1 /* 2 * arch/sparc64/mm/fault.c: Page fault handlers for the 64-bit Sparc. 3 * 4 * Copyright (C) 1996, 2008 David S. Miller (davem@davemloft.net) 5 * Copyright (C) 1997, 1999 Jakub Jelinek (jj@ultra.linux.cz) 6 */ 7 8 #include <asm/head.h> 9 10 #include <linux/string.h> 11 #include <linux/types.h> 12 #include <linux/sched.h> 13 #include <linux/ptrace.h> 14 #include <linux/mman.h> 15 #include <linux/signal.h> 16 #include <linux/mm.h> 17 #include <linux/module.h> 18 #include <linux/init.h> 19 #include <linux/perf_event.h> 20 #include <linux/interrupt.h> 21 #include <linux/kprobes.h> 22 #include <linux/kdebug.h> 23 #include <linux/percpu.h> 24 #include <linux/context_tracking.h> 25 26 #include <asm/page.h> 27 #include <asm/pgtable.h> 28 #include <asm/openprom.h> 29 #include <asm/oplib.h> 30 #include <asm/uaccess.h> 31 #include <asm/asi.h> 32 #include <asm/lsu.h> 33 #include <asm/sections.h> 34 #include <asm/mmu_context.h> 35 36 int show_unhandled_signals = 1; 37 38 static inline __kprobes int notify_page_fault(struct pt_regs *regs) 39 { 40 int ret = 0; 41 42 /* kprobe_running() needs smp_processor_id() */ 43 if (kprobes_built_in() && !user_mode(regs)) { 44 preempt_disable(); 45 if (kprobe_running() && kprobe_fault_handler(regs, 0)) 46 ret = 1; 47 preempt_enable(); 48 } 49 return ret; 50 } 51 52 static void __kprobes unhandled_fault(unsigned long address, 53 struct task_struct *tsk, 54 struct pt_regs *regs) 55 { 56 if ((unsigned long) address < PAGE_SIZE) { 57 printk(KERN_ALERT "Unable to handle kernel NULL " 58 "pointer dereference\n"); 59 } else { 60 printk(KERN_ALERT "Unable to handle kernel paging request " 61 "at virtual address %016lx\n", (unsigned long)address); 62 } 63 printk(KERN_ALERT "tsk->{mm,active_mm}->context = %016lx\n", 64 (tsk->mm ? 65 CTX_HWBITS(tsk->mm->context) : 66 CTX_HWBITS(tsk->active_mm->context))); 67 printk(KERN_ALERT "tsk->{mm,active_mm}->pgd = %016lx\n", 68 (tsk->mm ? (unsigned long) tsk->mm->pgd : 69 (unsigned long) tsk->active_mm->pgd)); 70 die_if_kernel("Oops", regs); 71 } 72 73 static void __kprobes bad_kernel_pc(struct pt_regs *regs, unsigned long vaddr) 74 { 75 printk(KERN_CRIT "OOPS: Bogus kernel PC [%016lx] in fault handler\n", 76 regs->tpc); 77 printk(KERN_CRIT "OOPS: RPC [%016lx]\n", regs->u_regs[15]); 78 printk("OOPS: RPC <%pS>\n", (void *) regs->u_regs[15]); 79 printk(KERN_CRIT "OOPS: Fault was to vaddr[%lx]\n", vaddr); 80 dump_stack(); 81 unhandled_fault(regs->tpc, current, regs); 82 } 83 84 /* 85 * We now make sure that mmap_sem is held in all paths that call 86 * this. Additionally, to prevent kswapd from ripping ptes from 87 * under us, raise interrupts around the time that we look at the 88 * pte, kswapd will have to wait to get his smp ipi response from 89 * us. vmtruncate likewise. This saves us having to get pte lock. 90 */ 91 static unsigned int get_user_insn(unsigned long tpc) 92 { 93 pgd_t *pgdp = pgd_offset(current->mm, tpc); 94 pud_t *pudp; 95 pmd_t *pmdp; 96 pte_t *ptep, pte; 97 unsigned long pa; 98 u32 insn = 0; 99 100 if (pgd_none(*pgdp) || unlikely(pgd_bad(*pgdp))) 101 goto out; 102 pudp = pud_offset(pgdp, tpc); 103 if (pud_none(*pudp) || unlikely(pud_bad(*pudp))) 104 goto out; 105 106 /* This disables preemption for us as well. */ 107 local_irq_disable(); 108 109 pmdp = pmd_offset(pudp, tpc); 110 if (pmd_none(*pmdp) || unlikely(pmd_bad(*pmdp))) 111 goto out_irq_enable; 112 113 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 114 if (pmd_trans_huge(*pmdp)) { 115 if (pmd_trans_splitting(*pmdp)) 116 goto out_irq_enable; 117 118 pa = pmd_pfn(*pmdp) << PAGE_SHIFT; 119 pa += tpc & ~HPAGE_MASK; 120 121 /* Use phys bypass so we don't pollute dtlb/dcache. */ 122 __asm__ __volatile__("lduwa [%1] %2, %0" 123 : "=r" (insn) 124 : "r" (pa), "i" (ASI_PHYS_USE_EC)); 125 } else 126 #endif 127 { 128 ptep = pte_offset_map(pmdp, tpc); 129 pte = *ptep; 130 if (pte_present(pte)) { 131 pa = (pte_pfn(pte) << PAGE_SHIFT); 132 pa += (tpc & ~PAGE_MASK); 133 134 /* Use phys bypass so we don't pollute dtlb/dcache. */ 135 __asm__ __volatile__("lduwa [%1] %2, %0" 136 : "=r" (insn) 137 : "r" (pa), "i" (ASI_PHYS_USE_EC)); 138 } 139 pte_unmap(ptep); 140 } 141 out_irq_enable: 142 local_irq_enable(); 143 out: 144 return insn; 145 } 146 147 static inline void 148 show_signal_msg(struct pt_regs *regs, int sig, int code, 149 unsigned long address, struct task_struct *tsk) 150 { 151 if (!unhandled_signal(tsk, sig)) 152 return; 153 154 if (!printk_ratelimit()) 155 return; 156 157 printk("%s%s[%d]: segfault at %lx ip %p (rpc %p) sp %p error %x", 158 task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG, 159 tsk->comm, task_pid_nr(tsk), address, 160 (void *)regs->tpc, (void *)regs->u_regs[UREG_I7], 161 (void *)regs->u_regs[UREG_FP], code); 162 163 print_vma_addr(KERN_CONT " in ", regs->tpc); 164 165 printk(KERN_CONT "\n"); 166 } 167 168 static void do_fault_siginfo(int code, int sig, struct pt_regs *regs, 169 unsigned long fault_addr, unsigned int insn, 170 int fault_code) 171 { 172 unsigned long addr; 173 siginfo_t info; 174 175 info.si_code = code; 176 info.si_signo = sig; 177 info.si_errno = 0; 178 if (fault_code & FAULT_CODE_ITLB) { 179 addr = regs->tpc; 180 } else { 181 /* If we were able to probe the faulting instruction, use it 182 * to compute a precise fault address. Otherwise use the fault 183 * time provided address which may only have page granularity. 184 */ 185 if (insn) 186 addr = compute_effective_address(regs, insn, 0); 187 else 188 addr = fault_addr; 189 } 190 info.si_addr = (void __user *) addr; 191 info.si_trapno = 0; 192 193 if (unlikely(show_unhandled_signals)) 194 show_signal_msg(regs, sig, code, addr, current); 195 196 force_sig_info(sig, &info, current); 197 } 198 199 extern int handle_ldf_stq(u32, struct pt_regs *); 200 extern int handle_ld_nf(u32, struct pt_regs *); 201 202 static unsigned int get_fault_insn(struct pt_regs *regs, unsigned int insn) 203 { 204 if (!insn) { 205 if (!regs->tpc || (regs->tpc & 0x3)) 206 return 0; 207 if (regs->tstate & TSTATE_PRIV) { 208 insn = *(unsigned int *) regs->tpc; 209 } else { 210 insn = get_user_insn(regs->tpc); 211 } 212 } 213 return insn; 214 } 215 216 static void __kprobes do_kernel_fault(struct pt_regs *regs, int si_code, 217 int fault_code, unsigned int insn, 218 unsigned long address) 219 { 220 unsigned char asi = ASI_P; 221 222 if ((!insn) && (regs->tstate & TSTATE_PRIV)) 223 goto cannot_handle; 224 225 /* If user insn could be read (thus insn is zero), that 226 * is fine. We will just gun down the process with a signal 227 * in that case. 228 */ 229 230 if (!(fault_code & (FAULT_CODE_WRITE|FAULT_CODE_ITLB)) && 231 (insn & 0xc0800000) == 0xc0800000) { 232 if (insn & 0x2000) 233 asi = (regs->tstate >> 24); 234 else 235 asi = (insn >> 5); 236 if ((asi & 0xf2) == 0x82) { 237 if (insn & 0x1000000) { 238 handle_ldf_stq(insn, regs); 239 } else { 240 /* This was a non-faulting load. Just clear the 241 * destination register(s) and continue with the next 242 * instruction. -jj 243 */ 244 handle_ld_nf(insn, regs); 245 } 246 return; 247 } 248 } 249 250 /* Is this in ex_table? */ 251 if (regs->tstate & TSTATE_PRIV) { 252 const struct exception_table_entry *entry; 253 254 entry = search_exception_tables(regs->tpc); 255 if (entry) { 256 regs->tpc = entry->fixup; 257 regs->tnpc = regs->tpc + 4; 258 return; 259 } 260 } else { 261 /* The si_code was set to make clear whether 262 * this was a SEGV_MAPERR or SEGV_ACCERR fault. 263 */ 264 do_fault_siginfo(si_code, SIGSEGV, regs, address, insn, fault_code); 265 return; 266 } 267 268 cannot_handle: 269 unhandled_fault (address, current, regs); 270 } 271 272 static void noinline __kprobes bogus_32bit_fault_tpc(struct pt_regs *regs) 273 { 274 static int times; 275 276 if (times++ < 10) 277 printk(KERN_ERR "FAULT[%s:%d]: 32-bit process reports " 278 "64-bit TPC [%lx]\n", 279 current->comm, current->pid, 280 regs->tpc); 281 show_regs(regs); 282 } 283 284 asmlinkage void __kprobes do_sparc64_fault(struct pt_regs *regs) 285 { 286 enum ctx_state prev_state = exception_enter(); 287 struct mm_struct *mm = current->mm; 288 struct vm_area_struct *vma; 289 unsigned int insn = 0; 290 int si_code, fault_code, fault; 291 unsigned long address, mm_rss; 292 unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; 293 294 fault_code = get_thread_fault_code(); 295 296 if (notify_page_fault(regs)) 297 goto exit_exception; 298 299 si_code = SEGV_MAPERR; 300 address = current_thread_info()->fault_address; 301 302 if ((fault_code & FAULT_CODE_ITLB) && 303 (fault_code & FAULT_CODE_DTLB)) 304 BUG(); 305 306 if (test_thread_flag(TIF_32BIT)) { 307 if (!(regs->tstate & TSTATE_PRIV)) { 308 if (unlikely((regs->tpc >> 32) != 0)) { 309 bogus_32bit_fault_tpc(regs); 310 goto intr_or_no_mm; 311 } 312 } 313 if (unlikely((address >> 32) != 0)) 314 goto intr_or_no_mm; 315 } 316 317 if (regs->tstate & TSTATE_PRIV) { 318 unsigned long tpc = regs->tpc; 319 320 /* Sanity check the PC. */ 321 if ((tpc >= KERNBASE && tpc < (unsigned long) __init_end) || 322 (tpc >= MODULES_VADDR && tpc < MODULES_END)) { 323 /* Valid, no problems... */ 324 } else { 325 bad_kernel_pc(regs, address); 326 goto exit_exception; 327 } 328 } else 329 flags |= FAULT_FLAG_USER; 330 331 /* 332 * If we're in an interrupt or have no user 333 * context, we must not take the fault.. 334 */ 335 if (in_atomic() || !mm) 336 goto intr_or_no_mm; 337 338 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address); 339 340 if (!down_read_trylock(&mm->mmap_sem)) { 341 if ((regs->tstate & TSTATE_PRIV) && 342 !search_exception_tables(regs->tpc)) { 343 insn = get_fault_insn(regs, insn); 344 goto handle_kernel_fault; 345 } 346 347 retry: 348 down_read(&mm->mmap_sem); 349 } 350 351 vma = find_vma(mm, address); 352 if (!vma) 353 goto bad_area; 354 355 /* Pure DTLB misses do not tell us whether the fault causing 356 * load/store/atomic was a write or not, it only says that there 357 * was no match. So in such a case we (carefully) read the 358 * instruction to try and figure this out. It's an optimization 359 * so it's ok if we can't do this. 360 * 361 * Special hack, window spill/fill knows the exact fault type. 362 */ 363 if (((fault_code & 364 (FAULT_CODE_DTLB | FAULT_CODE_WRITE | FAULT_CODE_WINFIXUP)) == FAULT_CODE_DTLB) && 365 (vma->vm_flags & VM_WRITE) != 0) { 366 insn = get_fault_insn(regs, 0); 367 if (!insn) 368 goto continue_fault; 369 /* All loads, stores and atomics have bits 30 and 31 both set 370 * in the instruction. Bit 21 is set in all stores, but we 371 * have to avoid prefetches which also have bit 21 set. 372 */ 373 if ((insn & 0xc0200000) == 0xc0200000 && 374 (insn & 0x01780000) != 0x01680000) { 375 /* Don't bother updating thread struct value, 376 * because update_mmu_cache only cares which tlb 377 * the access came from. 378 */ 379 fault_code |= FAULT_CODE_WRITE; 380 } 381 } 382 continue_fault: 383 384 if (vma->vm_start <= address) 385 goto good_area; 386 if (!(vma->vm_flags & VM_GROWSDOWN)) 387 goto bad_area; 388 if (!(fault_code & FAULT_CODE_WRITE)) { 389 /* Non-faulting loads shouldn't expand stack. */ 390 insn = get_fault_insn(regs, insn); 391 if ((insn & 0xc0800000) == 0xc0800000) { 392 unsigned char asi; 393 394 if (insn & 0x2000) 395 asi = (regs->tstate >> 24); 396 else 397 asi = (insn >> 5); 398 if ((asi & 0xf2) == 0x82) 399 goto bad_area; 400 } 401 } 402 if (expand_stack(vma, address)) 403 goto bad_area; 404 /* 405 * Ok, we have a good vm_area for this memory access, so 406 * we can handle it.. 407 */ 408 good_area: 409 si_code = SEGV_ACCERR; 410 411 /* If we took a ITLB miss on a non-executable page, catch 412 * that here. 413 */ 414 if ((fault_code & FAULT_CODE_ITLB) && !(vma->vm_flags & VM_EXEC)) { 415 BUG_ON(address != regs->tpc); 416 BUG_ON(regs->tstate & TSTATE_PRIV); 417 goto bad_area; 418 } 419 420 if (fault_code & FAULT_CODE_WRITE) { 421 if (!(vma->vm_flags & VM_WRITE)) 422 goto bad_area; 423 424 /* Spitfire has an icache which does not snoop 425 * processor stores. Later processors do... 426 */ 427 if (tlb_type == spitfire && 428 (vma->vm_flags & VM_EXEC) != 0 && 429 vma->vm_file != NULL) 430 set_thread_fault_code(fault_code | 431 FAULT_CODE_BLKCOMMIT); 432 433 flags |= FAULT_FLAG_WRITE; 434 } else { 435 /* Allow reads even for write-only mappings */ 436 if (!(vma->vm_flags & (VM_READ | VM_EXEC))) 437 goto bad_area; 438 } 439 440 fault = handle_mm_fault(mm, vma, address, flags); 441 442 if ((fault & VM_FAULT_RETRY) && fatal_signal_pending(current)) 443 goto exit_exception; 444 445 if (unlikely(fault & VM_FAULT_ERROR)) { 446 if (fault & VM_FAULT_OOM) 447 goto out_of_memory; 448 else if (fault & VM_FAULT_SIGBUS) 449 goto do_sigbus; 450 BUG(); 451 } 452 453 if (flags & FAULT_FLAG_ALLOW_RETRY) { 454 if (fault & VM_FAULT_MAJOR) { 455 current->maj_flt++; 456 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 457 1, regs, address); 458 } else { 459 current->min_flt++; 460 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 461 1, regs, address); 462 } 463 if (fault & VM_FAULT_RETRY) { 464 flags &= ~FAULT_FLAG_ALLOW_RETRY; 465 flags |= FAULT_FLAG_TRIED; 466 467 /* No need to up_read(&mm->mmap_sem) as we would 468 * have already released it in __lock_page_or_retry 469 * in mm/filemap.c. 470 */ 471 472 goto retry; 473 } 474 } 475 up_read(&mm->mmap_sem); 476 477 mm_rss = get_mm_rss(mm); 478 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE) 479 mm_rss -= (mm->context.huge_pte_count * (HPAGE_SIZE / PAGE_SIZE)); 480 #endif 481 if (unlikely(mm_rss > 482 mm->context.tsb_block[MM_TSB_BASE].tsb_rss_limit)) 483 tsb_grow(mm, MM_TSB_BASE, mm_rss); 484 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE) 485 mm_rss = mm->context.huge_pte_count; 486 if (unlikely(mm_rss > 487 mm->context.tsb_block[MM_TSB_HUGE].tsb_rss_limit)) { 488 if (mm->context.tsb_block[MM_TSB_HUGE].tsb) 489 tsb_grow(mm, MM_TSB_HUGE, mm_rss); 490 else 491 hugetlb_setup(regs); 492 493 } 494 #endif 495 exit_exception: 496 exception_exit(prev_state); 497 return; 498 499 /* 500 * Something tried to access memory that isn't in our memory map.. 501 * Fix it, but check if it's kernel or user first.. 502 */ 503 bad_area: 504 insn = get_fault_insn(regs, insn); 505 up_read(&mm->mmap_sem); 506 507 handle_kernel_fault: 508 do_kernel_fault(regs, si_code, fault_code, insn, address); 509 goto exit_exception; 510 511 /* 512 * We ran out of memory, or some other thing happened to us that made 513 * us unable to handle the page fault gracefully. 514 */ 515 out_of_memory: 516 insn = get_fault_insn(regs, insn); 517 up_read(&mm->mmap_sem); 518 if (!(regs->tstate & TSTATE_PRIV)) { 519 pagefault_out_of_memory(); 520 goto exit_exception; 521 } 522 goto handle_kernel_fault; 523 524 intr_or_no_mm: 525 insn = get_fault_insn(regs, 0); 526 goto handle_kernel_fault; 527 528 do_sigbus: 529 insn = get_fault_insn(regs, insn); 530 up_read(&mm->mmap_sem); 531 532 /* 533 * Send a sigbus, regardless of whether we were in kernel 534 * or user mode. 535 */ 536 do_fault_siginfo(BUS_ADRERR, SIGBUS, regs, address, insn, fault_code); 537 538 /* Kernel mode? Handle exceptions or die */ 539 if (regs->tstate & TSTATE_PRIV) 540 goto handle_kernel_fault; 541 } 542