1 /* 2 * arch/sparc64/mm/fault.c: Page fault handlers for the 64-bit Sparc. 3 * 4 * Copyright (C) 1996, 2008 David S. Miller (davem@davemloft.net) 5 * Copyright (C) 1997, 1999 Jakub Jelinek (jj@ultra.linux.cz) 6 */ 7 8 #include <asm/head.h> 9 10 #include <linux/string.h> 11 #include <linux/types.h> 12 #include <linux/sched.h> 13 #include <linux/sched/debug.h> 14 #include <linux/ptrace.h> 15 #include <linux/mman.h> 16 #include <linux/signal.h> 17 #include <linux/mm.h> 18 #include <linux/extable.h> 19 #include <linux/init.h> 20 #include <linux/perf_event.h> 21 #include <linux/interrupt.h> 22 #include <linux/kprobes.h> 23 #include <linux/kdebug.h> 24 #include <linux/percpu.h> 25 #include <linux/context_tracking.h> 26 #include <linux/uaccess.h> 27 28 #include <asm/page.h> 29 #include <asm/pgtable.h> 30 #include <asm/openprom.h> 31 #include <asm/oplib.h> 32 #include <asm/asi.h> 33 #include <asm/lsu.h> 34 #include <asm/sections.h> 35 #include <asm/mmu_context.h> 36 #include <asm/setup.h> 37 38 int show_unhandled_signals = 1; 39 40 static inline __kprobes int notify_page_fault(struct pt_regs *regs) 41 { 42 int ret = 0; 43 44 /* kprobe_running() needs smp_processor_id() */ 45 if (kprobes_built_in() && !user_mode(regs)) { 46 preempt_disable(); 47 if (kprobe_running() && kprobe_fault_handler(regs, 0)) 48 ret = 1; 49 preempt_enable(); 50 } 51 return ret; 52 } 53 54 static void __kprobes unhandled_fault(unsigned long address, 55 struct task_struct *tsk, 56 struct pt_regs *regs) 57 { 58 if ((unsigned long) address < PAGE_SIZE) { 59 printk(KERN_ALERT "Unable to handle kernel NULL " 60 "pointer dereference\n"); 61 } else { 62 printk(KERN_ALERT "Unable to handle kernel paging request " 63 "at virtual address %016lx\n", (unsigned long)address); 64 } 65 printk(KERN_ALERT "tsk->{mm,active_mm}->context = %016lx\n", 66 (tsk->mm ? 67 CTX_HWBITS(tsk->mm->context) : 68 CTX_HWBITS(tsk->active_mm->context))); 69 printk(KERN_ALERT "tsk->{mm,active_mm}->pgd = %016lx\n", 70 (tsk->mm ? (unsigned long) tsk->mm->pgd : 71 (unsigned long) tsk->active_mm->pgd)); 72 die_if_kernel("Oops", regs); 73 } 74 75 static void __kprobes bad_kernel_pc(struct pt_regs *regs, unsigned long vaddr) 76 { 77 printk(KERN_CRIT "OOPS: Bogus kernel PC [%016lx] in fault handler\n", 78 regs->tpc); 79 printk(KERN_CRIT "OOPS: RPC [%016lx]\n", regs->u_regs[15]); 80 printk("OOPS: RPC <%pS>\n", (void *) regs->u_regs[15]); 81 printk(KERN_CRIT "OOPS: Fault was to vaddr[%lx]\n", vaddr); 82 dump_stack(); 83 unhandled_fault(regs->tpc, current, regs); 84 } 85 86 /* 87 * We now make sure that mmap_sem is held in all paths that call 88 * this. Additionally, to prevent kswapd from ripping ptes from 89 * under us, raise interrupts around the time that we look at the 90 * pte, kswapd will have to wait to get his smp ipi response from 91 * us. vmtruncate likewise. This saves us having to get pte lock. 92 */ 93 static unsigned int get_user_insn(unsigned long tpc) 94 { 95 pgd_t *pgdp = pgd_offset(current->mm, tpc); 96 pud_t *pudp; 97 pmd_t *pmdp; 98 pte_t *ptep, pte; 99 unsigned long pa; 100 u32 insn = 0; 101 102 if (pgd_none(*pgdp) || unlikely(pgd_bad(*pgdp))) 103 goto out; 104 pudp = pud_offset(pgdp, tpc); 105 if (pud_none(*pudp) || unlikely(pud_bad(*pudp))) 106 goto out; 107 108 /* This disables preemption for us as well. */ 109 local_irq_disable(); 110 111 pmdp = pmd_offset(pudp, tpc); 112 if (pmd_none(*pmdp) || unlikely(pmd_bad(*pmdp))) 113 goto out_irq_enable; 114 115 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE) 116 if (is_hugetlb_pmd(*pmdp)) { 117 pa = pmd_pfn(*pmdp) << PAGE_SHIFT; 118 pa += tpc & ~HPAGE_MASK; 119 120 /* Use phys bypass so we don't pollute dtlb/dcache. */ 121 __asm__ __volatile__("lduwa [%1] %2, %0" 122 : "=r" (insn) 123 : "r" (pa), "i" (ASI_PHYS_USE_EC)); 124 } else 125 #endif 126 { 127 ptep = pte_offset_map(pmdp, tpc); 128 pte = *ptep; 129 if (pte_present(pte)) { 130 pa = (pte_pfn(pte) << PAGE_SHIFT); 131 pa += (tpc & ~PAGE_MASK); 132 133 /* Use phys bypass so we don't pollute dtlb/dcache. */ 134 __asm__ __volatile__("lduwa [%1] %2, %0" 135 : "=r" (insn) 136 : "r" (pa), "i" (ASI_PHYS_USE_EC)); 137 } 138 pte_unmap(ptep); 139 } 140 out_irq_enable: 141 local_irq_enable(); 142 out: 143 return insn; 144 } 145 146 static inline void 147 show_signal_msg(struct pt_regs *regs, int sig, int code, 148 unsigned long address, struct task_struct *tsk) 149 { 150 if (!unhandled_signal(tsk, sig)) 151 return; 152 153 if (!printk_ratelimit()) 154 return; 155 156 printk("%s%s[%d]: segfault at %lx ip %p (rpc %p) sp %p error %x", 157 task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG, 158 tsk->comm, task_pid_nr(tsk), address, 159 (void *)regs->tpc, (void *)regs->u_regs[UREG_I7], 160 (void *)regs->u_regs[UREG_FP], code); 161 162 print_vma_addr(KERN_CONT " in ", regs->tpc); 163 164 printk(KERN_CONT "\n"); 165 } 166 167 static void do_fault_siginfo(int code, int sig, struct pt_regs *regs, 168 unsigned long fault_addr, unsigned int insn, 169 int fault_code) 170 { 171 unsigned long addr; 172 siginfo_t info; 173 174 info.si_code = code; 175 info.si_signo = sig; 176 info.si_errno = 0; 177 if (fault_code & FAULT_CODE_ITLB) { 178 addr = regs->tpc; 179 } else { 180 /* If we were able to probe the faulting instruction, use it 181 * to compute a precise fault address. Otherwise use the fault 182 * time provided address which may only have page granularity. 183 */ 184 if (insn) 185 addr = compute_effective_address(regs, insn, 0); 186 else 187 addr = fault_addr; 188 } 189 info.si_addr = (void __user *) addr; 190 info.si_trapno = 0; 191 192 if (unlikely(show_unhandled_signals)) 193 show_signal_msg(regs, sig, code, addr, current); 194 195 force_sig_info(sig, &info, current); 196 } 197 198 static unsigned int get_fault_insn(struct pt_regs *regs, unsigned int insn) 199 { 200 if (!insn) { 201 if (!regs->tpc || (regs->tpc & 0x3)) 202 return 0; 203 if (regs->tstate & TSTATE_PRIV) { 204 insn = *(unsigned int *) regs->tpc; 205 } else { 206 insn = get_user_insn(regs->tpc); 207 } 208 } 209 return insn; 210 } 211 212 static void __kprobes do_kernel_fault(struct pt_regs *regs, int si_code, 213 int fault_code, unsigned int insn, 214 unsigned long address) 215 { 216 unsigned char asi = ASI_P; 217 218 if ((!insn) && (regs->tstate & TSTATE_PRIV)) 219 goto cannot_handle; 220 221 /* If user insn could be read (thus insn is zero), that 222 * is fine. We will just gun down the process with a signal 223 * in that case. 224 */ 225 226 if (!(fault_code & (FAULT_CODE_WRITE|FAULT_CODE_ITLB)) && 227 (insn & 0xc0800000) == 0xc0800000) { 228 if (insn & 0x2000) 229 asi = (regs->tstate >> 24); 230 else 231 asi = (insn >> 5); 232 if ((asi & 0xf2) == 0x82) { 233 if (insn & 0x1000000) { 234 handle_ldf_stq(insn, regs); 235 } else { 236 /* This was a non-faulting load. Just clear the 237 * destination register(s) and continue with the next 238 * instruction. -jj 239 */ 240 handle_ld_nf(insn, regs); 241 } 242 return; 243 } 244 } 245 246 /* Is this in ex_table? */ 247 if (regs->tstate & TSTATE_PRIV) { 248 const struct exception_table_entry *entry; 249 250 entry = search_exception_tables(regs->tpc); 251 if (entry) { 252 regs->tpc = entry->fixup; 253 regs->tnpc = regs->tpc + 4; 254 return; 255 } 256 } else { 257 /* The si_code was set to make clear whether 258 * this was a SEGV_MAPERR or SEGV_ACCERR fault. 259 */ 260 do_fault_siginfo(si_code, SIGSEGV, regs, address, insn, fault_code); 261 return; 262 } 263 264 cannot_handle: 265 unhandled_fault (address, current, regs); 266 } 267 268 static void noinline __kprobes bogus_32bit_fault_tpc(struct pt_regs *regs) 269 { 270 static int times; 271 272 if (times++ < 10) 273 printk(KERN_ERR "FAULT[%s:%d]: 32-bit process reports " 274 "64-bit TPC [%lx]\n", 275 current->comm, current->pid, 276 regs->tpc); 277 show_regs(regs); 278 } 279 280 asmlinkage void __kprobes do_sparc64_fault(struct pt_regs *regs) 281 { 282 enum ctx_state prev_state = exception_enter(); 283 struct mm_struct *mm = current->mm; 284 struct vm_area_struct *vma; 285 unsigned int insn = 0; 286 int si_code, fault_code, fault; 287 unsigned long address, mm_rss; 288 unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; 289 290 fault_code = get_thread_fault_code(); 291 292 if (notify_page_fault(regs)) 293 goto exit_exception; 294 295 si_code = SEGV_MAPERR; 296 address = current_thread_info()->fault_address; 297 298 if ((fault_code & FAULT_CODE_ITLB) && 299 (fault_code & FAULT_CODE_DTLB)) 300 BUG(); 301 302 if (test_thread_flag(TIF_32BIT)) { 303 if (!(regs->tstate & TSTATE_PRIV)) { 304 if (unlikely((regs->tpc >> 32) != 0)) { 305 bogus_32bit_fault_tpc(regs); 306 goto intr_or_no_mm; 307 } 308 } 309 if (unlikely((address >> 32) != 0)) 310 goto intr_or_no_mm; 311 } 312 313 if (regs->tstate & TSTATE_PRIV) { 314 unsigned long tpc = regs->tpc; 315 316 /* Sanity check the PC. */ 317 if ((tpc >= KERNBASE && tpc < (unsigned long) __init_end) || 318 (tpc >= MODULES_VADDR && tpc < MODULES_END)) { 319 /* Valid, no problems... */ 320 } else { 321 bad_kernel_pc(regs, address); 322 goto exit_exception; 323 } 324 } else 325 flags |= FAULT_FLAG_USER; 326 327 /* 328 * If we're in an interrupt or have no user 329 * context, we must not take the fault.. 330 */ 331 if (faulthandler_disabled() || !mm) 332 goto intr_or_no_mm; 333 334 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address); 335 336 if (!down_read_trylock(&mm->mmap_sem)) { 337 if ((regs->tstate & TSTATE_PRIV) && 338 !search_exception_tables(regs->tpc)) { 339 insn = get_fault_insn(regs, insn); 340 goto handle_kernel_fault; 341 } 342 343 retry: 344 down_read(&mm->mmap_sem); 345 } 346 347 if (fault_code & FAULT_CODE_BAD_RA) 348 goto do_sigbus; 349 350 vma = find_vma(mm, address); 351 if (!vma) 352 goto bad_area; 353 354 /* Pure DTLB misses do not tell us whether the fault causing 355 * load/store/atomic was a write or not, it only says that there 356 * was no match. So in such a case we (carefully) read the 357 * instruction to try and figure this out. It's an optimization 358 * so it's ok if we can't do this. 359 * 360 * Special hack, window spill/fill knows the exact fault type. 361 */ 362 if (((fault_code & 363 (FAULT_CODE_DTLB | FAULT_CODE_WRITE | FAULT_CODE_WINFIXUP)) == FAULT_CODE_DTLB) && 364 (vma->vm_flags & VM_WRITE) != 0) { 365 insn = get_fault_insn(regs, 0); 366 if (!insn) 367 goto continue_fault; 368 /* All loads, stores and atomics have bits 30 and 31 both set 369 * in the instruction. Bit 21 is set in all stores, but we 370 * have to avoid prefetches which also have bit 21 set. 371 */ 372 if ((insn & 0xc0200000) == 0xc0200000 && 373 (insn & 0x01780000) != 0x01680000) { 374 /* Don't bother updating thread struct value, 375 * because update_mmu_cache only cares which tlb 376 * the access came from. 377 */ 378 fault_code |= FAULT_CODE_WRITE; 379 } 380 } 381 continue_fault: 382 383 if (vma->vm_start <= address) 384 goto good_area; 385 if (!(vma->vm_flags & VM_GROWSDOWN)) 386 goto bad_area; 387 if (!(fault_code & FAULT_CODE_WRITE)) { 388 /* Non-faulting loads shouldn't expand stack. */ 389 insn = get_fault_insn(regs, insn); 390 if ((insn & 0xc0800000) == 0xc0800000) { 391 unsigned char asi; 392 393 if (insn & 0x2000) 394 asi = (regs->tstate >> 24); 395 else 396 asi = (insn >> 5); 397 if ((asi & 0xf2) == 0x82) 398 goto bad_area; 399 } 400 } 401 if (expand_stack(vma, address)) 402 goto bad_area; 403 /* 404 * Ok, we have a good vm_area for this memory access, so 405 * we can handle it.. 406 */ 407 good_area: 408 si_code = SEGV_ACCERR; 409 410 /* If we took a ITLB miss on a non-executable page, catch 411 * that here. 412 */ 413 if ((fault_code & FAULT_CODE_ITLB) && !(vma->vm_flags & VM_EXEC)) { 414 WARN(address != regs->tpc, 415 "address (%lx) != regs->tpc (%lx)\n", address, regs->tpc); 416 WARN_ON(regs->tstate & TSTATE_PRIV); 417 goto bad_area; 418 } 419 420 if (fault_code & FAULT_CODE_WRITE) { 421 if (!(vma->vm_flags & VM_WRITE)) 422 goto bad_area; 423 424 /* Spitfire has an icache which does not snoop 425 * processor stores. Later processors do... 426 */ 427 if (tlb_type == spitfire && 428 (vma->vm_flags & VM_EXEC) != 0 && 429 vma->vm_file != NULL) 430 set_thread_fault_code(fault_code | 431 FAULT_CODE_BLKCOMMIT); 432 433 flags |= FAULT_FLAG_WRITE; 434 } else { 435 /* Allow reads even for write-only mappings */ 436 if (!(vma->vm_flags & (VM_READ | VM_EXEC))) 437 goto bad_area; 438 } 439 440 fault = handle_mm_fault(vma, address, flags); 441 442 if ((fault & VM_FAULT_RETRY) && fatal_signal_pending(current)) 443 goto exit_exception; 444 445 if (unlikely(fault & VM_FAULT_ERROR)) { 446 if (fault & VM_FAULT_OOM) 447 goto out_of_memory; 448 else if (fault & VM_FAULT_SIGSEGV) 449 goto bad_area; 450 else if (fault & VM_FAULT_SIGBUS) 451 goto do_sigbus; 452 BUG(); 453 } 454 455 if (flags & FAULT_FLAG_ALLOW_RETRY) { 456 if (fault & VM_FAULT_MAJOR) { 457 current->maj_flt++; 458 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 459 1, regs, address); 460 } else { 461 current->min_flt++; 462 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 463 1, regs, address); 464 } 465 if (fault & VM_FAULT_RETRY) { 466 flags &= ~FAULT_FLAG_ALLOW_RETRY; 467 flags |= FAULT_FLAG_TRIED; 468 469 /* No need to up_read(&mm->mmap_sem) as we would 470 * have already released it in __lock_page_or_retry 471 * in mm/filemap.c. 472 */ 473 474 goto retry; 475 } 476 } 477 up_read(&mm->mmap_sem); 478 479 mm_rss = get_mm_rss(mm); 480 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) 481 mm_rss -= (mm->context.thp_pte_count * (HPAGE_SIZE / PAGE_SIZE)); 482 #endif 483 if (unlikely(mm_rss > 484 mm->context.tsb_block[MM_TSB_BASE].tsb_rss_limit)) 485 tsb_grow(mm, MM_TSB_BASE, mm_rss); 486 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE) 487 mm_rss = mm->context.hugetlb_pte_count + mm->context.thp_pte_count; 488 mm_rss *= REAL_HPAGE_PER_HPAGE; 489 if (unlikely(mm_rss > 490 mm->context.tsb_block[MM_TSB_HUGE].tsb_rss_limit)) { 491 if (mm->context.tsb_block[MM_TSB_HUGE].tsb) 492 tsb_grow(mm, MM_TSB_HUGE, mm_rss); 493 else 494 hugetlb_setup(regs); 495 496 } 497 #endif 498 exit_exception: 499 exception_exit(prev_state); 500 return; 501 502 /* 503 * Something tried to access memory that isn't in our memory map.. 504 * Fix it, but check if it's kernel or user first.. 505 */ 506 bad_area: 507 insn = get_fault_insn(regs, insn); 508 up_read(&mm->mmap_sem); 509 510 handle_kernel_fault: 511 do_kernel_fault(regs, si_code, fault_code, insn, address); 512 goto exit_exception; 513 514 /* 515 * We ran out of memory, or some other thing happened to us that made 516 * us unable to handle the page fault gracefully. 517 */ 518 out_of_memory: 519 insn = get_fault_insn(regs, insn); 520 up_read(&mm->mmap_sem); 521 if (!(regs->tstate & TSTATE_PRIV)) { 522 pagefault_out_of_memory(); 523 goto exit_exception; 524 } 525 goto handle_kernel_fault; 526 527 intr_or_no_mm: 528 insn = get_fault_insn(regs, 0); 529 goto handle_kernel_fault; 530 531 do_sigbus: 532 insn = get_fault_insn(regs, insn); 533 up_read(&mm->mmap_sem); 534 535 /* 536 * Send a sigbus, regardless of whether we were in kernel 537 * or user mode. 538 */ 539 do_fault_siginfo(BUS_ADRERR, SIGBUS, regs, address, insn, fault_code); 540 541 /* Kernel mode? Handle exceptions or die */ 542 if (regs->tstate & TSTATE_PRIV) 543 goto handle_kernel_fault; 544 } 545