1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fault.c: Page fault handlers for the Sparc. 4 * 5 * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu) 6 * Copyright (C) 1996 Eddie C. Dost (ecd@skynet.be) 7 * Copyright (C) 1997 Jakub Jelinek (jj@sunsite.mff.cuni.cz) 8 */ 9 10 #include <asm/head.h> 11 12 #include <linux/string.h> 13 #include <linux/types.h> 14 #include <linux/sched.h> 15 #include <linux/ptrace.h> 16 #include <linux/mman.h> 17 #include <linux/threads.h> 18 #include <linux/kernel.h> 19 #include <linux/signal.h> 20 #include <linux/mm.h> 21 #include <linux/smp.h> 22 #include <linux/perf_event.h> 23 #include <linux/interrupt.h> 24 #include <linux/kdebug.h> 25 #include <linux/uaccess.h> 26 27 #include <asm/page.h> 28 #include <asm/openprom.h> 29 #include <asm/oplib.h> 30 #include <asm/setup.h> 31 #include <asm/smp.h> 32 #include <asm/traps.h> 33 34 #include "mm_32.h" 35 36 int show_unhandled_signals = 1; 37 38 static void __noreturn unhandled_fault(unsigned long address, 39 struct task_struct *tsk, 40 struct pt_regs *regs) 41 { 42 if ((unsigned long) address < PAGE_SIZE) { 43 printk(KERN_ALERT 44 "Unable to handle kernel NULL pointer dereference\n"); 45 } else { 46 printk(KERN_ALERT "Unable to handle kernel paging request at virtual address %08lx\n", 47 address); 48 } 49 printk(KERN_ALERT "tsk->{mm,active_mm}->context = %08lx\n", 50 (tsk->mm ? tsk->mm->context : tsk->active_mm->context)); 51 printk(KERN_ALERT "tsk->{mm,active_mm}->pgd = %08lx\n", 52 (tsk->mm ? (unsigned long) tsk->mm->pgd : 53 (unsigned long) tsk->active_mm->pgd)); 54 die_if_kernel("Oops", regs); 55 } 56 57 asmlinkage int lookup_fault(unsigned long pc, unsigned long ret_pc, 58 unsigned long address) 59 { 60 struct pt_regs regs; 61 unsigned long g2; 62 unsigned int insn; 63 int i; 64 65 i = search_extables_range(ret_pc, &g2); 66 switch (i) { 67 case 3: 68 /* load & store will be handled by fixup */ 69 return 3; 70 71 case 1: 72 /* store will be handled by fixup, load will bump out */ 73 /* for _to_ macros */ 74 insn = *((unsigned int *) pc); 75 if ((insn >> 21) & 1) 76 return 1; 77 break; 78 79 case 2: 80 /* load will be handled by fixup, store will bump out */ 81 /* for _from_ macros */ 82 insn = *((unsigned int *) pc); 83 if (!((insn >> 21) & 1) || ((insn>>19)&0x3f) == 15) 84 return 2; 85 break; 86 87 default: 88 break; 89 } 90 91 memset(®s, 0, sizeof(regs)); 92 regs.pc = pc; 93 regs.npc = pc + 4; 94 __asm__ __volatile__( 95 "rd %%psr, %0\n\t" 96 "nop\n\t" 97 "nop\n\t" 98 "nop\n" : "=r" (regs.psr)); 99 unhandled_fault(address, current, ®s); 100 101 /* Not reached */ 102 return 0; 103 } 104 105 static inline void 106 show_signal_msg(struct pt_regs *regs, int sig, int code, 107 unsigned long address, struct task_struct *tsk) 108 { 109 if (!unhandled_signal(tsk, sig)) 110 return; 111 112 if (!printk_ratelimit()) 113 return; 114 115 printk("%s%s[%d]: segfault at %lx ip %px (rpc %px) sp %px error %x", 116 task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG, 117 tsk->comm, task_pid_nr(tsk), address, 118 (void *)regs->pc, (void *)regs->u_regs[UREG_I7], 119 (void *)regs->u_regs[UREG_FP], code); 120 121 print_vma_addr(KERN_CONT " in ", regs->pc); 122 123 printk(KERN_CONT "\n"); 124 } 125 126 static void __do_fault_siginfo(int code, int sig, struct pt_regs *regs, 127 unsigned long addr) 128 { 129 if (unlikely(show_unhandled_signals)) 130 show_signal_msg(regs, sig, code, 131 addr, current); 132 133 force_sig_fault(sig, code, (void __user *) addr, 0); 134 } 135 136 static unsigned long compute_si_addr(struct pt_regs *regs, int text_fault) 137 { 138 unsigned int insn; 139 140 if (text_fault) 141 return regs->pc; 142 143 if (regs->psr & PSR_PS) 144 insn = *(unsigned int *) regs->pc; 145 else 146 __get_user(insn, (unsigned int *) regs->pc); 147 148 return safe_compute_effective_address(regs, insn); 149 } 150 151 static noinline void do_fault_siginfo(int code, int sig, struct pt_regs *regs, 152 int text_fault) 153 { 154 unsigned long addr = compute_si_addr(regs, text_fault); 155 156 __do_fault_siginfo(code, sig, regs, addr); 157 } 158 159 asmlinkage void do_sparc_fault(struct pt_regs *regs, int text_fault, int write, 160 unsigned long address) 161 { 162 struct vm_area_struct *vma; 163 struct task_struct *tsk = current; 164 struct mm_struct *mm = tsk->mm; 165 unsigned int fixup; 166 unsigned long g2; 167 int from_user = !(regs->psr & PSR_PS); 168 int code; 169 vm_fault_t fault; 170 unsigned int flags = FAULT_FLAG_DEFAULT; 171 172 if (text_fault) 173 address = regs->pc; 174 175 /* 176 * We fault-in kernel-space virtual memory on-demand. The 177 * 'reference' page table is init_mm.pgd. 178 * 179 * NOTE! We MUST NOT take any locks for this case. We may 180 * be in an interrupt or a critical region, and should 181 * only copy the information from the master page table, 182 * nothing more. 183 */ 184 code = SEGV_MAPERR; 185 if (address >= TASK_SIZE) 186 goto vmalloc_fault; 187 188 /* 189 * If we're in an interrupt or have no user 190 * context, we must not take the fault.. 191 */ 192 if (pagefault_disabled() || !mm) 193 goto no_context; 194 195 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address); 196 197 retry: 198 mmap_read_lock(mm); 199 200 if (!from_user && address >= PAGE_OFFSET) 201 goto bad_area; 202 203 vma = find_vma(mm, address); 204 if (!vma) 205 goto bad_area; 206 if (vma->vm_start <= address) 207 goto good_area; 208 if (!(vma->vm_flags & VM_GROWSDOWN)) 209 goto bad_area; 210 if (expand_stack(vma, address)) 211 goto bad_area; 212 /* 213 * Ok, we have a good vm_area for this memory access, so 214 * we can handle it.. 215 */ 216 good_area: 217 code = SEGV_ACCERR; 218 if (write) { 219 if (!(vma->vm_flags & VM_WRITE)) 220 goto bad_area; 221 } else { 222 /* Allow reads even for write-only mappings */ 223 if (!(vma->vm_flags & (VM_READ | VM_EXEC))) 224 goto bad_area; 225 } 226 227 if (from_user) 228 flags |= FAULT_FLAG_USER; 229 if (write) 230 flags |= FAULT_FLAG_WRITE; 231 232 /* 233 * If for any reason at all we couldn't handle the fault, 234 * make sure we exit gracefully rather than endlessly redo 235 * the fault. 236 */ 237 fault = handle_mm_fault(vma, address, flags, regs); 238 239 if (fault_signal_pending(fault, regs)) 240 return; 241 242 if (unlikely(fault & VM_FAULT_ERROR)) { 243 if (fault & VM_FAULT_OOM) 244 goto out_of_memory; 245 else if (fault & VM_FAULT_SIGSEGV) 246 goto bad_area; 247 else if (fault & VM_FAULT_SIGBUS) 248 goto do_sigbus; 249 BUG(); 250 } 251 252 if (flags & FAULT_FLAG_ALLOW_RETRY) { 253 if (fault & VM_FAULT_RETRY) { 254 flags |= FAULT_FLAG_TRIED; 255 256 /* No need to mmap_read_unlock(mm) as we would 257 * have already released it in __lock_page_or_retry 258 * in mm/filemap.c. 259 */ 260 261 goto retry; 262 } 263 } 264 265 mmap_read_unlock(mm); 266 return; 267 268 /* 269 * Something tried to access memory that isn't in our memory map.. 270 * Fix it, but check if it's kernel or user first.. 271 */ 272 bad_area: 273 mmap_read_unlock(mm); 274 275 bad_area_nosemaphore: 276 /* User mode accesses just cause a SIGSEGV */ 277 if (from_user) { 278 do_fault_siginfo(code, SIGSEGV, regs, text_fault); 279 return; 280 } 281 282 /* Is this in ex_table? */ 283 no_context: 284 g2 = regs->u_regs[UREG_G2]; 285 if (!from_user) { 286 fixup = search_extables_range(regs->pc, &g2); 287 /* Values below 10 are reserved for other things */ 288 if (fixup > 10) { 289 extern const unsigned int __memset_start[]; 290 extern const unsigned int __memset_end[]; 291 extern const unsigned int __csum_partial_copy_start[]; 292 extern const unsigned int __csum_partial_copy_end[]; 293 294 #ifdef DEBUG_EXCEPTIONS 295 printk("Exception: PC<%08lx> faddr<%08lx>\n", 296 regs->pc, address); 297 printk("EX_TABLE: insn<%08lx> fixup<%08x> g2<%08lx>\n", 298 regs->pc, fixup, g2); 299 #endif 300 if ((regs->pc >= (unsigned long)__memset_start && 301 regs->pc < (unsigned long)__memset_end) || 302 (regs->pc >= (unsigned long)__csum_partial_copy_start && 303 regs->pc < (unsigned long)__csum_partial_copy_end)) { 304 regs->u_regs[UREG_I4] = address; 305 regs->u_regs[UREG_I5] = regs->pc; 306 } 307 regs->u_regs[UREG_G2] = g2; 308 regs->pc = fixup; 309 regs->npc = regs->pc + 4; 310 return; 311 } 312 } 313 314 unhandled_fault(address, tsk, regs); 315 do_exit(SIGKILL); 316 317 /* 318 * We ran out of memory, or some other thing happened to us that made 319 * us unable to handle the page fault gracefully. 320 */ 321 out_of_memory: 322 mmap_read_unlock(mm); 323 if (from_user) { 324 pagefault_out_of_memory(); 325 return; 326 } 327 goto no_context; 328 329 do_sigbus: 330 mmap_read_unlock(mm); 331 do_fault_siginfo(BUS_ADRERR, SIGBUS, regs, text_fault); 332 if (!from_user) 333 goto no_context; 334 335 vmalloc_fault: 336 { 337 /* 338 * Synchronize this task's top level page-table 339 * with the 'reference' page table. 340 */ 341 int offset = pgd_index(address); 342 pgd_t *pgd, *pgd_k; 343 p4d_t *p4d, *p4d_k; 344 pud_t *pud, *pud_k; 345 pmd_t *pmd, *pmd_k; 346 347 pgd = tsk->active_mm->pgd + offset; 348 pgd_k = init_mm.pgd + offset; 349 350 if (!pgd_present(*pgd)) { 351 if (!pgd_present(*pgd_k)) 352 goto bad_area_nosemaphore; 353 pgd_val(*pgd) = pgd_val(*pgd_k); 354 return; 355 } 356 357 p4d = p4d_offset(pgd, address); 358 pud = pud_offset(p4d, address); 359 pmd = pmd_offset(pud, address); 360 361 p4d_k = p4d_offset(pgd_k, address); 362 pud_k = pud_offset(p4d_k, address); 363 pmd_k = pmd_offset(pud_k, address); 364 365 if (pmd_present(*pmd) || !pmd_present(*pmd_k)) 366 goto bad_area_nosemaphore; 367 368 *pmd = *pmd_k; 369 return; 370 } 371 } 372 373 /* This always deals with user addresses. */ 374 static void force_user_fault(unsigned long address, int write) 375 { 376 struct vm_area_struct *vma; 377 struct task_struct *tsk = current; 378 struct mm_struct *mm = tsk->mm; 379 unsigned int flags = FAULT_FLAG_USER; 380 int code; 381 382 code = SEGV_MAPERR; 383 384 mmap_read_lock(mm); 385 vma = find_vma(mm, address); 386 if (!vma) 387 goto bad_area; 388 if (vma->vm_start <= address) 389 goto good_area; 390 if (!(vma->vm_flags & VM_GROWSDOWN)) 391 goto bad_area; 392 if (expand_stack(vma, address)) 393 goto bad_area; 394 good_area: 395 code = SEGV_ACCERR; 396 if (write) { 397 if (!(vma->vm_flags & VM_WRITE)) 398 goto bad_area; 399 flags |= FAULT_FLAG_WRITE; 400 } else { 401 if (!(vma->vm_flags & (VM_READ | VM_EXEC))) 402 goto bad_area; 403 } 404 switch (handle_mm_fault(vma, address, flags, NULL)) { 405 case VM_FAULT_SIGBUS: 406 case VM_FAULT_OOM: 407 goto do_sigbus; 408 } 409 mmap_read_unlock(mm); 410 return; 411 bad_area: 412 mmap_read_unlock(mm); 413 __do_fault_siginfo(code, SIGSEGV, tsk->thread.kregs, address); 414 return; 415 416 do_sigbus: 417 mmap_read_unlock(mm); 418 __do_fault_siginfo(BUS_ADRERR, SIGBUS, tsk->thread.kregs, address); 419 } 420 421 static void check_stack_aligned(unsigned long sp) 422 { 423 if (sp & 0x7UL) 424 force_sig(SIGILL); 425 } 426 427 void window_overflow_fault(void) 428 { 429 unsigned long sp; 430 431 sp = current_thread_info()->rwbuf_stkptrs[0]; 432 if (((sp + 0x38) & PAGE_MASK) != (sp & PAGE_MASK)) 433 force_user_fault(sp + 0x38, 1); 434 force_user_fault(sp, 1); 435 436 check_stack_aligned(sp); 437 } 438 439 void window_underflow_fault(unsigned long sp) 440 { 441 if (((sp + 0x38) & PAGE_MASK) != (sp & PAGE_MASK)) 442 force_user_fault(sp + 0x38, 0); 443 force_user_fault(sp, 0); 444 445 check_stack_aligned(sp); 446 } 447 448 void window_ret_fault(struct pt_regs *regs) 449 { 450 unsigned long sp; 451 452 sp = regs->u_regs[UREG_FP]; 453 if (((sp + 0x38) & PAGE_MASK) != (sp & PAGE_MASK)) 454 force_user_fault(sp + 0x38, 0); 455 force_user_fault(sp, 0); 456 457 check_stack_aligned(sp); 458 } 459