 439 current->min_flt++; 440 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, 0, 441 regs, address); 442 } 443 up_read(&mm->mmap_sem); 444 445 mm_rss = get_mm_rss(mm); 446 #ifdef CONFIG_HUGETLB_PAGE 447 mm_rss -= (mm->context.huge_pte_count * (HPAGE_SIZE / PAGE_SIZE)); 448 #endif 449 if (unlikely(mm_rss > 450 mm->context.tsb_block[MM_TSB_BASE].tsb_rss_limit)) 451 tsb_grow(mm, MM_TSB_BASE, mm_rss); 452 #ifdef CONFIG_HUGETLB_PAGE 453 mm_rss = mm->context.huge_pte_count; 454 if (unlikely(mm_rss > 455 mm->context.tsb_block[MM_TSB_HUGE].tsb_rss_limit)) 456 tsb_grow(mm, MM_TSB_HUGE, mm_rss); 457 #endif 458 return; 459 460 /* 461 * Something tried to access memory that isn't in our memory map.. 462 * Fix it, but check if it's kernel or user first.. 463 */ 464 bad_area: 465 insn = get_fault_insn(regs, insn); 466 up_read(&mm->mmap_sem); 467 468 handle_kernel_fault: 469 do_kernel_fault(regs, si_code, fault_code, insn, address); 470 return; 471 472 /* 473 * We ran out of memory, or some other thing happened to us that made 474 * us unable to handle the page fault gracefully. 475 */ 476 out_of_memory: 477 insn = get_fault_insn(regs, insn); 478 up_read(&mm->mmap_sem); 479 if (!(regs->tstate & TSTATE_PRIV)) { 480 pagefault_out_of_memory(); 481 return; 482 } 483 goto handle_kernel_fault; 484 485 intr_or_no_mm: 486 insn = get_fault_insn(regs, 0); 487 goto handle_kernel_fault; 488 489 do_sigbus: 490 insn = get_fault_insn(regs, insn); 491 up_read(&mm->mmap_sem); 492 493 /* 494 * Send a sigbus, regardless of whether we were in kernel 495 * or user mode. 496 */ 497 do_fault_siginfo(BUS_ADRERR, SIGBUS, regs, insn, fault_code); 498 499 /* Kernel mode? Handle exceptions or die */ 500 if (regs->tstate & TSTATE_PRIV) 501 goto handle_kernel_fault; 502 } 503