xref: /openbmc/linux/arch/sparc/math-emu/math_64.c (revision b8bb76713ec50df2f11efee386e16f93d51e1076)
1 /*
2  * arch/sparc64/math-emu/math.c
3  *
4  * Copyright (C) 1997,1999 Jakub Jelinek (jj@ultra.linux.cz)
5  * Copyright (C) 1999 David S. Miller (davem@redhat.com)
6  *
7  * Emulation routines originate from soft-fp package, which is part
8  * of glibc and has appropriate copyrights in it.
9  */
10 
11 #include <linux/types.h>
12 #include <linux/sched.h>
13 #include <linux/errno.h>
14 
15 #include <asm/fpumacro.h>
16 #include <asm/ptrace.h>
17 #include <asm/uaccess.h>
18 
19 #include "sfp-util_64.h"
20 #include <math-emu/soft-fp.h>
21 #include <math-emu/single.h>
22 #include <math-emu/double.h>
23 #include <math-emu/quad.h>
24 
25 /* QUAD - ftt == 3 */
26 #define FMOVQ	0x003
27 #define FNEGQ	0x007
28 #define FABSQ	0x00b
29 #define FSQRTQ	0x02b
30 #define FADDQ	0x043
31 #define FSUBQ	0x047
32 #define FMULQ	0x04b
33 #define FDIVQ	0x04f
34 #define FDMULQ	0x06e
35 #define FQTOX	0x083
36 #define FXTOQ	0x08c
37 #define FQTOS	0x0c7
38 #define FQTOD	0x0cb
39 #define FITOQ	0x0cc
40 #define FSTOQ	0x0cd
41 #define FDTOQ	0x0ce
42 #define FQTOI	0x0d3
43 /* SUBNORMAL - ftt == 2 */
44 #define FSQRTS	0x029
45 #define FSQRTD	0x02a
46 #define FADDS	0x041
47 #define FADDD	0x042
48 #define FSUBS	0x045
49 #define FSUBD	0x046
50 #define FMULS	0x049
51 #define FMULD	0x04a
52 #define FDIVS	0x04d
53 #define FDIVD	0x04e
54 #define FSMULD	0x069
55 #define FSTOX	0x081
56 #define FDTOX	0x082
57 #define FDTOS	0x0c6
58 #define FSTOD	0x0c9
59 #define FSTOI	0x0d1
60 #define FDTOI	0x0d2
61 #define FXTOS	0x084 /* Only Ultra-III generates this. */
62 #define FXTOD	0x088 /* Only Ultra-III generates this. */
63 #if 0	/* Optimized inline in sparc64/kernel/entry.S */
64 #define FITOS	0x0c4 /* Only Ultra-III generates this. */
65 #endif
66 #define FITOD	0x0c8 /* Only Ultra-III generates this. */
67 /* FPOP2 */
68 #define FCMPQ	0x053
69 #define FCMPEQ	0x057
70 #define FMOVQ0	0x003
71 #define FMOVQ1	0x043
72 #define FMOVQ2	0x083
73 #define FMOVQ3	0x0c3
74 #define FMOVQI	0x103
75 #define FMOVQX	0x183
76 #define FMOVQZ	0x027
77 #define FMOVQLE	0x047
78 #define FMOVQLZ 0x067
79 #define FMOVQNZ	0x0a7
80 #define FMOVQGZ	0x0c7
81 #define FMOVQGE 0x0e7
82 
83 #define FSR_TEM_SHIFT	23UL
84 #define FSR_TEM_MASK	(0x1fUL << FSR_TEM_SHIFT)
85 #define FSR_AEXC_SHIFT	5UL
86 #define FSR_AEXC_MASK	(0x1fUL << FSR_AEXC_SHIFT)
87 #define FSR_CEXC_SHIFT	0UL
88 #define FSR_CEXC_MASK	(0x1fUL << FSR_CEXC_SHIFT)
89 
90 /* All routines returning an exception to raise should detect
91  * such exceptions _before_ rounding to be consistent with
92  * the behavior of the hardware in the implemented cases
93  * (and thus with the recommendations in the V9 architecture
94  * manual).
95  *
96  * We return 0 if a SIGFPE should be sent, 1 otherwise.
97  */
98 static inline int record_exception(struct pt_regs *regs, int eflag)
99 {
100 	u64 fsr = current_thread_info()->xfsr[0];
101 	int would_trap;
102 
103 	/* Determine if this exception would have generated a trap. */
104 	would_trap = (fsr & ((long)eflag << FSR_TEM_SHIFT)) != 0UL;
105 
106 	/* If trapping, we only want to signal one bit. */
107 	if(would_trap != 0) {
108 		eflag &= ((fsr & FSR_TEM_MASK) >> FSR_TEM_SHIFT);
109 		if((eflag & (eflag - 1)) != 0) {
110 			if(eflag & FP_EX_INVALID)
111 				eflag = FP_EX_INVALID;
112 			else if(eflag & FP_EX_OVERFLOW)
113 				eflag = FP_EX_OVERFLOW;
114 			else if(eflag & FP_EX_UNDERFLOW)
115 				eflag = FP_EX_UNDERFLOW;
116 			else if(eflag & FP_EX_DIVZERO)
117 				eflag = FP_EX_DIVZERO;
118 			else if(eflag & FP_EX_INEXACT)
119 				eflag = FP_EX_INEXACT;
120 		}
121 	}
122 
123 	/* Set CEXC, here is the rule:
124 	 *
125 	 *    In general all FPU ops will set one and only one
126 	 *    bit in the CEXC field, this is always the case
127 	 *    when the IEEE exception trap is enabled in TEM.
128 	 */
129 	fsr &= ~(FSR_CEXC_MASK);
130 	fsr |= ((long)eflag << FSR_CEXC_SHIFT);
131 
132 	/* Set the AEXC field, rule is:
133 	 *
134 	 *    If a trap would not be generated, the
135 	 *    CEXC just generated is OR'd into the
136 	 *    existing value of AEXC.
137 	 */
138 	if(would_trap == 0)
139 		fsr |= ((long)eflag << FSR_AEXC_SHIFT);
140 
141 	/* If trapping, indicate fault trap type IEEE. */
142 	if(would_trap != 0)
143 		fsr |= (1UL << 14);
144 
145 	current_thread_info()->xfsr[0] = fsr;
146 
147 	/* If we will not trap, advance the program counter over
148 	 * the instruction being handled.
149 	 */
150 	if(would_trap == 0) {
151 		regs->tpc = regs->tnpc;
152 		regs->tnpc += 4;
153 	}
154 
155 	return (would_trap ? 0 : 1);
156 }
157 
158 typedef union {
159 	u32 s;
160 	u64 d;
161 	u64 q[2];
162 } *argp;
163 
164 int do_mathemu(struct pt_regs *regs, struct fpustate *f)
165 {
166 	unsigned long pc = regs->tpc;
167 	unsigned long tstate = regs->tstate;
168 	u32 insn = 0;
169 	int type = 0;
170 	/* ftt tells which ftt it may happen in, r is rd, b is rs2 and a is rs1. The *u arg tells
171 	   whether the argument should be packed/unpacked (0 - do not unpack/pack, 1 - unpack/pack)
172 	   non-u args tells the size of the argument (0 - no argument, 1 - single, 2 - double, 3 - quad */
173 #define TYPE(ftt, r, ru, b, bu, a, au) type = (au << 2) | (a << 0) | (bu << 5) | (b << 3) | (ru << 8) | (r << 6) | (ftt << 9)
174 	int freg;
175 	static u64 zero[2] = { 0L, 0L };
176 	int flags;
177 	FP_DECL_EX;
178 	FP_DECL_S(SA); FP_DECL_S(SB); FP_DECL_S(SR);
179 	FP_DECL_D(DA); FP_DECL_D(DB); FP_DECL_D(DR);
180 	FP_DECL_Q(QA); FP_DECL_Q(QB); FP_DECL_Q(QR);
181 	int IR;
182 	long XR, xfsr;
183 
184 	if (tstate & TSTATE_PRIV)
185 		die_if_kernel("unfinished/unimplemented FPop from kernel", regs);
186 	if (test_thread_flag(TIF_32BIT))
187 		pc = (u32)pc;
188 	if (get_user(insn, (u32 __user *) pc) != -EFAULT) {
189 		if ((insn & 0xc1f80000) == 0x81a00000) /* FPOP1 */ {
190 			switch ((insn >> 5) & 0x1ff) {
191 			/* QUAD - ftt == 3 */
192 			case FMOVQ:
193 			case FNEGQ:
194 			case FABSQ: TYPE(3,3,0,3,0,0,0); break;
195 			case FSQRTQ: TYPE(3,3,1,3,1,0,0); break;
196 			case FADDQ:
197 			case FSUBQ:
198 			case FMULQ:
199 			case FDIVQ: TYPE(3,3,1,3,1,3,1); break;
200 			case FDMULQ: TYPE(3,3,1,2,1,2,1); break;
201 			case FQTOX: TYPE(3,2,0,3,1,0,0); break;
202 			case FXTOQ: TYPE(3,3,1,2,0,0,0); break;
203 			case FQTOS: TYPE(3,1,1,3,1,0,0); break;
204 			case FQTOD: TYPE(3,2,1,3,1,0,0); break;
205 			case FITOQ: TYPE(3,3,1,1,0,0,0); break;
206 			case FSTOQ: TYPE(3,3,1,1,1,0,0); break;
207 			case FDTOQ: TYPE(3,3,1,2,1,0,0); break;
208 			case FQTOI: TYPE(3,1,0,3,1,0,0); break;
209 
210 			/* We can get either unimplemented or unfinished
211 			 * for these cases.  Pre-Niagara systems generate
212 			 * unfinished fpop for SUBNORMAL cases, and Niagara
213 			 * always gives unimplemented fpop for fsqrt{s,d}.
214 			 */
215 			case FSQRTS: {
216 				unsigned long x = current_thread_info()->xfsr[0];
217 
218 				x = (x >> 14) & 0xf;
219 				TYPE(x,1,1,1,1,0,0);
220 				break;
221 			}
222 
223 			case FSQRTD: {
224 				unsigned long x = current_thread_info()->xfsr[0];
225 
226 				x = (x >> 14) & 0xf;
227 				TYPE(x,2,1,2,1,0,0);
228 				break;
229 			}
230 
231 			/* SUBNORMAL - ftt == 2 */
232 			case FADDD:
233 			case FSUBD:
234 			case FMULD:
235 			case FDIVD: TYPE(2,2,1,2,1,2,1); break;
236 			case FADDS:
237 			case FSUBS:
238 			case FMULS:
239 			case FDIVS: TYPE(2,1,1,1,1,1,1); break;
240 			case FSMULD: TYPE(2,2,1,1,1,1,1); break;
241 			case FSTOX: TYPE(2,2,0,1,1,0,0); break;
242 			case FDTOX: TYPE(2,2,0,2,1,0,0); break;
243 			case FDTOS: TYPE(2,1,1,2,1,0,0); break;
244 			case FSTOD: TYPE(2,2,1,1,1,0,0); break;
245 			case FSTOI: TYPE(2,1,0,1,1,0,0); break;
246 			case FDTOI: TYPE(2,1,0,2,1,0,0); break;
247 
248 			/* Only Ultra-III generates these */
249 			case FXTOS: TYPE(2,1,1,2,0,0,0); break;
250 			case FXTOD: TYPE(2,2,1,2,0,0,0); break;
251 #if 0			/* Optimized inline in sparc64/kernel/entry.S */
252 			case FITOS: TYPE(2,1,1,1,0,0,0); break;
253 #endif
254 			case FITOD: TYPE(2,2,1,1,0,0,0); break;
255 			}
256 		}
257 		else if ((insn & 0xc1f80000) == 0x81a80000) /* FPOP2 */ {
258 			IR = 2;
259 			switch ((insn >> 5) & 0x1ff) {
260 			case FCMPQ: TYPE(3,0,0,3,1,3,1); break;
261 			case FCMPEQ: TYPE(3,0,0,3,1,3,1); break;
262 			/* Now the conditional fmovq support */
263 			case FMOVQ0:
264 			case FMOVQ1:
265 			case FMOVQ2:
266 			case FMOVQ3:
267 				/* fmovq %fccX, %fY, %fZ */
268 				if (!((insn >> 11) & 3))
269 					XR = current_thread_info()->xfsr[0] >> 10;
270 				else
271 					XR = current_thread_info()->xfsr[0] >> (30 + ((insn >> 10) & 0x6));
272 				XR &= 3;
273 				IR = 0;
274 				switch ((insn >> 14) & 0x7) {
275 				/* case 0: IR = 0; break; */			/* Never */
276 				case 1: if (XR) IR = 1; break;			/* Not Equal */
277 				case 2: if (XR == 1 || XR == 2) IR = 1; break;	/* Less or Greater */
278 				case 3: if (XR & 1) IR = 1; break;		/* Unordered or Less */
279 				case 4: if (XR == 1) IR = 1; break;		/* Less */
280 				case 5: if (XR & 2) IR = 1; break;		/* Unordered or Greater */
281 				case 6: if (XR == 2) IR = 1; break;		/* Greater */
282 				case 7: if (XR == 3) IR = 1; break;		/* Unordered */
283 				}
284 				if ((insn >> 14) & 8)
285 					IR ^= 1;
286 				break;
287 			case FMOVQI:
288 			case FMOVQX:
289 				/* fmovq %[ix]cc, %fY, %fZ */
290 				XR = regs->tstate >> 32;
291 				if ((insn >> 5) & 0x80)
292 					XR >>= 4;
293 				XR &= 0xf;
294 				IR = 0;
295 				freg = ((XR >> 2) ^ XR) & 2;
296 				switch ((insn >> 14) & 0x7) {
297 				/* case 0: IR = 0; break; */			/* Never */
298 				case 1: if (XR & 4) IR = 1; break;		/* Equal */
299 				case 2: if ((XR & 4) || freg) IR = 1; break;	/* Less or Equal */
300 				case 3: if (freg) IR = 1; break;		/* Less */
301 				case 4: if (XR & 5) IR = 1; break;		/* Less or Equal Unsigned */
302 				case 5: if (XR & 1) IR = 1; break;		/* Carry Set */
303 				case 6: if (XR & 8) IR = 1; break;		/* Negative */
304 				case 7: if (XR & 2) IR = 1; break;		/* Overflow Set */
305 				}
306 				if ((insn >> 14) & 8)
307 					IR ^= 1;
308 				break;
309 			case FMOVQZ:
310 			case FMOVQLE:
311 			case FMOVQLZ:
312 			case FMOVQNZ:
313 			case FMOVQGZ:
314 			case FMOVQGE:
315 				freg = (insn >> 14) & 0x1f;
316 				if (!freg)
317 					XR = 0;
318 				else if (freg < 16)
319 					XR = regs->u_regs[freg];
320 				else if (test_thread_flag(TIF_32BIT)) {
321 					struct reg_window32 __user *win32;
322 					flushw_user ();
323 					win32 = (struct reg_window32 __user *)((unsigned long)((u32)regs->u_regs[UREG_FP]));
324 					get_user(XR, &win32->locals[freg - 16]);
325 				} else {
326 					struct reg_window __user *win;
327 					flushw_user ();
328 					win = (struct reg_window __user *)(regs->u_regs[UREG_FP] + STACK_BIAS);
329 					get_user(XR, &win->locals[freg - 16]);
330 				}
331 				IR = 0;
332 				switch ((insn >> 10) & 3) {
333 				case 1: if (!XR) IR = 1; break;			/* Register Zero */
334 				case 2: if (XR <= 0) IR = 1; break;		/* Register Less Than or Equal to Zero */
335 				case 3: if (XR < 0) IR = 1; break;		/* Register Less Than Zero */
336 				}
337 				if ((insn >> 10) & 4)
338 					IR ^= 1;
339 				break;
340 			}
341 			if (IR == 0) {
342 				/* The fmov test was false. Do a nop instead */
343 				current_thread_info()->xfsr[0] &= ~(FSR_CEXC_MASK);
344 				regs->tpc = regs->tnpc;
345 				regs->tnpc += 4;
346 				return 1;
347 			} else if (IR == 1) {
348 				/* Change the instruction into plain fmovq */
349 				insn = (insn & 0x3e00001f) | 0x81a00060;
350 				TYPE(3,3,0,3,0,0,0);
351 			}
352 		}
353 	}
354 	if (type) {
355 		argp rs1 = NULL, rs2 = NULL, rd = NULL;
356 
357 		freg = (current_thread_info()->xfsr[0] >> 14) & 0xf;
358 		if (freg != (type >> 9))
359 			goto err;
360 		current_thread_info()->xfsr[0] &= ~0x1c000;
361 		freg = ((insn >> 14) & 0x1f);
362 		switch (type & 0x3) {
363 		case 3: if (freg & 2) {
364 				current_thread_info()->xfsr[0] |= (6 << 14) /* invalid_fp_register */;
365 				goto err;
366 			}
367 		case 2: freg = ((freg & 1) << 5) | (freg & 0x1e);
368 		case 1: rs1 = (argp)&f->regs[freg];
369 			flags = (freg < 32) ? FPRS_DL : FPRS_DU;
370 			if (!(current_thread_info()->fpsaved[0] & flags))
371 				rs1 = (argp)&zero;
372 			break;
373 		}
374 		switch (type & 0x7) {
375 		case 7: FP_UNPACK_QP (QA, rs1); break;
376 		case 6: FP_UNPACK_DP (DA, rs1); break;
377 		case 5: FP_UNPACK_SP (SA, rs1); break;
378 		}
379 		freg = (insn & 0x1f);
380 		switch ((type >> 3) & 0x3) {
381 		case 3: if (freg & 2) {
382 				current_thread_info()->xfsr[0] |= (6 << 14) /* invalid_fp_register */;
383 				goto err;
384 			}
385 		case 2: freg = ((freg & 1) << 5) | (freg & 0x1e);
386 		case 1: rs2 = (argp)&f->regs[freg];
387 			flags = (freg < 32) ? FPRS_DL : FPRS_DU;
388 			if (!(current_thread_info()->fpsaved[0] & flags))
389 				rs2 = (argp)&zero;
390 			break;
391 		}
392 		switch ((type >> 3) & 0x7) {
393 		case 7: FP_UNPACK_QP (QB, rs2); break;
394 		case 6: FP_UNPACK_DP (DB, rs2); break;
395 		case 5: FP_UNPACK_SP (SB, rs2); break;
396 		}
397 		freg = ((insn >> 25) & 0x1f);
398 		switch ((type >> 6) & 0x3) {
399 		case 3: if (freg & 2) {
400 				current_thread_info()->xfsr[0] |= (6 << 14) /* invalid_fp_register */;
401 				goto err;
402 			}
403 		case 2: freg = ((freg & 1) << 5) | (freg & 0x1e);
404 		case 1: rd = (argp)&f->regs[freg];
405 			flags = (freg < 32) ? FPRS_DL : FPRS_DU;
406 			if (!(current_thread_info()->fpsaved[0] & FPRS_FEF)) {
407 				current_thread_info()->fpsaved[0] = FPRS_FEF;
408 				current_thread_info()->gsr[0] = 0;
409 			}
410 			if (!(current_thread_info()->fpsaved[0] & flags)) {
411 				if (freg < 32)
412 					memset(f->regs, 0, 32*sizeof(u32));
413 				else
414 					memset(f->regs+32, 0, 32*sizeof(u32));
415 			}
416 			current_thread_info()->fpsaved[0] |= flags;
417 			break;
418 		}
419 		switch ((insn >> 5) & 0x1ff) {
420 		/* + */
421 		case FADDS: FP_ADD_S (SR, SA, SB); break;
422 		case FADDD: FP_ADD_D (DR, DA, DB); break;
423 		case FADDQ: FP_ADD_Q (QR, QA, QB); break;
424 		/* - */
425 		case FSUBS: FP_SUB_S (SR, SA, SB); break;
426 		case FSUBD: FP_SUB_D (DR, DA, DB); break;
427 		case FSUBQ: FP_SUB_Q (QR, QA, QB); break;
428 		/* * */
429 		case FMULS: FP_MUL_S (SR, SA, SB); break;
430 		case FSMULD: FP_CONV (D, S, 1, 1, DA, SA);
431 			     FP_CONV (D, S, 1, 1, DB, SB);
432 		case FMULD: FP_MUL_D (DR, DA, DB); break;
433 		case FDMULQ: FP_CONV (Q, D, 2, 1, QA, DA);
434 			     FP_CONV (Q, D, 2, 1, QB, DB);
435 		case FMULQ: FP_MUL_Q (QR, QA, QB); break;
436 		/* / */
437 		case FDIVS: FP_DIV_S (SR, SA, SB); break;
438 		case FDIVD: FP_DIV_D (DR, DA, DB); break;
439 		case FDIVQ: FP_DIV_Q (QR, QA, QB); break;
440 		/* sqrt */
441 		case FSQRTS: FP_SQRT_S (SR, SB); break;
442 		case FSQRTD: FP_SQRT_D (DR, DB); break;
443 		case FSQRTQ: FP_SQRT_Q (QR, QB); break;
444 		/* mov */
445 		case FMOVQ: rd->q[0] = rs2->q[0]; rd->q[1] = rs2->q[1]; break;
446 		case FABSQ: rd->q[0] = rs2->q[0] & 0x7fffffffffffffffUL; rd->q[1] = rs2->q[1]; break;
447 		case FNEGQ: rd->q[0] = rs2->q[0] ^ 0x8000000000000000UL; rd->q[1] = rs2->q[1]; break;
448 		/* float to int */
449 		case FSTOI: FP_TO_INT_S (IR, SB, 32, 1); break;
450 		case FDTOI: FP_TO_INT_D (IR, DB, 32, 1); break;
451 		case FQTOI: FP_TO_INT_Q (IR, QB, 32, 1); break;
452 		case FSTOX: FP_TO_INT_S (XR, SB, 64, 1); break;
453 		case FDTOX: FP_TO_INT_D (XR, DB, 64, 1); break;
454 		case FQTOX: FP_TO_INT_Q (XR, QB, 64, 1); break;
455 		/* int to float */
456 		case FITOQ: IR = rs2->s; FP_FROM_INT_Q (QR, IR, 32, int); break;
457 		case FXTOQ: XR = rs2->d; FP_FROM_INT_Q (QR, XR, 64, long); break;
458 		/* Only Ultra-III generates these */
459 		case FXTOS: XR = rs2->d; FP_FROM_INT_S (SR, XR, 64, long); break;
460 		case FXTOD: XR = rs2->d; FP_FROM_INT_D (DR, XR, 64, long); break;
461 #if 0		/* Optimized inline in sparc64/kernel/entry.S */
462 		case FITOS: IR = rs2->s; FP_FROM_INT_S (SR, IR, 32, int); break;
463 #endif
464 		case FITOD: IR = rs2->s; FP_FROM_INT_D (DR, IR, 32, int); break;
465 		/* float to float */
466 		case FSTOD: FP_CONV (D, S, 1, 1, DR, SB); break;
467 		case FSTOQ: FP_CONV (Q, S, 2, 1, QR, SB); break;
468 		case FDTOQ: FP_CONV (Q, D, 2, 1, QR, DB); break;
469 		case FDTOS: FP_CONV (S, D, 1, 1, SR, DB); break;
470 		case FQTOS: FP_CONV (S, Q, 1, 2, SR, QB); break;
471 		case FQTOD: FP_CONV (D, Q, 1, 2, DR, QB); break;
472 		/* comparison */
473 		case FCMPQ:
474 		case FCMPEQ:
475 			FP_CMP_Q(XR, QB, QA, 3);
476 			if (XR == 3 &&
477 			    (((insn >> 5) & 0x1ff) == FCMPEQ ||
478 			     FP_ISSIGNAN_Q(QA) ||
479 			     FP_ISSIGNAN_Q(QB)))
480 				FP_SET_EXCEPTION (FP_EX_INVALID);
481 		}
482 		if (!FP_INHIBIT_RESULTS) {
483 			switch ((type >> 6) & 0x7) {
484 			case 0: xfsr = current_thread_info()->xfsr[0];
485 				if (XR == -1) XR = 2;
486 				switch (freg & 3) {
487 				/* fcc0, 1, 2, 3 */
488 				case 0: xfsr &= ~0xc00; xfsr |= (XR << 10); break;
489 				case 1: xfsr &= ~0x300000000UL; xfsr |= (XR << 32); break;
490 				case 2: xfsr &= ~0xc00000000UL; xfsr |= (XR << 34); break;
491 				case 3: xfsr &= ~0x3000000000UL; xfsr |= (XR << 36); break;
492 				}
493 				current_thread_info()->xfsr[0] = xfsr;
494 				break;
495 			case 1: rd->s = IR; break;
496 			case 2: rd->d = XR; break;
497 			case 5: FP_PACK_SP (rd, SR); break;
498 			case 6: FP_PACK_DP (rd, DR); break;
499 			case 7: FP_PACK_QP (rd, QR); break;
500 			}
501 		}
502 
503 		if(_fex != 0)
504 			return record_exception(regs, _fex);
505 
506 		/* Success and no exceptions detected. */
507 		current_thread_info()->xfsr[0] &= ~(FSR_CEXC_MASK);
508 		regs->tpc = regs->tnpc;
509 		regs->tnpc += 4;
510 		return 1;
511 	}
512 err:	return 0;
513 }
514