xref: /openbmc/linux/arch/sparc/math-emu/math_64.c (revision 7f2e85840871f199057e65232ebde846192ed989)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * arch/sparc64/math-emu/math.c
4  *
5  * Copyright (C) 1997,1999 Jakub Jelinek (jj@ultra.linux.cz)
6  * Copyright (C) 1999 David S. Miller (davem@redhat.com)
7  *
8  * Emulation routines originate from soft-fp package, which is part
9  * of glibc and has appropriate copyrights in it.
10  */
11 
12 #include <linux/types.h>
13 #include <linux/sched.h>
14 #include <linux/errno.h>
15 #include <linux/perf_event.h>
16 
17 #include <asm/fpumacro.h>
18 #include <asm/ptrace.h>
19 #include <linux/uaccess.h>
20 #include <asm/cacheflush.h>
21 
22 #include "sfp-util_64.h"
23 #include <math-emu/soft-fp.h>
24 #include <math-emu/single.h>
25 #include <math-emu/double.h>
26 #include <math-emu/quad.h>
27 
28 /* QUAD - ftt == 3 */
29 #define FMOVQ	0x003
30 #define FNEGQ	0x007
31 #define FABSQ	0x00b
32 #define FSQRTQ	0x02b
33 #define FADDQ	0x043
34 #define FSUBQ	0x047
35 #define FMULQ	0x04b
36 #define FDIVQ	0x04f
37 #define FDMULQ	0x06e
38 #define FQTOX	0x083
39 #define FXTOQ	0x08c
40 #define FQTOS	0x0c7
41 #define FQTOD	0x0cb
42 #define FITOQ	0x0cc
43 #define FSTOQ	0x0cd
44 #define FDTOQ	0x0ce
45 #define FQTOI	0x0d3
46 /* SUBNORMAL - ftt == 2 */
47 #define FSQRTS	0x029
48 #define FSQRTD	0x02a
49 #define FADDS	0x041
50 #define FADDD	0x042
51 #define FSUBS	0x045
52 #define FSUBD	0x046
53 #define FMULS	0x049
54 #define FMULD	0x04a
55 #define FDIVS	0x04d
56 #define FDIVD	0x04e
57 #define FSMULD	0x069
58 #define FSTOX	0x081
59 #define FDTOX	0x082
60 #define FDTOS	0x0c6
61 #define FSTOD	0x0c9
62 #define FSTOI	0x0d1
63 #define FDTOI	0x0d2
64 #define FXTOS	0x084 /* Only Ultra-III generates this. */
65 #define FXTOD	0x088 /* Only Ultra-III generates this. */
66 #if 0	/* Optimized inline in sparc64/kernel/entry.S */
67 #define FITOS	0x0c4 /* Only Ultra-III generates this. */
68 #endif
69 #define FITOD	0x0c8 /* Only Ultra-III generates this. */
70 /* FPOP2 */
71 #define FCMPQ	0x053
72 #define FCMPEQ	0x057
73 #define FMOVQ0	0x003
74 #define FMOVQ1	0x043
75 #define FMOVQ2	0x083
76 #define FMOVQ3	0x0c3
77 #define FMOVQI	0x103
78 #define FMOVQX	0x183
79 #define FMOVQZ	0x027
80 #define FMOVQLE	0x047
81 #define FMOVQLZ 0x067
82 #define FMOVQNZ	0x0a7
83 #define FMOVQGZ	0x0c7
84 #define FMOVQGE 0x0e7
85 
86 #define FSR_TEM_SHIFT	23UL
87 #define FSR_TEM_MASK	(0x1fUL << FSR_TEM_SHIFT)
88 #define FSR_AEXC_SHIFT	5UL
89 #define FSR_AEXC_MASK	(0x1fUL << FSR_AEXC_SHIFT)
90 #define FSR_CEXC_SHIFT	0UL
91 #define FSR_CEXC_MASK	(0x1fUL << FSR_CEXC_SHIFT)
92 
93 /* All routines returning an exception to raise should detect
94  * such exceptions _before_ rounding to be consistent with
95  * the behavior of the hardware in the implemented cases
96  * (and thus with the recommendations in the V9 architecture
97  * manual).
98  *
99  * We return 0 if a SIGFPE should be sent, 1 otherwise.
100  */
101 static inline int record_exception(struct pt_regs *regs, int eflag)
102 {
103 	u64 fsr = current_thread_info()->xfsr[0];
104 	int would_trap;
105 
106 	/* Determine if this exception would have generated a trap. */
107 	would_trap = (fsr & ((long)eflag << FSR_TEM_SHIFT)) != 0UL;
108 
109 	/* If trapping, we only want to signal one bit. */
110 	if(would_trap != 0) {
111 		eflag &= ((fsr & FSR_TEM_MASK) >> FSR_TEM_SHIFT);
112 		if((eflag & (eflag - 1)) != 0) {
113 			if(eflag & FP_EX_INVALID)
114 				eflag = FP_EX_INVALID;
115 			else if(eflag & FP_EX_OVERFLOW)
116 				eflag = FP_EX_OVERFLOW;
117 			else if(eflag & FP_EX_UNDERFLOW)
118 				eflag = FP_EX_UNDERFLOW;
119 			else if(eflag & FP_EX_DIVZERO)
120 				eflag = FP_EX_DIVZERO;
121 			else if(eflag & FP_EX_INEXACT)
122 				eflag = FP_EX_INEXACT;
123 		}
124 	}
125 
126 	/* Set CEXC, here is the rule:
127 	 *
128 	 *    In general all FPU ops will set one and only one
129 	 *    bit in the CEXC field, this is always the case
130 	 *    when the IEEE exception trap is enabled in TEM.
131 	 */
132 	fsr &= ~(FSR_CEXC_MASK);
133 	fsr |= ((long)eflag << FSR_CEXC_SHIFT);
134 
135 	/* Set the AEXC field, rule is:
136 	 *
137 	 *    If a trap would not be generated, the
138 	 *    CEXC just generated is OR'd into the
139 	 *    existing value of AEXC.
140 	 */
141 	if(would_trap == 0)
142 		fsr |= ((long)eflag << FSR_AEXC_SHIFT);
143 
144 	/* If trapping, indicate fault trap type IEEE. */
145 	if(would_trap != 0)
146 		fsr |= (1UL << 14);
147 
148 	current_thread_info()->xfsr[0] = fsr;
149 
150 	/* If we will not trap, advance the program counter over
151 	 * the instruction being handled.
152 	 */
153 	if(would_trap == 0) {
154 		regs->tpc = regs->tnpc;
155 		regs->tnpc += 4;
156 	}
157 
158 	return (would_trap ? 0 : 1);
159 }
160 
161 typedef union {
162 	u32 s;
163 	u64 d;
164 	u64 q[2];
165 } *argp;
166 
167 int do_mathemu(struct pt_regs *regs, struct fpustate *f, bool illegal_insn_trap)
168 {
169 	unsigned long pc = regs->tpc;
170 	unsigned long tstate = regs->tstate;
171 	u32 insn = 0;
172 	int type = 0;
173 	/* ftt tells which ftt it may happen in, r is rd, b is rs2 and a is rs1. The *u arg tells
174 	   whether the argument should be packed/unpacked (0 - do not unpack/pack, 1 - unpack/pack)
175 	   non-u args tells the size of the argument (0 - no argument, 1 - single, 2 - double, 3 - quad */
176 #define TYPE(ftt, r, ru, b, bu, a, au) type = (au << 2) | (a << 0) | (bu << 5) | (b << 3) | (ru << 8) | (r << 6) | (ftt << 9)
177 	int freg;
178 	static u64 zero[2] = { 0L, 0L };
179 	int flags;
180 	FP_DECL_EX;
181 	FP_DECL_S(SA); FP_DECL_S(SB); FP_DECL_S(SR);
182 	FP_DECL_D(DA); FP_DECL_D(DB); FP_DECL_D(DR);
183 	FP_DECL_Q(QA); FP_DECL_Q(QB); FP_DECL_Q(QR);
184 	int IR;
185 	long XR, xfsr;
186 
187 	if (tstate & TSTATE_PRIV)
188 		die_if_kernel("unfinished/unimplemented FPop from kernel", regs);
189 	perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, regs, 0);
190 	if (test_thread_flag(TIF_32BIT))
191 		pc = (u32)pc;
192 	if (get_user(insn, (u32 __user *) pc) != -EFAULT) {
193 		if ((insn & 0xc1f80000) == 0x81a00000) /* FPOP1 */ {
194 			switch ((insn >> 5) & 0x1ff) {
195 			/* QUAD - ftt == 3 */
196 			case FMOVQ:
197 			case FNEGQ:
198 			case FABSQ: TYPE(3,3,0,3,0,0,0); break;
199 			case FSQRTQ: TYPE(3,3,1,3,1,0,0); break;
200 			case FADDQ:
201 			case FSUBQ:
202 			case FMULQ:
203 			case FDIVQ: TYPE(3,3,1,3,1,3,1); break;
204 			case FDMULQ: TYPE(3,3,1,2,1,2,1); break;
205 			case FQTOX: TYPE(3,2,0,3,1,0,0); break;
206 			case FXTOQ: TYPE(3,3,1,2,0,0,0); break;
207 			case FQTOS: TYPE(3,1,1,3,1,0,0); break;
208 			case FQTOD: TYPE(3,2,1,3,1,0,0); break;
209 			case FITOQ: TYPE(3,3,1,1,0,0,0); break;
210 			case FSTOQ: TYPE(3,3,1,1,1,0,0); break;
211 			case FDTOQ: TYPE(3,3,1,2,1,0,0); break;
212 			case FQTOI: TYPE(3,1,0,3,1,0,0); break;
213 
214 			/* We can get either unimplemented or unfinished
215 			 * for these cases.  Pre-Niagara systems generate
216 			 * unfinished fpop for SUBNORMAL cases, and Niagara
217 			 * always gives unimplemented fpop for fsqrt{s,d}.
218 			 */
219 			case FSQRTS: {
220 				unsigned long x = current_thread_info()->xfsr[0];
221 
222 				x = (x >> 14) & 0x7;
223 				TYPE(x,1,1,1,1,0,0);
224 				break;
225 			}
226 
227 			case FSQRTD: {
228 				unsigned long x = current_thread_info()->xfsr[0];
229 
230 				x = (x >> 14) & 0x7;
231 				TYPE(x,2,1,2,1,0,0);
232 				break;
233 			}
234 
235 			/* SUBNORMAL - ftt == 2 */
236 			case FADDD:
237 			case FSUBD:
238 			case FMULD:
239 			case FDIVD: TYPE(2,2,1,2,1,2,1); break;
240 			case FADDS:
241 			case FSUBS:
242 			case FMULS:
243 			case FDIVS: TYPE(2,1,1,1,1,1,1); break;
244 			case FSMULD: TYPE(2,2,1,1,1,1,1); break;
245 			case FSTOX: TYPE(2,2,0,1,1,0,0); break;
246 			case FDTOX: TYPE(2,2,0,2,1,0,0); break;
247 			case FDTOS: TYPE(2,1,1,2,1,0,0); break;
248 			case FSTOD: TYPE(2,2,1,1,1,0,0); break;
249 			case FSTOI: TYPE(2,1,0,1,1,0,0); break;
250 			case FDTOI: TYPE(2,1,0,2,1,0,0); break;
251 
252 			/* Only Ultra-III generates these */
253 			case FXTOS: TYPE(2,1,1,2,0,0,0); break;
254 			case FXTOD: TYPE(2,2,1,2,0,0,0); break;
255 #if 0			/* Optimized inline in sparc64/kernel/entry.S */
256 			case FITOS: TYPE(2,1,1,1,0,0,0); break;
257 #endif
258 			case FITOD: TYPE(2,2,1,1,0,0,0); break;
259 			}
260 		}
261 		else if ((insn & 0xc1f80000) == 0x81a80000) /* FPOP2 */ {
262 			IR = 2;
263 			switch ((insn >> 5) & 0x1ff) {
264 			case FCMPQ: TYPE(3,0,0,3,1,3,1); break;
265 			case FCMPEQ: TYPE(3,0,0,3,1,3,1); break;
266 			/* Now the conditional fmovq support */
267 			case FMOVQ0:
268 			case FMOVQ1:
269 			case FMOVQ2:
270 			case FMOVQ3:
271 				/* fmovq %fccX, %fY, %fZ */
272 				if (!((insn >> 11) & 3))
273 					XR = current_thread_info()->xfsr[0] >> 10;
274 				else
275 					XR = current_thread_info()->xfsr[0] >> (30 + ((insn >> 10) & 0x6));
276 				XR &= 3;
277 				IR = 0;
278 				switch ((insn >> 14) & 0x7) {
279 				/* case 0: IR = 0; break; */			/* Never */
280 				case 1: if (XR) IR = 1; break;			/* Not Equal */
281 				case 2: if (XR == 1 || XR == 2) IR = 1; break;	/* Less or Greater */
282 				case 3: if (XR & 1) IR = 1; break;		/* Unordered or Less */
283 				case 4: if (XR == 1) IR = 1; break;		/* Less */
284 				case 5: if (XR & 2) IR = 1; break;		/* Unordered or Greater */
285 				case 6: if (XR == 2) IR = 1; break;		/* Greater */
286 				case 7: if (XR == 3) IR = 1; break;		/* Unordered */
287 				}
288 				if ((insn >> 14) & 8)
289 					IR ^= 1;
290 				break;
291 			case FMOVQI:
292 			case FMOVQX:
293 				/* fmovq %[ix]cc, %fY, %fZ */
294 				XR = regs->tstate >> 32;
295 				if ((insn >> 5) & 0x80)
296 					XR >>= 4;
297 				XR &= 0xf;
298 				IR = 0;
299 				freg = ((XR >> 2) ^ XR) & 2;
300 				switch ((insn >> 14) & 0x7) {
301 				/* case 0: IR = 0; break; */			/* Never */
302 				case 1: if (XR & 4) IR = 1; break;		/* Equal */
303 				case 2: if ((XR & 4) || freg) IR = 1; break;	/* Less or Equal */
304 				case 3: if (freg) IR = 1; break;		/* Less */
305 				case 4: if (XR & 5) IR = 1; break;		/* Less or Equal Unsigned */
306 				case 5: if (XR & 1) IR = 1; break;		/* Carry Set */
307 				case 6: if (XR & 8) IR = 1; break;		/* Negative */
308 				case 7: if (XR & 2) IR = 1; break;		/* Overflow Set */
309 				}
310 				if ((insn >> 14) & 8)
311 					IR ^= 1;
312 				break;
313 			case FMOVQZ:
314 			case FMOVQLE:
315 			case FMOVQLZ:
316 			case FMOVQNZ:
317 			case FMOVQGZ:
318 			case FMOVQGE:
319 				freg = (insn >> 14) & 0x1f;
320 				if (!freg)
321 					XR = 0;
322 				else if (freg < 16)
323 					XR = regs->u_regs[freg];
324 				else if (!test_thread_64bit_stack(regs->u_regs[UREG_FP])) {
325 					struct reg_window32 __user *win32;
326 					flushw_user ();
327 					win32 = (struct reg_window32 __user *)((unsigned long)((u32)regs->u_regs[UREG_FP]));
328 					get_user(XR, &win32->locals[freg - 16]);
329 				} else {
330 					struct reg_window __user *win;
331 					flushw_user ();
332 					win = (struct reg_window __user *)(regs->u_regs[UREG_FP] + STACK_BIAS);
333 					get_user(XR, &win->locals[freg - 16]);
334 				}
335 				IR = 0;
336 				switch ((insn >> 10) & 3) {
337 				case 1: if (!XR) IR = 1; break;			/* Register Zero */
338 				case 2: if (XR <= 0) IR = 1; break;		/* Register Less Than or Equal to Zero */
339 				case 3: if (XR < 0) IR = 1; break;		/* Register Less Than Zero */
340 				}
341 				if ((insn >> 10) & 4)
342 					IR ^= 1;
343 				break;
344 			}
345 			if (IR == 0) {
346 				/* The fmov test was false. Do a nop instead */
347 				current_thread_info()->xfsr[0] &= ~(FSR_CEXC_MASK);
348 				regs->tpc = regs->tnpc;
349 				regs->tnpc += 4;
350 				return 1;
351 			} else if (IR == 1) {
352 				/* Change the instruction into plain fmovq */
353 				insn = (insn & 0x3e00001f) | 0x81a00060;
354 				TYPE(3,3,0,3,0,0,0);
355 			}
356 		}
357 	}
358 	if (type) {
359 		argp rs1 = NULL, rs2 = NULL, rd = NULL;
360 
361 		/* Starting with UltraSPARC-T2, the cpu does not set the FP Trap
362 		 * Type field in the %fsr to unimplemented_FPop.  Nor does it
363 		 * use the fp_exception_other trap.  Instead it signals an
364 		 * illegal instruction and leaves the FP trap type field of
365 		 * the %fsr unchanged.
366 		 */
367 		if (!illegal_insn_trap) {
368 			int ftt = (current_thread_info()->xfsr[0] >> 14) & 0x7;
369 			if (ftt != (type >> 9))
370 				goto err;
371 		}
372 		current_thread_info()->xfsr[0] &= ~0x1c000;
373 		freg = ((insn >> 14) & 0x1f);
374 		switch (type & 0x3) {
375 		case 3: if (freg & 2) {
376 				current_thread_info()->xfsr[0] |= (6 << 14) /* invalid_fp_register */;
377 				goto err;
378 			}
379 		case 2: freg = ((freg & 1) << 5) | (freg & 0x1e);
380 		case 1: rs1 = (argp)&f->regs[freg];
381 			flags = (freg < 32) ? FPRS_DL : FPRS_DU;
382 			if (!(current_thread_info()->fpsaved[0] & flags))
383 				rs1 = (argp)&zero;
384 			break;
385 		}
386 		switch (type & 0x7) {
387 		case 7: FP_UNPACK_QP (QA, rs1); break;
388 		case 6: FP_UNPACK_DP (DA, rs1); break;
389 		case 5: FP_UNPACK_SP (SA, rs1); break;
390 		}
391 		freg = (insn & 0x1f);
392 		switch ((type >> 3) & 0x3) {
393 		case 3: if (freg & 2) {
394 				current_thread_info()->xfsr[0] |= (6 << 14) /* invalid_fp_register */;
395 				goto err;
396 			}
397 		case 2: freg = ((freg & 1) << 5) | (freg & 0x1e);
398 		case 1: rs2 = (argp)&f->regs[freg];
399 			flags = (freg < 32) ? FPRS_DL : FPRS_DU;
400 			if (!(current_thread_info()->fpsaved[0] & flags))
401 				rs2 = (argp)&zero;
402 			break;
403 		}
404 		switch ((type >> 3) & 0x7) {
405 		case 7: FP_UNPACK_QP (QB, rs2); break;
406 		case 6: FP_UNPACK_DP (DB, rs2); break;
407 		case 5: FP_UNPACK_SP (SB, rs2); break;
408 		}
409 		freg = ((insn >> 25) & 0x1f);
410 		switch ((type >> 6) & 0x3) {
411 		case 3: if (freg & 2) {
412 				current_thread_info()->xfsr[0] |= (6 << 14) /* invalid_fp_register */;
413 				goto err;
414 			}
415 		case 2: freg = ((freg & 1) << 5) | (freg & 0x1e);
416 		case 1: rd = (argp)&f->regs[freg];
417 			flags = (freg < 32) ? FPRS_DL : FPRS_DU;
418 			if (!(current_thread_info()->fpsaved[0] & FPRS_FEF)) {
419 				current_thread_info()->fpsaved[0] = FPRS_FEF;
420 				current_thread_info()->gsr[0] = 0;
421 			}
422 			if (!(current_thread_info()->fpsaved[0] & flags)) {
423 				if (freg < 32)
424 					memset(f->regs, 0, 32*sizeof(u32));
425 				else
426 					memset(f->regs+32, 0, 32*sizeof(u32));
427 			}
428 			current_thread_info()->fpsaved[0] |= flags;
429 			break;
430 		}
431 		switch ((insn >> 5) & 0x1ff) {
432 		/* + */
433 		case FADDS: FP_ADD_S (SR, SA, SB); break;
434 		case FADDD: FP_ADD_D (DR, DA, DB); break;
435 		case FADDQ: FP_ADD_Q (QR, QA, QB); break;
436 		/* - */
437 		case FSUBS: FP_SUB_S (SR, SA, SB); break;
438 		case FSUBD: FP_SUB_D (DR, DA, DB); break;
439 		case FSUBQ: FP_SUB_Q (QR, QA, QB); break;
440 		/* * */
441 		case FMULS: FP_MUL_S (SR, SA, SB); break;
442 		case FSMULD: FP_CONV (D, S, 1, 1, DA, SA);
443 			     FP_CONV (D, S, 1, 1, DB, SB);
444 		case FMULD: FP_MUL_D (DR, DA, DB); break;
445 		case FDMULQ: FP_CONV (Q, D, 2, 1, QA, DA);
446 			     FP_CONV (Q, D, 2, 1, QB, DB);
447 		case FMULQ: FP_MUL_Q (QR, QA, QB); break;
448 		/* / */
449 		case FDIVS: FP_DIV_S (SR, SA, SB); break;
450 		case FDIVD: FP_DIV_D (DR, DA, DB); break;
451 		case FDIVQ: FP_DIV_Q (QR, QA, QB); break;
452 		/* sqrt */
453 		case FSQRTS: FP_SQRT_S (SR, SB); break;
454 		case FSQRTD: FP_SQRT_D (DR, DB); break;
455 		case FSQRTQ: FP_SQRT_Q (QR, QB); break;
456 		/* mov */
457 		case FMOVQ: rd->q[0] = rs2->q[0]; rd->q[1] = rs2->q[1]; break;
458 		case FABSQ: rd->q[0] = rs2->q[0] & 0x7fffffffffffffffUL; rd->q[1] = rs2->q[1]; break;
459 		case FNEGQ: rd->q[0] = rs2->q[0] ^ 0x8000000000000000UL; rd->q[1] = rs2->q[1]; break;
460 		/* float to int */
461 		case FSTOI: FP_TO_INT_S (IR, SB, 32, 1); break;
462 		case FDTOI: FP_TO_INT_D (IR, DB, 32, 1); break;
463 		case FQTOI: FP_TO_INT_Q (IR, QB, 32, 1); break;
464 		case FSTOX: FP_TO_INT_S (XR, SB, 64, 1); break;
465 		case FDTOX: FP_TO_INT_D (XR, DB, 64, 1); break;
466 		case FQTOX: FP_TO_INT_Q (XR, QB, 64, 1); break;
467 		/* int to float */
468 		case FITOQ: IR = rs2->s; FP_FROM_INT_Q (QR, IR, 32, int); break;
469 		case FXTOQ: XR = rs2->d; FP_FROM_INT_Q (QR, XR, 64, long); break;
470 		/* Only Ultra-III generates these */
471 		case FXTOS: XR = rs2->d; FP_FROM_INT_S (SR, XR, 64, long); break;
472 		case FXTOD: XR = rs2->d; FP_FROM_INT_D (DR, XR, 64, long); break;
473 #if 0		/* Optimized inline in sparc64/kernel/entry.S */
474 		case FITOS: IR = rs2->s; FP_FROM_INT_S (SR, IR, 32, int); break;
475 #endif
476 		case FITOD: IR = rs2->s; FP_FROM_INT_D (DR, IR, 32, int); break;
477 		/* float to float */
478 		case FSTOD: FP_CONV (D, S, 1, 1, DR, SB); break;
479 		case FSTOQ: FP_CONV (Q, S, 2, 1, QR, SB); break;
480 		case FDTOQ: FP_CONV (Q, D, 2, 1, QR, DB); break;
481 		case FDTOS: FP_CONV (S, D, 1, 1, SR, DB); break;
482 		case FQTOS: FP_CONV (S, Q, 1, 2, SR, QB); break;
483 		case FQTOD: FP_CONV (D, Q, 1, 2, DR, QB); break;
484 		/* comparison */
485 		case FCMPQ:
486 		case FCMPEQ:
487 			FP_CMP_Q(XR, QB, QA, 3);
488 			if (XR == 3 &&
489 			    (((insn >> 5) & 0x1ff) == FCMPEQ ||
490 			     FP_ISSIGNAN_Q(QA) ||
491 			     FP_ISSIGNAN_Q(QB)))
492 				FP_SET_EXCEPTION (FP_EX_INVALID);
493 		}
494 		if (!FP_INHIBIT_RESULTS) {
495 			switch ((type >> 6) & 0x7) {
496 			case 0: xfsr = current_thread_info()->xfsr[0];
497 				if (XR == -1) XR = 2;
498 				switch (freg & 3) {
499 				/* fcc0, 1, 2, 3 */
500 				case 0: xfsr &= ~0xc00; xfsr |= (XR << 10); break;
501 				case 1: xfsr &= ~0x300000000UL; xfsr |= (XR << 32); break;
502 				case 2: xfsr &= ~0xc00000000UL; xfsr |= (XR << 34); break;
503 				case 3: xfsr &= ~0x3000000000UL; xfsr |= (XR << 36); break;
504 				}
505 				current_thread_info()->xfsr[0] = xfsr;
506 				break;
507 			case 1: rd->s = IR; break;
508 			case 2: rd->d = XR; break;
509 			case 5: FP_PACK_SP (rd, SR); break;
510 			case 6: FP_PACK_DP (rd, DR); break;
511 			case 7: FP_PACK_QP (rd, QR); break;
512 			}
513 		}
514 
515 		if(_fex != 0)
516 			return record_exception(regs, _fex);
517 
518 		/* Success and no exceptions detected. */
519 		current_thread_info()->xfsr[0] &= ~(FSR_CEXC_MASK);
520 		regs->tpc = regs->tnpc;
521 		regs->tnpc += 4;
522 		return 1;
523 	}
524 err:	return 0;
525 }
526