xref: /openbmc/linux/arch/sparc/math-emu/math_64.c (revision 4ed91d48259d9ddd378424d008f2e6559f7e78f8)
1 /*
2  * arch/sparc64/math-emu/math.c
3  *
4  * Copyright (C) 1997,1999 Jakub Jelinek (jj@ultra.linux.cz)
5  * Copyright (C) 1999 David S. Miller (davem@redhat.com)
6  *
7  * Emulation routines originate from soft-fp package, which is part
8  * of glibc and has appropriate copyrights in it.
9  */
10 
11 #include <linux/types.h>
12 #include <linux/sched.h>
13 #include <linux/errno.h>
14 #include <linux/perf_event.h>
15 
16 #include <asm/fpumacro.h>
17 #include <asm/ptrace.h>
18 #include <linux/uaccess.h>
19 #include <asm/cacheflush.h>
20 
21 #include "sfp-util_64.h"
22 #include <math-emu/soft-fp.h>
23 #include <math-emu/single.h>
24 #include <math-emu/double.h>
25 #include <math-emu/quad.h>
26 
27 /* QUAD - ftt == 3 */
28 #define FMOVQ	0x003
29 #define FNEGQ	0x007
30 #define FABSQ	0x00b
31 #define FSQRTQ	0x02b
32 #define FADDQ	0x043
33 #define FSUBQ	0x047
34 #define FMULQ	0x04b
35 #define FDIVQ	0x04f
36 #define FDMULQ	0x06e
37 #define FQTOX	0x083
38 #define FXTOQ	0x08c
39 #define FQTOS	0x0c7
40 #define FQTOD	0x0cb
41 #define FITOQ	0x0cc
42 #define FSTOQ	0x0cd
43 #define FDTOQ	0x0ce
44 #define FQTOI	0x0d3
45 /* SUBNORMAL - ftt == 2 */
46 #define FSQRTS	0x029
47 #define FSQRTD	0x02a
48 #define FADDS	0x041
49 #define FADDD	0x042
50 #define FSUBS	0x045
51 #define FSUBD	0x046
52 #define FMULS	0x049
53 #define FMULD	0x04a
54 #define FDIVS	0x04d
55 #define FDIVD	0x04e
56 #define FSMULD	0x069
57 #define FSTOX	0x081
58 #define FDTOX	0x082
59 #define FDTOS	0x0c6
60 #define FSTOD	0x0c9
61 #define FSTOI	0x0d1
62 #define FDTOI	0x0d2
63 #define FXTOS	0x084 /* Only Ultra-III generates this. */
64 #define FXTOD	0x088 /* Only Ultra-III generates this. */
65 #if 0	/* Optimized inline in sparc64/kernel/entry.S */
66 #define FITOS	0x0c4 /* Only Ultra-III generates this. */
67 #endif
68 #define FITOD	0x0c8 /* Only Ultra-III generates this. */
69 /* FPOP2 */
70 #define FCMPQ	0x053
71 #define FCMPEQ	0x057
72 #define FMOVQ0	0x003
73 #define FMOVQ1	0x043
74 #define FMOVQ2	0x083
75 #define FMOVQ3	0x0c3
76 #define FMOVQI	0x103
77 #define FMOVQX	0x183
78 #define FMOVQZ	0x027
79 #define FMOVQLE	0x047
80 #define FMOVQLZ 0x067
81 #define FMOVQNZ	0x0a7
82 #define FMOVQGZ	0x0c7
83 #define FMOVQGE 0x0e7
84 
85 #define FSR_TEM_SHIFT	23UL
86 #define FSR_TEM_MASK	(0x1fUL << FSR_TEM_SHIFT)
87 #define FSR_AEXC_SHIFT	5UL
88 #define FSR_AEXC_MASK	(0x1fUL << FSR_AEXC_SHIFT)
89 #define FSR_CEXC_SHIFT	0UL
90 #define FSR_CEXC_MASK	(0x1fUL << FSR_CEXC_SHIFT)
91 
92 /* All routines returning an exception to raise should detect
93  * such exceptions _before_ rounding to be consistent with
94  * the behavior of the hardware in the implemented cases
95  * (and thus with the recommendations in the V9 architecture
96  * manual).
97  *
98  * We return 0 if a SIGFPE should be sent, 1 otherwise.
99  */
100 static inline int record_exception(struct pt_regs *regs, int eflag)
101 {
102 	u64 fsr = current_thread_info()->xfsr[0];
103 	int would_trap;
104 
105 	/* Determine if this exception would have generated a trap. */
106 	would_trap = (fsr & ((long)eflag << FSR_TEM_SHIFT)) != 0UL;
107 
108 	/* If trapping, we only want to signal one bit. */
109 	if(would_trap != 0) {
110 		eflag &= ((fsr & FSR_TEM_MASK) >> FSR_TEM_SHIFT);
111 		if((eflag & (eflag - 1)) != 0) {
112 			if(eflag & FP_EX_INVALID)
113 				eflag = FP_EX_INVALID;
114 			else if(eflag & FP_EX_OVERFLOW)
115 				eflag = FP_EX_OVERFLOW;
116 			else if(eflag & FP_EX_UNDERFLOW)
117 				eflag = FP_EX_UNDERFLOW;
118 			else if(eflag & FP_EX_DIVZERO)
119 				eflag = FP_EX_DIVZERO;
120 			else if(eflag & FP_EX_INEXACT)
121 				eflag = FP_EX_INEXACT;
122 		}
123 	}
124 
125 	/* Set CEXC, here is the rule:
126 	 *
127 	 *    In general all FPU ops will set one and only one
128 	 *    bit in the CEXC field, this is always the case
129 	 *    when the IEEE exception trap is enabled in TEM.
130 	 */
131 	fsr &= ~(FSR_CEXC_MASK);
132 	fsr |= ((long)eflag << FSR_CEXC_SHIFT);
133 
134 	/* Set the AEXC field, rule is:
135 	 *
136 	 *    If a trap would not be generated, the
137 	 *    CEXC just generated is OR'd into the
138 	 *    existing value of AEXC.
139 	 */
140 	if(would_trap == 0)
141 		fsr |= ((long)eflag << FSR_AEXC_SHIFT);
142 
143 	/* If trapping, indicate fault trap type IEEE. */
144 	if(would_trap != 0)
145 		fsr |= (1UL << 14);
146 
147 	current_thread_info()->xfsr[0] = fsr;
148 
149 	/* If we will not trap, advance the program counter over
150 	 * the instruction being handled.
151 	 */
152 	if(would_trap == 0) {
153 		regs->tpc = regs->tnpc;
154 		regs->tnpc += 4;
155 	}
156 
157 	return (would_trap ? 0 : 1);
158 }
159 
160 typedef union {
161 	u32 s;
162 	u64 d;
163 	u64 q[2];
164 } *argp;
165 
166 int do_mathemu(struct pt_regs *regs, struct fpustate *f, bool illegal_insn_trap)
167 {
168 	unsigned long pc = regs->tpc;
169 	unsigned long tstate = regs->tstate;
170 	u32 insn = 0;
171 	int type = 0;
172 	/* ftt tells which ftt it may happen in, r is rd, b is rs2 and a is rs1. The *u arg tells
173 	   whether the argument should be packed/unpacked (0 - do not unpack/pack, 1 - unpack/pack)
174 	   non-u args tells the size of the argument (0 - no argument, 1 - single, 2 - double, 3 - quad */
175 #define TYPE(ftt, r, ru, b, bu, a, au) type = (au << 2) | (a << 0) | (bu << 5) | (b << 3) | (ru << 8) | (r << 6) | (ftt << 9)
176 	int freg;
177 	static u64 zero[2] = { 0L, 0L };
178 	int flags;
179 	FP_DECL_EX;
180 	FP_DECL_S(SA); FP_DECL_S(SB); FP_DECL_S(SR);
181 	FP_DECL_D(DA); FP_DECL_D(DB); FP_DECL_D(DR);
182 	FP_DECL_Q(QA); FP_DECL_Q(QB); FP_DECL_Q(QR);
183 	int IR;
184 	long XR, xfsr;
185 
186 	if (tstate & TSTATE_PRIV)
187 		die_if_kernel("unfinished/unimplemented FPop from kernel", regs);
188 	perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, regs, 0);
189 	if (test_thread_flag(TIF_32BIT))
190 		pc = (u32)pc;
191 	if (get_user(insn, (u32 __user *) pc) != -EFAULT) {
192 		if ((insn & 0xc1f80000) == 0x81a00000) /* FPOP1 */ {
193 			switch ((insn >> 5) & 0x1ff) {
194 			/* QUAD - ftt == 3 */
195 			case FMOVQ:
196 			case FNEGQ:
197 			case FABSQ: TYPE(3,3,0,3,0,0,0); break;
198 			case FSQRTQ: TYPE(3,3,1,3,1,0,0); break;
199 			case FADDQ:
200 			case FSUBQ:
201 			case FMULQ:
202 			case FDIVQ: TYPE(3,3,1,3,1,3,1); break;
203 			case FDMULQ: TYPE(3,3,1,2,1,2,1); break;
204 			case FQTOX: TYPE(3,2,0,3,1,0,0); break;
205 			case FXTOQ: TYPE(3,3,1,2,0,0,0); break;
206 			case FQTOS: TYPE(3,1,1,3,1,0,0); break;
207 			case FQTOD: TYPE(3,2,1,3,1,0,0); break;
208 			case FITOQ: TYPE(3,3,1,1,0,0,0); break;
209 			case FSTOQ: TYPE(3,3,1,1,1,0,0); break;
210 			case FDTOQ: TYPE(3,3,1,2,1,0,0); break;
211 			case FQTOI: TYPE(3,1,0,3,1,0,0); break;
212 
213 			/* We can get either unimplemented or unfinished
214 			 * for these cases.  Pre-Niagara systems generate
215 			 * unfinished fpop for SUBNORMAL cases, and Niagara
216 			 * always gives unimplemented fpop for fsqrt{s,d}.
217 			 */
218 			case FSQRTS: {
219 				unsigned long x = current_thread_info()->xfsr[0];
220 
221 				x = (x >> 14) & 0x7;
222 				TYPE(x,1,1,1,1,0,0);
223 				break;
224 			}
225 
226 			case FSQRTD: {
227 				unsigned long x = current_thread_info()->xfsr[0];
228 
229 				x = (x >> 14) & 0x7;
230 				TYPE(x,2,1,2,1,0,0);
231 				break;
232 			}
233 
234 			/* SUBNORMAL - ftt == 2 */
235 			case FADDD:
236 			case FSUBD:
237 			case FMULD:
238 			case FDIVD: TYPE(2,2,1,2,1,2,1); break;
239 			case FADDS:
240 			case FSUBS:
241 			case FMULS:
242 			case FDIVS: TYPE(2,1,1,1,1,1,1); break;
243 			case FSMULD: TYPE(2,2,1,1,1,1,1); break;
244 			case FSTOX: TYPE(2,2,0,1,1,0,0); break;
245 			case FDTOX: TYPE(2,2,0,2,1,0,0); break;
246 			case FDTOS: TYPE(2,1,1,2,1,0,0); break;
247 			case FSTOD: TYPE(2,2,1,1,1,0,0); break;
248 			case FSTOI: TYPE(2,1,0,1,1,0,0); break;
249 			case FDTOI: TYPE(2,1,0,2,1,0,0); break;
250 
251 			/* Only Ultra-III generates these */
252 			case FXTOS: TYPE(2,1,1,2,0,0,0); break;
253 			case FXTOD: TYPE(2,2,1,2,0,0,0); break;
254 #if 0			/* Optimized inline in sparc64/kernel/entry.S */
255 			case FITOS: TYPE(2,1,1,1,0,0,0); break;
256 #endif
257 			case FITOD: TYPE(2,2,1,1,0,0,0); break;
258 			}
259 		}
260 		else if ((insn & 0xc1f80000) == 0x81a80000) /* FPOP2 */ {
261 			IR = 2;
262 			switch ((insn >> 5) & 0x1ff) {
263 			case FCMPQ: TYPE(3,0,0,3,1,3,1); break;
264 			case FCMPEQ: TYPE(3,0,0,3,1,3,1); break;
265 			/* Now the conditional fmovq support */
266 			case FMOVQ0:
267 			case FMOVQ1:
268 			case FMOVQ2:
269 			case FMOVQ3:
270 				/* fmovq %fccX, %fY, %fZ */
271 				if (!((insn >> 11) & 3))
272 					XR = current_thread_info()->xfsr[0] >> 10;
273 				else
274 					XR = current_thread_info()->xfsr[0] >> (30 + ((insn >> 10) & 0x6));
275 				XR &= 3;
276 				IR = 0;
277 				switch ((insn >> 14) & 0x7) {
278 				/* case 0: IR = 0; break; */			/* Never */
279 				case 1: if (XR) IR = 1; break;			/* Not Equal */
280 				case 2: if (XR == 1 || XR == 2) IR = 1; break;	/* Less or Greater */
281 				case 3: if (XR & 1) IR = 1; break;		/* Unordered or Less */
282 				case 4: if (XR == 1) IR = 1; break;		/* Less */
283 				case 5: if (XR & 2) IR = 1; break;		/* Unordered or Greater */
284 				case 6: if (XR == 2) IR = 1; break;		/* Greater */
285 				case 7: if (XR == 3) IR = 1; break;		/* Unordered */
286 				}
287 				if ((insn >> 14) & 8)
288 					IR ^= 1;
289 				break;
290 			case FMOVQI:
291 			case FMOVQX:
292 				/* fmovq %[ix]cc, %fY, %fZ */
293 				XR = regs->tstate >> 32;
294 				if ((insn >> 5) & 0x80)
295 					XR >>= 4;
296 				XR &= 0xf;
297 				IR = 0;
298 				freg = ((XR >> 2) ^ XR) & 2;
299 				switch ((insn >> 14) & 0x7) {
300 				/* case 0: IR = 0; break; */			/* Never */
301 				case 1: if (XR & 4) IR = 1; break;		/* Equal */
302 				case 2: if ((XR & 4) || freg) IR = 1; break;	/* Less or Equal */
303 				case 3: if (freg) IR = 1; break;		/* Less */
304 				case 4: if (XR & 5) IR = 1; break;		/* Less or Equal Unsigned */
305 				case 5: if (XR & 1) IR = 1; break;		/* Carry Set */
306 				case 6: if (XR & 8) IR = 1; break;		/* Negative */
307 				case 7: if (XR & 2) IR = 1; break;		/* Overflow Set */
308 				}
309 				if ((insn >> 14) & 8)
310 					IR ^= 1;
311 				break;
312 			case FMOVQZ:
313 			case FMOVQLE:
314 			case FMOVQLZ:
315 			case FMOVQNZ:
316 			case FMOVQGZ:
317 			case FMOVQGE:
318 				freg = (insn >> 14) & 0x1f;
319 				if (!freg)
320 					XR = 0;
321 				else if (freg < 16)
322 					XR = regs->u_regs[freg];
323 				else if (!test_thread_64bit_stack(regs->u_regs[UREG_FP])) {
324 					struct reg_window32 __user *win32;
325 					flushw_user ();
326 					win32 = (struct reg_window32 __user *)((unsigned long)((u32)regs->u_regs[UREG_FP]));
327 					get_user(XR, &win32->locals[freg - 16]);
328 				} else {
329 					struct reg_window __user *win;
330 					flushw_user ();
331 					win = (struct reg_window __user *)(regs->u_regs[UREG_FP] + STACK_BIAS);
332 					get_user(XR, &win->locals[freg - 16]);
333 				}
334 				IR = 0;
335 				switch ((insn >> 10) & 3) {
336 				case 1: if (!XR) IR = 1; break;			/* Register Zero */
337 				case 2: if (XR <= 0) IR = 1; break;		/* Register Less Than or Equal to Zero */
338 				case 3: if (XR < 0) IR = 1; break;		/* Register Less Than Zero */
339 				}
340 				if ((insn >> 10) & 4)
341 					IR ^= 1;
342 				break;
343 			}
344 			if (IR == 0) {
345 				/* The fmov test was false. Do a nop instead */
346 				current_thread_info()->xfsr[0] &= ~(FSR_CEXC_MASK);
347 				regs->tpc = regs->tnpc;
348 				regs->tnpc += 4;
349 				return 1;
350 			} else if (IR == 1) {
351 				/* Change the instruction into plain fmovq */
352 				insn = (insn & 0x3e00001f) | 0x81a00060;
353 				TYPE(3,3,0,3,0,0,0);
354 			}
355 		}
356 	}
357 	if (type) {
358 		argp rs1 = NULL, rs2 = NULL, rd = NULL;
359 
360 		/* Starting with UltraSPARC-T2, the cpu does not set the FP Trap
361 		 * Type field in the %fsr to unimplemented_FPop.  Nor does it
362 		 * use the fp_exception_other trap.  Instead it signals an
363 		 * illegal instruction and leaves the FP trap type field of
364 		 * the %fsr unchanged.
365 		 */
366 		if (!illegal_insn_trap) {
367 			int ftt = (current_thread_info()->xfsr[0] >> 14) & 0x7;
368 			if (ftt != (type >> 9))
369 				goto err;
370 		}
371 		current_thread_info()->xfsr[0] &= ~0x1c000;
372 		freg = ((insn >> 14) & 0x1f);
373 		switch (type & 0x3) {
374 		case 3: if (freg & 2) {
375 				current_thread_info()->xfsr[0] |= (6 << 14) /* invalid_fp_register */;
376 				goto err;
377 			}
378 		case 2: freg = ((freg & 1) << 5) | (freg & 0x1e);
379 		case 1: rs1 = (argp)&f->regs[freg];
380 			flags = (freg < 32) ? FPRS_DL : FPRS_DU;
381 			if (!(current_thread_info()->fpsaved[0] & flags))
382 				rs1 = (argp)&zero;
383 			break;
384 		}
385 		switch (type & 0x7) {
386 		case 7: FP_UNPACK_QP (QA, rs1); break;
387 		case 6: FP_UNPACK_DP (DA, rs1); break;
388 		case 5: FP_UNPACK_SP (SA, rs1); break;
389 		}
390 		freg = (insn & 0x1f);
391 		switch ((type >> 3) & 0x3) {
392 		case 3: if (freg & 2) {
393 				current_thread_info()->xfsr[0] |= (6 << 14) /* invalid_fp_register */;
394 				goto err;
395 			}
396 		case 2: freg = ((freg & 1) << 5) | (freg & 0x1e);
397 		case 1: rs2 = (argp)&f->regs[freg];
398 			flags = (freg < 32) ? FPRS_DL : FPRS_DU;
399 			if (!(current_thread_info()->fpsaved[0] & flags))
400 				rs2 = (argp)&zero;
401 			break;
402 		}
403 		switch ((type >> 3) & 0x7) {
404 		case 7: FP_UNPACK_QP (QB, rs2); break;
405 		case 6: FP_UNPACK_DP (DB, rs2); break;
406 		case 5: FP_UNPACK_SP (SB, rs2); break;
407 		}
408 		freg = ((insn >> 25) & 0x1f);
409 		switch ((type >> 6) & 0x3) {
410 		case 3: if (freg & 2) {
411 				current_thread_info()->xfsr[0] |= (6 << 14) /* invalid_fp_register */;
412 				goto err;
413 			}
414 		case 2: freg = ((freg & 1) << 5) | (freg & 0x1e);
415 		case 1: rd = (argp)&f->regs[freg];
416 			flags = (freg < 32) ? FPRS_DL : FPRS_DU;
417 			if (!(current_thread_info()->fpsaved[0] & FPRS_FEF)) {
418 				current_thread_info()->fpsaved[0] = FPRS_FEF;
419 				current_thread_info()->gsr[0] = 0;
420 			}
421 			if (!(current_thread_info()->fpsaved[0] & flags)) {
422 				if (freg < 32)
423 					memset(f->regs, 0, 32*sizeof(u32));
424 				else
425 					memset(f->regs+32, 0, 32*sizeof(u32));
426 			}
427 			current_thread_info()->fpsaved[0] |= flags;
428 			break;
429 		}
430 		switch ((insn >> 5) & 0x1ff) {
431 		/* + */
432 		case FADDS: FP_ADD_S (SR, SA, SB); break;
433 		case FADDD: FP_ADD_D (DR, DA, DB); break;
434 		case FADDQ: FP_ADD_Q (QR, QA, QB); break;
435 		/* - */
436 		case FSUBS: FP_SUB_S (SR, SA, SB); break;
437 		case FSUBD: FP_SUB_D (DR, DA, DB); break;
438 		case FSUBQ: FP_SUB_Q (QR, QA, QB); break;
439 		/* * */
440 		case FMULS: FP_MUL_S (SR, SA, SB); break;
441 		case FSMULD: FP_CONV (D, S, 1, 1, DA, SA);
442 			     FP_CONV (D, S, 1, 1, DB, SB);
443 		case FMULD: FP_MUL_D (DR, DA, DB); break;
444 		case FDMULQ: FP_CONV (Q, D, 2, 1, QA, DA);
445 			     FP_CONV (Q, D, 2, 1, QB, DB);
446 		case FMULQ: FP_MUL_Q (QR, QA, QB); break;
447 		/* / */
448 		case FDIVS: FP_DIV_S (SR, SA, SB); break;
449 		case FDIVD: FP_DIV_D (DR, DA, DB); break;
450 		case FDIVQ: FP_DIV_Q (QR, QA, QB); break;
451 		/* sqrt */
452 		case FSQRTS: FP_SQRT_S (SR, SB); break;
453 		case FSQRTD: FP_SQRT_D (DR, DB); break;
454 		case FSQRTQ: FP_SQRT_Q (QR, QB); break;
455 		/* mov */
456 		case FMOVQ: rd->q[0] = rs2->q[0]; rd->q[1] = rs2->q[1]; break;
457 		case FABSQ: rd->q[0] = rs2->q[0] & 0x7fffffffffffffffUL; rd->q[1] = rs2->q[1]; break;
458 		case FNEGQ: rd->q[0] = rs2->q[0] ^ 0x8000000000000000UL; rd->q[1] = rs2->q[1]; break;
459 		/* float to int */
460 		case FSTOI: FP_TO_INT_S (IR, SB, 32, 1); break;
461 		case FDTOI: FP_TO_INT_D (IR, DB, 32, 1); break;
462 		case FQTOI: FP_TO_INT_Q (IR, QB, 32, 1); break;
463 		case FSTOX: FP_TO_INT_S (XR, SB, 64, 1); break;
464 		case FDTOX: FP_TO_INT_D (XR, DB, 64, 1); break;
465 		case FQTOX: FP_TO_INT_Q (XR, QB, 64, 1); break;
466 		/* int to float */
467 		case FITOQ: IR = rs2->s; FP_FROM_INT_Q (QR, IR, 32, int); break;
468 		case FXTOQ: XR = rs2->d; FP_FROM_INT_Q (QR, XR, 64, long); break;
469 		/* Only Ultra-III generates these */
470 		case FXTOS: XR = rs2->d; FP_FROM_INT_S (SR, XR, 64, long); break;
471 		case FXTOD: XR = rs2->d; FP_FROM_INT_D (DR, XR, 64, long); break;
472 #if 0		/* Optimized inline in sparc64/kernel/entry.S */
473 		case FITOS: IR = rs2->s; FP_FROM_INT_S (SR, IR, 32, int); break;
474 #endif
475 		case FITOD: IR = rs2->s; FP_FROM_INT_D (DR, IR, 32, int); break;
476 		/* float to float */
477 		case FSTOD: FP_CONV (D, S, 1, 1, DR, SB); break;
478 		case FSTOQ: FP_CONV (Q, S, 2, 1, QR, SB); break;
479 		case FDTOQ: FP_CONV (Q, D, 2, 1, QR, DB); break;
480 		case FDTOS: FP_CONV (S, D, 1, 1, SR, DB); break;
481 		case FQTOS: FP_CONV (S, Q, 1, 2, SR, QB); break;
482 		case FQTOD: FP_CONV (D, Q, 1, 2, DR, QB); break;
483 		/* comparison */
484 		case FCMPQ:
485 		case FCMPEQ:
486 			FP_CMP_Q(XR, QB, QA, 3);
487 			if (XR == 3 &&
488 			    (((insn >> 5) & 0x1ff) == FCMPEQ ||
489 			     FP_ISSIGNAN_Q(QA) ||
490 			     FP_ISSIGNAN_Q(QB)))
491 				FP_SET_EXCEPTION (FP_EX_INVALID);
492 		}
493 		if (!FP_INHIBIT_RESULTS) {
494 			switch ((type >> 6) & 0x7) {
495 			case 0: xfsr = current_thread_info()->xfsr[0];
496 				if (XR == -1) XR = 2;
497 				switch (freg & 3) {
498 				/* fcc0, 1, 2, 3 */
499 				case 0: xfsr &= ~0xc00; xfsr |= (XR << 10); break;
500 				case 1: xfsr &= ~0x300000000UL; xfsr |= (XR << 32); break;
501 				case 2: xfsr &= ~0xc00000000UL; xfsr |= (XR << 34); break;
502 				case 3: xfsr &= ~0x3000000000UL; xfsr |= (XR << 36); break;
503 				}
504 				current_thread_info()->xfsr[0] = xfsr;
505 				break;
506 			case 1: rd->s = IR; break;
507 			case 2: rd->d = XR; break;
508 			case 5: FP_PACK_SP (rd, SR); break;
509 			case 6: FP_PACK_DP (rd, DR); break;
510 			case 7: FP_PACK_QP (rd, QR); break;
511 			}
512 		}
513 
514 		if(_fex != 0)
515 			return record_exception(regs, _fex);
516 
517 		/* Success and no exceptions detected. */
518 		current_thread_info()->xfsr[0] &= ~(FSR_CEXC_MASK);
519 		regs->tpc = regs->tnpc;
520 		regs->tnpc += 4;
521 		return 1;
522 	}
523 err:	return 0;
524 }
525