xref: /openbmc/linux/arch/sparc/mm/fault_64.c (revision 09c434b8)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * arch/sparc64/mm/fault.c: Page fault handlers for the 64-bit Sparc.
4  *
5  * Copyright (C) 1996, 2008 David S. Miller (davem@davemloft.net)
6  * Copyright (C) 1997, 1999 Jakub Jelinek (jj@ultra.linux.cz)
7  */
8 
9 #include <asm/head.h>
10 
11 #include <linux/string.h>
12 #include <linux/types.h>
13 #include <linux/sched.h>
14 #include <linux/sched/debug.h>
15 #include <linux/ptrace.h>
16 #include <linux/mman.h>
17 #include <linux/signal.h>
18 #include <linux/mm.h>
19 #include <linux/extable.h>
20 #include <linux/init.h>
21 #include <linux/perf_event.h>
22 #include <linux/interrupt.h>
23 #include <linux/kprobes.h>
24 #include <linux/kdebug.h>
25 #include <linux/percpu.h>
26 #include <linux/context_tracking.h>
27 #include <linux/uaccess.h>
28 
29 #include <asm/page.h>
30 #include <asm/pgtable.h>
31 #include <asm/openprom.h>
32 #include <asm/oplib.h>
33 #include <asm/asi.h>
34 #include <asm/lsu.h>
35 #include <asm/sections.h>
36 #include <asm/mmu_context.h>
37 #include <asm/setup.h>
38 
39 int show_unhandled_signals = 1;
40 
41 static inline __kprobes int notify_page_fault(struct pt_regs *regs)
42 {
43 	int ret = 0;
44 
45 	/* kprobe_running() needs smp_processor_id() */
46 	if (kprobes_built_in() && !user_mode(regs)) {
47 		preempt_disable();
48 		if (kprobe_running() && kprobe_fault_handler(regs, 0))
49 			ret = 1;
50 		preempt_enable();
51 	}
52 	return ret;
53 }
54 
55 static void __kprobes unhandled_fault(unsigned long address,
56 				      struct task_struct *tsk,
57 				      struct pt_regs *regs)
58 {
59 	if ((unsigned long) address < PAGE_SIZE) {
60 		printk(KERN_ALERT "Unable to handle kernel NULL "
61 		       "pointer dereference\n");
62 	} else {
63 		printk(KERN_ALERT "Unable to handle kernel paging request "
64 		       "at virtual address %016lx\n", (unsigned long)address);
65 	}
66 	printk(KERN_ALERT "tsk->{mm,active_mm}->context = %016lx\n",
67 	       (tsk->mm ?
68 		CTX_HWBITS(tsk->mm->context) :
69 		CTX_HWBITS(tsk->active_mm->context)));
70 	printk(KERN_ALERT "tsk->{mm,active_mm}->pgd = %016lx\n",
71 	       (tsk->mm ? (unsigned long) tsk->mm->pgd :
72 		          (unsigned long) tsk->active_mm->pgd));
73 	die_if_kernel("Oops", regs);
74 }
75 
76 static void __kprobes bad_kernel_pc(struct pt_regs *regs, unsigned long vaddr)
77 {
78 	printk(KERN_CRIT "OOPS: Bogus kernel PC [%016lx] in fault handler\n",
79 	       regs->tpc);
80 	printk(KERN_CRIT "OOPS: RPC [%016lx]\n", regs->u_regs[15]);
81 	printk("OOPS: RPC <%pS>\n", (void *) regs->u_regs[15]);
82 	printk(KERN_CRIT "OOPS: Fault was to vaddr[%lx]\n", vaddr);
83 	dump_stack();
84 	unhandled_fault(regs->tpc, current, regs);
85 }
86 
87 /*
88  * We now make sure that mmap_sem is held in all paths that call
89  * this. Additionally, to prevent kswapd from ripping ptes from
90  * under us, raise interrupts around the time that we look at the
91  * pte, kswapd will have to wait to get his smp ipi response from
92  * us. vmtruncate likewise. This saves us having to get pte lock.
93  */
94 static unsigned int get_user_insn(unsigned long tpc)
95 {
96 	pgd_t *pgdp = pgd_offset(current->mm, tpc);
97 	pud_t *pudp;
98 	pmd_t *pmdp;
99 	pte_t *ptep, pte;
100 	unsigned long pa;
101 	u32 insn = 0;
102 
103 	if (pgd_none(*pgdp) || unlikely(pgd_bad(*pgdp)))
104 		goto out;
105 	pudp = pud_offset(pgdp, tpc);
106 	if (pud_none(*pudp) || unlikely(pud_bad(*pudp)))
107 		goto out;
108 
109 	/* This disables preemption for us as well. */
110 	local_irq_disable();
111 
112 	pmdp = pmd_offset(pudp, tpc);
113 	if (pmd_none(*pmdp) || unlikely(pmd_bad(*pmdp)))
114 		goto out_irq_enable;
115 
116 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
117 	if (is_hugetlb_pmd(*pmdp)) {
118 		pa  = pmd_pfn(*pmdp) << PAGE_SHIFT;
119 		pa += tpc & ~HPAGE_MASK;
120 
121 		/* Use phys bypass so we don't pollute dtlb/dcache. */
122 		__asm__ __volatile__("lduwa [%1] %2, %0"
123 				     : "=r" (insn)
124 				     : "r" (pa), "i" (ASI_PHYS_USE_EC));
125 	} else
126 #endif
127 	{
128 		ptep = pte_offset_map(pmdp, tpc);
129 		pte = *ptep;
130 		if (pte_present(pte)) {
131 			pa  = (pte_pfn(pte) << PAGE_SHIFT);
132 			pa += (tpc & ~PAGE_MASK);
133 
134 			/* Use phys bypass so we don't pollute dtlb/dcache. */
135 			__asm__ __volatile__("lduwa [%1] %2, %0"
136 					     : "=r" (insn)
137 					     : "r" (pa), "i" (ASI_PHYS_USE_EC));
138 		}
139 		pte_unmap(ptep);
140 	}
141 out_irq_enable:
142 	local_irq_enable();
143 out:
144 	return insn;
145 }
146 
147 static inline void
148 show_signal_msg(struct pt_regs *regs, int sig, int code,
149 		unsigned long address, struct task_struct *tsk)
150 {
151 	if (!unhandled_signal(tsk, sig))
152 		return;
153 
154 	if (!printk_ratelimit())
155 		return;
156 
157 	printk("%s%s[%d]: segfault at %lx ip %px (rpc %px) sp %px error %x",
158 	       task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG,
159 	       tsk->comm, task_pid_nr(tsk), address,
160 	       (void *)regs->tpc, (void *)regs->u_regs[UREG_I7],
161 	       (void *)regs->u_regs[UREG_FP], code);
162 
163 	print_vma_addr(KERN_CONT " in ", regs->tpc);
164 
165 	printk(KERN_CONT "\n");
166 }
167 
168 static void do_fault_siginfo(int code, int sig, struct pt_regs *regs,
169 			     unsigned long fault_addr, unsigned int insn,
170 			     int fault_code)
171 {
172 	unsigned long addr;
173 
174 	if (fault_code & FAULT_CODE_ITLB) {
175 		addr = regs->tpc;
176 	} else {
177 		/* If we were able to probe the faulting instruction, use it
178 		 * to compute a precise fault address.  Otherwise use the fault
179 		 * time provided address which may only have page granularity.
180 		 */
181 		if (insn)
182 			addr = compute_effective_address(regs, insn, 0);
183 		else
184 			addr = fault_addr;
185 	}
186 
187 	if (unlikely(show_unhandled_signals))
188 		show_signal_msg(regs, sig, code, addr, current);
189 
190 	force_sig_fault(sig, code, (void __user *) addr, 0, current);
191 }
192 
193 static unsigned int get_fault_insn(struct pt_regs *regs, unsigned int insn)
194 {
195 	if (!insn) {
196 		if (!regs->tpc || (regs->tpc & 0x3))
197 			return 0;
198 		if (regs->tstate & TSTATE_PRIV) {
199 			insn = *(unsigned int *) regs->tpc;
200 		} else {
201 			insn = get_user_insn(regs->tpc);
202 		}
203 	}
204 	return insn;
205 }
206 
207 static void __kprobes do_kernel_fault(struct pt_regs *regs, int si_code,
208 				      int fault_code, unsigned int insn,
209 				      unsigned long address)
210 {
211 	unsigned char asi = ASI_P;
212 
213 	if ((!insn) && (regs->tstate & TSTATE_PRIV))
214 		goto cannot_handle;
215 
216 	/* If user insn could be read (thus insn is zero), that
217 	 * is fine.  We will just gun down the process with a signal
218 	 * in that case.
219 	 */
220 
221 	if (!(fault_code & (FAULT_CODE_WRITE|FAULT_CODE_ITLB)) &&
222 	    (insn & 0xc0800000) == 0xc0800000) {
223 		if (insn & 0x2000)
224 			asi = (regs->tstate >> 24);
225 		else
226 			asi = (insn >> 5);
227 		if ((asi & 0xf2) == 0x82) {
228 			if (insn & 0x1000000) {
229 				handle_ldf_stq(insn, regs);
230 			} else {
231 				/* This was a non-faulting load. Just clear the
232 				 * destination register(s) and continue with the next
233 				 * instruction. -jj
234 				 */
235 				handle_ld_nf(insn, regs);
236 			}
237 			return;
238 		}
239 	}
240 
241 	/* Is this in ex_table? */
242 	if (regs->tstate & TSTATE_PRIV) {
243 		const struct exception_table_entry *entry;
244 
245 		entry = search_exception_tables(regs->tpc);
246 		if (entry) {
247 			regs->tpc = entry->fixup;
248 			regs->tnpc = regs->tpc + 4;
249 			return;
250 		}
251 	} else {
252 		/* The si_code was set to make clear whether
253 		 * this was a SEGV_MAPERR or SEGV_ACCERR fault.
254 		 */
255 		do_fault_siginfo(si_code, SIGSEGV, regs, address, insn, fault_code);
256 		return;
257 	}
258 
259 cannot_handle:
260 	unhandled_fault (address, current, regs);
261 }
262 
263 static void noinline __kprobes bogus_32bit_fault_tpc(struct pt_regs *regs)
264 {
265 	static int times;
266 
267 	if (times++ < 10)
268 		printk(KERN_ERR "FAULT[%s:%d]: 32-bit process reports "
269 		       "64-bit TPC [%lx]\n",
270 		       current->comm, current->pid,
271 		       regs->tpc);
272 	show_regs(regs);
273 }
274 
275 asmlinkage void __kprobes do_sparc64_fault(struct pt_regs *regs)
276 {
277 	enum ctx_state prev_state = exception_enter();
278 	struct mm_struct *mm = current->mm;
279 	struct vm_area_struct *vma;
280 	unsigned int insn = 0;
281 	int si_code, fault_code;
282 	vm_fault_t fault;
283 	unsigned long address, mm_rss;
284 	unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
285 
286 	fault_code = get_thread_fault_code();
287 
288 	if (notify_page_fault(regs))
289 		goto exit_exception;
290 
291 	si_code = SEGV_MAPERR;
292 	address = current_thread_info()->fault_address;
293 
294 	if ((fault_code & FAULT_CODE_ITLB) &&
295 	    (fault_code & FAULT_CODE_DTLB))
296 		BUG();
297 
298 	if (test_thread_flag(TIF_32BIT)) {
299 		if (!(regs->tstate & TSTATE_PRIV)) {
300 			if (unlikely((regs->tpc >> 32) != 0)) {
301 				bogus_32bit_fault_tpc(regs);
302 				goto intr_or_no_mm;
303 			}
304 		}
305 		if (unlikely((address >> 32) != 0))
306 			goto intr_or_no_mm;
307 	}
308 
309 	if (regs->tstate & TSTATE_PRIV) {
310 		unsigned long tpc = regs->tpc;
311 
312 		/* Sanity check the PC. */
313 		if ((tpc >= KERNBASE && tpc < (unsigned long) __init_end) ||
314 		    (tpc >= MODULES_VADDR && tpc < MODULES_END)) {
315 			/* Valid, no problems... */
316 		} else {
317 			bad_kernel_pc(regs, address);
318 			goto exit_exception;
319 		}
320 	} else
321 		flags |= FAULT_FLAG_USER;
322 
323 	/*
324 	 * If we're in an interrupt or have no user
325 	 * context, we must not take the fault..
326 	 */
327 	if (faulthandler_disabled() || !mm)
328 		goto intr_or_no_mm;
329 
330 	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
331 
332 	if (!down_read_trylock(&mm->mmap_sem)) {
333 		if ((regs->tstate & TSTATE_PRIV) &&
334 		    !search_exception_tables(regs->tpc)) {
335 			insn = get_fault_insn(regs, insn);
336 			goto handle_kernel_fault;
337 		}
338 
339 retry:
340 		down_read(&mm->mmap_sem);
341 	}
342 
343 	if (fault_code & FAULT_CODE_BAD_RA)
344 		goto do_sigbus;
345 
346 	vma = find_vma(mm, address);
347 	if (!vma)
348 		goto bad_area;
349 
350 	/* Pure DTLB misses do not tell us whether the fault causing
351 	 * load/store/atomic was a write or not, it only says that there
352 	 * was no match.  So in such a case we (carefully) read the
353 	 * instruction to try and figure this out.  It's an optimization
354 	 * so it's ok if we can't do this.
355 	 *
356 	 * Special hack, window spill/fill knows the exact fault type.
357 	 */
358 	if (((fault_code &
359 	      (FAULT_CODE_DTLB | FAULT_CODE_WRITE | FAULT_CODE_WINFIXUP)) == FAULT_CODE_DTLB) &&
360 	    (vma->vm_flags & VM_WRITE) != 0) {
361 		insn = get_fault_insn(regs, 0);
362 		if (!insn)
363 			goto continue_fault;
364 		/* All loads, stores and atomics have bits 30 and 31 both set
365 		 * in the instruction.  Bit 21 is set in all stores, but we
366 		 * have to avoid prefetches which also have bit 21 set.
367 		 */
368 		if ((insn & 0xc0200000) == 0xc0200000 &&
369 		    (insn & 0x01780000) != 0x01680000) {
370 			/* Don't bother updating thread struct value,
371 			 * because update_mmu_cache only cares which tlb
372 			 * the access came from.
373 			 */
374 			fault_code |= FAULT_CODE_WRITE;
375 		}
376 	}
377 continue_fault:
378 
379 	if (vma->vm_start <= address)
380 		goto good_area;
381 	if (!(vma->vm_flags & VM_GROWSDOWN))
382 		goto bad_area;
383 	if (!(fault_code & FAULT_CODE_WRITE)) {
384 		/* Non-faulting loads shouldn't expand stack. */
385 		insn = get_fault_insn(regs, insn);
386 		if ((insn & 0xc0800000) == 0xc0800000) {
387 			unsigned char asi;
388 
389 			if (insn & 0x2000)
390 				asi = (regs->tstate >> 24);
391 			else
392 				asi = (insn >> 5);
393 			if ((asi & 0xf2) == 0x82)
394 				goto bad_area;
395 		}
396 	}
397 	if (expand_stack(vma, address))
398 		goto bad_area;
399 	/*
400 	 * Ok, we have a good vm_area for this memory access, so
401 	 * we can handle it..
402 	 */
403 good_area:
404 	si_code = SEGV_ACCERR;
405 
406 	/* If we took a ITLB miss on a non-executable page, catch
407 	 * that here.
408 	 */
409 	if ((fault_code & FAULT_CODE_ITLB) && !(vma->vm_flags & VM_EXEC)) {
410 		WARN(address != regs->tpc,
411 		     "address (%lx) != regs->tpc (%lx)\n", address, regs->tpc);
412 		WARN_ON(regs->tstate & TSTATE_PRIV);
413 		goto bad_area;
414 	}
415 
416 	if (fault_code & FAULT_CODE_WRITE) {
417 		if (!(vma->vm_flags & VM_WRITE))
418 			goto bad_area;
419 
420 		/* Spitfire has an icache which does not snoop
421 		 * processor stores.  Later processors do...
422 		 */
423 		if (tlb_type == spitfire &&
424 		    (vma->vm_flags & VM_EXEC) != 0 &&
425 		    vma->vm_file != NULL)
426 			set_thread_fault_code(fault_code |
427 					      FAULT_CODE_BLKCOMMIT);
428 
429 		flags |= FAULT_FLAG_WRITE;
430 	} else {
431 		/* Allow reads even for write-only mappings */
432 		if (!(vma->vm_flags & (VM_READ | VM_EXEC)))
433 			goto bad_area;
434 	}
435 
436 	fault = handle_mm_fault(vma, address, flags);
437 
438 	if ((fault & VM_FAULT_RETRY) && fatal_signal_pending(current))
439 		goto exit_exception;
440 
441 	if (unlikely(fault & VM_FAULT_ERROR)) {
442 		if (fault & VM_FAULT_OOM)
443 			goto out_of_memory;
444 		else if (fault & VM_FAULT_SIGSEGV)
445 			goto bad_area;
446 		else if (fault & VM_FAULT_SIGBUS)
447 			goto do_sigbus;
448 		BUG();
449 	}
450 
451 	if (flags & FAULT_FLAG_ALLOW_RETRY) {
452 		if (fault & VM_FAULT_MAJOR) {
453 			current->maj_flt++;
454 			perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ,
455 				      1, regs, address);
456 		} else {
457 			current->min_flt++;
458 			perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN,
459 				      1, regs, address);
460 		}
461 		if (fault & VM_FAULT_RETRY) {
462 			flags &= ~FAULT_FLAG_ALLOW_RETRY;
463 			flags |= FAULT_FLAG_TRIED;
464 
465 			/* No need to up_read(&mm->mmap_sem) as we would
466 			 * have already released it in __lock_page_or_retry
467 			 * in mm/filemap.c.
468 			 */
469 
470 			goto retry;
471 		}
472 	}
473 	up_read(&mm->mmap_sem);
474 
475 	mm_rss = get_mm_rss(mm);
476 #if defined(CONFIG_TRANSPARENT_HUGEPAGE)
477 	mm_rss -= (mm->context.thp_pte_count * (HPAGE_SIZE / PAGE_SIZE));
478 #endif
479 	if (unlikely(mm_rss >
480 		     mm->context.tsb_block[MM_TSB_BASE].tsb_rss_limit))
481 		tsb_grow(mm, MM_TSB_BASE, mm_rss);
482 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
483 	mm_rss = mm->context.hugetlb_pte_count + mm->context.thp_pte_count;
484 	mm_rss *= REAL_HPAGE_PER_HPAGE;
485 	if (unlikely(mm_rss >
486 		     mm->context.tsb_block[MM_TSB_HUGE].tsb_rss_limit)) {
487 		if (mm->context.tsb_block[MM_TSB_HUGE].tsb)
488 			tsb_grow(mm, MM_TSB_HUGE, mm_rss);
489 		else
490 			hugetlb_setup(regs);
491 
492 	}
493 #endif
494 exit_exception:
495 	exception_exit(prev_state);
496 	return;
497 
498 	/*
499 	 * Something tried to access memory that isn't in our memory map..
500 	 * Fix it, but check if it's kernel or user first..
501 	 */
502 bad_area:
503 	insn = get_fault_insn(regs, insn);
504 	up_read(&mm->mmap_sem);
505 
506 handle_kernel_fault:
507 	do_kernel_fault(regs, si_code, fault_code, insn, address);
508 	goto exit_exception;
509 
510 /*
511  * We ran out of memory, or some other thing happened to us that made
512  * us unable to handle the page fault gracefully.
513  */
514 out_of_memory:
515 	insn = get_fault_insn(regs, insn);
516 	up_read(&mm->mmap_sem);
517 	if (!(regs->tstate & TSTATE_PRIV)) {
518 		pagefault_out_of_memory();
519 		goto exit_exception;
520 	}
521 	goto handle_kernel_fault;
522 
523 intr_or_no_mm:
524 	insn = get_fault_insn(regs, 0);
525 	goto handle_kernel_fault;
526 
527 do_sigbus:
528 	insn = get_fault_insn(regs, insn);
529 	up_read(&mm->mmap_sem);
530 
531 	/*
532 	 * Send a sigbus, regardless of whether we were in kernel
533 	 * or user mode.
534 	 */
535 	do_fault_siginfo(BUS_ADRERR, SIGBUS, regs, address, insn, fault_code);
536 
537 	/* Kernel mode? Handle exceptions or die */
538 	if (regs->tstate & TSTATE_PRIV)
539 		goto handle_kernel_fault;
540 }
541